Advisory Council Particulate Matter Reduction Strategy Report

submitted to the Air District Board of Directors for review and consideration

December 16, 2020

Chair Stan Hayes
Dr. Severin Borenstein
Dr. Michael Kleinman
Dr. Tim Lipman
Dr. Jane Long
Dr. Linda Rudolph
Dr. Gina Solomon
TABLE OF CONTENTS

PARTICULATE MATTER REDUCTION STRATEGY REPORT
- Statement from the Executive Officer 1
- Introduction ... 3
- Particulate Matter Reduction Statements 6
- Framework for Evaluating Particulate Matter Reduction Strategies 8
- Recommended Actions ... 9
- Annotated Bibliography for Particulate Matter Reduction Statements and Framework 12

APPENDIX A: ANNOTATED BIBLIOGRAPHY FOR PARTICULATE MATTER REDUCTION STATEMENTS AND FRAMEWORK
- Annotated Bibliography - Organized in a Table A1

APPENDIX B: SUMMARY OF ADVISORY COUNCIL DELIBERATIONS
- July 2020 Deliberations Summary B1
- October 2020 Deliberations Summary B8
- November 2020 Deliberations Summary B19

APPENDIX C: SYMPOSIUM SUMMARIES AND PRESENTATIONS
- **October 2019**
 - Particulate Matter: Spotlight on Health Protection Report C1
 - Panel Presentations ... C33
- **December 2019**
 - Update on Current and Emerging Efforts on Particulate Matter C238
 - Symposium Overview and Panel Presentations .. C273
- **February 2020**
 - Community Particulate Matter Discussion Summary C393
- **May 2020**
 - Community Presentations .. C401
 - *Community Reflections from Feb. 27 Community Summit on PM, Jed Holtzman*
 - *COVID While Black, LaDonna Williams*
 - Air District Presentation: Update on Air District PM Potential Policy Strategies C422
- **July 2020**
 - Industry Presentations .. C436
 - *Presentation to BAAQMD Advisory Committee, Frances Keeler*
 - *Assessing the Health Effects of Particulate Matter, Julie E. Goodman*
 - Air District Presentation: Bay Area PM Modeling-Based Assessments and Next Steps C465

APPENDIX D: ADVISORY COUNCIL INFORMATION
- Advisory Council and Particulate Matter Conference webpage and additional media D1
- Biographies of Advisory Council members D2
Thank you for your interest in the Bay Area Air Quality Management District Advisory Council’s *Particulate Matter Reduction Strategy Report*.

This report reflects the Bay Area Air Quality Management District’s (Air District) recognition of the urgent need to reduce health impacts and health disparities from exposure to particulate matter (PM) at a time when federal leadership is retreating from this responsibility.

Under the Clean Air Act, the United States Environmental Protection Agency (U.S. EPA), with the assistance of the Clean Air Scientific Advisory Committee (CASAC), must review the latest scientific research and the health impacts of air pollutants regulated under the National Ambient Air Quality Standards (NAAQS). Recognizing the scope and significance of their work, the CASAC created a PM Review Committee to review the breadth of air quality science and provide expert insight.

However, in late 2018, the U.S. EPA, disregarding the science and the health impacts of air pollution, without notice disbanded the PM Review Committee. The work of the PM Review Committee, which was to review the U.S. EPA’s Integrated Science Assessment on Particulate Matter, was left undone.

The body of scientific research and the guidance of experts is crucial in setting priorities and grounding new and innovative approaches to reducing particulate matter exposure. As an Air District, charged with improving air quality and public health, it has become our responsibility to step into the void created by the federal government and push these critical efforts forward.

Beginning in 2019, we turned to our Advisory Council to close this leadership gap and use its scientific expertise to help set the agenda for improving air quality. The Advisory Council has heard from experts around the country, including members of the disbanded PM Review Committee, as well as industry representatives and local community members and environmental activists who spoke about the lived impacts of exposure to particulate matter. Following these presentations and thoughtful deliberations, the Advisory Council has developed a roadmap to help guide us toward our common goal of a healthier Bay Area.

They have done this work in unprecedented times. Over this past year, we have grappled with a worldwide pandemic that has reshaped the way we live, work, educate, and socialize. The pandemic has laid bare systemic inequities like access to health care and disparities in health outcomes that disproportionately impact African American and Latinx communities. We have faced unprecedented levels of wildfire particulate matter, which has descended on the region for days, turning our skies orange, impacting public health, and compounding systemic inequities.
Aside from these wildfire events, over the past several decades, we have made significant strides toward cleaner air. More recently, groundbreaking programs like the Community Air Risk Evaluation Program, the Community Health Protection Program, and work done in response to Assembly Bill 617 have concentrated efforts to reduce exposure to air pollutants in the neighborhoods that are most impacted. But there is still more to do. Now, more than ever, as we face rising temperatures, changing climates, and persistent inequity, the Air District’s work is imperative to ensure a better quality of life for everyone in the Bay Area.

We thank our Advisory Council members for their time and steadfast dedication. Their leadership is invaluable in helping us recognize immediate steps we can take to reduce particulate matter in the region. We at the Air District remain committed to our public and environmental health mission, as we endeavor together to ensure a healthier Bay Area for every resident and future generations.

Jack P. Broadbent

Executive Officer/Air Pollution Control Officer (APCO)
INTRODUCTION

As the first regional air pollution control agency in the nation, predating U.S. EPA by 15 years, the Air District has led the vanguard on environmental efforts for more than six decades. From establishing the nation’s first regional air quality monitoring program and integrated regional air quality ozone model, to developing landmark odor regulations and controls on emissions from numerous sources including aerosol spray products, the Air District has continually pioneered increasingly ambitious, comprehensive, and innovative efforts to improve air quality and protect the health of Bay Area residents.

The events of recent years have made this leadership even more critical. Whereas the establishment of the U.S. EPA in 1970 and subsequent Clean Air Act Amendments had enabled the Air District to rely on the considerable resources of the federal government for scientific research and expertise concerning the health impacts of air quality and federal air quality standards, the current federal administration has abandoned this role. In 2018, the U.S. EPA dismissed, via press release, the expert Particulate Matter Review Panel charged with reviewing its assessment of the most current science.

Facing this federal leadership void and recognizing that particulate matter is a major driver of health risks from Bay Area air quality, the Air District and Advisory Council convened the Particulate Matter Symposium Series. The goal of the series was to clarify the state of the science; outline current and forthcoming Air District work; learn about local community efforts, needs, and priorities; and hear from industry representatives. In particular, the Air District and Advisory Council sought to understand how best to improve air quality conditions for communities that are most at risk.

ADVISORY COUNCIL SYMPOSIUM SERIES

The October 2019 PM Symposium facilitated a discussion among nationally recognized scientists, stakeholders, and the Air District on particulate matter and health impacts. In December 2019, the Advisory Council received presentations from Air District staff on current and forthcoming particulate matter reduction strategies. In May and July, via webcast due to the COVID-19 pandemic, the Advisory Council received presentations from community members and environmental activists on the local environmental health effects of particulate matter, in addition to hearing from local industry representatives who shared their perspectives on the science.

Throughout the past year, in order to further inform Advisory Council deliberations and discussions, Air District staff members and representatives from state-level agencies have also presented to the Advisory Council on particulate matter initiatives, research activities, air quality modeling, and measurement and monitoring efforts.
October 28, 2019
Particulate Matter Symposium: Health Effects, Exposure and Risk
- 300+ registrants; many participated online
- Two panels: PM Health Effects & PM Exposure & Risk
- 9 leading experts

JUNE 29 – JULY 2, 2020
Air and Waste Management Association Panel: Developing a Path Forward for PM_{2.5} Regulation in the Bay Area
Together with Air District staff, Advisory Council members host a panel at the annual Air & Waste Management Association Conference & Exhibition

JULY 31, 2020
Advisory Council Meeting: Regulated Industry Presentations and Air District Presentation on Bay Area PM Modeling-Based Assessments and Next Steps
- Presentations from Frances Keeler, CCEEB and Dr. Julie E. Goodman on behalf of WSPA
- Presentation from Dr. Phil Martien, Air District

DECEMBER 9, 2019
Advisory Council Meeting: BAAQMD Update on Current and Emerging Efforts on Particulate Matter

FEBRUARY 27, 2020
Community Particulate Matter Discussion
Air District staff met with approx. 30 community members from approx. 16 organizations

MAY 12, 2020
Advisory Council Meeting: Community Presentations and Air District Update on PM Potential Policy Strategies
- Presentations from Jed Holtzman, MEM, 350 Bay Area and LaDonna Williams, All Positives Possible
- Presentation from Greg Nudd, Air District

OCTOBER 9, 2020
Advisory Council Meeting: Advisory Council members continue discussions from the July 31, 2020, meeting on reducing fine particulate matter in the region

NOVEMBER 9, 2020
Advisory Council Meeting: Advisory Council members continue discussions from the July 31, 2020, and October 9, 2020, meetings on reducing fine particulate matter in the region

DECEMBER 16, 2020
Joint meeting of the Advisory Council and Board of Directors to present and discuss particulate matter reduction strategy
Having received input from scientific experts, community and environmental activists, industry representatives, and Air District and state air quality staff, and with the benefit of its own expertise, the Advisory Council has developed a series of findings and recommendations to help advance the Air District’s mission to achieve a healthier Bay Area by reaching for clean air targets beyond state and federal standards.

This document presents these findings along with a framework for evaluating particulate matter reduction strategies into the future. The report also gathers recommended actions as a roadmap for the Air District to consider as it continues work to lower particulate matter exposure throughout the region.

The particulate matter reduction statements, framework, and recommended actions collectively reflect the new imperative for the Air District to lead the country in utilizing the best science available to set ambitious targets for cleaner air and better protect health in every Bay Area community and neighborhood.

ABOUT THE ADVISORY COUNCIL

The Air District’s Advisory Council was created in concordance with guidelines in the California Health and Safety Code (Section 40260-40268). The Advisory Council comprises seven members with expertise in air pollution, climate change, and/or the health impacts of air pollution. The Advisory Council advises and consults with the Board of Directors and the Executive Office on technical and policy matters. In 2019, the Air District asked the Advisory Council to provide expert input and guidance on particulate matter reduction strategies in the Bay Area region. More information and Advisory Council member biographies can be found in Appendix D.

ABOUT THE AIR DISTRICT

The California Legislature created the Air District in 1955 as the first regional air pollution control agency in the country. The Air District is tasked with regulating stationary sources of air pollution in the nine counties that surround San Francisco Bay: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, southwestern Solano, and southern Sonoma counties. It is governed by a 24-member Board of Directors composed of locally elected officials from each of the nine Bay Area counties, with the number of board members from each county based proportionately on its population.

The Board of Directors oversees policies and adopts regulations for the control of air pollution within the district. The Board of Directors also appoints the Air District’s Executive Officer/Air Pollution Control Officer, who implements these policies and gives direction to staff, as well as the Air District Counsel, who manages the legal affairs of the agency. The Air District consists of nearly 400 dedicated staff members, including engineers, inspectors, planners, scientists, and other professionals.
PARTICULATE MATTER REDUCTION STATEMENTS

The Advisory Council has gathered evidence on the current state of particulate matter science and the health impacts and risks of particulate matter exposure. The statements reflecting their findings are provided below, and together ground the Air District’s future particulate matter reduction initiatives in science and the interest of public health. These statements are as follows:

PMRS1) Particulate Matter (PM) is the most important health risk driver in Bay Area air quality, both PM$_{2.5}$ as a criteria pollutant and diesel PM as a toxic air contaminant.

PMRS2) The Bay Area has made substantial progress at reducing regional PM$_{2.5}$ levels to meet current PM$_{2.5}$ standards; however, 1) more stringent standards would be more health protective; 2) exposures vary substantially across communities; and 3) wildfire smoke increases PM$_{2.5}$ levels substantially above standards.

PMRS3) The current particulate matter national ambient air quality standards (NAAQS) are not health protective.

The Advisory Council concurs with the following statement: “Based on scientific evidence, as detailed in Attachment B [of our letter], the [Independent Particulate Matter Review Panel] finds that the current suite of primary fine particle (PM$_{2.5}$) annual and 24-hour standards are not protective of public health. Both of these standards should be revised to new levels, while retaining their current indicators, averaging times, and forms. The annual standard should be revised to a range of 10 μg/m3 to 8 μg/m3. The 24-hour standard should be revised to a range of 30 μg/m3 to 25 μg/m3. These scientific findings are based on consistent epidemiological evidence from multiple multi-city studies, augmented with evidence from single-city studies, at policy-relevant ambient concentrations in areas with design values at and below the levels of the current standards, and are supported by research from experimental models in animals and humans and by accountability studies.” (Independent Particulate Review Panel Letter on Draft EPA PM Policy Assessment, October 2019).

PMRS4) More stringent standards to reduce exposures are urgently needed, and, if met, would save thousands of lives in the U.S. and many Bay Area lives each year.

PMRS5) There is no known threshold for harmful PM$_{2.5}$ health effects; thus, it follows that additional reductions of PM$_{2.5}$ concentrations will achieve additional public health benefits.
An Air District guideline "target" below the current PM2.5 NAAQS is warranted to protect public health; if the Air District were to set that target at an annual average of as low as 8 µg/m3, U.S. EPA’s PM\textsubscript{2.5} NAAQS risk assessment provides scientific evidence that annual average targets in that range would save additional lives.

Although a large fraction of PM2.5 is regionally contributed, substantially elevated PM2.5 exposures can occur in locations adjacent to local PM sources. Therefore, controlling emissions in these local impacted areas is of primary importance.

Wildfire PM is a serious contributor to PM health effects; early health studies are of concern; more research on acute and sub-chronic effects is ongoing and urgently needed. Wildfire PM exposure is projected to increase in duration and intensity, due to climate change, and this justifies greater efforts to reduce controllable sources of PM to reduce overall health risk.

Some species of PM may be more dangerous than others; as yet, no PM species can be exonerated.

Ultrafine particles (UFP), which are present in the air in large numbers, pose a health risk, but are not adequately monitored. They generally enter the body through the upper and lower respiratory tract and can translocate to essentially all organs. Compared to fine particles (PM\textsubscript{2.5}), they cause more pulmonary inflammation per unit mass, and are retained longer in the lung.
FRAMEWORK FOR EVALUATING
PARTICULATE MATTER REDUCTION STRATEGIES

As the Air District approaches the task of reducing particulate matter in the Bay Area, strategies under consideration should be evaluated using the following framework with particular priority given to PM reductions in communities that are most heavily impacted, and especially recognizing the Board's unanimous adoption of Resolution 2020-08, "Condemning Racism and Injustice and Affirming Commitment to Diversity, Equity, Access and Inclusion."

