

Phil Martien, PhD
Bay Area Air Quality Management District

Overview

- Regional PM_{2.5} source apportionment: focused on informing actions to maintain attainment of PM standards
- To date, PM_{2.5} source apportionment in specific communities has focused on:
 - Areas with high health burdens and high traffic densities
 - Diesel PM, black carbon (BC), or elemental carbon (EC)

Overview (Cont.)

 Community-scale source apportionment will give us data to identify and quantify important sources within a community

 These assessments could be more actionable with methods to evaluate PM health risks

PM_{2.5} Annual Design Value Attains National Standard since 2003

PM_{2.5} 24 hour Design Value Attains National Standard since 2009

Modeled Primary and Secondary $PM_{2.5}$: about 1/3 of $PM_{2.5}$ is Secondary

Receptor Modeling: Chemical Mass

Balance

$$C_i = \sum_{j=1}^m f_{ij} S_j$$

 C_i : ambient concentration of species i

 f_{ij} : fraction of species i from source j

 S_i : contribution of source j

PM_{2.5} Source Apportionment: **Bay Area and Central Valley**

Chemical Mass Balance Estimates, 2009-10

Brake

Bay Area Source Apportionment Shifts during PM_{2.5} High Periods

- More wood burning (winter)
- Stagnant winds
- Transport from the east

For Community-Scale Source Apportionment: Intake Fraction (IF)

emissions \rightarrow concentration \rightarrow exposure \rightarrow intake \rightarrow dose \rightarrow health effects

emissions ------ intake

intake fraction = intake rate emissions rate

health impact ~ emissions × intake fraction × toxicity

Intake Fraction: Determinants and Typical Values

Ports of LA/Long Beach Modeled Exposures

- Exposures of PM_{2.5} and EC at a neighborhood scale
- Gasoline & diesel vehicles on freeways & surface streets
- Light-duty vehicles contributed more exposure to PM_{2.5} exposure than heavy-duty trucks (61% vs. 39%), but slightly less EC (49% vs. 51%)
- Intake fraction on surface streets =
 1.4 x intake fraction on freeways →
 benefit of moving trucks off streets

Modeled PM_{2.5} Contribution from Multiple Sources in San Francisco

West Oakland Google Car Monitoring Study

West Oakland 100 x 100 BC Study

34 of community sites are more polluted than central site, daytime average BC up to 1.75x higher

PM_{2.5} Emissions Apportionment: On-Road Vehicles

- Gas vs. diesel powered vehicles
- Exhaust emissions vs. brake wear, tire wear & road dust

Based on EMFAC2017. Note: ARB research proposal 17RD016, "Brake and Tire Wear Emissions," will explore uncertain wear estimates

Apportionment to Action: Diesel PM Reductions

- In the heavily trafficked areas and near-Port communities studied so far—for example in West Oakland—continued diesel PM reductions are a clear next step
- These are areas with
 - Existing poor health outcomes
 - Where we expect diesel PM reductions to have important health benefits
 - Where we have developed ideas on specific emission reduction measures
- In other areas, the pollutants of concern and the types of actions are more extensive
- In all areas, diesel PM reductions will be beneficial

Greater Health Benefits, per PM_{2.5} Increment, Below the NAAQS?

Marshall et al ES&T 2015

Methods Needed for PM Health Risk Assessment

- When we identify a persistent PM_{2.5} "hotspot" (~0.5 1.5 μg/m³) or BC or EC hotspot, what can we infer about health impacts?
- Above or below air quality standards?
- Some community-scale studies have focused on ultrafine PM instead of, or in addition to, PM_{2.5}.
- If we are seeking new assessment methods, is PM_{2.5} the optimal focus?

