Source Test Procedure ST-9

LEAD
Adopted (January 20, 1982)

REF: Regulation, 11-1-301

1. **APPLICABILITY**
 1.1 This procedure is used to quantify emissions of Lead. It determines compliance with Regulation 11-1-301.

2. **PRINCIPLE**
 2.1 The stack gases are withdrawn isokinetically and passed through a glass fiber filter and impingers containing iodine monochloride (ICl). The filter and impinger catches are then measured for lead content according to Analytical Procedure Lab 4b.

3. **RANGE**
 3.1 The minimum measurable emission of particulate lead is 7×10^{-5} grain/SDCF and gaseous lead is 2×10^{-5} gr/SDCF.

4. **INTERFERENCES.**
 None Known.

5. **APPARATUS**
 5.1 Probe Nozzle. The sampling train and its components are shown in Figure 9-1. The probe nozzle shall be constructed of borosilicate glass, quartz, or stainless steel.

 5.2 Filter Medium. Use a Gelman, Type "A" glass fiber disc type filter or equivalent.

 5.3 Connection. The connection between the filter and the first impinger must be able to withstand stack temperatures.

 5.4 Pitot Tube. Use a Stauscheibe (Type-S), or equivalent, with a known coefficient which is constant within ±5% over the entire working range. The pitot tube coefficient is determined by placing both the S-type and the standard pitot tube in a gas stream and measuring the pressure head with both over the entire velocity range of interest. Calculate the coefficient of the Type-S pitot tube as follows:

 $$C_{ps} = C_{p_{std}} \left[\frac{\Delta P_{std}}{\Delta P_{s}} \right]^{\frac{1}{2}}$$

 where:
 - C_{ps} = Type-S pitot tube coefficient
 - ΔP_{s} = Pressure head, Type-S pitot tube
 - ΔP_{std} = Pressure head, standard pitot tube
\[C_{\text{std}} = \text{Standard pitot tube coefficient} \]

5.5 Temperature measuring device. Use a Chromel-Alumel thermocouple accurate to ± 15°F, connected to a temperature compensated null type potentiometer, or equivalent, to measure stack temperatures.

5.6 Absorbers. Use three Greenberg-Smith impingers. The third impinger shall be modified by removing the impaction plate and attaching a thermometer to the inlet stem.

5.7 Cooling System. Use an ice bath to contain the impingers.

5.8 Sample Pump. Use a leak-free vacuum pump capable of maintaining a 1.0 CFM flow rate at 15 inches of mercury. The pump must have a sample rate control valve and a vacuum gauge attached to the inlet.

5.9 Silica Gel Tube. Use approximately 500 cc of silica gel, followed by a Drierite indicator to insure that the gas entering the dry test meter is free of H₂O.

5.10 Dry Test Meter. Use a 175 CFH dry test meter accurate within ± 2% of the true volume and equipped with a thermometer to measure the outlet temperature. The working pressure across the meter shall not exceed a one inch water column.

5.11 Rotameter. Use a calibrated rotameter to measure the sampling rate.

5.12 Pressure Gauge. Use a Magnehelic differential pressure gauge, or equivalent, in the same range as the velocity and static pressures being measured in the stack.

5.13 Analytical Balance. An analytical balance capable of measuring condensate weights to the nearest 0.1 gram is acceptable.

5.14 Barometer. Use a barometer that is accurate to within ± 0.2 inches of mercury.

6. REAGENTS

6.1 0.1 m Iodine Monochloride - Refer to Analytical Procedure Lab-6.

7. PRE-TEST PROCEDURES

7.1 Impinger Preparation. Fill each of two unmodified Greenberg-Smith impingers with approximately 100 ml of iodine monochloride. Weigh and record the weights on the data as shown in Form 9-1.

7.2 Nozzle Size Determination. Do the preliminary tests outlined below to determine the correct nozzle size to aid in isokinetic sampling.

7.2.1 Determine the number and location of the stack traverse points in accordance with ST-18.

7.2.2 Conduct a velocity traverse in accordance with ST-17 and measure the stack gas temperature.

7.2.3 Determine the moisture content of the stack gases in accordance with ST-23.

7.2.4 Nozzle Diameter.
\[D_n = 13.7 \times \left(\frac{T_s}{V_s(100 - \%H_2O)} \right)^{\frac{1}{2}} \]

where:
- \(D_n \) = Nozzle diameter, mm
- \(T_s \) = Stack Gas Temperature
- \(H_2O \) = Stack Gas Moisture Concentration, %
- 13.7 = A constant based on an assumed meter rate of 0.5 CFM, meter temperature of 70°F, and a molecular weight of 28.8
- \(V_s \) = Stack Gas Velocity, fps, as calculated in ST-17.

7.3 Assemble the sampling train as shown in Figure 9-1.

![Lead Sampling Train](image_url)

7.4 The entire sampling train must be leak-checked before each test run. Plug the sampling probe, start the pump, and adjust the pump vacuum to 380 mm Hg (15" Hg). A leak rate through the meter which exceeds 0.57 lpm (0.02 CFM) is unacceptable.

