Regulation 11, Rule 18
Reduction of Risk from Air Toxic Emissions at Existing Facilities

Greg Nudd
Deputy Air Pollution Control Officer for Policy
Overview

- Background
- Toxic Air Contaminants overview
- Rule 11-18 requirements and implementation
- Key Points
Background

- 2010: Clean Air Act includes plan to update “Toxics Hot Spots” program.
- 2015: Office of Environmental Health Hazard Assessment (OEHHA) updates the statewide guidance on Health Risk Assessments.
- 2016: Air District updates Rule 2-5 to strengthen permit reviews on new/modified sources of toxic air contaminants.
- 2016-2017: Outreach to impacted stakeholders, presentations to the Board and Stationary Source Committee.
- 2017: Board of Directors approves new Rule 11-18 for existing sources of toxic air contaminants.
Overview

- Background
- Toxic Air Contaminants overview
- Rule 11-18 requirements and implementation
- Key Points
What are Toxic Air Contaminants?

- Compounds defined as toxic air contaminants (TACs) in the California Health and Safety Code
- More than 200 compounds
- Hazards to human health
 - Cancer
 - Non-cancer, chronic health impacts
 - Acute health impacts
Example TACs and Health Impacts

<table>
<thead>
<tr>
<th>Toxic Air Contaminant</th>
<th>Cancer</th>
<th>Chronic</th>
<th>Acute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Exhaust</td>
<td>• Lung</td>
<td>• Respiratory system</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>• Leukemia</td>
<td>• Blood cells</td>
<td>• Development</td>
</tr>
<tr>
<td></td>
<td>• Myeloma</td>
<td></td>
<td>• Immune system</td>
</tr>
<tr>
<td></td>
<td>• Lymphoma</td>
<td></td>
<td>• Blood cells</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>• Leukemia</td>
<td>• Reproductive system</td>
<td>• Low birth weight</td>
</tr>
<tr>
<td></td>
<td>• Lymphoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium (VI)</td>
<td>• Lung</td>
<td>• Respiratory system</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td></td>
<td></td>
<td>• Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Nervous system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Kidney</td>
</tr>
</tbody>
</table>
Exposure and Toxicity Determine Health Impacts

- Emission to air
- Ambient concentration
- Breathed in
- Damage to health

Exposure

Toxicity

Office of Environmental Health Hazard Assessment (OEHHA) develops guidelines
How Do We Measure Impacts?

• **Cancer Risk** – The theoretical probability of contracting cancer when continually exposed for a lifetime (30 years) to a given concentration of a substance. Presented as the number of chances in a million of contracting cancer.

• **Acute Hazard Index** - The potential non-cancer health impacts resulting from a one-hour exposure to toxic substances.

• **Chronic Hazard Index** - The potential non-cancer health impacts resulting from exposure to toxic substances usually lasting from one year to a lifetime.
Bay Area Lifetime Cancer Risk from TAC Exposure

- Diesel
- Benzene
- 1,3-Butadiene
- Others

Cancer Risk (per million, 70 year exposure)

- 1990: 4,100 in a million
- 2001: 1,800 in a million
- 2014: 690 in a million
Overall Air Pollution Down, but High Risks in Some Communities Remain

2005 – Cancer Risk

2015 – Cancer Risk
Regulatory Authority

- Bay Area Air District
 - Primary regulatory authority over stationary sources

- State Air Resources Board
 - Intrastate mobile sources—cars, trucks, cargo handling equipment

- U.S. EPA
 - Interstate mobile sources—trains, aircraft & ocean going vessels
Toxic Air Contaminant Control Programs

- California Environmental Quality Act (CEQA)
- Stationary Source Control Measures
- Community Air Risk Evaluation (CARE)
- Toxics New Source Review (Rule 2-5)
- Air Toxics Hot Spots Program (AB 2588)
- Rule 11-18 (Existing Facilities)
Overview

- Background
- Toxic Air Contaminants overview
- Rule 11-18 requirements and implementation
- Key Points
Rule 11-18 – Key Policy Components

- Reduces toxic risk in overburdened communities
- Important step in AB 617 implementation
- Reduces toxic risk to the lowest levels
- Facility selects compliance path
Risk Action Thresholds