F1) The Air District should move as quickly as possible to take maximal feasible action within its authority to reduce emissions from PM sources, prioritizing the most impacted areas.

F2) PM reduction strategies should prioritize those measures that are most effective in reducing exposure and improving public health and health equity in the most impacted areas.

F3) Local strategies should account for the fact that the most effective exposure reduction measures may differ across communities, due to varying source mix and size, ambient PM concentration levels, physical circumstances (e.g., meteorology, terrain), and other relevant factors.

F4) The Air District should focus PM reduction in areas with elevated exposures, health vulnerability, and those areas with increased impacts and sensitive populations (e.g., U.S. EPA identifies children, non-white, low socioeconomic status, elderly).

F5) PM reduction strategies for highly-impacted communities must include control of the cumulative impact of regional (Bay Area-wide), local (community-level), and localized hot-spot (block-level) sources.

F6) PM reduction strategies should include emission reduction measures for both primary PM and secondary PM formed in the air (e.g., emissions of precursor ROG, NOx, NH₃, and SO₂).

F7) PM reduction strategies will need to address multiple source categories with a wide range of emission reduction measures, and may vary with location; there are no single, universal solutions.
RECOMMENDED ACTIONS

The Advisory Council, in consideration of input from scientists, Air District staff, and industry and community representatives, have identified several actions the Air District can take to reduce particulate matter in the region. These recommended actions are categorized into key priorities reflected in the Particulate Matter Reduction Statements and Framework. Recommended actions include, but are not limited to, the following:

ESTABLISH MORE HEALTH PROTECTIVE TARGETS

RA1) The Air District should establish PM$_{2.5}$ concentration targets consistent with findings based on scientific evidence (e.g., an annual average of as low as 8 µg/m3).

RA2) Advocate for U.S. EPA and the California Air Resources Board to establish more stringent air quality standards for PM.

RA3) Continue efforts to designate fine PM as a toxic air contaminant.

ADDRESS IMPACTED COMMUNITIES

RA4) Continue to develop strategic action plans for impacted communities. Ensure that these plans evaluate and choose actions based on their impact on reaching the lower air quality targets that we have recommended.

RA5) PM action plans should include best available methods that are feasible for reducing PM emissions and exposures for stationary, area, mobile, and indirect sources of PM.

RA6) Conduct community-level exposure and health impact assessments with local engagement for all highly-impacted communities.

RA7) Evaluate and strengthen implementation and enforcement of programs and rules (including Rule 11-18) to reduce exposures to PM$_{2.5}$ (including diesel PM) and ensure necessary community-specific resources to do so.

RA8) Develop strategies to consider cumulative community PM impacts in permitting processes.

RA9) Modify Air District permitting regulations to address hyper-localized hot-spot and cumulative PM health risks.

RA10) Evaluate current efforts to prevent “piecemealing” in the permitting process and take actions as needed.

RA11) Identify and further reduce significant sources of condensable PM from refineries.
RA12) Seek changes at state level to expand Air District authority for magnet sources of PM emissions.

RA13) Strengthen rules limiting emissions and trackout of road dust to reduce PM in overburdened communities.

RA14) Seek federal funding for electrification infrastructure, especially for disadvantaged communities.

ADDRESS WILDFIRES

RA15) Further develop and implement strategies including health protective measures and guidance to protect health during wildfire episodes. Such measures and guidance could include: 1) public education; 2) improved real-time monitoring and forecasting models; 3) more comprehensive research to assess short- and long-term health impacts; 4) assessment of the feasibility of strategies to reduce PM exposure in proposed forest management strategies; 5) establishment of clean air shelters (e.g., in schools, community centers, libraries, senior centers, senior living facilities) with power, HVAC/HEPA filters, personal protective equipment (PPE), etc., especially in disadvantaged communities; 6) mobile clean air shelters; and 7) strategies to provide HEPA filters for in-home high risk individuals.

REGIONAL RECOMMENDATIONS

Data:
RA16) Continue working to make air quality data for PM and PM precursors more accessible and timely. Partner with effective platforms (e.g., Purple Air).

RA17) Make current PM speciation data more available. Advocate for U.S. EPA national monitoring guidance and requirements to increase PM speciation.

RA18) Advocate for increased, broader, national monitoring, exposure, and health impact studies of UFP.

Mobile Source:
RA19) Advocate for appropriate federal and state agencies to set improved UFP filtration requirements for on-road vehicles.

RA20) Advocate for improved emission estimation and control methods for emerging source categories (e.g., tires & brakes, road dust).
RA21) Develop, fund, implement, and encourage strategies to reduce vehicle miles traveled (e.g., improved public transit; bicycle and pedestrian infrastructure, facilities, and programs; land use planning; and telework).

RA22) Support California Air Resources Board efforts to electrify trucks and other vehicles.

RA23) Assist local programs to control road dust (e.g., analyze road dust emission rates for local streets).

RA24) Seek stricter off-road mobile source rules from the California Air Resources Board.

Electrification:
RA25) Adopt a rule requiring, and create a program incentivizing, all electric utilities in new construction. Continue to look for opportunities that could include training, incentives, and programs to move our existing built environment to all electric.

RA26) Adopt rules to improve the emissions performance of water heaters and space heaters and require newly-installed heaters and other appliances to be electric.

Other:
RA27) Expand efforts to reduce emissions from commercial cooking equipment such as charbroilers and wood-fired ovens.

RA28) Consider further restrictions on residential wood burning emissions.
ANNOTATED BIBLIOGRAPHY FOR PARTICULATE MATTER REDUCTION STATEMENTS AND FRAMEWORK

PARTICULATE MATTER REDUCTION STATEMENTS

PMRS1) Particulate Matter (PM) is the most important health risk driver in Bay Area air quality, both PM$_{2.5}$ as a criteria pollutant and diesel PM as a toxic air contaminant.

Reference:

The Air District’s 2017 Clean Air Plan describes strategies for reducing emissions in order to protect both public health and the environment. Health impacts of particulate matter are described in Chapter 2, “Air Pollution and Public Health.” Additionally, Appendix C, “Air Pollution and Health Burden,” quantifies this impact on Bay Area residents.

PMRS2) The Bay Area has made substantial progress at reducing regional PM$_{2.5}$ levels to meet current PM$_{2.5}$ standards; however, 1) more stringent standards would be more health protective; 2) exposures vary substantially across communities; and 3) wildfire smoke increases PM$_{2.5}$ levels substantially above standards.

References:

- U.S. Environmental Protection Agency: *Air Quality Design Values, PM$_{2.5}$ Design Values, 2019*, available online at: https://www.epa.gov/air-trends/air-quality-design-values

Each year, the U.S. EPA calculates and publishes design values for each criteria pollutant for all the State, Local, and Tribal air monitoring sites in the country. Since the design values can change after the date of publication for a variety of reasons, the information in the design value tables is intended for informational use only and does not constitute a regulatory determination by U.S. EPA as whether an area has attained a NAAQS. This document shows that the 2017-2019 annual PM$_{2.5}$ design values are below the Annual PM$_{2.5}$ NAAQS at every site in the Bay Area.

This document describes the analyses performed by the Bay Area Air Quality Management District to estimate the PM$_{2.5}$ design values without days in 2017 and 2018 impacted by wildfire smoke. This preliminary analysis provides a rough evaluation of how the PM$_{2.5}$ trends would be different without the impact of a few of the largest most recent wildfires. As shown in this document, when days impacted by wildfire are excluded, the 2017-2019 PM$_{2.5}$ design values are below the applicable standards.

This plan, shaped by a community-based steering committee, identifies specific air quality challenges in different parts of West Oakland and outlines strategies for reducing local residents’ PM exposures. Chapter 5 presents a Technical Assessment that estimates the relative contributions of local and regional sources to PM concentrations, finding that proximity to local sources of PM emissions can substantially elevate exposure levels.

This study combined 36 years of data across approximately 65,000 census tracts to understand disparities in PM$_{2.5}$ concentration levels. The authors found that, although both overall PM$_{2.5}$ concentration levels and differences between the most and least polluted areas have decreased, disparities in PM$_{2.5}$ concentration levels persist. More-polluted areas did not experience greater relative reductions; rather, proportional decreases have been consistent across vigintiles. The most polluted areas of 1981 remained the most polluted areas of 2016.

The U.S. Environmental Protection Agency’s 2019 Integrated Science Assessment for Particulate Matter reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

Section 13.3 discusses the relationship of PM$_{2.5}$ to climate. With respect to wildfires, the Integrated Science Assessment describes a feedback loop in which warmer temperatures and land use change lead to more frequent wildfires, which in turn can affect precipitation patterns in ways that further increase the likelihood of fires.

This study examined patterns in hospital emergency department visits in the days following wildfire events across much of California, finding an increased likelihood of cardiovascular and cerebrovascular (stroke) events following nearby wildfires among people over the age of 65, particularly those with underlying cardiovascular conditions.

This study examined the frequency of cardiac arrests occurring outside a medical setting (e.g. at home, work, or in a public place) in the days following wildfire events in 14 California counties. The authors found that men and women aged 35 or older were more likely to experience sudden cardiac arrest (heart attack) on days with heavy smoke, with risks appearing further elevated for people in lower income groups.

• Environmental Protection Agency: PM Integrated Science Assessment, online at https://www.epa.gov/isa/integrated-science-assessment-isa-particulate-matter, Section 1.4.1.5, 1-30 (p. 166).

The U.S. Environmental Protection Agency’s 2019 Integrated Science Assessment for Particulate Matter reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

Section 1.4.1.5 describes how the available evidence supports the conclusion that there is a causal relationship between ambient PM$_{2.5}$ exposure and mortality.

• Environmental Protection Agency: Policy Assessment for PM NAAQS 1/2020, online at https://www.epa.gov/naaqs/particulate-matter-pm-standards-policy-assessments-current-review-0, Section 3.3.2.2, Table 3-7, 3-90 (p. 190) and Table 3-8, 3-91 (p. 191); Section 3.3.3, 3-97 (p. 197).

The U.S. Environmental Protection Agency's Policy Assessment for Review of the PM NAAQS is intended to serve as a bridge between science and rulemaking, interpreting the findings of the U.S. EPA Integrated Science Assessment with respect to existing and potential policy.

Section 3.3.2.2., Table 3-7 compares mortality associated with PM$_{2.5}$ exposure at the current 12 µg/m3 standard with mortality risk at potential standards of 9 µg/m3, 10 µg/m3, and 11
µg/m³, and Table 3-8 calculates the number of lives that could be spared and the potential percent reduction in mortality at these lower PM$_{2.5}$ concentrations.

Section 3.3.3. summarizes the document’s conclusions, stating that “the current primary PM$_{2.5}$ standards could allow a substantial number of PM$_{2.5}$-associated deaths in the U.S.”

Using 16 years of data for more than 68.5 million people, this study provides strong evidence of a causal link between long-term exposure to PM$_{2.5}$ concentrations below the current NAAQS and mortality. The authors estimate that an annual standard of 10 µg/m³ would save more than 143,000 lives in one decade compared to the current 12µg/m³ standard.

This large-scale analysis used data from the entire U.S. population over the age of 65 — approximately 61 million people — to investigate associations between mortality and exposure to ambient PM$_{2.5}$ levels as measured by U.S. EPA data, concluding that risk of death rose significantly with PM$_{2.5}$ levels at concentrations below the 12 µg/m³ NAAQS threshold.

PMRS3) The current particulate matter national ambient air quality standards (NAAQS) are not health protective.

The Advisory Council concurs with the following statement: “Based on scientific evidence, as detailed in Attachment B [of our letter], the [Independent Particulate Matter Review Panel] finds that the current suite of primary fine particle (PM$_{2.5}$) annual and 24-hour standards are not protective of public health. Both of these standards should be revised to new levels, while retaining their current indicators, averaging times, and forms. The annual standard should be revised to a range of 10 µg/m³ to 8 µg/m³. The 24-hour standard should be revised to a range of 30 µg/m³ to 25 µg/m³. These scientific findings are based on consistent epidemiological evidence from multiple multi-city studies, augmented with evidence from single-city studies, at policy-relevant ambient concentrations in areas with design values at and below the levels of the current standards, and are supported by research from experimental models in animals and humans and by accountability studies.” (Independent Particulate Review Panel Letter on Draft EPA PM Policy Assessment, October 2019).
References:

- **Independent Particulate Matter Review Panel:** *Final letter to Administrator Wheeler with the IPMRP’s recommendations*, October 22, 2019. Available online at https://www.ucsusa.org/meeting-independent-particulate-matter-review-panel

 This letter, written by the scientists who made up the U.S. EPA’s Clean Air Scientific Advisory Committee (CASAC) before it was dismissed without notice in 2018, contains these experts’ findings after reviewing the EPA’s Integrated Science Assessment (ISA, Reference 2) and Policy Assessment (PA, Reference 3) regarding particulate matter. The panel strongly called for stricter PM standards based on the evidence in the ISA and PA.

- **Environmental Protection Agency:** *PM Integrated Science Assessment*, online at https://www.epa.gov/isa/integrated-science-assessment-isa-particulate-matter, Section 1.4.1.5, 1-30 (p. 166); Section 1.5.3, 1-48 (p. 184); Section 11.1.10, 11-38 (p. 1651) and Section 11.2.4, 11-84 (p. 1697).

 The U.S. Environmental Protection Agency’s 2019 *Integrated Science Assessment for Particulate Matter* reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

 This review demonstrated that PM causes more health problems than previously known, at lower concentrations than previously known, and disproportionately affects vulnerable populations.

 Section 1.4.1.5 describes how the available evidence supports the conclusion that there is a causal relationship between ambient PM$_{2.5}$ exposure and mortality.

 Section 1.5.3 explains the concentration-response relationship observed between PM$_{2.5}$ exposure and health effects, stating that recent studies “continue to provide evidence of a linear, no-threshold relationship between both short- and long-term PM$_{2.5}$ exposure and several respiratory and cardiovascular effects, and mortality.”

 Sections 11.1.10 (short-term exposure) and 11.2.4 (long-term exposure) provide further discussion of this concentration-response relationship, evidence regarding its linearity, and the lack of a PM$_{2.5}$ threshold below which deleterious health effects are not observed.

