ADVISORY COUNCIL
TECHNICAL COMMITTEE

REVISED AGENDA

WEDNESDAY
OCTOBER 22, 2008
1:00 P.M.

1. Call to Order – Roll Call

2. Public Comment Period

Public Comment on Non-Agenda Items, Pursuant to Government Code Section 54954.3. The public has the opportunity to speak on any agenda item. All agendas for Committee meetings are posted at the District, 939 Ellis Street, San Francisco, at least 72 hours before a meeting. At the beginning of the meeting, an opportunity is also provided for the public to speak on any subject within the Committee’s purview. Speakers are limited to five minutes each.

3. Approval of Minutes of August 4, 2008

4. Discussion of Presentations Made to the Advisory Council

The Committee will discuss presentations made throughout the year.

5. Discussion and Consideration of Proposed Recommendation Resolution

The Committee will discuss and consider a proposed recommendation resolution to the full Council.

6. Committee Member Comments/Other Business

Committee members, or staff, on their own initiative, or in response to questions posed by the public, may ask a question for clarification, make a brief announcement or report on his or her own activities, provide a reference to staff regarding factual information, request staff to report back at a subsequent meeting on any matter or take action to direct staff to place a matter of business on a future agenda.
7. **Time and Place of Next Meeting.** 9:30 a.m., Monday, December 1, 2008, 939 Ellis Street, San Francisco, CA 94109.

8. **Adjournment**

CONTACT EXECUTIVE OFFICE - 939 ELLIS STREET SF, CA 94109

- To submit written comments on an agenda item in advance of the meeting.
- To request, in advance of the meeting, to be placed on the list to testify on an agenda item.
- To request special accommodations for those persons with disabilities notification to the Executive Office should be given in a timely manner, so that arrangements can be made accordingly.
- Any writing relating to an open session item on this Agenda that is distributed to all, or a majority of all, members of the body to which this Agenda relates shall be made available at the District’s offices at 939 Ellis Street, San Francisco, CA 94109, at the time such writing is made available to all, or a majority of all, members of that body. Such writing(s) may also be posted on the District’s website (www.baaqmd.gov) at that time.
OCTOBER 2008

<table>
<thead>
<tr>
<th>TYPE OF MEETING</th>
<th>DAY</th>
<th>DATE</th>
<th>TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Advisory Council Regular Meeting</td>
<td>Tuesday</td>
<td>21</td>
<td>9:30 a.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>Board of Directors Budget & Finance Committee (Meets 4th Wednesday of each month)</td>
<td>Wednesday</td>
<td>22</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>Advisory Council Technical Committee and Board of Directors Climate Protection Committee (AC Technical Cme. Meets 1st Monday of every even Month and BD Climate Protection Cme. Meets 3rd Thursday every other Month) - CANCELLED</td>
<td>Wednesday</td>
<td>22</td>
<td>1:00 p.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>Advisory Council Technical Committee (Meets 1st Monday of every even Month))</td>
<td>Wednesday</td>
<td>22</td>
<td>1:00 p.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>Board of Directors Mobile Source Committee – (Meets 4th Thursday of each Month)</td>
<td>Thursday</td>
<td>23</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>Board of Directors Legislative Committee (Meets 4th Monday of the Month) - CANCELLED</td>
<td>Monday</td>
<td>27</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>Board of Directors Public Outreach Committee (Meets 1st Thursday every other Month)</td>
<td>Friday</td>
<td>31</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
</tbody>
</table>