8. **SAMPLING**

8.1 Each test run shall be of 50 minute duration when testing emissions from continuous operations. Each test run at batch process operations shall be for 90% of the batch time or 50 minutes, whichever is less.
8.2 Sample at the traverse points determined in accordance with ST-18.

8.3 The sampling rate at each traverse point must be isokinetic. Measure the stack velocity and stack temperature at each sample point and adjust the meter flow rate according to the following equation:

\[Q_m = \frac{2.638 \times 10^{-3} (100 - H_2O)D_n^2 V_s}{T_s} \]

Where:
- \(Q_m \) = Isokinetic Sampling Rate, ACFM
- \(T_s \) = Meter Temperature, °R
- \(H_2O \) = Stack Gas Moisture content (from 6.3.3)
- \(2.638 \times 10^{-3} \) = Constant derived from 60 sec/min, 70 °F, 29.92 inches Hg and molecular weight

8.4 When inserting the probe into the stack rotate the nozzle so it points downstream to avoid particulate collection prior to sampling. Immediately before sampling rotate the probe so the nozzle points upstream.

8.5 Record the following information at five minute intervals or whenever changing sampling locations on a field data sheet as shown in Form 9-2.

- Stack Velocity Head
- Sample Time
- Sample Rate
- Cumulative Sample Volume
- Impinger Saturation Temperature
- Stack Gas Temperature
- Impinger Vacuum
- Dry Test Meter Temperature

8.6 Add ice as necessary to maintain impinger temperatures at 7 °C (45 °F) or less.

8.7 At the conclusion of each run, stop the pump, remove the probe from the stack and record the final meter reading. Point the probe upward and purge the sample train with ambient air.

8.8 Take three consecutive samples.

9. POST-TEST PROCEDURES

9.1 Rinse the nozzles with approximately 50 ml of 6 normal nitric acid.

9.2 Analyze the filter, any material in the nozzle and the ICI solutions for lead according to Analytical Procedure Lab 4b.

10. AUXILIARY TESTS

10.1 Determine the \(\text{CO}_2, \text{O}_2, \) and CO concentrations simultaneously with each particulate run in accordance with ST-5, ST-14, and ST-6. An Orsat analysis (ST-24) is also acceptable.
11. **CALCULATIONS**

11.1 **Standard Dry Sample Volume**

\[V_o = \frac{17.71 V_m P_b}{T_m} \]

where:
- \(V_o \) = Standard dry sample volume, SDCF @ 70°F and 29.92 inches Hg
- \(V_m \) = Actual Metered Volume, \(\text{ft}^3 \)
- \(P_b \) = Barometric Pressure, inches Hg
- \(T_m \) = Average Meter Temperature, °R
- 17.71 = Constant correcting to 70°F and 29.92 inches Hg

11.2 **Water Vapor Content**

\[H_2O = \frac{(0.0474 W_c) + \frac{V_o P_{sat}}{P_b - P_i - P_{sat}}}{V_o + (0.0474 W_c) + \frac{V_o P_{sat}}{P_b - P_i - P_{sat}}} \times 100 \]

Where:
- \(W_c \) = Total condensate weight, all impingers, grams
- \(P_{sat} \) = Water saturation pressure, inches Hg
- \(P_b \) = Barometric pressure, inches Hg
- \(P_i \) = Pump inlet vacuum, inches Hg
- \(H_2O \) = Percent water vapor
- 0.0474 = Cubic feet of vapor resulting from 1 cubic centimeter of liquid \(H_2O \).

11.3 **Stack Gas Molecular Weight**

\[MW = 0.44 (\%CO_2) + 0.32 (\%O_2) + 0.28 (\%N_2 + \%CO) + 0.18 (\%H_2O) \]

Where:
- \(MW \) = Molecular Weight
- \(\%CO_2 \) = Percent Carbon Dioxide by volume (dry basis)
- \(\%O_2 \) = Percent Oxygen by volume (dry basis)
- \(\%CO \) = Percent Carbon Monoxide by volume (dry basis)
- \(\%H_2O \) = Percent Moisture by volume
- \(\%N_2 \) = Percent Nitrogen by volume (dry basis - determine by difference)

11.4 **Stack Gas Flow Rate** - Determine in accordance with ST-17.
11.5 Mass Emission Rate

\[M = \frac{W \times Q_o \times 60 \times T}{(454 \times 10^{-6}) \times V_o} \]

Where:
- \(M \) = Mass emission rate, lbs/day
- \(W \) = Total weight of Lead collected in filter and impingers, \(\mu g \) (micrograms)
- \(Q_o \) = Stack gas flowrate, SDCFM
- \(V_o \) = Sample Volume, SDCF
- \(T \) = Plant operation, hr/day
- 60 = minutes/hour
- 454 = grams/pound
- \(10^{-6} \) = grams/microgram

11.6 Isokinetic Ratio. Calculate for each traverse point as:

\[R_i = \frac{T_{si} Q_{mi}}{60(100 - H_2O)A V_{si} t_i T_{mi}} \times 100\% \]

Where:
- \(R_i \) = Isokinetic ratio at given point
- \(t_i \) = Time, at point \(i \), minutes
- \(A \) = Nozzle area, \(ft^2 \)
- \(V_{si} \) = Stack velocity, point \(i \), FPS
- \(T_{mi} \) = Meter temperature, point \(i \), \(^\circ R \)
- \(T_{si} \) = Stack temperature, point \(i \), \(^\circ R \)
- \(Q_{mi} \) = Metered volume, point \(i \)
- 60 = Minutes/hr.