Summary

- Regional source apportionment (SA) of PM_{2.5} has a clear purpose: inform actions to attain or maintain air quality standards. We learn how to reduce the most typical sources
- Community-scale SA of PM_{2.5} will give us data to identify and quantify important sources within a specific community
- Community-scale SA of PM_{2.5} might provide more actionable results if methods for health risk assessment were developed
 - Actions to reduce diesel PM have clear benefits
- Other areas with a complex mix of sources, such as Richmond, need more investigation
- Community-scale SA has focused on heavily trafficked areas, such as Port corridors, to map PM_{2.5} hot spots

Advisory Council Next Area of Focus: Continuation of Discussions of Particulate Matter

Advisory Council Meeting March 26, 2017

Damian Breen
Deputy Air Pollution Control Officer

Particulate Matter

Overview

- Proposed Approach: Initial focus on Diesel Particulate Matter
- Bay Area Sources of Diesel Particulate Matter (DPM)
- Current Efforts to Reduce DPM
- Trends in Light and Heavy Duty Vehicle Deployment
- Trends in Stationary Sources
- Commitments on DPM
- Proposed Strategy DPM
- Proposed Strategy Particulate Matter

Proposed Approach: Initial focus on Diesel Particulate Matter (DPM)

Why Focus on DPM?

 DPM significant driver of health risk in many Bay Area communities

Sources and Impacts of DPM

Figure 2-9. Cancer-Risk Weighted Emission Estimates by TAC, 2015

Figure 2-10. Cancer-Risk Weighted TAC Emissions by Emission Source Category, 2015

Current Efforts to Reduce DPM

- ARB/Federal Regulations
- Air District Incentives
- City & County Plans

Case Study Port of Oakland: 2008-2017

Over 50%
DPM

Enforcement

- Regulations on Trucks, Oceangoing Vessels, Other Equipment
- Noncompliant truck ban

Planning & Monitoring

- Marine Air Quality Improvement Plan
- Real-time emissions monitoring

Grants

- \$33 M to retrofit / replace drayage trucks
- •\$24.5 M for Shorepower
- •\$50 M to replace On-road Trucks

Trends in Light and Heavy Duty Vehicle Deployment "Cost-effectiveness schedule" for Batteries

Trends in Stationary and Off-Road Sources

Stationary Sources – Diesel Generators

- Demo and limited deployment projects Battery and Hydrogen generators
- Staff assessment products in pre-commercial/early commercial phase, costs are high relative to ICE

Off-Road Sources

- Electrification in many areas Cargo handling and ground support equipment
- Construction/Agricultural equipment beginnings of hybridization
- > TRU commercial zero and hybrid solutions available
- Shipping/Vessels extremely limited hybridization and Hydrogen propulsion
- Locomotives beginnings of hybridization limited range batteries
- Staff assessment products in various commercial phases but not for every category

Trends in Light and Heavy Duty Vehicle Deployment Air District Investment in Zero Emissions Technology

2011-2017: \$66 Million

Plug-in Electric Vehicles

\$12 M

1600 LDV 200 HDV 99 SAVs

Charging Infrastructure

\$11 M

1600 Level 2 100 DC Fast 1400 home Level 2

Shore Power

\$21 M

14 Berths at Port Of Oakland

Off-Road Equipment

81 GSE Units at SFO 121 Commercial Lawn & Garden

Rail/ Caltrain

\$20 M

Caltrain Electrification by 2022

Commitments on DPM

Ports of Los Angeles

- Zero-emission on-road drayage fleet by 2035
- > Zero-emissions terminal equipment by 2030

ARB Regulation

- Zero-Emissions Cargo-handling equipment 2031
- Truck drayage, class 4-6 trucks
- Buses school and transit buses

Commitments on DPM to reduce petroleum/diesel

Country/regional, ban sales of gasoline/diesel vehicles

- By 2025 By 2040
- By 2030 TBD

Country/regional, all zero emission vehicles

By 2050

State, reduce petroleum consumption by 50%

By 2030

City, diesel vehicle ban

0 2018-2025

C40 cities with pledges for zero emissions

By 2030

Proposed Strategy - DPM

- Investigate trends and technology further
- Explore local authorities and voluntary commitments
- Explore Air District Authority
- Refine Targeting of Air District Incentives
- Report back to Advisory Council at next meeting
- Seek input on proposed approach by end of summer 2018

Proposed Strategy - Particulate Matter

- March Sept 2018 Focus initially on DPM
- Sept 2018 Dec 2019 Continue work on Health Effects:
 - Differentiated PM
 - Undifferentiated PM
 - Ultra-fine PM
- Goals:
 - What should we prioritize?
 - ➤ How low is low enough?