NOVEMBER 2008

<table>
<thead>
<tr>
<th>TYPE OF MEETING</th>
<th>DAY</th>
<th>DATE</th>
<th>TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board of Directors Nominating Committee (At the Call of the Chair)</td>
<td>Wednesday</td>
<td>5</td>
<td>9:15 a.m.</td>
<td>Room 716</td>
</tr>
<tr>
<td>Board of Directors Regular Meeting (Meets 1st & 3rd Wednesday of each Month)</td>
<td>Wednesday</td>
<td>5</td>
<td>9:45 a.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>Board of Directors Public Outreach Committee (Meets 1st Thursday every other Month) - RESCHEDULED TO FRIDAY, OCTOBER 31, 2008</td>
<td>Thursday</td>
<td>6</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>Advisory Council Executive Committee Meeting (Meets 2nd Wednesday Every Other Month)</td>
<td>Wednesday</td>
<td>12</td>
<td>9:00 a.m.</td>
<td>Room 716</td>
</tr>
<tr>
<td>Advisory Council Regular Meeting (Meets 2nd Wednesday Every Other Month)</td>
<td>Wednesday</td>
<td>12</td>
<td>10:00 a.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>TYPE OF MEETING</td>
<td>DAY</td>
<td>DATE</td>
<td>TIME</td>
<td>ROOM</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Board of Directors Personnel Committee</td>
<td>Thursday</td>
<td>13</td>
<td>10:45 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>(At the Call of the Chair)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Policy Committee</td>
<td>Friday</td>
<td>14</td>
<td>10:00 a.m. – 12:00 p.m.</td>
<td>MTC 101 - 8th Street Oakland, CA 94607</td>
</tr>
<tr>
<td>Board of Directors Ad Hoc Cme. on Port Emissions</td>
<td>Monday</td>
<td>17</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>(At the Call of the Chair)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Regular Meeting</td>
<td>Wednesday</td>
<td>19</td>
<td>9:45 a.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>(Meets 1st & 3rd Wednesday of each Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Climate Protection</td>
<td>Thursday</td>
<td>20</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>Committee Meeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Meets 3rd Thursday Every Other Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Legislative Committee</td>
<td>Monday</td>
<td>24</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>(Meets 4th Monday of the Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Budget & Finance Committee</td>
<td>Wednesday</td>
<td>26</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>(Meets 4th Wednesday of each month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Mobile Source Committee</td>
<td>Thursday</td>
<td>27</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>– (Meets 4th Thursday of each Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DECEMBER 2008

<table>
<thead>
<tr>
<th>TYPE OF MEETING</th>
<th>DAY</th>
<th>DATE</th>
<th>TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisory Council Technical Committee</td>
<td>Monday</td>
<td>1</td>
<td>9:30 a.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>(Meets 1st Monday of every even Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Regular Meeting</td>
<td>Wednesday</td>
<td>3</td>
<td>9:45 a.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>(Meets 1st & 3rd Wednesday of each Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advisory Council Air Quality Planning Committee</td>
<td>Thursday</td>
<td>4</td>
<td>9:30 a.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>(Meets 1st Thursday Even Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advisory Council Public Health Committee</td>
<td>Wednesday</td>
<td>10</td>
<td>1:30 p.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>– (Meets 2nd Wednesday Even Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Stationary Source Committee</td>
<td>Monday</td>
<td>15</td>
<td>9:30 a.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>(Meets 3rd Monday Quarterly)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Regular Meeting</td>
<td>Wednesday</td>
<td>17</td>
<td>9:45 a.m.</td>
<td>Board Room</td>
</tr>
<tr>
<td>(Meets 1st & 3rd Wednesday of each Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Legislative Committee</td>
<td>Monday</td>
<td>22</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>(Meets 4th Monday of the Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Budget & Finance Committee</td>
<td>Wednesday</td>
<td>24</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>(Meets 4th Wednesday of each month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors Mobile Source Committee</td>
<td>Thursday</td>
<td>25</td>
<td>9:30 a.m.</td>
<td>4th Floor Conf. Room</td>
</tr>
<tr>
<td>– (Meets 4th Thursday of each Month)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Call to Order – Roll Call.** Chairperson, Kraig Kurucz called the meeting to order at 9:35 a.m.

 Present: Sam Altshuler, P.E., Robert Bornstein, Ph.D., Fred Glueck, John Holtzclaw, Ph.D., Kraig Kurucz, Chairperson.

 Absent: Louise Bedsworth, Ph.D.

2. **Public Comment Period.** There were no public comments.

3. **Approval of Minutes of June 9, 2008:**

 Dr. Holtzclaw made a motion to approve the minutes. The Committee submitted minor edits to the minutes, discussed the need for speakers to provide a summary of their comments, and suggested that future minutes be summarized to a minimum of 3-4 pages.

 Chairperson Kurucz commented that Dr. Duffy did not review the minutes and suggested he be forwarded the draft minutes to edit, for staff to make editorial amendments and resubmit the minutes for approval at the next Technical Committee meeting in October.