Overall isokinetic ratio for each run:

\[R = \frac{Q_{mi}}{60(100 - H_2O)A T_m V_{si} t_i T_{si}} \times 100\% \]

12. REPORTING

12.1 The data and information indicated in Form 9-3 shall be reported.
Source Test Laboratory Data Sheet

Impinger Weightings

<table>
<thead>
<tr>
<th>Impinger I. D. #</th>
<th>(A) Tare Weight (g)</th>
<th>(B) Filled Weight (g)</th>
<th>(C) Final Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impinger I. D. #</th>
<th>(C-A) Sample Weight (g)</th>
<th>(C-B) Condensate Wt. (g)</th>
<th>Condensate Weight / Run (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Run A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Run B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Run C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Run D</td>
</tr>
<tr>
<td>Plant #</td>
<td>____________________________</td>
<td>____________</td>
<td></td>
</tr>
<tr>
<td>Source I.D.</td>
<td>____________________________</td>
<td>____________</td>
<td></td>
</tr>
<tr>
<td>Sample Type</td>
<td>____________________________</td>
<td>____________</td>
<td></td>
</tr>
<tr>
<td>Process Cycle</td>
<td>____________________________</td>
<td>____________</td>
<td></td>
</tr>
<tr>
<td>Duct Size</td>
<td>____________________________</td>
<td>____________</td>
<td></td>
</tr>
<tr>
<td>Duct Shape</td>
<td>____________________________</td>
<td>____________</td>
<td></td>
</tr>
<tr>
<td>Duct Pressure</td>
<td>____________________________</td>
<td>____________</td>
<td></td>
</tr>
<tr>
<td>Assumed %H₂O</td>
<td>____________________________</td>
<td>____________</td>
<td></td>
</tr>
</tbody>
</table>

Sampling Train: Probe # _______ Filter # _______ Imp. # _______ Imp. # _______ Pump/Box # _______

<table>
<thead>
<tr>
<th>Initial Traverse Data</th>
<th>Sampling Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trav. Point I.D.</td>
<td>Traverse Point I.D.</td>
</tr>
<tr>
<td>Dist. from Wall</td>
<td>ΔP "H₂O</td>
</tr>
<tr>
<td>Duct Temp. °F</td>
<td>Angle of Flow</td>
</tr>
<tr>
<td>ΔP °H₂O</td>
<td>Vs FPS</td>
</tr>
<tr>
<td>Duct Temp. °F</td>
<td>Time (minutes)</td>
</tr>
<tr>
<td>Time (minutes)</td>
<td>Meter Rate CFH</td>
</tr>
<tr>
<td>Meter Temp. °F</td>
<td>Meter Volume Ft³</td>
</tr>
<tr>
<td>Meter Volume °F</td>
<td>Train Vacuum °Hg</td>
</tr>
<tr>
<td>Train Vacuum °Hg</td>
<td>Sat’d Gas Temp. °F</td>
</tr>
</tbody>
</table>

Post Run Impinger Catch (ml) = _______
Assumed O₂ = _______
Assumed CO₂ = _______
Post Run Calculated %H₂O = _______

Source Test Team Comments: ____________

Post Run Impinger Catch (ml) = _______
Assumed O₂ = _______
Assumed CO₂ = _______
Post Run Calculated %H₂O = _______

Comments: ____________
Form 9-3

Summary of Source Test Results

BAY AREA
AIR QUALITY MANAGEMENT DISTRICT
939 Ellis Street
San Francisco, California 94109
(415) 771-6000

Firm
Permit Services
Enforcement Services
Technical Services
Planning
Requester
DAPCO

Distribution:

Report No.: ______________
Test Date: ______________

Test Times:

Run A: ______________
Run B: ______________
Run C: ______________

Source Information

Firm Name and Address
Firm Representative and Title
Phone No. ()
Permit Conditions:
Source:
Plant No. Permit No.
Operates Hr/Day & Day/Yr.

BAAQMD Representatives

Source Test Engineers
Permit Services Division/Enforcement Division
Test Requested By:

Operating Parameters

Applicable Regulations:
VN Recommended:

Source Test Results and Comments:

<table>
<thead>
<tr>
<th>METHOD</th>
<th>TEST</th>
<th>RUN A</th>
<th>RUN B</th>
<th>RUN C</th>
<th>AVERAGE</th>
<th>LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stack Volume Flowrate, SDCFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stack Gas Temperature, °F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Content, Volume %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxygen, Volume %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Dioxide, Volume %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide, ppmv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide, lb/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-9</td>
<td>Lead (Pb) Emissions, lb/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isokinetic Ratio, act./theo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air Quality Engineer II Date
Supervising Air Quality Engineer Date
Approved by Air Quality Engineering Manager