BAAQMD Rule 11-18

Lifetime Cancer Risk (chances per million)

Now 2018 2020

100/M

25/M

10/M

Lowers Non-Cancer Acute/Chronic Hazard Index
Thresholds to
2.5 in 2018
1.0 in 2020
Rule 11-18: Requirements

• Facilities above risk action level must
 – Develop a risk reduction plan for Air District approval
 – Execute plan according to plan schedule

• Potential Risk Reduction Measures
 – Reduction of emissions, including installation of Best Available Retrofit Control Technologies for Toxics (TBARCT)
 – Modification of operating hours and activity levels
 – Modification of emissions stacks

• Exemptions
 – Retail gas stations
 – Sites that have only emergency backup generators and have risk screening level < 250
Potential Risk Reduction Measures

- Install Control Technology
- Use Alternate Fuels/Materials
- Operating Time Restrictions
- Increase Stack Height
- Limit Throughput
- Change Stack Orientation
- Relocate Source
Implementation: Overview

- Prioritize Facilities
- Validate Data
- Conduct Health Risk Assessment (HRA)
- Public Comment on HRA
- Publish HRA Results to Website

6 months – 18 months

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 - 2019</td>
<td>Complete HRAs for high priority facilities</td>
</tr>
<tr>
<td>2019 – 2021</td>
<td>Complete remaining HRAs</td>
</tr>
</tbody>
</table>
Implementation: Facility Risk Reduction

1. Prepare & Submit Risk Reduction Plan
 - 180 days

2. Evaluate Risk Reduction Plan

3. Public Comment on Risk Reduction Plan
 - Up to 180 days

4. Publish Risk Reduction Plan

5. Implement Risk Reduction Measures
 - 5 years (up to 10)
Overview

- Background
- Toxic Air Contaminants overview
- Rule 11-18 requirements and implementation
- Key Points
Rule 11-18: Key Points

1. Health Protective Standards
2. Flexible Methods of Compliance
3. Implementation Approach
Health Protective Standards

Why 10/Million?

– Most health protective
– Technically achievable
– Addresses smaller sources which can be cumulatively significant in CARE areas
– Benefits at least 10 times more people
 • ~50 facilities reviewed at 25/M, ~400 facilities reviewed at 10/M
 • Preliminary HRA for one refinery shows thousands of people benefit from 10/M, but only hundreds benefit from 25/M

Health Protective Standards

10/Million is feasible for nearly all facilities

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Estimated Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refineries</td>
<td>13 - 56</td>
</tr>
<tr>
<td>Cement Manufacturing</td>
<td>9 - 40</td>
</tr>
<tr>
<td>Crematoria</td>
<td>10 – 14</td>
</tr>
<tr>
<td>Landfills</td>
<td>11 – 23</td>
</tr>
<tr>
<td>Foundries/Metal Melting</td>
<td>17 – 40</td>
</tr>
<tr>
<td>Sewage Treatment Facilities</td>
<td>9 - 40</td>
</tr>
</tbody>
</table>

If 10/M is not feasible, facilities must install TBARCT
Case Study: Richmond CARE Area - 25/M vs 10/M

At 10/M, all of the facilities on the map would be impacted by Rule 11-18 (orange and blue pins).

At 25/M, only the blue pins would be impacted.
Case Study: Oil Refinery 25/M vs 10/M

- Preliminary HRA
- 10/M – about 8,500 people benefit (orange and blue)
- 25/M – about 600 people benefit (blue only)
- Green icons indicate day care centers
Case Study: Cement Kiln – 25/M vs 10/M

- Preliminary HRA
- 10/M – about 1,500 people benefit (orange shaded area)

- 25/M – No changes at facility
Flexible Methods of Compliance

• Facilities can choose lowest-cost approach to get below 10/M
 – Change processes
 – Move, raise emission stacks
 – Reduce engine testing hours

• Facilities can receive more time to install controls

• TBARCT option if not feasible to get below 10/M
 – Cost considered in all TBARCT determinations