4. **Committee Member Comments/Other Business:**

 Mr. Glueck questioned whether or not the Air District could, over the next few months, monitor the differences in air quality due to changes in China during the Olympics and how it affects background here. Gary Kendall, Director of Technical Services, stated that the Air District performs air monitoring and the data are archived and available for such analysis. The Committee then briefly discussed tracking, whether or not background is affected, wind direction and blips up or down which may be caused by meteorology or emissions.

 Chairperson Kurucz reported that for the Committee’s next meeting, Dr. Schneider has been contacted and is interested in providing a presentation to the Committee. He stated that Board of Directors’ Vice Chair Torliatt had expressed interest in Dr. Schneider’s presentation. Chair Kurucz asked whether a joint meeting would be possible.

 After brief discussion, there was general agreement by the Committee that staff would discuss scheduling of the presentation with Chair Hill for the October 15th Board of Directors meeting, Chairperson Kurucz would contact and confirm Dr. Schneider’s availability for October 15th (with an alternate date of October 20, 2008), and that the presentation focus on the Bay Area,
what are the upcoming impacts, and what could the Air District do in taking a leadership role in adaptation and mitigation.

5. Discussion of Implications of Climate Change; Synergies and Conflicts of Climate Change on Bay Area Air Quality: The Committee discussed the implications of climate change; synergies and conflicts of climate change on Bay Area air quality.

Mr. Altshuler communicated that he believed there was a conflict between controlling wood smoke and using renewable energy, was surprised the Rule came down hard on perceived cleaner stoves and not as hard on fireplaces and the lack of the argument made for renewable energy. Ms. Roggenkamp, Deputy APCO, explained that this was addressed in the environmental document for the new Rule.

Chairperson Kurucz referred to the format of a recommendation of the Technical Committee and discussed with members recommended actions and important points to identify as “whereas” clauses.

Dr. Bornstein asked staff to identify the last Air District document which would state the position of the Board of Directors and the Air District having to do with climate change in air quality. Ms. Roggenkamp responded that this topic was discussed by the Board at their January Retreat; climate protection is one of the key initiatives of the Air District and since that time the fee schedule for greenhouse gases had been adopted. Staff has also discussed with the Climate Protection Committee about preparing a Work Program for climate protection, which she said was in the planning stages.

Dr. Bornstein recommended that the Air District’s modeling efforts be state-of-the-art and all-encompassing in order to model ozone, PM, climate change and CARE with an integrated set of models, and that the District ensure their modeling group has the tools to carry out this kind of modeling. Ms. Roggenkamp reported that the Air District recently embarked upon a multi-pollutant plan, and she agreed it is important to think about multiple pollutants at the same time and what this means for PM, toxics or greenhouse gases. She said staff held one public workshop to discuss this idea, there was support from those in attendance, and she suggested this as an appropriate avenue. Staff is looking at how to analyze different kinds of control measures, look at benefits and potential conflicts among pollutants which is in concert with what the Committee is suggesting.

Dr. Bornstein reiterated the need to study the local impacts, local observations and conduct modeling to know past conditions, project future conditions, and how to adapt and mitigate.

Chairperson Kurucz suggested the Committee discuss and synthesize the next item in order to develop a recommendation to the Advisory Council.

6. Discussion of Presentations made to the Advisory Council Technical Committee:

1. Update on PM Inventory Development, Modeling and Data Analysis (presented on February 11, 2008 by Mr. Saffet Tanrikulu and Mr. David Fairley);

2. Consequences of Changes in Temperature, Inflow Boundary Conditions, and Local Emissions, on Air Quality in Central California (presented on April 7, 2008 by Professor Rob Harley);
3. *Past and Future Temperature World-Wide, in California, and the Bay Area (presented on June 9, 2008 by Dr. Philip B. Duffy).*

Chairperson Kurucz pointed out the importance of formulating a good summary of the presentations and suggested beginning with “whereas” clauses, which would then lead to recommendations. He suggested one of the actions to recommend be modeling; both multi-pollutant and a regional version of the global models.

Dr. Bornstein said the original global models diverged and people did not believe them until they were able to simulate what happened in the last hundred years. Then they started to believe simulations out for another hundred years. He said if the Committee is recommending some sort of regional modeling, a component of this should be able to reproduce what has happened over the last 40 years and then look at projections out for the next 40 years in a changing climate.