- **Environmental Protection Agency:** *Policy Assessment for PM NAAQS 1/2020*, online at https://www.epa.gov/naaqs/particulate-matter-pm-standards-policy-assessments-current-review-0, Section 3.3.2.2, Table 3-7, 3-90 (p. 190) and Table 3-8, 3-91 (p. 191); Section 3.3.3, 3-97 (p. 197).

 The U.S. Environmental Protection Agency’s *Policy Assessment for Review of the PM NAAQS* is intended to serve as a bridge between science and rulemaking, interpreting the findings of the U.S. EPA *Integrated Science Assessment* with respect to existing and potential policy.
In Section 3.3.2.2., Table 3-7 compares mortality associated with PM$_{2.5}$ exposure at the current 12 µg/m3 standard with mortality risk at potential standards of 9 µg/m3, 10 µg/m3, and 11 µg/m3, and Table 3-8 calculates the number of lives that could be spared and the potential percent reduction in mortality at these lower PM$_{2.5}$ concentrations.

Section 3.3.3. summarizes the document’s conclusions, stating that “the current primary PM$_{2.5}$ standards could allow a substantial number of PM$_{2.5}$-associated deaths in the U.S.”

PMRS4) More stringent standards to reduce exposures are urgently needed, and, if met, would save thousands of lives in the U.S. and many Bay Area lives each year.

Reference:

- Environmental Protection Agency: *Policy Assessment for PM NAAQS 1/2020*, online at https://www.epa.gov/naaqs/particulate-matter-pm-standards-policy-assessments-current-review-0, Section 3.3.2.2, Table 3-7, 3-90 (p. 190) and Table 3-8, 3-91 (p. 191); Section 3.3.3, 3-97 (p. 197).

The U.S. Environmental Protection Agency’s *Policy Assessment for Review of the PM NAAQS* is intended to serve as a bridge between science and rulemaking, interpreting the findings of the U.S. EPA *Integrated Science Assessment* with respect to existing and potential policy.

In Section 3.3.2.2., Table 3-7 compares mortality associated with PM$_{2.5}$ exposure at the current 12 µg/m3 standard with mortality risk at potential standards of 9 µg/m3, 10 µg/m3, and 11 µg/m3, and Table 3-8 calculates the number of lives that could be spared and the potential percent reduction in mortality at these lower PM concentrations.

Section 3.3.3. summarizes the document’s conclusions, stating that “the current primary PM$_{2.5}$ standards could allow a substantial number of PM$_{2.5}$-associated deaths in the U.S.”

PMRS5) There is no known threshold for harmful PM$_{2.5}$ health effects; thus, it follows that additional reductions of PM$_{2.5}$ concentrations will achieve additional public health benefits.

Reference:

- Environmental Protection Agency: *PM Integrated Science Assessment*, online at https://www.epa.gov/isa/integrated-science-assessment-isa-particulate-matter, Section 1.5.3, 1-48 (p. 184); Section 11.1.10, 11-38 (p. 1651) and Section 11.2.4, 11-84 (p. 1697).

The U.S. Environmental Protection Agency’s 2019 *Integrated Science Assessment for Particulate Matter* reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.
Section 1.5.3 explains the concentration-response relationship observed between PM$_{2.5}$ exposure and health effects, stating that recent studies “continue to provide evidence of a linear, no-threshold relationship between both short- and long-term PM$_{2.5}$ exposure and several respiratory and cardiovascular effects, and mortality.

Sections 11.1.10 (short-term exposure) and 11.2.4 (long-term exposure) provide further discussion of this concentration-response relationship, evidence regarding its linearity, and the lack of a PM$_{2.5}$ threshold below which deleterious health effects are not observed.

PMRS6) An Air District guideline "target" below the current PM$_{2.5}$ NAAQS is warranted to protect public health; if the Air District were to set that target at an annual average of as low as 8 µg/m3, U.S. EPA’s PM$_{2.5}$ NAAQS risk assessment provides scientific evidence that annual average targets in that range would save additional lives.

References:

The U.S. Environmental Protection Agency’s 2019 *Integrated Science Assessment for Particulate Matter* reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

Section 1.4.1.5 describes how the available evidence supports the conclusion that there is a causal relationship between ambient PM$_{2.5}$ exposure and mortality.

- **Environmental Protection Agency: Policy Assessment for PM NAAQS 1/2020**, online at https://www.epa.gov/naaqs/particulate-matter-pm-standards-policy-assessments-current-review-0, Section 3.3.2.2, Table 3-7, 3-90 (p. 190) and Table 3-8, 3-91 (p. 191); Section 3.3.3, 3-97 (p. 197).

The U.S. Environmental Protection Agency’s *Policy Assessment for Review of the PM NAAQS* is intended to serve as a bridge between science and rulemaking, interpreting the findings of the U.S. EPA *Integrated Science Assessment* with respect to existing and potential policy.

Section 3.3.2.2., Table 3-7 compares mortality associated with PM$_{2.5}$ exposure at the current 12 µg/m3 standard with mortality risk at potential standards of 9 µg/m3, 10 µg/m3, and 11 µg/m3, and Table 3-8 calculates the number of lives that could be spared and the potential percent reduction in mortality at these lower PM$_{2.5}$ concentrations.

Section 3.3.3. summarizes the document’s conclusions, stating that “the current primary PM$_{2.5}$ standards could allow a substantial number of PM$_{2.5}$-associated deaths in the U.S.”

Using 16 years of data for more than 68.5 million people, this study provides strong evidence of a causal link between long-term exposure to PM$_{2.5}$ concentrations below the current NAAQS and mortality. The authors estimate that an annual standard of 10 µg/m3 would save more than 143,000 lives in one decade compared to the current 12µg/m3 standard.

This large-scale analysis used data from the entire U.S. population over the age of 65 — approximately 61 million people — to investigate associations between mortality and exposure to ambient PM$_{2.5}$ levels as measured by U.S. EPA data, concluding that risk of death rose significantly with PM$_{2.5}$ levels at concentrations below the 12 µg/m3 NAAQS threshold.

PMRS7) Although a large fraction of PM$_{2.5}$ is regionally contributed, substantially elevated PM$_{2.5}$ exposures can occur in locations adjacent to local PM sources. Therefore, controlling emissions in these local impacted areas is of primary importance.

References:

This plan, shaped by a community-based steering committee, identifies specific air quality challenges in different parts of West Oakland and outlines strategies for reducing local residents’ PM exposures. Chapter 5 presents a Technical Assessment that estimates the relative contributions of local and regional sources to PM concentrations, finding that proximity to local sources of PM emissions can substantially elevate exposure levels.

This study combined 36 years of data across approximately 65,000 census tracts to understand disparities in PM$_{2.5}$ concentration levels. The authors found that, although both overall PM$_{2.5}$ concentration levels and differences between the most and least polluted areas have decreased, disparities in PM$_{2.5}$ concentration levels persist. More-polluted areas did not experience greater relative reductions; rather, proportional decreases have been consistent across vigintiles. The most polluted areas of 1981 remained the most polluted areas of 2016.
Wildfire PM is a serious contributor to PM health effects; early health studies are of concern; more research on acute and sub-chronic effects is ongoing and urgently needed. Wildfire PM exposure is projected to increase in duration and intensity, due to climate change, and this justifies greater efforts to reduce controllable sources of PM to reduce overall health risk.

References:

 The U.S. Environmental Protection Agency's 2019 *Integrated Science Assessment for Particulate Matter* reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

 Section 13.3 discusses the relationship of PM$_{2.5}$ to climate. With respect to wildfires, the *Integrated Science Assessment* describes a feedback loop in which warmer temperatures and land use change lead to more frequent wildfires, which in turn can affect precipitation patterns in ways that further increase the likelihood of fires.

 This U.S. EPA document provides modeling guidance for air quality agencies charged with satisfying federal demonstration requirements. Guidance regarding calculation of PM design values acknowledges: "it is well-established that inter-annual variability in meteorological conditions often leads to year to year differences in design values, even with static emissions levels“ (p. 101).

 This study examined patterns in hospital emergency department visits in the days following wildfire events across much of California, finding an increased likelihood of cardiovascular and cerebrovascular (stroke) events following nearby wildfires among people over the age of 65, particularly those with underlying cardiovascular conditions.

This study examined the frequency of cardiac arrests occurring outside a medical setting (e.g. at home, work, or in a public place) in the days following wildfire events in 14 California counties. The authors found that men and women aged 35 or older were more likely to experience sudden cardiac arrest (heart attack) on days with heavy smoke, with risks appearing further elevated for people in lower income groups.

PMR59) Some species of PM may be more dangerous than others; as yet, no PM species can be exonerated.

Reference:

The U.S. Environmental Protection Agency’s 2019 Integrated Science Assessment for Particulate Matter reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

Section 1.5.4, within Section 1.5 “Policy Considerations,” reviews the evidence regarding health effects of specific components or sources of PM, such as motor vehicle emissions, coal combustion, and vegetative burning. The authors conclude that the current state of the science does not clearly differentiate health effects resulting from exposure to different components or sources of PM; “the evidence does not indicate that any one source or component is consistently more strongly related with health effects than PM$_{2.5}$ mass.”

This meta-analysis combined data from all relevant studies investigating links between PM$_{2.5}$ particle constituents and mortality through July 2015 (a total of 41 studies covering 142 cities in several world regions). The authors found evidence that exposure to the combustion elements of elemental carbon (EC) and potassium (K), generally recognized as traffic and wood combustion elements respectively, are each associated with increased risk of mortality. They also observed that health effects varied by region.

This meta-analysis reviewed all relevant studies through August 2018 examining mortality and morbidity in relation to exposure to different components of PM. The authors found consistent associations between cardiovascular morbidity and mortality and exposure to black carbon and organic carbon (associated with a range of combustion including motor vehicle emissions and biomass burning). They also found likely associations between cardiovascular health effects and exposure to PM$_{2.5}$ nitrate, sulfate, zinc, silicon, iron, nickel, vanadium, and potassium; and likely associations between respiratory health effects and exposure to PM$_{2.5}$ nitrate, sulfate, and vanadium.

PMRS10 Ultrafine particles (UFP), which are present in the air in large numbers, pose a health risk, but are not adequately monitored. They generally enter the body through the upper and lower respiratory tract and can translocate to essentially all organs. Compared to fine particles (PM$_{2.5}$), they cause more pulmonary inflammation per unit mass, and are retained longer in the lung.

Reference:

- *Environmental Protection Agency: PM Integrated Science Assessment*, online at https://www.epa.gov/isa/integrated-science-assessment-isa-particulate-matter, Section 5.5.1, 5-279 (p. 843); Section 5.5.1.1, 5-281, (p.844); Section 5.5.2.3, 5-287 (p. 851)

The U.S. Environmental Protection Agency’s 2019 Integrated Science Assessment for Particulate Matter reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

Section 5.5.1 on “Biological Plausibility” describes the biological pathways by which exposure to ultrafine particles (UFP) is understood to affect human health — potentially activating not only respiratory distress but also a range of immune, nervous system, and other reactions, including oxidative stress.

Section 5.5.1.1 describes the current science with respect to UFP exposure and respiratory injury, inflammation, and oxidative stress. Evidence suggests that short-term exposure to UFP is associated with markers of injury, inflammatory response, oxidative stress, and allergic asthma, which is consistent with epidemiologic evidence linking UFP exposure with asthma-related hospital admissions.

Section 5.5.2.3 further investigates the connection between UFP and asthma, reviewing conclusions from the 2009 ISA as well as a more recent animal toxicological study. That study, conducted using mice, indicates that UFP penetrates into the deep lung and is associated with allergic inflammation, asthma exacerbation, and oxidative stress.

This meta-analysis reviewed 85 recent studies (published 2011 through 2017) of the health effects of ultrafine particles (UFP) in ambient air pollution. The authors found some evidence for increased risk of short-term inflammatory and cardiovascular effects with UFP exposure beyond the expected effects of larger categories of PM.
F1) The Air District should move as quickly as possible to take maximal feasible action within its authority to reduce emissions from PM sources, prioritizing the most impacted areas.

Reference:

- No citation needed.

F2) PM reduction strategies should prioritize those measures that are most effective in reducing exposure and improving public health and health equity in the most impacted areas.

Reference:

This U.S. EPA document describes requirements to be met in implementing National Ambient Air Quality Standards for PM$_{2.5}$. Section G, “Measures to Ensure Appropriate Protections for Overburdened Populations,” articulates the importance of protecting communities whose health is disproportionately impacted by PM$_{2.5}$ exposure.

F3) Local strategies should account for the fact that the most effective exposure reduction measures may differ across communities, due to varying source mix and size, ambient PM concentration levels, physical circumstances (e.g., meteorology, terrain), and other relevant factors.

Reference:

- California Air Resources Board: *Community Air Protection Blueprint*, online at https://ww2.arb.ca.gov/capp-blueprint.

This state-level document outlines the process for meeting the requirements of California’s AB 617 legislation mandating a statewide program to address long-standing air pollution concerns in disadvantaged communities. Designed to address the “unique needs of individual communities” (p. 7), the Blueprint calls for the development of community-specific action plans based on highly localized emissions, exposure, and public health data and guided by steering committees comprising local community members.
F4) The Air District should focus PM reduction in areas with elevated exposures, health vulnerability, and those areas with increased impacts and sensitive populations (e.g., U.S. EPA identifies children, non-white, low socioeconomic status, elderly).

Reference:

The U.S. Environmental Protection Agency’s 2019 *Integrated Science Assessment for Particulate Matter* reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

Section 1.5.5 examines evidence concerning differences in health risk from PM exposure among specific sub-populations. Evidence is sufficient to demonstrate that children and nonwhite people are at greater risk of experiencing PM$_{2.5}$ health effects. The evidence also suggests that people with pre-existing health conditions and low socioeconomic status are at increased risk.

F5) PM reduction strategies for highly-impacted communities must include control of the cumulative impact of regional (Bay Area-wide), local (community-level), and localized hot-spot (block-level) sources.

Reference:

This state legislation mandates a statewide program to address long-standing air pollution concerns in disadvantaged communities. California air districts in which such communities are identified are tasked with designing and deploying community-level monitoring programs and exposure reduction strategies.
F6) PM reduction strategies should include emission reduction measures for both primary PM and secondary PM formed in the air (e.g., emissions of precursor ROG, NOx, NH3, and SO2).