• Major sources addressed first
Comparing Health Impacts of Air Pollutants

Annual Incidences from 2015 Ambient Concentrations

<table>
<thead>
<tr>
<th></th>
<th>Diesel PM$_{2.5}$</th>
<th>Ozone</th>
<th>Other PM$_{2.5}$</th>
<th>Other Toxics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>169</td>
<td>29</td>
<td>2,307</td>
<td>8</td>
</tr>
<tr>
<td>Cancer Onset</td>
<td>13</td>
<td>n/a</td>
<td>n/a</td>
<td>9</td>
</tr>
<tr>
<td>Hospital Admissions2</td>
<td>36</td>
<td>94</td>
<td>482</td>
<td>0</td>
</tr>
<tr>
<td>Nonfatal Heart Attacks</td>
<td>95</td>
<td>0</td>
<td>1,181</td>
<td>0</td>
</tr>
<tr>
<td>Asthma Emergency Room Visits</td>
<td>64</td>
<td>42</td>
<td>885</td>
<td>0</td>
</tr>
</tbody>
</table>

2. Combines respiratory and cardiovascular hospital admissions.
Next Steps

• Implement Rule 11-18
 – Start with largest, highest-polluting facilities
 – Focus on CARE areas

• Work toward a neighborhood-scale understanding of ambient PM$_{2.5}$ levels and impacts.

• Identify opportunities to reduce PM$_{2.5}$ through direct regulation and mobile source grant programs.

• Evaluate possibility of rule analogous to Rule 11-18 for PM$_{2.5}$.
A summary of short-term PM$_{2.5}$ and adverse health outcome studies in California

Rupa Basu, PhD, MPH
Chief, Air and Climate Epidemiology Section
Office of Environmental Health Hazard Assessment

December 11, 2017
Outline: Short-term PM$_{2.5}$ and Health Outcomes

- Cardiovascular and respiratory mortality
- Hospital/emergency room (ER) visits
- PM$_{2.5}$ constituents/sources and health outcomes
- National studies including CA data
- Meta-analysis
Common Methodology

- **Study designs**
 - Time-series, case-crossover

- **Data sources**
 - California Air Resources Board, sources from USC based on emissions data
 - California Department of Public Health for health outcome data

- **Analytical approach**
 - Poisson regression, conditional logistic regression
Percent Change in PM$_{2.5}$ and Respiratory or Cardiovascular Mortality in CA

<table>
<thead>
<tr>
<th>Study Period</th>
<th>Mean per ug/m3 (Mean Range)</th>
<th>Disease Outcome/Mortality</th>
<th>Exposure Lag Days</th>
<th>Results per 10 µg/m3 increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999 - 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14-29) Respiratory</td>
<td>2</td>
<td></td>
<td>1.30 (0.10, 2.60)</td>
<td></td>
</tr>
<tr>
<td>Avg 01</td>
<td></td>
<td></td>
<td>2.20 (0.60, 3.90)</td>
<td></td>
</tr>
<tr>
<td>2000 - 03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.6 Cardiovascular</td>
<td>0</td>
<td></td>
<td>0.55 (0.14, 0.96)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>0.55 (0.17, 0.92)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0.30 (-0.08, 0.67)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0.26 (-0.12, 0.65)</td>
<td></td>
</tr>
<tr>
<td>2000 - 03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.28 Cardiovascular</td>
<td>0</td>
<td></td>
<td>White: -0.14 (-1.48, 1.22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hispanic: 1.70 (-4.28, 8.05)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>White: 1.23 (-0.31, 2.78)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hispanic: 4.73 (0.72, 8.91)</td>
<td></td>
</tr>
<tr>
<td>0 HS Graduate: -1.23 (-2.78, 0.34)</td>
<td></td>
<td></td>
<td>non-HS Graduate: 2.72 (0.36, 5.13)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>HS Graduate: 0.27 (-1.46, 2.04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>non-HS Graduate: 4.06 (0.84, 7.39)</td>
<td></td>
</tr>
</tbody>
</table>

Sources: Ostro et al. 2006, 2007, 2008, including 9, 9 and 6 counties, respectively
Short-term PM$_{2.5}$ Exposure and Respiratory Hospital/ER Visits in CA