He suggested that an ad-hoc committee be considered, comprised of experts from Livermore Laboratories, Stanford University or other research institutes to meet and form a pool of knowledge on climate change and its impact on the local area. Ms. Roggenkamp noted that there has been some consideration among staff about holding a one-day symposia to discuss potential conflicts as we think about all pollutants at once and representatives of this sort would be invited. She agreed that possibly one of the recommendations out of the symposia could be for representatives to continue to meet.

The Committee discussed at length the following phrases as input to the resolution:

WHEREAS, problem/solution of climate change and regional pollution are inter-related;
WHEREAS, EPA modeling is now becoming multi-scale and multi-pollutant;
WHEREAS, implications of renewable energy involve concentration, energy, conservation, and health;
WHEREAS, climate change can overwhelm and cause unintended consequences and trade-off’s (e.g. aerosols and climate, fires, coastal cooling, snowfall, flooding);
WHEREAS, regional reactions to global climate change are varied;
WHEREAS, land use planning strategies impact local climate change;
WHEREAS, Bay Area has unique concentration of analytical capabilities, experts and innovators;
WHEREAS, prediction models need validation on past changes;
WHEREAS, Bay Area has existing observational networks;
WHEREAS, the Bay Area has served as a model in air quality strategies;
THEREFORE, the Technical Committee recommends that the Air District include climate change issues in the Air District’s multi-pollutant, multi-scale air quality management planning process, including:
 o Continuing to apply and validate the best available multi-scale and multi-pollutant models to local linked air-quality and climate change issues.
Dr. Bornstein also suggested the clauses reference the individual person who gave the Committee the information/ideas.

Mr. Altshuler recommended that the Air District consider the position of a Climate Protection Officer, similar to the newly approved Public Health Officer, in order to raise the status of the Committee’s position. Ms. Roggenkamp reported that employee, Ana Sandoval has been promoted to Senior Policy Advisor in the Executive Office and one of her roles will be working on climate protection issues in a policy-oriented manner and how the Air District works with outside organizations. She also stressed that Planning Division staff currently focus on climate protection, and part of the concept over time is that this be integrated throughout the Air District.

Dr. Bornstein suggested that observations be used to understand what the local climate changes are and that this be a separate recommendation. Chairperson Kurucz stated that this needed to be made in context and not used as a reason to avoid action on a local basis.

In closing, Chair Kurucz expressed thanks to Committee members and agreed to work with two other members of the Committee to wordsmith the draft resolution and bring it back to the full Committee for finalization and submission to the Advisory Council.

7. **Time and Place of Next Meeting:** At the call of the Chair.

8. **Adjournment.** 11:54 a.m.

Lisa Harper
Clerk of the Boards
AGENDA: 5

BAY AREA AIR QUALITY MANAGEMENT DISTRICT
Memorandum

To: Advisory Council Technical Committee Members
From: Kraig Kurucz
Technical Committee Chair
Date: October 16, 2008
Re: Discussion of Proposed Resolution Language

RECOMMENDED ACTION:

None at this time. This item is for a conceptual discussion.

BACKGROUND

A discussion of presentations made to the Advisory Council Technical Committee was had at its August 4, 2008. The Following presentations have been made to the Committee throughout the year:

1. Update on PM Inventory Development, Modeling and Data Analysis (presented on February 11, 2008 by Mr. Saffet Tanrikulu and Mr. David Fairley);
2. Consequences of Changes in Temperature, Inflow Boundary Conditions, and Local Emissions, on Air Quality in Central California (presented on April 7, 2008 by Professor Rob Harley);
3. Past and Future Temperature World-Wide, in California, and the Bay Area (presented on June 9, 2008 by Dr. Philip B. Duffy);

At his meeting the Committee began development of the following “Whereas” clauses which are intended to lead to recommendations to the full Council for approval.