Reference:

- **Environmental Protection Agency: Our Nation’s Air (2020), online at** https://gispub.epa.gov/air/trendsreport/2020.

 This annual report from the U.S. EPA summarizes trends in air quality. In the section titled “Understanding PM2.5 Composition Helps Reduce Fine Particle Pollution,” the agency emphasizes the importance of tracking the components of secondary PM.

F7) PM reduction strategies will need to address multiple source categories with a wide range of emission reduction measures, and may vary with location; there are no single, universal solutions.

Reference:

- **Environmental Protection Agency: Fine Particulate Matter National Ambient Air Quality Standards: State Implementation Plan Requirements; Final Rule, online at** https://www.govinfo.gov/content/pkg/FR-2016-08-24/pdf/2016-18768.pdf.

 This U.S. EPA document describes requirements to be met in implementing National Ambient Air Quality Standards for PM2.5. The agency specifies that these rules and regulations apply to “numerous and diverse sources” of harmful emissions (Section B.1, p. 58012).
Appendix A: Annotated Bibliography for Particulate Matter Reduction Statements and Framework
APPENDIX A: ANNOTATED BIBLIOGRAPHY FOR PARTICULATE MATTER REDUCTION STATEMENTS AND FRAMEWORK (TABLE)

The annotated bibliography provides scientific reference and informational materials to support the Advisory Council’s particulate matter reduction statements and framework for evaluation. These references are also provided within the report.

<table>
<thead>
<tr>
<th>ID</th>
<th>PARTICULATE MATTER REDUCTION STATEMENT</th>
<th>CITATION #</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMRS1</td>
<td>Particulate Matter (PM) is the most important health risk driver in Bay Area air quality, both PM$_{2.5}$ as a criteria pollutant and diesel PM as a toxic air contaminant.</td>
<td>1</td>
</tr>
<tr>
<td>PMRS2</td>
<td>The Bay Area has made substantial progress at reducing regional PM${2.5}$ levels to meet current PM${2.5}$ standards; however, 1) more stringent standards would be more health protective; 2) exposures vary substantially across communities; and 3) wildfire smoke increases PM$_{2.5}$ levels substantially above standards.</td>
<td>4 5 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 2 e 11 12 2 a 3 a, b 6 7</td>
</tr>
<tr>
<td>PMRS3</td>
<td>The current particulate matter national ambient air quality standards (NAAQS) are not health protective.</td>
<td>2 a, b, d 3 a, b 20</td>
</tr>
<tr>
<td></td>
<td>The Advisory Council concurs with the following statement: “Based on scientific evidence, as detailed in Attachment B [of our letter], the [Independent Particulate Matter Review Panel] finds that the current suite of primary fine particle (PM$_{2.5}$) annual and 24-hour standards are not protective of public health. Both of these standards should be revised to new levels, while retaining their current indicators, averaging times, and forms. The annual standard should be revised to a range of 10 μg/m3 to 8 μg/m3. The 24-hour standard should be revised to a range of 30 μg/m3 to 25 μg/m3. These scientific findings are based on consistent epidemiological evidence from multiple multi-city studies, augmented with evidence from single-city studies, at policy-relevant ambient concentrations in areas with design values at and below the levels of the current standards, and are supported by research from experimental models in animals and humans and by accountability studies.” (Independent Particulate Review Panel Letter on Draft EPA PM Policy Assessment, October 2019).</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>PARTICULATE MATTER REDUCTION STATEMENT</td>
<td>CITATION #</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>PMRS4</td>
<td>More stringent standards to reduce exposures are urgently needed, and, if met, would save thousands of lives in the U.S. and many Bay Area lives each year.</td>
<td>3 a, b</td>
</tr>
<tr>
<td>PMRS5</td>
<td>There is no known threshold for harmful PM({2.5}) health effects; thus, it follows that additional reductions of PM({2.5}) concentrations will achieve additional public health benefits.</td>
<td>2 b, d</td>
</tr>
<tr>
<td>PMRS6</td>
<td>An Air District guideline "target" below the current PM({2.5}) NAAQS is warranted to protect public health; if the Air District were to set that target at an annual average of as low as 8 µg/m(^3), U.S. EPA’s PM({2.5}) NAAQS risk assessment provides scientific evidence that annual average targets in that range would save additional lives.</td>
<td>2 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 a, b, 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>PMRS7</td>
<td>Although a large fraction of PM({2.5}) is regionally contributed, substantially elevated PM({2.5}) exposures can occur in locations adjacent to local PM sources. Therefore, controlling emissions in these local impacted areas is of primary importance.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>PMRS8</td>
<td>Wildfire PM is a serious contributor to PM health effects; early health studies are of concern; more research on acute and sub-chronic effects is ongoing and urgently needed. Wildfire PM exposure is projected to increase in duration and intensity, due to climate change, and this justifies greater efforts to reduce controllable sources of PM to reduce overall health risk.</td>
<td>2 e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>PMRS9</td>
<td>Some species of PM may be more dangerous than others; as yet, no PM species can be exonerated</td>
<td>2f</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>PMRS10</td>
<td>Ultrafine particles (UFP), which are present in the air in large numbers, pose a health risk, but are not adequately monitored. They generally enter the body through the upper and lower respiratory tract and can translocate to essentially all organs. Compared to fine particles (PM(_{2.5})), they cause more pulmonary inflammation per unit mass, and are retained longer in the lung.</td>
<td>2 g, h, i</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>ID</td>
<td>FRAMEWORK FOR EVALUATING PARTICULATE MATTER REDUCTION STRATEGIES</td>
<td>CITATION #</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>F1</td>
<td>The Air District should move as quickly as possible to take maximal feasible action within its authority to reduce emissions from PM sources, prioritizing the most impacted areas.</td>
<td>n.a.</td>
</tr>
<tr>
<td>F2</td>
<td>PM reduction strategies should prioritize those measures that are most effective in reducing exposure and improving public health and health equity in the most impacted areas.</td>
<td>16 b</td>
</tr>
<tr>
<td>F3</td>
<td>Local strategies should account for the fact that the most effective exposure reduction measures may differ across communities, due to varying source mix and size, ambient PM concentration levels, physical circumstances (e.g., meteorology, terrain), and other relevant factors.</td>
<td>13</td>
</tr>
<tr>
<td>F4</td>
<td>The Air District should focus PM reduction in areas with elevated exposures, health vulnerability, and those areas with increased impacts and sensitive populations (e.g., U.S. EPA identifies children, non-white, low socioeconomic status, elderly).</td>
<td>2 c</td>
</tr>
<tr>
<td>F5</td>
<td>PM reduction strategies for highly-impacted communities must include control of the cumulative impact of regional (Bay Area-wide), local (community-level), and localized hot-spot (block-level) sources.</td>
<td>14</td>
</tr>
<tr>
<td>F6</td>
<td>PM reduction strategies should include emission reduction measures for both primary PM and secondary PM formed in the air (e.g., emissions of precursor ROG, NOx, NH₃, and SO₂).</td>
<td>15</td>
</tr>
<tr>
<td>F7</td>
<td>PM reduction strategies will need to address multiple source categories with a wide range of emission reduction measures, and may vary with location; there are no single, universal solutions.</td>
<td>16 a</td>
</tr>
</tbody>
</table>
REFERENCES

The Air District’s 2017 Clean Air Plan describes strategies for reducing emissions in order to protect both public health and the environment. Health impacts of particulate matter are described in Chapter 2, “Air Pollution and Public Health.” Additionally, Appendix C, “Air Pollution and Health Burden,” quantifies this impact on Bay Area residents.

 a. Section 1.4.1.5, 1-30 (p. 166)
 b. Section 1.5.3, 1-48 (p. 184)
 c. Section 1.5.5, 1-53 through 1-55 (p. 189-191)
 d. Section 11.1.10, 11-38 (p. 1651) and Section 11.2.4, 11-84 (p. 1697)
 e. Section 13.3, 13-69 (p. 1902)
 f. Section 1.5.4, 1-50 (p. 186)
 g. Section 5.5.1, 5-279 (p. 843)
 h. Section 5.5.1.1, 5-281, (p. 844)
 i. Section 5.5.2.3, 5-287 (p. 851)

The U.S. Environmental Protection Agency’s 2019 Integrated Science Assessment for Particulate Matter reviewed the body of new particulate matter research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

This review demonstrated that PM causes more health problems than previously known, at lower concentrations than previously known, and disproportionately affects vulnerable populations.

 (a) Section 1.4.1.5 describes how the available evidence supports the conclusion that there is a causal relationship between ambient PM$_{2.5}$ exposure and mortality.

 (b) Section 1.5.3 explains the concentration-response relationship observed between PM$_{2.5}$ exposure and health effects, stating that recent studies “continue to provide evidence of a linear, no-threshold relationship between both short- and long-term PM$_{2.5}$ exposure and several respiratory and cardiovascular effects, and mortality.”
Section 1.5.5 examines evidence concerning differences in health risk from PM exposure among specific sub-populations. Evidence is sufficient to demonstrate that children and nonwhite people are at greater risk of experiencing PM$_{2.5}$ health effects. The evidence also suggests that people with pre-existing health conditions and low socioeconomic status are at increased risk.

Sections 11.1.10 (short-term exposure) and 11.2.4 (long-term exposure) provide further discussion of this concentration-response relationship, evidence regarding its linearity, and the lack of a PM$_{2.5}$ threshold below which deleterious health effects are not observed.

Section 13.3 discusses the relationship of PM$_{2.5}$ to climate. With respect to wildfires, the Integrated Science Assessment describes a feedback loop in which warmer temperatures and land use change lead to more frequent wildfires, which in turn can affect precipitation patterns in ways that further increase the likelihood of fires.

Section 1.5.4, within Section 1.5 “Policy Considerations,” reviews the evidence regarding health effects of specific components or sources of PM, such as motor vehicle emissions, coal combustion, and vegetative burning. The authors conclude that the current state of the science does not clearly differentiate health effects resulting from exposure to different components or sources of PM; “the evidence does not indicate that any one source or component is consistently more strongly related with health effects than PM$_{2.5}$ mass.”

Section 5.5.1 on “Biological Plausibility” describes the biological pathways by which exposure to ultrafine particles (UFP) is understood to affect human health — potentially activating not only respiratory distress but also a range of immune, nervous system, and other reactions, including oxidative stress.

Section 5.5.1.1 describes the current science with respect to UFP exposure and respiratory injury, inflammation, and oxidative stress. Evidence suggests that short-term exposure to UFP is associated with markers of injury, inflammatory response, oxidative stress, and allergic asthma, which is consistent with epidemiologic evidence linking UFP exposure with asthma-related hospital admissions.

Section 5.5.2.3 further investigates the connection between UFP and asthma, reviewing conclusions from the 2009 ISA as well as a more recent animal toxicological study. That study, conducted using mice, indicates that UFP penetrates into the deep lung and is associated with allergic inflammation, asthma exacerbation, and oxidative stress.
3. Environmental Protection Agency: Policy Assessment for PM NAAQS 1/2020, online at https://www.epa.gov/naaqs/particulate-matter-pm-standards-policy-assessments-current-review-0

 a. Section 3.3.2.2, Table 3-7, 3-90 (p. 190) and Table 3-8, 3-91 (p. 191)
 b. Section 3.3.3, 3-97 (p. 197)

The U.S. Environmental Protection Agency’s Policy Assessment for Review of the PM NAAQS is intended to serve as a bridge between science and rulemaking, interpreting the findings of the U.S. EPA Integrated Science Assessment with respect to existing and potential policy.

(a) In Section 3.3.2.2., Table 3-7 compares mortality associated with PM$_{2.5}$ exposure at the current 12 µg/m3 standard with mortality risk at potential standards of 9 µg/m3, 10 µg/m3, and 11 µg/m3, and Table 3-8 calculates the number of lives that could be spared and the potential percent reduction in mortality at these lower PM$_{2.5}$ concentrations.

(b) Section 3.3.3 summarizes the document’s conclusions, stating that “the current primary PM$_{2.5}$ standards could allow a substantial number of PM$_{2.5}$-associated deaths in the U.S.”

4. U.S. Environmental Protection Agency: Air Quality Design Values, PM$_{2.5}$ Design Values, 2019, available online at: https://www.epa.gov/air-trends/air-quality-design-values

Each year, the U.S. EPA calculates and publishes design values for each criteria pollutant for all the State, Local, and Tribal air monitoring sites in the country. Since the design values can change after the date of publication for a variety of reasons, the information in the design value tables is intended for informational use only and does not constitute a regulatory determination by U.S. EPA as whether an area has attained a NAAQS. This document shows that the 2017-2019 annual PM$_{2.5}$ design values are below the Annual PM$_{2.5}$ NAAQS at every site in the Bay Area.

This document describes the analyses performed by the Bay Area Air Quality Management District to estimate the PM$_{2.5}$ design values without days in 2017 and 2018 impacted by wildfire smoke. This preliminary analysis provides a rough evaluation of how the PM$_{2.5}$ trends would be different without the impact of a few of the largest most recent wildfires. As shown in this document, when days impacted by wildfire are excluded, the 2017-2019 PM$_{2.5}$ design values are below the applicable standards.

Using 16 years of data for more than 68.5 million people, this study provides strong evidence of a causal link between long-term exposure to PM$_{2.5}$ concentrations below the current NAAQS and mortality. The authors estimate that an annual standard of 10 µg/m3 would save more than 143,000 lives in one decade compared to the current 12µg/m3 standard.

This large-scale analysis used data from the entire U.S. population over the age of 65 — approximately 61 million people — to investigate associations between mortality and exposure to ambient PM$_{2.5}$ levels as measured by U.S. EPA data, concluding that risk of death rose significantly with PM$_{2.5}$ levels at concentrations below the 12 µg/m3 NAAQS threshold.

This U.S. EPA document provides modeling guidance for air quality agencies charged with satisfying federal demonstration requirements. Guidance regarding calculation of PM design values acknowledges: “it is well-established that inter-annual variability in meteorological conditions often leads to year to year differences in design values, even with static emissions levels” (p. 101).

This plan, shaped by a community-based steering committee, identifies specific air quality challenges in different parts of West Oakland and outlines strategies for reducing local residents’ PM exposures. Chapter 5 presents a Technical Assessment that estimates the relative contributions of local and regional sources to PM concentrations, finding that proximity to local sources of PM emissions can substantially elevate exposure levels.