<table>
<thead>
<tr>
<th>Author</th>
<th>Study Period</th>
<th>Mean or (Mean Range)</th>
<th>Health Outcome</th>
<th>Lag Days</th>
<th>Effect Estimate</th>
<th>Result per 10 µg/m3 increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malig 2013</td>
<td>2005 - 08</td>
<td>(5.2 - 19.8) µg/m3</td>
<td>ER visits</td>
<td>0</td>
<td>Percent Change</td>
<td>0.90 (0.05, 1.60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1.60 (0.95, 2.25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>0.95 (0.37, 1.58)</td>
</tr>
<tr>
<td>Ostro 2016</td>
<td>2005 - 09</td>
<td>16.5</td>
<td>ER visits</td>
<td>0</td>
<td>Percent Change</td>
<td>0.88 (0.18, 1.58)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1.05 (0.01, 2.10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>0.44 (-0.26, 1.14)</td>
</tr>
<tr>
<td>Yap 2013</td>
<td>2000 - 05</td>
<td>(12.75 - 24.61)</td>
<td>Hospital Admissions</td>
<td>3</td>
<td>Relative Risk</td>
<td>South Coast: 1.072 (1.068, 1.076)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Central Valley 1.00 (0.99, 1.01)</td>
</tr>
</tbody>
</table>

Asthma hospital visits for children in Orange County 35, 8 and 12 CA counties, respectively

Source: Delfino et al. 2014
Short-term PM$_{2.5}$ Constituent Exposure and Cardiovascular Mortality in CA

Source: Ostro et al. 2007
PM$_{2.5}$ constituents come from multiple sources:

- **Aged Sea Salt**: Na$^+$, NO$_3^-$, SO$_4^{2-}$
- **Biomass Burning**: EC, OC, Na$^+$
- **Oil Combustion**: EC, Na$^+$, OC,
- **Road Dust**: Al, Si, Zn
- **Resuspended Soil**: Al, Si, Fe
- **Secondary Ammonium Nitrate**: NH$_4^+$, NO$_3^-$, SO$_4^{2-}$
- **Secondary Ammonium Sulfate**: NH$_4^+$, NO$_3^-$, SO$_4^{2-}$
- **Vehicular Emissions**: EC, OC, Zn

Source: Ostro et al. 2016
National Studies Including Results from CA

- 25 counties in US Southwest (Bell et al. 2008)
- 33 counties in US West (Bell et al. 2015)
- 75 cities across the US (Dai et al. 2014)
- 16 counties in western US (Dominici et al. 2006)
- 27 US communities throughout US (Franklin et al. 2007)
- 12 US communities in the Southwest (Krall et al. 2013)
- 108 counties in the US (Peng et al. 2008)
- 20 communities throughout the US (Zanobetti et al. 2009)
- 15 cities in the Mediterranean region of the US (Zanobetti et al. 2009)
- 121 communities throughout the US (Zanobetti et al. 2014)

* Contact each of the co-authors to attempt to get CA-specific estimates
Meta-Analysis

- Meta-Analysis is the process of combining the results from several studies examining the same association to produce an overall estimate.
 - % change, relative risk, population attributable risk, years life lost
 - Not economic evaluation (Ben MAP)

- Dependent on various aspects of the study:
 - Same type of exposure (PM$_{2.5}$, PM$_{2.5}$ constituents, etc)
 - Exposure metric (daily, lag days, etc)
 - Outcome (Mortality, Morbidity, Disease-specific, etc)
 - Effect estimate (Percent change, Relative Risk, etc)
 - Vulnerable subgroups (race/ethnicity, age, urban/rural, etc)
Summary

- Many studies found associations between background ambient short-term PM$_{2.5}$ and adverse health outcomes.

- Studies also on chemical constituents to identify toxic sources.

- Less educated, minority populations, age groups greater risks of exposure and outcomes.

- Further studies are warranted for:
 - Critical time of exposure could be more acute (i.e., peak exposures)
 - Associations outside range of observed level

- Long-term PM$_{2.5}$ health studies, including adverse birth outcomes, in CA and animal studies (not good for “real world” settings) not included here.
Acknowledgments

Director, Lauren Zeise
ACERB Branch Chief, John Faust
Air and Climate Epidemiology Section
Rachel Broadwin
Keita Ebisu
Brian Malig
Dharshani Pearson
Xiangmei (May) Wu
Shelley Green (retired)
Bart Ostro (retired)