WHEREAS, problem/solution of climate change and regional pollution are interrelated;
WHEREAS, EPA modeling is now becoming multi-scale and multi-pollutant;
WHEREAS, implications of renewable energy involve concentration, energy, conservation, and health;
WHEREAS, climate change can overwhelm and cause unintended consequences and trade-off’s (e.g. aerosols and climate, fires, coastal cooling, snowfall, flooding);
WHEREAS, regional reactions to global climate change are varied;
WHEREAS, land use planning strategies impact local climate change;
WHEREAS, Bay Area has unique concentration of analytical capabilities, experts and innovators;
WHEREAS, prediction models need validation on past changes;
WHEREAS, Bay Area has existing observational networks;
WHEREAS, the Bay Area has served as a model in air quality strategies;

THEREFORE, the Technical Committee recommends that the Air District include climate change issues in the Air District’s multi-pollutant, multi-scale air quality management planning process, including:

Respectfully Submitted,

Kraig Kurucz
Technical Committee Chair
Multiscale and Multipollutant Air Quality Modeling Research and Its Applications

Dr. S.T. Rao
Director, Atmospheric Modeling Division
U.S. Environmental Protection Agency
Research Triangle Park, NC, USA
Health Impacts of Poor Air Quality

EPA estimates that in the year 2010 meeting the air quality standards would:

- Prevent 23,000 Americans from dying prematurely;
- Avert over 1,700,000 incidences of asthma attacks and aggravation of chronic asthma;
- 67,000 incidences of chronic and acute bronchitis
- 91,000 occurrences of shortness of breath;
- 4,100,000 lost work days, and 31,000,000 days in which Americans would have had to restrict activity due to air pollution related illness; and
- 22,000 respiratory-related hospital admissions would be averted, as well as 42,000 cardiovascular (heart and blood) hospital admissions, and 4,800 emergency room visits for asthma

Total annual saving = $110 Billion (2010)
Total annual cost = $27 Billion (2010)
Additional Impacts of Poor Air Quality

- Visibility impairment - regional haze
- Acidic deposition - sensitive ecosystems, fresh water fishery, materials damage
- Eutrophication of coastal areas
- Crop damage - Estimated* for 1990 to be $3-5 billion/year
- Air toxics (e.g., mercury) - fish advisories – mercury estimated to reduce U.S. productivity by $8.7B/year

Clean Air Interstate Rule (CAIR)

Acid Rain: 1996-2000
Ozone Transport Comm.: 1996-2002
NOx SIP Call: 2003 – 2007
Nonroad Large Spark-Ignition Engines: 2004 and beyond
Heavy Duty Highway Diesel Program: 2006, 2007 and beyond
Non-Road Diesel Rule: 2007 and beyond
Clean Air Interstate Rule: 2009 and 2015

Major regulations affecting NOx Emissions
Future Air Quality Management Challenges

Areas Projected to Exceed the **Current PM\textsubscript{2.5}** & **8-Hour Ozone Standards in 2020**
with CAIR/Mobile, some Current Rules* Absent Additional Local Controls

Areas forecast to remain in nonattainment may need to adopt additional local or regional controls to attain the standards by dates set pursuant to the Clean Air Act. These additional local or regional measures are not forecast here, and therefore this figure overstates the extent of expected nonattainment.

Legend

- Both PM and Ozone Nonattainment: 3
- PM Only Nonattainment: 13
- Ozone Only Nonattainment: 7
- Nonattainment areas projected to attain: 106

*Current rules include Title IV of CAA, NOx SIP Call, and some existing State rules.
AMD's Strategy to Meet User Needs

Sound Science for Environmental Decisions

- Linking Emission sources to human exposure
- Linking Emission sources to ecosystem exposure
- Providing Air Quality Forecasts Guidance for Health Advisories
- Understanding the relationships between Climate Change and Air Quality
- Providing scientifically-credible models & tools to support environmental policy decisions
- Evaluating the Impact of Regulatory Policies on Air Quality & Ecosystems

Atmospheric Modeling Division (AMD)

Atmospheric Model Development Branch

Model Eval. & Applications Branch

Air-Surface Processes Modeling Branch

RESEARCH & DEVELOPMENT
Building a scientific foundation for sound environmental decisions
Managing air quality requires modeling tools that connect among various scales

- **Global** – e.g. climate change, stratospheric ozone, intercontinental transport, persistent-bioaccumulative toxic pollutants (Hg, dioxins)
- **Regional** – e.g. ozone, fine particles, health, acid rain, visibility, nutrient loadings
- **Local** – e.g. ozone, PM health, air toxics
- **Personal** – indoor air/outdoor penetration, asthma
Air Quality Research Framework

Understanding Atmospheric Processes and Predicting Changes in Air Quality

- Observations: Regional Experiments and Monitoring Networks
- Models: Meteorological, Emissions, and Chemical Transport Models
- Model Evaluations and Model Improvements