This study combined 36 years of data across approximately 65,000 census tracts to understand disparities in PM$_{2.5}$ concentration levels. The authors found that, although both overall PM$_{2.5}$ concentration levels and differences between the most and least polluted areas have decreased, disparities in PM$_{2.5}$ concentration levels persist. More polluted areas did not experience greater relative reductions; rather, proportional decreases have been consistent across quintiles. The most polluted areas of 1981 remained the most polluted areas of 2016.

This study examined patterns in hospital emergency department visits in the days following wildfire events across much of California, finding an increased likelihood of cardiovascular and cerebrovascular (stroke) events following nearby wildfires among people over the age of 65, particularly those with underlying cardiovascular conditions.

This study examined the frequency of cardiac arrests occurring outside a medical setting (e.g. at home, work, or in a public place) in the days following wildfire events in 14 California counties. The authors found that men and women aged 35 or older were more likely to experience sudden cardiac arrest (heart attack) on days with heavy smoke, with risks appearing further elevated for people in lower income groups.
13. **California Air Resources Board:** *Community Air Protection Blueprint*, online at https://ww2.arb.ca.gov/capp-blueprint

This state-level document outlines the process for meeting the requirements of California’s AB 617 legislation mandating a statewide program to address long-standing air pollution concerns in disadvantaged communities. Designed to address the “unique needs of individual communities” (p. 7), the Blueprint calls for the development of community-specific action plans based on highly localized emissions, exposure, and public health data and guided by steering committees comprising local community members.

14. **State of California:** *AB-617 Nonvehicular air pollution: criteria air pollutants and toxic air contaminants*, online at https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB617

This state legislation mandates a statewide program to address long-standing air pollution concerns in disadvantaged communities. California air districts in which such communities are identified are tasked with designing and deploying community-level monitoring programs and exposure reduction strategies.

15. **Environmental Protection Agency:** *Our Nation’s Air (2020)*, online at https://gispub.epa.gov/air/trendsreport/2020

This annual report from the U.S. EPA summarizes trends in air quality. In the section titled “Understanding PM$_{2.5}$ Composition Helps Reduce Fine Particle Pollution,” the agency emphasizes the importance of tracking the components of secondary PM.

16. **Environmental Protection Agency:** *Fine Particulate Matter National Ambient Air Quality Standards: State Implementation Plan Requirements; Final Rule*, online at https://www.govinfo.gov/content/pkg/FR-2016-08-24/pdf/2016-18768.pdf

 a. Section B.1
 b. Section G

This U.S. EPA document describes requirements to be met in implementing National Ambient Air Quality Standards for PM$_{2.5}$.

 (a) The agency specifies that these rules and regulations apply to “numerous and diverse sources” of harmful emissions (Section B.1, p. 58012).
 (b) Section G, “Measures to Ensure Appropriate Protections for Overburdened Populations,” articulates the importance of protecting communities whose health is disproportionately impacted by PM$_{2.5}$ exposure.

This meta-analysis combined data from all relevant studies investigating links between PM2.5 particle constituents and mortality through July 2015 (a total of 41 studies covering 142 cities in several world regions). The authors found evidence that exposure to the elemental carbon (EC) and potassium (K), generally recognized as traffic and wood combustion elements respectively, are each associated with increased risk of mortality. They also observed that health effects varied by region.

This meta-analysis reviewed all relevant studies through August 2018 examining mortality and morbidity in relation to exposure to different components of PM. The authors found consistent associations between cardiovascular morbidity and mortality and exposure to black carbon and organic carbon (associated with a range of combustion including motor vehicle emissions and biomass burning). They also found likely associations between cardiovascular health effects and exposure to PM2.5 nitrate, sulfate, zinc, silicon, iron, nickel, vanadium, and potassium; and likely associations between respiratory health effects and exposure to PM2.5 nitrate, sulfate, and vanadium.

This meta-analysis reviewed 85 recent studies (published 2011 through 2017) of the health effects of ultrafine particles (UFP) in ambient air pollution. The authors found some evidence for increased risk of short-term inflammatory and cardiovascular effects with UFP exposure beyond the expected effects of larger categories of PM.

This letter, written by the scientists who made up the U.S. EPA’s Clean Air Scientific Advisory Committee (CASAC) before it was dismissed without notice in 2018, contains these experts’ findings after reviewing the EPA’s Integrated Science Assessment (ISA, Reference 2) and Policy Assessment (PA, Reference 3) regarding particulate matter. The panel strongly called for stricter PM standards based on the evidence in the ISA and PA.
Appendix B: Summary of Advisory Council Deliberations
APPENDIX B: ADVISORY COUNCIL MEETING OF JULY 31, 2020
SUMMARY OF DELIBERATIONS

The Bay Area Air Quality Management District (Air District) Advisory Council meeting of July 31, 2020, concluded with the Advisory Council’s discussion of three sets of messages regarding particulate matter. The first set, “Particulate Matter Reduction Statements,” reflects the Advisory Council’s findings upon review of the presentations and public comments received during the PM Symposium Series. The second set, “Framework,” reflects the Advisory Council’s suggested guiding principles for PM projects and rule development. The third set, “Recommended Actions,” contains specific recommended priorities for Air District action. When finalized, the Statements, Framework, and Recommended Actions will be submitted to the Executive Board as Advisory Council recommendations.

Chair Stan Hayes, who composed a preliminary draft of the document, presented the Statements, Framework, and Recommended Actions to the Advisory Council members. He explained that the document was intended to reflect sentiments expressed by Advisory Council members in prior PM deliberations. By drafting these items, he hoped to provide a starting point for discussion.

The ensuing deliberations, led by Chair Hayes, focused on each individual entry under the “Statements” and “Framework” headings. (Due to time constraints, discussion of “Recommended Actions” was reserved for the next Advisory Council meeting.) Some items were immediately approved by Advisory Council members as written in the preliminary draft; others led to discussion and revision. This summary provides a high-level recap of those discussions.

PARTICULATE MATTER REDUCTION STATEMENTS DISCUSSION

After establishing the need to reorder the Particulate Matter Reduction Statements for greater clarity, the Advisory Council considered each item individually.

Particulate Matter Reduction Statements Approved

The following Particulate Matter Reduction Statements were approved without significant changes.

The current PM NAAQS are not sufficiently health protective.

PM is the health risk driver in Bay Area air, both PM_{2.5} as a criteria pollutant and diesel PM as a toxic air contaminant.
There is no evidence of a health effects PM$_{2.5}$ threshold; thus, additional PM reductions beyond the current standards will achieve additional public health improvement.

More stringent standards are needed and would save thousands of lives in the U.S. each year.

Some PM localized hot-spot areas experience PM levels significantly higher than their community-average level.*

*The qualifier “may” was removed from this statement, which previously contained the phrase “may experience.”

Particulate Matter Reduction Statements for Revision

Three Particulate Matter Reduction Statements related to attainment of potential PM$_{2.5}$ standards or targets were discussed at greater length:

Excluding wildfire smoke days as exceptional events, the Bay Area has attained the current federal annual/24-hour (12/35 µg/m3) PM$_{2.5}$ national ambient air quality standards (NAAQS).

The Bay Area also would attain alternative, more stringent 10/25 µg/m3 PM$_{2.5}$ NAAQS (except for West Oakland, whose annual average PM$_{2.5}$ in 2018 was above an alternative 10 µg/m3 standard by 0.7 µg/m3, or 7%).

An Air District guideline "target" below the current PM$_{2.5}$ NAAQS is warranted; to be effective, it would need to be at or below an annual average of 10 µg/m3.

To explain the rationale for these Particulate Matter Reduction Statements, Chair Hayes presented graphs of Bay Area design values for each three-year period from 2005 through 2018. Design values are calculations of average concentration levels; the annual design value is the three-year average of the highest maximum PM$_{2.5}$ concentrations measured in the area, and the 24-hour design value is the three-year average of the 98th percentile of the daily maximum PM$_{2.5}$ concentration in the area. Chair Hayes used design value data provided by the Air District from each of its 16 monitoring stations to create the graphs, excluding wildfire events.

Based on the Air District’s calculations, Chair Hayes recognized that the Bay Area has in recent years attained the current federal annual 12 µg/m3 standard at all monitoring locations (Figure 1). If targets were set at 10 µg/m3, recent measurements indicate that air quality near the monitoring stations in West Oakland and Laney College would not meet the 10 µg/m3 target. If targets were set at 8 µg/m3, these historical data suggest that nearly all monitoring stations would register Bay Area air quality that would not meet the 8 µg/m3 target.
For the 24-hr design values, the Bay Area has been in attainment with the current standard of 35 µg/m³ for the past decade (Figure 2). If targets were set at the more stringent standard of 25 µg/m³, the most recent data indicate Bay Area air quality would have attained (or in West Oakland and San Jose come very close to attaining) this target.
Discussion centered on the following topics:

Wildfire. Advisory Council members acknowledged that if wildfire data were included, design values based on monitoring data would show PM$_{2.5}$ concentrations in excess of the current federal annual standard of 12 µg/m3 and the current federal 24-hr standard of 35 µg/m3.

Localized hot-spots. Although Air District data provided some indication of the differences in air quality across the region by showing separate design values for each monitoring station, Advisory Council members acknowledged that PM$_{2.5}$ concentrations may be higher in specific neighborhoods.

Achieving 8 µg/m3 vs 10 µg/m3. Acknowledging that the data and conclusions presented to the Advisory Council throughout the PM Symposium Series indicate meeting more stringent targets would achieve greater health protection, Advisory Council members determined that the statements should reflect the possibility of setting an annual target at 8 µg/m3.

Bright-line standard vs linear dose-response model. Recognizing that there appears to be a linear dose-response relationship between PM$_{2.5}$ exposure and health effects, Advisory Council members discussed whether it was appropriate to set specific targets (such as annual design values of 8 µg/m3 or 10 µg/m3) rather than considering air quality objectives in reference to a no-threshold, linear dose-response. An alternative approach was proposed to evaluate potential projects by using health impact models (e.g., projected shifts in emergency department visits, deaths, missed work or school days) to estimate costs or benefits of a change in PM$_{2.5}$ concentration resulting from each project.

REVISIONS

The Advisory Council made the following determinations regarding revision of the three Particulate Matter Reduction Statements:

Statement:

Excluding wildfire smoke days as exceptional events, the Bay Area has attained the current federal annual/24-hour (12/35 µg/m3) PM$_{2.5}$ national ambient air quality standards (NAAQS).

Revision: Clarify that the Particulate Matter Reduction Statement refers to the Bay Area as a whole and that localized hot-spots may exceed these standards.

Statement:

The Bay Area also would attain alternative, more stringent 10/25 µg/m3 PM$_{2.5}$ NAAQS (except for West Oakland, whose annual average PM$_{2.5}$ in 2018 was above an alternative 10 µg/m3 standard by 0.7 µg/m3, or 7%).
Revision: Amend the statement to also reflect Bay Area PM$_{2.5}$ concentration levels relative to a potential annual target of 8 μg/m3.

Statement:

An Air District guideline "target" below the current PM$_{2.5}$ NAAQS is warranted; to be effective, it would need to be at or below an annual average of 10 μg/m3.

Revision: Reword the statement to reflect, based on the Air District’s design-value data Chair Hayes presented, that keeping annual PM$_{2.5}$ concentrations at or below 10 μg/m3 would save additional lives. Advisory Council members also discussed the possibility of amending the statement to reflect the absence of a PM$_{2.5}$ threshold for health impacts and indicate that, accordingly, the goal of the Air District should be to achieve the lowest PM$_{2.5}$ concentrations possible.

FRAMEWORK DISCUSSION

Framework Items Approved

The following Framework items were approved without significant changes.

The most effective PM reduction measures may differ across communities, due to varying source mix and size, ambient PM concentration levels, physical circumstances (e.g., meteorology, terrain), and other relevant factors.

The Air District should focus PM reduction in areas with increased exposure, health vulnerability, and the areas with increased impacts and sensitive populations (e.g., children, nonwhite, low socioeconomic status, elderly).

PM measures should consider regional (Bay Area-wide), local (community-level), and localized hot-spot (block-level) sources.

PM reduction strategies will need to address multiple source categories. *

* This statement was amended to remove a second clause that was deemed unnecessary. The second clause read: “there is no ‘silver bullet,’ rather, it is more like ‘silver buckshot.’”
Framework Items for Revision

The Advisory Council made the following determinations regarding revision of three Framework items:

Framework Item:

Where the air district has authority, take maximal action.

Revision: Reflect the urgency of the problem and the feasibility of potential solutions. Language proposed during the meeting read: “move quickly to take maximal feasible action.”

Framework Item:

Lower-income populations with higher long-term PM exposure are more susceptible to COVID-19, due to such factors as lesser ability to work from home, denser housing situations (e.g., congregate, multi-family), and poorer access to medical care.

Revision: Three possibilities were proposed for later consideration:

Delete this item, as its purpose is already reflected in the Framework item calling for Air District efforts to focus on populations at greater risk.

Substitute more general language, e.g.: “The emergence of the COVID-19 pandemic makes the attention to particulate matter even more urgent.”

Add more specific language to describe the multiple ways that PM exposure and COVID-19 interact to increase health risk for vulnerable populations (e.g., each can cause or exacerbate health conditions that increase susceptibility to the other; both are associated with racial disparities; PM exposure may directly lead to increased health risk from COVID-19).

Framework Item:

PM reduction strategies should consider emission reduction measures for both primary PM and secondary PM formed in the air by photochemical processes (i.e., emissions of precursor ROG, NOx, NH₃, and SO₂).

Revision: A slight change was made to acknowledge secondary PM formation processes that are not photochemical. The revised version reads: PM reduction strategies should consider emission reduction measures for both primary PM and secondary PM formed in the air (e.g., emissions of precursor ROG, NOx, NH₃, and SO₂).
Due to time constraints, the Advisory Council determined that the “Recommended Actions” would be discussed at the next Advisory Council meeting, scheduled for October 9. Further revisions to the Statements and Framework are also expected to be discussed at that meeting.
Continuing a discussion that began during its July 31 meeting, the October 9 meeting of the Bay Area Air Quality Management District Advisory Council centered on three sets of messages regarding particulate matter. The first set, “Particulate Matter Reduction Statements,” reflects the Advisory Council’s findings upon review of the presentations and public comments received during the PM Symposium Series. The second set, “Framework,” reflects the Advisory Council’s suggested guiding principles for PM projects and rule development. The third set, “Recommended Actions,” contains specific recommended priorities for Air District action. When finalized, the Particulate Matter Reduction Statements, Framework, and Recommended Actions will be submitted to the Executive Committee of the Air District Board of Directors as Advisory Council recommendations.

