Sensor Performance, Data Quality, and Novel Applications

My Air Quality: Using Sensors to Know What’s in Your Air

Oakland, CA
November 19, 2014
Andrea Polidori, Ph.D.
QA Manager; South Coast AQMD

(apolidori@aqmd.gov)
Background

• Technology trend: smaller, faster, cheaper
 ➢ Example: PCs have evolved into tablets, and cell-phones have become small PCs.

• Most traditional air monitoring instruments are following the same trend

• Safe to assume that the performance of “low-cost” sensors will soon match that of FRM/FEM instruments…..but when?
Background

• Many deciding factors, including:
 - Advancements in sensor technology
 - Performance & cost of microprocessors
 - Growing public interest
 - Large tech-company involvement

“Researchers turn Google Glass into health sensor”
– wired (Sept. 2014)

• How can governmental agencies help?
 - Engage, educate, and empower the public
 - Work with sensor manufacturers & developers
 - Characterize sensors performance & data quality
• Evaluation (not certification) program
• Field and chamber testing
• Determine parameters affecting sensor performance and data quality:
 - Detection range
 - Linearity
 - Detection limit
 - Accuracy
 - Precision
 - Response time
 - Intra-model variability
 - Co-pollutant interference
 - RH and T influences
 - Durability
Categorize sensors based on performance

Several novel applications

- Characterize spatial variations
 - Wide area coverage
- Improve network design
 - Identify high concentration areas
- Permitting
 - Monitor before and after construction
- Fence-line monitoring
 - Large refineries and emission sources
- Community concerns
 - Local impact of freeways, airports, refineries, etc.
- Aerial measurements
 - Stack sampling, plume profiling, and much more

EPA’s “DRAFT Roadmap for Next Generation Air Monitoring”
Novel Applications (example): Characterize Spatial Variations

- **iSPEX**
 - < $4 add-on for smart-phone cameras to measure Aerosol Optical Thickness to estimate atmospheric aerosols!!!
 - Spectropolarimetric method
 - Daytime, cloud-free measurements only
 - Project led by Frans Snik, Leiden University (Netherlands)

- Thousands of (free) iSPEX used to for three days in 2013
- Results comparable to ground-based, network, and satellite measurements

http://ispex.nl/en/
Novel Applications (example): Aerial Measurements

- Unmanned Aerial Vehicles
 - Provide stable X-Y-Z platform for sample collection
 - Sensors can be mounted to provide integrated and real-time data (e.g., GPS, meteorological, gaseous, and particulate)
 - FAA Restrictions (commercial vs. recreational) and flight time limitations
 - Many potential uses: stack sampling, plume profiling, fence-line monitoring, gradient studies, previously unreachable locations

NASA’s Global Hawk UAV (not properly “low-cost”)

T&B systems quadcopter (affordable!)

(...don’t call me DRONE!)

Quadruped Temperature and Ozone Sounding Using ZB POM

Courtesy of
Conclusions

• More comprehensive field and laboratory testing needed to:
 - Address sensor data quality issues
 - Correctly interpret sensor data
 - Appropriately select sensors for specific applications
 - Promote a more responsible sensor use
 - Improve performance of available sensors
 - Design the next generation sensor technology

• Available sensors are not as accurate and reliable as FRM/FEM (yet), but they can be used for many useful applications

• Many short- and long-term challenges, including:
 - Incorrect use of sensors and sensor data
 - Rapid proliferation
 - Dealing with “Big data”