Transition Research to Applications

- Assessing Current and Future Air Quality
- Producing Air Quality and Deposition Forecasts

Science-Based Air Quality Management Decisions

- Implement Emission controls
- Provide Health and Welfare Advisories

Evaluating Program Effectiveness

Refine Decisions and Strategies
Using models that integrate multiple data sources to better assess effectiveness of past policies

Current focus of AQM Process: Air quality monitoring, modeling, emissions inventories

Expanded focus of AQM Process: To the extent feasible, track indicators of effects, exposure

- **Emissions**
- **Transport**
- **Transformation**
- **Air Quality**
 - **Haze**
 - **Deposition**
- **Exposure**
- **Human Health Effects**
- **Terrestrial and Aquatic Ecosystem Effects**
- **Materials Damage**
CMAQ “One-Atmosphere” Modeling System

Meteorological Model (WRF)

SMOKE
Anthro and Biogenic Emissions processing

CMAQ AQ Model-
Chemical-Transport Computation

Met-Chem Interface Processor (MCIP)
Met. data prep
Community Multiscale Air Quality (CMAQ) MODEL EVALUATION FRAMEWORK

Dynamic Evaluation
- Can the model capture changes related to meteorological events or variations?
- Can the model capture changes related to emission reductions?

Diagnostic Evaluation
- Are model errors or biases caused by model inputs or by modeled processes?
- Can we identify the specific modeled process(es) responsible?

Probabilistic Evaluation
- What is our confidence in the model-predicted values?
- How do observed concentrations compare within an uncertainty range of model predictions?

Operational Evaluation
- How do the model predicted concentrations compare to observed concentration data?
- What are the overall temporal or spatial prediction errors or biases?

CMAQ-predicted concentration and deposition
- Model Inputs: meteorology and emissions
- Chemical transformation: gas, aerosol, and aqueous phases
- Transport: advection and diffusion
- Removal: dry and wet deposition

Can we identify needed improvements for modeled processes or inputs?
CMAQ Users World-Wide
Application: Evaluating the Interactions of Climate Change and Air Quality

- Downscaling of Global to regional-scale models of climate and air quality
 - How sensitive is air quality to potential climate change scenarios?
- Developing integrated regional meteorology and air quality modeling tools
 - How do changes in air quality affect regional climate?
Future Climate Simulations Suggest Extension of Ozone Season
Influence of Aerosols on the Radiative Balance of the Earth-Atmosphere System

- **Light Scattering Aerosols (the sulfate picture)**
 - Backscatter \downarrow solar \Rightarrow
 - \Rightarrow reduce radiation impinging on Earth’s surface
 - \Rightarrow **cool the surface** (negative surface forcing)
 - \Rightarrow increase radiation reflected to space
 - \Rightarrow **cool the top of atmosphere** (negative TOA forcing)

- **Light Absorbing Aerosols (e.g., black carbon/soot)**
 - Absorb \downarrow solar
 - \Rightarrow reduce radiation impinging on Earth’s surface
 - \Rightarrow **cool the surface** (negative surface forcing)
 - Absorb \uparrow solar reflected from surface and clouds
 - \Rightarrow reduce radiation reflected to space
 - \Rightarrow **warm the top of atmosphere** (positive TOA forcing)

Light Scattering + Light Absorbing Aerosols
- Surface forcings reinforce \Rightarrow **large surface cooling**
- TOA forcings cancel \Rightarrow **small TOA cooling or warming**

Scattering aerosols cool the Earth’s surface and atmosphere

Absorbing aerosols cool the Earth’s surface but heat the Earth’s atmosphere

A small amount of light absorption can tip the balance at TOA from cooling to warming!