During its previous meeting on July 31, the Advisory Council made suggestions for reordering and revising some of the Particulate Matter Reduction Statements and Framework items. The first focus for deliberation at the October 9 meeting was to review these changes and updates. The Advisory Council then turned to the Recommended Actions. Time constraints limited the discussion to a subset of those items.

This summary provides a high-level synthesis of these discussions, beginning by describing the broad issues raised relevant to all three types of messages, and proceeding to Advisory Council members’ more focused critiques of the Particulate Matter Reduction Statements, Framework, and Recommended Actions respectively. A full and sequential record of these discussions is available on the Air District website, as noted in Appendix D.

OVERARCHING TOPICS FOR ADVISORY COUNCIL RECOMMENDATIONS

A number of broad topics were raised by the Advisory Council members and Air District Board of Directors Chair Rod Sinks relevant to the Advisory Council’s recommendations as a whole: the limits of the Air District’s authority with respect to setting air quality standards; the value of recommending a “bright-line” target for PM concentration levels versus a dose-response framework; the importance of addressing wildfire contributions to PM exposure; the Board’s desire for guidance on approaches to decision making; and presentation considerations including source citations and organizing items as discrete, stand-alone statements versus logically structured arguments.

Standards and Air District authority

Advisory Council members requested clarification on the Air District’s authority with respect to setting air quality standards and the distinction between a “standard” and a “target.” Air District Counsel Brian Bunger clarified that standard-setting is done at the federal and state
levels, whereas attainment of those standards is the responsibility of the Air District. However, the Air District has the authority to set targets that are stricter than these standards and to develop rules and regulations designed to achieve such targets. Furthermore, the Air District has broad latitude to regulate toxic air contaminants, which include diesel PM. If other species of PM were to be designated as toxic air contaminants, they would be covered under Air District rules including 11-18 (Reduction of risk from air toxic emissions at existing facilities) and 2-5 (New source review of toxic air contaminants).

Recommending a bright-line target vs dose-response model

Several Advisory Council members voiced support for explicitly recommending that the Air District set a PM$_{2.5}$ annual target consistent with the Advisory Council’s findings. Based on the U.S. EPA’s most recent Integrated Science Assessment (ISA) and Policy Assessment (PA) concerning PM, as well as review of these documents by the Independent Particulate Matter Review Panel of expert scientists, this target could be justified at a level from 10 µg/m3 to as low as 8 µg/m3.

Concern was raised that a “bright-line” target may not be consistent with the Advisory Council’s findings (based on the evidence presented in the U.S. EPA ISA) regarding an apparently linear, no-threshold dose-response relationship between PM$_{2.5}$ exposure and health effects. As in the July 31 Advisory Council meeting, it was proposed the Advisory Council consider instead approaching PM$_{2.5}$ in the same manner as carcinogens, pursuing reduction efforts analogous to controls on toxic substances such as lead, and perhaps using metrics such as hospital emergency department visits.

Accounting for wildfire contributions to PM exposure

Although wildfires have historically been treated as “exceptional events” rather than integrated into most analyses of air quality progress, several Advisory Council members expressed that the increasing duration and intensity of wildfires in the Bay Area have made this designation inaccurate: wildfires can no longer be regarded as rare occurrences. With wildfires expected to continue worsening due to climate change, Advisory Council members argued for explicitly acknowledging this trend, incorporating wildfire exposure into PM$_{2.5}$ exposure models, and making wildfire mitigation and management efforts a priority for the Air District.

Acute risks from short-term exposure to wildfire smoke were emphasized in addition to the contribution of wildfire days to annual concentration averages. For example, if the Air District were to set and meet the equivalent of an annual target of 8 µg/m3 for the region, wildfires resulting in 30 days of exposure to 150 µg/m3 would bring the annual average up to 20 µg/m3, well beyond even the federal standard of 12 µg/m3. Board Chair Sinks shared that the Air District has obtained a small amount of funding from the State of California to establish “clean air centers” in which vulnerable populations in communities heavily impacted by wildfires can shelter during wildfire outbreaks.
Providing the Board of Directors with guidance for decision making

Board Chair Sinks expressed his hope that the Advisory Council’s recommendations would provide guidance on how to evaluate different options for pursuing PM exposure reductions. He shared the example of the October 1 Stationary Source Committee meeting, in which two different types of emissions controls were considered for Fluidized Catalytic Cracking Units (which convert crude oil into petroleum products such as gasoline). He stated that the Board would benefit from the Advisory Council’s advice on how to compare the more stringent control model with its more cost-effective alternative in light of numerous potential impacts including health and economic considerations. To support this and other PM reduction decisions, he encouraged the Advisory Council to provide the Board with tools for evaluating such trade-offs.

Presentation of the Advisory Council’s recommendations

The ordering of items in the Particulate Matter Reduction Statements, Framework, and Recommended Actions was a topic of discussion. The question arose of whether to treat each entry as a discrete, stand-alone item or to instead ensure they are written and organized in such a way that they build on one another in the manner of a logical argument. An additional suggestion was to link Particulate Matter Reduction Statements to corresponding Framework items and Recommended Actions.

Another presentation concern was ensuring key scientific sources (such as the U.S. EPA ISA) are referenced in findings that rely on the evidence provided by those sources. Chair Stan Hayes shared that the Air District team is preparing an annotated bibliography for the Statements and Framework intended to supply these references.

PARTICULATE MATTER REDUCTION STATEMENTS DISCUSSION

Particulate Matter Reduction Statements Approved:

Advisory Council members agreed on the wording of two of the Particulate Matter Reduction Statements as they were presented during the meeting:

PMRS1) PM is the health risk driver in Bay Area air, both PM$_{2.5}$ as a criteria pollutant and diesel PM as a toxic air contaminant.

PMRS9) Although a large fraction of PM$_{2.5}$ is regionally contributed, substantially elevated PM$_{2.5}$ exposures can occur in locations adjacent to local PM sources.
Particulate Matter Reduction Statements for Revision:

Advisory Council members raised concerns and made suggestions for revising eight Particulate Matter Reduction Statements. These discussion points are summarized beneath each Particulate Matter Reduction Statement.

PMRS2) The current PM national ambient air quality standards (NAAQS) are not sufficiently health protective.

- Concern was raised over the use of the term “sufficient” in this statement, as it was viewed as necessitating precise delineation of an acceptable level of health protection. A proposal was made to instead express the need for “improvements” in PM targets and health protection.

PMRS3) More stringent standards are needed and would save thousands of lives in the U.S. and many Bay Area lives each year.

- An insertion was made to clarify that more stringent standards, “if met,” would save lives.
- Concern was raised over the lack of quantification regarding mortality or morbidity.
- It was noted that this Particulate Matter Reduction Statement and PMRS6 may duplicate one another.

PMRS4) There is no evidence of a health effects PM$_{2.5}$ threshold; thus, it follows that additional PM reductions beyond the current standards will achieve additional public health benefits.

- Discussion of this statement centered on the nature of the concentration-response relationship and whether the absence of a health effects threshold necessarily justifies a more stringent target. A potential counterargument was presented that effects could theoretically approach zero below a certain threshold without ever reaching zero (i.e. there could be an asymptote). Advisory Council members clarified that the U.S. EPA ISA demonstrates that evidence points to a linear or near-linear concentration-response relationship between PM exposure and health effects.
- The Particulate Matter Reduction Statement was marked for revision. A preliminary revision was drafted to read: “There is no known safe level of exposure to PM$_{2.5}$, thus it follows that additional PM reductions beyond the current standards will achieve additional public health benefits.”
PMRS5) With the exception of data affected by wildfire emissions, PM concentrations in the Bay Area region would be at or below existing applicable state and federal ambient air quality standards.

- As discussed in Section 1 above, the Advisory Council agreed that the current and projected frequency, duration, and intensity of California wildfires require approaching them as non-exceptional events.

- A proposal was made to consider setting air quality targets at a level that, when averaged with days affected by wildfire, would result in a health protective annual average.

- The appropriateness of stating the Bay Area region meets existing standards was questioned due to the Advisory Council having found those standards inadequate and to the concern that some hot-spot areas experiencing higher PM$_{2.5}$ concentration levels have not historically been captured by the Air District’s monitoring network.

- The Particulate Matter Reduction Statement was marked for revision. A preliminary revision was drafted to read: “The Bay Area has made substantial progress at reducing regional PM$_{2.5}$ levels to meet current PM$_{2.5}$ standards, however, 1) exposures vary substantially across communities; 2) wildfire smoke increases exposures substantially above standards; and 3) more stringent standards would be more health protective.”

PMRS6) With additional PM emission reductions, the Bay Area region could also make progress toward more stringent alternate standards providing an additional public health benefit to communities.

- The word “alternate” was removed from the Particulate Matter Reduction Statement.

- The Particulate Matter Reduction Statement was marked for revision.

PMRS7) Allowance should be made for year-to-year variability in meteorological and other weather-related factors that cause PM concentrations to vary, even if emissions and other conditions were to remain unchanged.

- Advisory Council members expressed confusion regarding the purpose of this Particulate Matter Reduction Statement and the term “allowance.”

- The Particulate Matter Reduction Statement was marked for revision.

PMRS8) An Air District guideline "target" below the current PM$_{2.5}$ NAAQS may be warranted; if the Air District were to set that target at an annual average of 10 µg/m3 to as low as 8 µg/m3, national data supports that it would save additional lives.
Advisory Council members expressed concern that setting targets for the region fails to address problems of equity and heterogeneity: some people in the Bay Area are more vulnerable to harm from PM$_{2.5}$ and some areas experience higher PM$_{2.5}$ concentrations.

Advisory Council members also requested that the source for the specific concentration targets (the U.S. EPA ISA) be referenced.

The Particulate Matter Reduction Statement was marked for revision.

Later in the meeting, during the discussion of Recommended Actions, Advisory Council members returned to the topic of impact metrics such as specifying how many lives would be saved if a more stringent target was met. (The research the U.S. EPA used to quantify morbidity did not include the Bay Area.)

PMRS10 *Wildfire PM is a serious contributor to PM health effects; early health studies are of concern; more research on acute and sub-chronic effects is ongoing and urgently needed.*

Advisory Council members emphasized the need to treat wildfire PM exposure as an urgent problem that the Air District must address.

Advisory Council members expressed the importance of both “acute” risks from wildfire smoke exposure as well as “chronic” risks of ongoing exposure to PM$_{2.5}$ from other sources.

The following addition was made to the Particulate Matter Reduction Statement: “*Wildfire PM exposure is projected to increase in duration and intensity, due to climate change.*”

FRAMEWORK DISCUSSION

There was general agreement among Advisory Council members on most of the Framework items. The following suggestions were made:

Specify scientific evidence for designation of vulnerable groups. A preliminary revision was made to F3 to clarify which subpopulations the U.S. EPA ISA identifies as disproportionately vulnerable to PM$_{2.5}$ health risks.

Reorder to move to the top the following items related to health equity and exposure heterogeneity:
The Air District should focus PM reduction in areas with increased exposure, health vulnerability, and those areas with increased impacts and sensitive populations (e.g., U.S. EPA identifies children, nonwhite, low socioeconomic status, elderly).

PM reduction strategies should prioritize those measures that are most effective in reducing exposure and improving public health and health equity in the most impacted areas.

The most effective exposure reduction measures may differ across communities, due to varying source mix and size, ambient PM concentration levels, physical circumstances (e.g., meteorology, terrain), and other relevant factors.

RECOMMENDED ACTIONS DISCUSSION

The discussion of Recommended Actions included general considerations of prioritization and scope in addition to the suggestion of a new Recommended Action to set a PM$_{2.5}$ target.

Air District authority vs advocacy. A general discussion topic concerning Recommended Actions was whether to prioritize actions under the control of the Air District rather than advocacy activities intended to influence state and federal governing bodies. The Advisory Council discussed the possibility of organizing recommendations into separate categories for a) direct actions available to the Air District and b) advocacy actions directed toward other authorities.

Staffing is outside Advisory Council’s scope. A number of the draft Recommended Actions concerned increases in staff. The Advisory Council determined that it was beyond its scope to make recommendations regarding the Air District’s management and allocation of human resources.

Setting a specific PM$_{2.5}$ target. Several Advisory Council members called for adding a Recommended Action that the Air District set a PM$_{2.5}$ annual target consistent with the Particulate Matter Reduction Statements.

Discussion of individual Recommended Actions

RA1) Make air quality data more accessible and closer to real time.

- Air District staff clarified that while a goal is to make data available as quickly as possible (currently posted every 20 minutes), quality control, quality assurance, and sample analysis measures make “real time” accessibility unfeasible.

- The Recommended Action was revised to read: “Continue working to make air quality data more accessible and timely.”
RA2) Some species of PM may be more dangerous than others; as yet, no PM species can be exonerated; better PM speciation is needed, along with more monitoring.

- Air District staff clarified that, although the Air District will continue to expand its PM speciation measurement efforts, in order to drive policy, it is necessary to conduct health research at a national scale, which is beyond the Air District’s capacity.

- The Recommended Action was revised to read: “Some species of PM may be more dangerous than others; as yet, no PM species can be exonerated. Make current PM speciation data more available. Advocate for the U.S. EPA national monitoring guidance and requirements to increase PM speciation.”

RA3) Monitoring and other studies for UFP are important and should be continued and expanded; further studies linking UFP and health impacts are needed.

- Air District staff clarified that the Air District will continue its UFP measurements and evaluate whether changes of the measurement network are warranted. However, in order to drive policy, it is necessary to conduct health research at a national scale, which is beyond the capacity of the Air District.

- The Recommended Action was revised to read: “Advocate for increased, broader, national monitoring and studies of UFP; support further national studies on the health impacts of UFP.”

RA4) Set improved UFP filtration requirements for on-road vehicles.

- Regulation of mobile sources is outside the Air District’s authority.

- The Recommended Action was revised to read: “Advocate for appropriate federal and state agencies to set improved UFP filtration requirements for on-road vehicles.”

RA5) Increase staff for enforcement and accidental release events.
RA6) Increase staff to implement/enforce Rule 11-18.
RA7) Devote more staff to risk assessment for air toxics programs like Rule 11-18.

- Advisory Council members expressed that it is beyond the Advisory Council’s scope to make specific recommendations regarding the Air District’s management of human resources.

