Sulfur and Ammonia Calculations To Demonstrate Compliance with BAAQMD 9-1-313.2

Calculation: Refinery Fuel Gas Sulfur Removal and Recovery Efficiency on Refinery Wide Basis

Sulfur in Untreated Fuel Gas = Ideal gas volume at 60 degrees F =				122 380	LT/D standard cubic f	eet ner lb mol	
Molecular weight H ₂ S =				34	Staridard Cubic I	eet per ib-mor	
Molecular weight SO ₂ =				64			
Molectular weight COS =				60			
Molecular weight S =				32			
Long ton (LT) =				2,200	lbs		
Refinery Fuel Gas							
H ₂ S daily average concentration =			10 p	omvd			
Daily average flow rate =				Mscf/day			
Sample Calculation: Refinery Fuel Gas Sulfur Emissions							
(LT/D) =	58	MMscf gas	X	1	0 scf H ₂ S x		lb-mol
	_	day			MMscf gas	380	scf H ₂ S
х	32_	lb S		4			LTS
		lb-mol			day	2,200	lb S
=	0.02	LT S					
		day					

Average Daily Sulfur Emissions from Refinery Fuel Gas and SCOTs

		Sulfur Concent		
	Flow,	H₂S,	cos,	Total S
	MMscf/day	ppmvd	ppmvd	LT/D
Refinery fuel gas	58	10		0.02
Flexigas	180	33	44	0.5
Total Refinery Fuel Gas				0.6
Total Sulfur Recovery Uni	its (SCOTs)			0.1
54% of SCOTs S is from Refinery Fuel Gas				
46% of SCOTs S is from Sour Water Strippers				0.05

Refinery Fuel Gas Sulfur Removal and Recovery Efficiency on Refinery Wide Basis

Recovered S from refinery wide fuel gas =	122	LT/D S
Emitted S from combustion of refinery wide fuel gas =	0.6	LT/D S
Emitted S from SCOT attributed to refinery wide fuel gas =	0.06	LT/D S
Total S not recovered from refinery wide fuel gas =	0.6	LT/D S
Percent total S removed and recovered from refinery wide fuel gas =	99.5%	-

Calculation: Process Water Sulfur Removal and Recovery Efficiency on Refinery Wide Basis

Sulfur from Process Water to Sulfur Recovery Units = 100 LT/D S
Sour Water = 48.3 MB/D
Sour Water = 2,028,600 gallons per day
HS Stripped Water Concentration = <1, below detection limit
Molecular weight HS = 33
Molecular weight S = 32
Density of water = 8.34 lbs/gallon

Sulfur Remaining in Stripped Water

Sulfur (LT/D)	=		2,028,600	gallons water x day	8.34 lbs water x gallon water	0.0001% HS, by weight	
		х	32	lbs S/lb-mol x	LT =	0.007 LT S	

Process Water Sulfur Removal and Recovery Efficiency on Refinery Wide Basis

2,200

lbs

Recovered S from refinery wide process water =		100	LT/D S
S remaining in refinery wide stripped water =		0.007	LT/D S
Emitted S from SCOT attributed to refinery wide process water =		0.05	LT/D S
Total S not recovered from refinery wide process water =		0.06	LT/D S
Percent total S removed and recovered from refinery wide process water =	>	99.9%	

lbs HS/lb-mol

33

day

Calculation: Process Water Ammonia Removal Efficiency on Refinery Wide Basis

Nitrogen from Process Water to Sulfur Recovery Units =	79 LT/D N
Ammonia from Process Water to Sulfur Recovery Units =	96 LT/D NH₃
Sour Water =	48.3 MB/D
Sour Water =	2,028,600 gallons per day
NH3HS Stripped Water Concentration =	50 ppmw
Molecular weight NH ₃ HS =	50
Molecular weight NH ₃ =	17
Density of water =	8.34 lbs/gallon

Ammonia in Stripped Water

Ammonia

(LT/D) =		2,028,600	gallons water x day	8.34 lbs water x gallons water	0.005% NH ₃ HS, by weight	
	x	17	lbs NH ₃ /lb-mol x	LT =	0.1 LT NH ₃	
		50	lbs NH₃HS/lb-mol	2.200 lbs	dav	

Process Water Ammonia Removal Efficiency on Refinery Wide Basis

NH ₃ from refinery wide process water destroyed in SRU =	96	LT/D S	
NH ₃ remaining in refinery wide stripped water =		0.1	LT/D S
Percent total NH ₃ removed from refinery wide process water =	>	99.9%	