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions
Development of the WRF-CMAQ Coupled Modeling System: Allow interactions between met & chemistry
Nitrogen Deposition is an Important Contributor To Coastal Eutrophication

- Accounts for 15-40% of N loading to estuaries (both indirect and direct)
- Atmospheric deposition of N to coastal ocean is approximately equal to riverine input for mid-Atlantic & New England
Chesapeake Bay Program: What we have learned

Unique Capabilities of Atmospheric Models

Fill in for space (sparse monitoring)
Fill in for dry deposition (avoid guessing)

Assess relevant scales (airsheds); sector and state responsibility

Estimate contribution of CAA regulations (aimed at protecting health) toward ecosystem health
What ASMD Brings to the Table

Atmospheric modeling capability covering multi-pollutant deposition issues

Community Multiscale Air Quality Model
Chesapeake Bay Watershed Model
Chesapeake Bay Estuary Model Package
Hydrodynamic Model of the Bay and Coastal Ocean

Air Quality Model: CMAQ

Transport
Transformation:
Gas Chemistry
Aqueous Chemistry
Loss Processes

Air Concentrations

Wet and Dry Deposition

SO₂ gas
SO₄ aerosol
SO₃ wet
Hg⁰
RGM
Hg(part.)
Hg wet

NO
NO₂
N₂O₅
HNO₃
gas
NO₃
organic
NO₃
PAN’s
NO₃ wet
NH₃ gas
NH₄ aerosol
NH₄ wet

Atmosphere-water modeling experience with Chesapeake Bay and (soon) others

Cross-Media Models
Linked for Chesapeake Bay
Airshed, watershed, estuary
CMAQ Applications: Linking Airsheds and Watersheds

Watershed Deposition Tool: Linking CMAQ Model Results to Ecosystem Analysis
Regional Air Quality: the NOx SIP Call has dramatically reduced emissions in the eastern United States

Figure 7: NOx Budget Trading Program State-by-State Ozone Season NOx Emission Reductions from 1990 and 2000
Dynamic Evaluation:
CMAQ Sensitivity to Emissions and Meteorological Changes

Highest Ozone Episodes: Summer 2002
(Average of 4 highest 8-hour maximum Ozone values)

Difference in Highest Ozone Episodes – 2002 Meteorology
(2004 emissions – 2002 emissions, Average of 4 highest 8-hour maximum Ozone values)

Difference in Highest Ozone Episodes
(2004–2002 emissions+meteorology, Average of 4 highest 8-hour maximum Ozone values)

Emissions and Meteorology Change
(2002 vs. 2004)
HYPLIT Back-trajectories during 1998 ozone season
Black lines lead back to the Ohio River Valley (ORV)
Sensitivity of reductions in daily max 8-hr ozone to wind trajectories from the Ohio River Valley (ORV)

The NOx SIP Call has greatly helped reduce interstate ozone transport, contributing to improvement in ozone levels in areas downwind of major emission sources.
Dynamic Evaluation:

CMAQ Sensitivity to Emissions and Meteorological Changes

Comparison of modeled to observed changes in daily maximum 8-hour O$_3$ show model underestimates O$_3$ improvements between 2002 and 2004, and between 2002 and 2005.

This is the first study that assessed the model’s ability to reproduce the changes induced by the changes in emissions and meteorology.

Further diagnostic analyses helping identify key areas of model improvement to better simulate the changes.
Source-to-Outcome Continuum

Source / Origin → Fate and Transport → Ambient Concentrations → Exposure → Dose → Adverse Outcome
Impact of NOx SIP Call

Power Industry NOx Reductions Ozone Season (2002 vs. 2004)

Linking ambient concentrations to exposure

Exposure Estimates for Ozone Summer 2001 (90th percentile)

Linking exposure to human or ecosystems health

Linking directly between indicators

Monthly Rates of Respiratory Admissions in NYS

RESEARCH & DEVELOPMENT
Building a scientific foundation for sound environmental decisions
Gaining insights with air quality forecasts
(Available at www.weather.gov/aq)
Sources and Partnerships For Better Characterizing Air Quality
Desirable Characteristics and Uses for Environmental Public Health Tracking (EPHT) Data

Characteristics
- Ongoing, Systematic Collection
- Nationwide in Scope
- Std Collection/Reporting
- QA/QC Procedures
- Temporal & Spatial Coverage
- Fine Resolution
- Timely Availability
- Related to Human Exposures

Uses
- Quantify the magnitude of a problem
- Detect unusual trends, occurrences, relationships
- Identify populations at risk
- Generate and test hypotheses
- Direct and evaluate control and prevention measures
- Develop information for better clinical care and individual-health action
- Facilitate policy development
EPHT and Air Quality

- The CDC identified Air Quality (PM and Ozone) as a high priority for the NEPHTP
 - Health Impacts
 - Available data
- Questions related to Air Quality and EPHT
 - What Air Quality data are **routinely** available?
 - Of these data, which are most appropriate for EPHT applications?
The PHASE Project