- The three Recommended Actions were revised into one: “Strengthen implementation and enforcement of programs and rules intended to reduce exposures to PM_{2.5} (including diesel PM) and seek sufficient resources to do so.”
RA8) Improve emission estimation methods for emerging source categories (e.g., tires and brakes, road dust).

- Air District staff clarified that the California Air Resources Board (CARB) is currently working on improving estimation methods for brake and tire wear and road dust; while the Air District has the authority to conduct its own research, partnering with CARB would avoid duplicating these efforts and would be a more efficient use of resources. Additionally, the Air District has established that reduction of vehicle miles traveled (VMT) is a priority regarding on-road mobile-source emissions.

- The Recommended Action was revised to read: “Advocate for improved emission estimation and control methods for emerging source categories (e.g., tires and brakes, road dust).”

RA9) Develop Air District PM action plans for individual highly impacted communities.

- Advisory Council members suggested adding the term “strategic” to “action plans” and linking these plans to specific PM reduction targets.

- The Recommended Action was revised to read: “Develop Air District PM strategic action plans for individual highly impacted communities with appropriate targets.”

RA10) Further develop and implement health protective measures for the community during wildfires.

- Advisory Council members suggested adding the terms “strategy” and “guidance.”

- The Recommended Action was revised to read: “Further develop and implement a strategy of health protective measures and guidance for the community during wildfire episodes.”

RA11) Encourage telework.

- Advisory Council members expressed that the goal of encouraging telework is to reduce VMT, and telework is not available to everyone; the Advisory Council’s recommendations should therefore support a range of strategies, including telework, that reduce VMT.

- The Recommended Action was revised to read: “Implement and encourage strategies to reduce vehicle miles traveled (e.g., active transportation, public transit, telework where possible, and land use planning).”
RA12) Conduct community-level health exposure assessments.

- Advisory Council members raised the possibility of specifically referencing California’s AB 617, which mandates a statewide program to address long-standing air pollution concerns in disadvantaged communities. Air District staff expressed their intention that ongoing localized health impact assessment efforts, in addition to satisfying AB 617, also go beyond these state-level requirements.

- The Recommended Action was revised to read: “Expand community-level exposure and health impact assessments.”

RA13) Expand existing rule limiting visible emissions and trackout (Rules 6-1, 6-6) to address communities that are overburdened or experience continuous construction.

- Air District staff expressed a preference for broader language not limiting recommendations to specific rules.

- The Recommended Action was revised to read: “Evaluate improvements to existing rules limiting visible emissions and trackout of road dust to address communities that are overburdened.”

RA14) Modify permitting regulations to address hyper-localized health risks.

- The Recommended Action was revised to insert the word “hot-spot” before “health risks.”

RA15) Adopt rule requiring that woodburning devices be disabled or replaced when properties are sold.

- Advisory Council members discussed the possibility of expanding the recommendation to include home renovations as well as sales.

- Concerns were raised regarding burdens on homeowners, the possibility of such a rule leading to more people making changes to their homes without seeking permits, and the potential for gas fireplaces to be used as replacements, which would introduce other air quality problems.

- The Recommended Action was marked for revision.

RA16) Adopt rule to improve the efficiency of water heaters and space heaters.

- Air District staff clarified that the relevant concern is emission of nitrogen oxides (NOx), which leads to the formation of ammonium nitrate (a form of particulate matter).
- Advisory Council members discussed clarifying the goal of electrification.

- The Recommended Action was marked for revision.

NEXT STEPS

Due to time constraints, the Advisory Council determined that it would discuss the remaining Recommended Actions at the next Advisory Council meeting, scheduled for November 9. Advisory Council members were asked to submit any further comments on the Particulate Matter Reduction Statements, Framework items, and Recommended Actions to Air District staff by October 16. The plan was established for Air District staff to compile these comments, without attribution, and include them in the publicly available materials for the November 9 meeting.
APPENDIX B: ADVISORY COUNCIL MEETING OF NOV. 9, 2020
SUMMARY OF DELIBERATIONS

Continuing discussions from its July 31 and October 9 meetings, the Advisory Council centered its November 9, 2020 meeting on three sets of messages regarding particulate matter. The first set, “Particulate Matter Reduction Statements,” reflects the Advisory Council’s findings upon review of the presentations and public comments received during the PM Symposium Series. The second set, “Framework,” reflects the Advisory Council’s suggested guiding principles for PM projects and rule development. The third set, “Recommended Actions,” contains specific recommended priorities for Air District action. When finalized, the Particulate Matter Reduction Statements, Framework, and Recommended Actions will be submitted to the Board of Directors.

After discussing each item in each set of messages, the Advisory Council identified a need to reorganize the Recommended Actions into topical categories reflecting key messages of the Particulate Matter Reduction Statements and Framework. A revised draft of the Recommended Actions will be prepared by a subcommittee of the Advisory Council and discussed at an additional Advisory Council meeting to take place before the Advisory Council’s December 16 meeting with the Board of Directors.

This summary recaps the Advisory Council’s discussion of the Particulate Matter Reduction Statements, Framework, and Recommended Actions, indicating which items were approved without substantive revision and providing brief descriptions of discussion points for those that were substantively revised. An introductory section briefly summarizes topics of discussion that arose during deliberations and have relevance to all three sets of messages, and a final section reflects input from public comment.

For a full and sequential record of the November 9 meeting, please see the video recording available at http://baha.granicus.com/MediaPlayer.php?clip_id=7783.

OVERARCHING TOPICS FOR ADVISORY COUNCIL RECOMMENDATIONS

A number of broad topics arose during deliberations: the inclusion of 10 µg/m³ as a potentially viable target for annual average PM$_{2.5}$ concentration levels, the public health cost effectiveness of focusing on “controllable” sources of PM emissions versus mitigation measures for wildfire PM exposures, the relevance of climate impacts in determining PM reduction measures, and the practical value of obtaining authority for the Air District to set air quality “standards” rather than “target values.”
Including 10 µg/m3 as a viable target

Some Advisory Council members, and public commenters, objected to including 10 µg/m3 as a potentially viable target for annual average PM$_{2.5}$ concentration levels, arguing that the scientific findings presented during the PM Symposium Series justified a target of 8 µg/m3. Other Advisory Council members were in favor of keeping an upper limit of 10 µg/m3 in the recommendations, regarding the language of “10 µg/m3 to as low as 8 µg/m3” as most consistent with the findings of the U.S. EPA PM Policy Assessment and the Independent Particulate Matter Review Panel.

Relative influence of “controllable” sources

Concern was voiced about the public health cost-effectiveness of focusing on local anthropogenic sources whose PM contributions are “swamped” by that of wildfires. Questions were raised as to whether the cost of reducing “controllable” Bay Area emissions could be justified if these air quality improvements would be dwarfed by “uncontrollable” factors, and whether instead allocating those resources to indoor air purification and other wildfire responses would have a greater positive impact on public health.

Climate co-benefits

An argument raised in favor of investing in controlling emissions from local and regional sources was that doing so would also reduce greenhouse gases, which contribute to the dire public health problem of climate change. A counterargument was made that the Advisory Council is currently tasked with identifying means of reducing health impacts from particulate matter, not greenhouse gases, and that the complicated interplay between air pollution levels and climate change can mean that measures to improve one set of conditions effectively worsen the other.

Acquiring Air District authority to establish a standard

The prospect of seeking legislative authority for the Air District to set official air quality standards (which are currently set by state and federal authorities) was discussed at several points during the meeting. Some Advisory Council members, as well as representatives from community organizations speaking during public comment, expressed support for this strategy. Air District Legal Counsel stated that such a change would not add to the Air District’s capacity to monitor and improve air quality and that specifying a “target” for PM concentration levels would fully enable the Air District to exercise its authority to meet that target.
PARTICULATE MATTER REDUCTION STATEMENTS DISCUSSION

Particulate Matter Reduction Statements Approved:

Advisory Council members agreed on the following Particulate Matter Reduction Statements. Minor revisions for clarity were made to some items, as indicated.

PMRS1 Particulate Matter (PM) is an important health risk driver in Bay Area air, both PM$_{2.5}$ as a criteria pollutant and diesel PM as a toxic air contaminant.

PMRS2 The Bay Area has made substantial progress at reducing regional PM$_{2.5}$ levels to meet current PM$_{2.5}$ standards; however, 1) more stringent standards would be more health protective; 2) exposures vary substantially across communities; and 3) wildfire smoke increases PM$_{2.5}$ levels substantially above standards.

- The phrase “increases PM$_{2.5}$ levels” replaced earlier wording of “increases exposure.”

PMRS3 The current particulate matter national ambient air quality standards (NAAQS) are not health protective.

The Advisory Council concurs with the following statement: “Based on scientific evidence, as detailed in Attachment B [of our letter], the [Independent Particulate Matter Review Panel] finds that the current suite of primary fine particle (PM$_{2.5}$) annual and 24-hour standards are not protective of public health. Both of these standards should be revised to new levels, while retaining their current indicators, averaging times, and forms. The annual standard should be revised to a range of 10 μg/m3 to 8 μg/m3. The 24-hour standard should be revised to a range of 30 μg/m3 to 25 μg/m3. These scientific findings are based on consistent epidemiological evidence from multiple multi-city studies, augmented with evidence from single-city studies, at policy-relevant ambient concentrations in areas with design values at and below the levels of the current standards, and are supported by research from experimental models in animals and humans and by accountability studies.” (Independent Particulate Review Panel letter on Draft EPA PM Policy Assessment, October 2019).

PMRS4 More stringent standards to reduce exposures are needed and, if met, would save thousands of lives in the U.S. and many Bay Area lives each year.

- The phrase “to reduce exposures” was added to the statement.

PMRS5 There is no known threshold for harmful PM$_{2.5}$ health effects, thus it is follows that additional reductions of PM$_{2.5}$ exposures beyond that afforded by the current standards will achieve additional public health benefits.
In the first clause, the phrase “no known threshold for harmful PM\textsubscript{2.5} effects” replaced the earlier phrase “no known safe level of exposure to PM.” In the second clause, the phrase “reductions of PM\textsubscript{2.5} exposures” replaced “reductions to PM,” and the phrase “that afforded by” was added to the statement.

PMRS8) Although a large fraction of PM\textsubscript{2.5} is regionally contributed, substantially elevated PM\textsubscript{2.5} exposures can occur in locations adjacent to local PM sources.

PMRS9) Wildfire PM is a serious contributor to PM health effects; early health studies are of concern; more research on acute and sub-chronic effects is ongoing and urgently needed. Wildfire PM exposure is projected to increase in duration and intensity, due to climate change.

PMRS10) Some species of PM may be more dangerous than others; as yet, no PM species can be exonerated.

PMRS11) Ultrafine particles (UFP), which are present in the air in large numbers, pose a health risk. They generally enter the body through the upper and lower respiratory tract and can translocate to essentially all organs. Compared to fine particles (PM\textsubscript{2.5}), they cause more pulmonary inflammation per unit mass, and are retained longer in the lung.

- The phrase “upper and lower respiratory tract” replaced “lungs”; the phrase “and can translocate” replaced “but translocate.” The phrase “per unit mass” was added.

Particulate Matter Reduction Statements for Revision:

Advisory Council members discussed substantive changes to two Particulate Matter Reduction Statements. Discussion points are summarized beneath the initial version of each substantively revised Particulate Matter Reduction Statement, followed by the revised version.

Initial PMRS6) An Air District guideline “target” below the current PM\textsubscript{2.5} NAAQS may be warranted; if the Air District were to set that target at an annual average of 10 µg/m3 to as low as 8 µg/m3, U.S. EPA’s PM\textsubscript{2.5} NAAQS risk assessment provides scientific evidence that annual average targets in that range would save additional lives.

Discussion: Concern was raised that the phrase “may be warranted” was not strong enough to reflect the weight of the evidence.

Revised PMRS6) An Air District guideline “target” below the current PM\textsubscript{2.5} NAAQS is warranted to protect public health; if the Air District were to set that target at an annual average of 10 µg/m3 to as low as 8 µg/m3, U.S. EPA’s PM\textsubscript{2.5} NAAQS risk assessment provides scientific evidence that annual average targets in that range would save additional lives.
Initial PMRS7: Year-to-year variability in meteorological and other weather-related factors cause PM concentrations to vary, even if emissions and other conditions were to remain unchanged.

Discussion: Confusion was expressed regarding the intent of this statement. Once it became clear that the objective was to ensure the robustness of air quality in the face of changing conditions, the statement was revised to reflect support for strong action.

Revised PMRS7: Projected increases in wildfire PM exposure, as well as year-to-year variability in PM exposure due to weather-related factors, justifies greater efforts to reduce controllable sources of PM to reduce overall health risk.

FRAMEWORK DISCUSSION

Advisory Council members agreed on all Framework items, with clarifying revisions to two items as indicated:

F1) The Air District should move as quickly as possible to take maximal feasible action within its authority.

F2) PM reduction strategies should prioritize those measures that are most effective in reducing exposure and improving public health and health equity in the most-impacted areas.

F3) The most effective exposure reduction measures may differ across communities, due to varying source mix and size, ambient PM concentration levels, physical circumstances (e.g., meteorology, terrain), and other relevant factors.

F4) The Air District should focus PM reduction in areas with elevated exposures, health vulnerability, and those areas with increased impacts and sensitive populations (e.g., U.S. EPA identifies children, non-white, low socioeconomic status, elderly).

- The phrase “elevated exposures” replaced “increased exposures.”

F5) PM reduction strategies should consider regional (Bay Area-wide), local (community-level), and localized hot-spot (block-level) sources.

F6) PM reduction strategies should consider emission reduction measures for both primary PM and secondary PM formed in the air (e.g., emissions of precursor ROG, NOx, NH3, and SO2).
F7) PM reduction strategies will need to address multiple source categories with a wide range of emission reduction measures; there are no single, universal solutions.

- The text that follows after “multiple source categories” is a new addition.

RECOMMENDED ACTIONS DISCUSSION

Reorganization and Prioritization:

Following the item-by-item discussion described below, Advisory Council members determined that the Recommended Actions should be reorganized into topical groups derived from key concepts expressed in the Particulate Matter Reduction Statements and Framework. Several topical headings were proposed including establishing stricter PM targets, addressing disparate PM exposures and vulnerable communities, addressing wildfire risks and mitigation, and reducing vehicle miles traveled. Advisory Council members agreed that the Recommended Actions should be categorized under such headings, and that any Recommended Actions falling outside of the selected categories might then be considered as lower priorities.