- Collaboration
 - Federal (CDC, EPA, NOAA, and NASA)
 - EPHT State Tracking partners (Maine, New York, and Wisconsin)
- Objective and Scope
 - Develop and evaluate alternative air quality characterization methods for EPHT
 - Air Pollutants
 - Ozone and Particulate Matter
 - Health Endpoints
 - Asthma and Cardio Vascular Disease
- Activities
 - Air Quality Characterization
 - Air Quality Public Health Analyses
- Overall Goal
 - Produce information that can be ROUTINELY used to track potential relationships between public health and air quality
Improving Temporal and Spatial Resolution at Regional Scale: PM Example

Monitors only

Fused Data

Modeled (CMAQ)

Data fusion results:
Spatially and temporally resolved surface enhanced with ground truth data from monitors
Urban Air Quality

• Link urban air quality to exposure – local sources and regional background.

• Multiple scales are important:
 • Regional effects – long-range transport of multiple pollutants from multiple sources
 • Urban effects – multiple pollutants, multiple sources influence urban-scale air quality
 • Local scale – local sources, local features (e.g., buildings) and land-use influence personal exposure
Urban-Scale Air Quality

- Multiple sources and the modeling tools available:

 - **Background (regional sources)**: CMAQ
 - **Industrial (point sources)**: AERMOD—Gaussian model based on boundary layer theory, uses surface roughness, turbulence, and wind direction information; HYSPLIT – a Lagrangian trajectory model
 - **Mobile (line sources)**: CALINE4—commonly used but no longer actively being developed
 - **Local scale (highly resolved source and geometry)**: Computational Fluid Dynamics (CFD), or empirically-based diagnostic tools (e.g., QUIC). These are resource intensive to apply to an entire urban area.
Modeling Urban Air Quality - Case Study
Modeling Domain, New Haven, CT

locations of emission sources, roads and census block group centroids
Example: modeled annual average benzene concentrations

Stationary sources (AERMOD)

Mobile sources (AERMOD)

Regional transport and chemistry (CMAQ)

Combined (hybrid approach)
Linking Emissions, Air Quality, and Human Exposures

- Philadelphia county
- Census tracts

Ambient Concentrations

Exposure Modeling
- Indoor Penetration
- Personal Sources
- Human Activity

Ratio: Exposures/Concentrations

RESEARCH & DEVELOPMENT
Building a scientific foundation for sound environmental decisions
New findings on roadway pollution

Micro-scale Hot Spots
New findings on roadway pollution

- Growing body of literature on adverse impacts to populations near “major” roads
 - Adverse health effects associated with residential/school proximity to major roads
 - Asthma
 - Other respiratory diseases
 - Reproductive/developmental effects
 - Cardiovascular
 - Premature mortality
 - Cancer (various types)
 - Elevated pollutant levels
 - CO
 - Benzene
 - PM (ultrafines, EC, SVOCs)
 - Other (e.g. noise, stress)

- Bibliography of over 100 articles on near road impacts since 2000.
Enhancing Federal & State-Level Air Quality Applications

Enhanced Tools
- Optimized CMAQ
- Satellite Data (w/NASA)

Enhanced IT
- Grid Services
 - Science Subnet to facilitate collaboration with our partners

Enhanced Air Quality Applications

Traditional Applications
- State Implementation Plans (State and Local Agencies)
- Policy Analysis (National and International)

New Applications
- Air Quality Forecasting (w/NOAA-NWS)
- Public Health Tracking (w/DHHS-CDC)

Accountability
- Discerning Changes and Tracking Trends in Air Quality
- Evaluating the Effectiveness of Emission Control Programs
Smart Growth and the Built Environment: Integrated urban planning and air quality management

Summary

• Air quality in the United States has improved since the inception of the Clean Air Act. However, the NAAQS for 8-hr ozone and fine particles continue to exceed in some parts of the country.

• Need to better understand the interactions of climate change and air quality, and future air quality conditions.

• Improved air quality models are needed to address near-roadway pollution and population exposure to harmful levels of toxic air contaminants.
For additional information …

Dr. S.T. Rao
rao.st@epa.gov

Disclaimer: Although this has been reviewed by EPA, it does not necessarily reflect EPA’s views or policies.