Recommended Actions Approved:

Advisory Council members agreed on the following Recommended Actions. Minor revisions for clarity were made to some items, as indicated:

RA1) Establish a PM$_{2.5}$ target consistent with findings based on scientific evidence (i.e., from an annual average of 10 µg/m3 to as low as 8 µg/m3).

- The phrase “based on scientific evidence” was added and “i.e.” replaced “e.g.”

RA2) Continue working to make air quality data for PM and PM precursors more accessible and timely. Partner with effective platforms (e.g., PurpleAir).

- The phrase “for PM and PM precursors” was added; “platforms” replaced “formats”; “e.g.” was added before “PurpleAir.”

RA3) Make current PM speciation data more available. Advocate for U.S. EPA national monitoring guidance and requirements to increase PM speciation.

- The word “the” was deleted from where it appeared before “U.S. EPA.”

RA4) Advocate for increased, broader, national monitoring, exposure, and health impact studies of UFP.
RA5) Advocate for appropriate federal and state agencies to set improved UFP filtration requirements for on-road vehicles.

RA7) Advocate for improved emission estimation and control methods for emerging source categories (e.g., tires and brakes, road dust).

RA8) Develop Air District PM action plans for individual highly impacted communities with appropriate targets.

RA9) Further develop and implement strategies including health protective measures and guidance to protect health during wildfire episodes. Such measures and guidance could include: 1) public education; 2) improved real-time monitoring and forecasting models; 3) more comprehensive research to assess short- and long-term health impacts; 4) assessment of the feasibility of strategies to reduce PM exposure in proposed forest management strategies; 5) establishment of clean air shelters (e.g., in schools, community centers, libraries, senior centers, senior living facilities) with power, HVAC/HEPA filters, personal protective equipment (PPE), etc., especially in disadvantaged communities; 6) mobile clean air shelters; and 7) strategies to provide HEPA filters for in-home high risk individuals.

RA10) Develop, fund, implement, and encourage strategies to reduce vehicle miles traveled (e.g., active transportation, public transit, land use planning, and telework).

RA12) Evaluate improvements to existing rules limiting visible emissions and trackout of road dust to address communities that are overburdened.

RA22) Assist local programs to control road dust (e.g., analyze road dust emission rates for local streets).

RA26) Seek changes at state level to Air District authority for magnet sources.

RA29) Support CARB efforts to electrify trucks and other vehicles.

RA30) Seek stricter off-road mobile source rules from CARB.

Recommended Actions for Revision:

Advisory Council members discussed substantive changes to many of the Recommended Actions. Discussion points are summarized beneath the initial version of each substantively revised Recommended Action, followed by the revised version.
Initial RA6) **Strengthen implementation and enforcement of programs and rule intended to reduce exposures to PM$_{2.5}$ (including diesel PM) and seek sufficient resources to do so.**

Discussion:

- Advisory Council members removed qualifying language, striking the word “intended” and replacing “seek sufficient resources” with “ensure necessary resources.”

- Specific reference to Rule 11-18 was added.

Revised RA6) **Strengthen implementation and enforcement of programs and rules (including Rule 11-18) to reduce exposures to PM$_{2.5}$ (including diesel PM) and ensure necessary resources to do so.**

Initial RA13) **Modify permitting regulations to address hyper-localized hot-spot health risks.**

Discussion: Advisory Council members requested clarification on whether the Recommended Action was intended to address cumulative health risks, expressing support for modifying permitting regulations to take into account pre-existing health risks for communities near the permitting site in determining the potential health impact of permitted sources.

Revised RA13) **Modify permitting regulations to address hyper-localized hot-spot and cumulative PM health risks.**

Initial RA14) **Adopt rules incentivizing/requiring building electrification OR ‘Adopt a rule requiring electric appliances rather than gas in new construction.’**

Initial RA15) **Adopt rule to improve the efficiency of water heaters and space heaters and require electrification of new heaters and other appliances.**

Discussion:

- Concern was raised regarding adding stress to the electrical grid, particularly with respect to solar and wind energy production that is lowest in winter when demand is highest due to heating needs. A counterargument was made that while resiliency problems do need to be solved, building stock turns over slowly and requiring all electric in new construction is not anticipated to create an undue burden on energy infrastructure.

- Advisory Council members sought clarification on the scope of the Air District’s authority with respect to regulating appliances and systems within homes and other buildings. Air District staff clarified that while the Air District does not regulate indoor air...
quality or appliance/system efficiency, it does have the authority to regulate systems that discharge emissions (through exhaust points) into ambient air.

- Air District staff pointed out that the cost of retrofitting all existing buildings in the Bay Area to switch from gas to electric heating would be in the billions and possibly tens of billions of dollars (and therefore orders of magnitude beyond the incentivizing capacity of the Air District).

- Examples of existing and emerging electrification incentive and information programs were shared, including those offered through the Air District as well as state and federal agencies and energy providers.

Revised RA14 Adopt a rule requiring, and create a program incentivizing, all electric utilities in new construction. Continue to look for opportunities that could include training, incentives, and programs to move our existing built environment to all electric.

Revised RA15 Adopt rules to improve the emissions performance of water heaters and space heaters and require electrification of new heaters and other appliances.

Initial RA16 Expand the existing rule to reduce emissions from commercial cooking equipment such as charbroilers (Rule 6-2).

Discussion: Advisory Council members argued for a broader recommendation that would include wood-fired ovens and not be limited to one specific rule.

Revised RA16 Expand efforts to reduce emissions from commercial cooking equipment such as charbroilers and wood-fired ovens.

Initial RA17 Update permitting regulations for gas stations and dry cleaners (Regulation 2).

Discussion: Advisory Council members questioned the intent and relevance of this recommendation with respect to PM. Air District staff expressed that both types of businesses are already tightly regulated and most dry cleaners have already switched to using non-toxic compounds.

RA17 was deleted.

Initial RA18 Adopt amendments to Rule 9-1 to limit sulfur dioxide emissions from refineries.

Discussion: The discussion centered on the spatial and temporal scale of sulfate formation and whether sulfur dioxide emissions have passed out of the Bay Area by the time they influence formation of PM. Because effects on Bay Area air quality are not yet clear, the Recommended Action was reframed as a testing recommendation.
Revised RA18) Evaluate the efficacy of reducing sulfur in refinery fuel gas as a PM reduction strategy.

Initial RA19) Adopt a new rule to limit site-wide health risk from PM.

Discussion: After Advisory Council members expressed confusion about this Recommended Action, Air District staff clarified that while there is presently a rule for toxics that limits the overall impact of a facility, there is no such rule governing PM. Such a rule could require an emissions reduction plan if a facility were to exceed a certain threshold of health risk (using quantifying metrics such as cancer cases per million).

Revised RA19) Adopt a new rule to limit site-wide impacts from PM emissions.

Initial RA20) Take into account cumulative impact in permitting.

Discussion:

- Advisory Council members questioned whether this topic was already covered (see RA13).

- Air District staff clarified the Recommended Action’s intent to protect overburdened communities by incorporating considerations of existing hyper-localized PM concentration levels as well as other health vulnerabilities in the community into permitting decisions.

Revised RA20) Develop strategies to consider cumulative community PM impacts in permitting processes.

Initial RA21) Close loopholes that allow piecemealing of larger projects into small components.

Discussion: Discussion centered on whether such loopholes exist in current regulation and whether the “cumulative impacts” guidance captured in RA20 already addressed the issue of total impacts in a specific area, and whether this Recommended Action had a specific function with respect to PM emissions. Air District staff indicated there is legislation to prevent piecemealing as a strategy of regulatory avoidance.

RA21 was deleted.

RA23) Seek federal funding for electrification infrastructure.

Discussion: A suggestion was made to emphasize the need to support electrification in disadvantaged communities.
Revised RA23) Seek federal funding for electrification infrastructure, especially for disadvantaged communities.

Initial RA24) Work to leverage Senate Bill 1 funding to replace switcher engines in East Bay to reduce other off-road sources.

Discussion: Air District staff clarified that railroads are regulated by the federal government, which has not appeared to be receptive to the Air District’s advocacy efforts in this regard.

RA24 was deleted.

Initial RA25) Seek additional funding to improve transit, bicycles, and pedestrian facilities, and to reduce VMT to reduce road dust, brake & tire wear, and vehicle exhaust.

Discussion: Advisory Council members emphasized the need to center the Recommended Action on reducing vehicle miles traveled (VMT), clarify the types of initiatives suggested (including specifying public transit), and tie the Recommended Action explicitly to PM reductions.

Revised RA25) Seek additional funding to reduce vehicle miles traveled (VMT) (e.g., improved public transit, bicycle and pedestrian infrastructure, facilities, and programs) in order to reduce PM from road dust, brake & tire wear, and vehicle exhaust.

Initial RA27) Authorize the Air District to regulate fine PM as a toxic air contaminant.

Discussion: Air District staff clarified that:

- the California Air Resources Board (CARB) and Office of Environmental Health Hazard Assessment (OEHHA) are the agencies responsible for designating toxic air contaminants,
- the goal of seeking designation of PM$_{2.5}$ as a toxic air contaminant is to allow the Air District greater regulatory latitude, and
- the Air District is already seeking this designation.

Revised RA27) Continue efforts to designate fine PM as a toxic air contaminant.

Initial RA28) Seek authority for the Air District to establish air quality standards for PM.

Discussion: In light of the results of the 2020 Presidential election, Advisory Council members revised this Recommended Action to reflect their anticipation of greater interest in improving air quality standards at the federal level.
Revised RA28) Advocate for U.S. EPA to establish more stringent air quality standards for PM.

Initial RA31) Seek authorization from CARB for stronger at-berth regulations to control emissions from ships that dock at ports and refineries.

Discussion: Air District staff expressed that regulations already require ships to plug in to electricity at port (to curb diesel PM and NOx emissions), and related standards are stringent.

RA31 was deleted.

Initial RA32) PM action plans should include all available technically feasible methods of reducing PM emissions and exposures for stationary, area, mobile, and indirect sources of PM.

Discussion: Advisory Council members acknowledged that not “all” technically feasible methods should be included, but rather the best available methods that are also feasible in terms of cost.

Revised RA32) PM action plans should include best available methods that are technically and economically feasible for reducing PM emissions and exposures for stationary, area, mobile, and indirect sources of PM.

Initial RA33) Legislative approaches to secure additional authority to regulate PM emissions should be considered, e.g. indirect source rule (ISR) or indoor air quality.

Discussion: With input from Air District staff, Advisory Council members determined that the intent of this Recommended Action was already captured elsewhere.

RA33 was deleted.

Initial RA34) OEHHA and ARB should be petitioned to identify PM as a toxic air contaminant in light of the available health data.

Discussion: Advisory Council members determined that the intent of this Recommended Action was already captured in RA27.

RA34 was deleted.

Initial RA35) A comprehensive study of indoor air quality should be conducted to better understand the pathways of PM exposure and how people can reduce that exposure through changes in habits.

Discussion: Air District staff provided examples of other agencies that would be better positioned to conduct such a study and suggested that the Air District could have a role in communicating the resulting information.
RA35 was deleted.

Initial RA36) PM action plans should include non-traditional partners and approaches such as county health officials, health care providers, and methods of improving indoor air quality. (This could provide added protection during episodic events such as wildfires and facility incidents.)

Discussion: Air District staff clarified that the Air District is already taking the approach described in the Recommended Action.

RA36 was deleted.

INPUT FROM PUBLIC COMMENT

Jed Holtzman of 350 Bay Area, who was given additional time by the Advisory Council to complete his comments, made the following arguments for changes to the Recommended Actions:

- RA1 — Especially in light of wildfire PM, [the Advisory Council] need[s] to aim low. Set the target at 8 µg/m\(^3\) for annual average PM\(_{2.5}\) concentration levels.

- RA28 — This authority is needed. Restore the initial version of the Recommended Action calling for the Air District to obtain authority to set air quality standards.

- RA27 — Strike this Recommended Action; the toxics approach is not sought by the affected community and is viewed as “incredibly problematic.”

- RA14 — Strengthen the mandate to achieve all-electric in homes in order to combat dire indoor air quality problems.

- RA19 — Do not use the 10-year risk reduction process; it is too slow.

- RA21 — Restore this Recommended Action to prevent the piecemealing of larger projects into smaller components as a loophole to avoid regulation. Cumulative impact is a different concept addressing exposures over time from multiple permitted sources.

- RA15 — Emissions performance is irrelevant if electrification is achieved. A Recommended Action is needed address residential wood smoke.

- RA16 — Strengthen this Recommended Action; call for “maximum feasible action” in the form of robust rules, not just “expand efforts.”

- RA18 — Broaden to cover refinery PM in general.
Overall: “Robustness in recommendations needs to match robustness in the findings.”

Charles Davidson, a Hercules resident, also argued for the need to prevent piecemealing of larger projects, pointing to issues that occur when multiple agencies (such as the Air District and county land use authorities) are approving different aspects of one project. He also discussed issues with “industrial, chronic exposures” to indoor air pollution and urged Advisory Council members to remain cognizant of related health impacts in considering standards.

NEXT STEPS

The task of organizing the Recommended Actions into topical categories was assigned to a subcommittee comprising Advisory Council Chair Stan Hayes, Advisory Council member Jane Long, and Advisory Council member Michael Kleinman, who agreed to produce a draft within the week.

The Advisory Council determined that an additional meeting was needed in order to complete deliberations and prepare to submit the final report to the Air District Board of Directors. As the Advisory Council’s meeting with the Board of Directors is scheduled for December 16, the additional meeting will need to occur before that date. Air District staff planned to poll Advisory Council members on their availability.
Monday, November 9, 2020

Dear Chair Sinks, Chair Hayes, and Councilmembers,

With so much subject matter to discuss in your meetings, there’s no time for pleasantry in three minutes (or six) of public comment, but thank you for your time and thought in service of working through these issues of behalf of the Air District and the health of Bay Area residents. As the primary community stakeholder at the agency, whose staff and members have attended an unfathomable number of Air District policy meetings for the last seven years, and which takes the Air District’s success very seriously, we greatly appreciate your serious attention to these serious issues.

Below are some of the comments I made in your November 9 meeting, submitted at your request. I hope they are of help as you work to complete your deliberations.

1. The Council has importantly said in F1 that, where the Air District has authority, it needs to move quickly to take maximum feasible action. This is the critical kernel coming out of the Council’s findings, and this urgency could usefully be carried over to the Recommended Actions section. Advocating for other entities to take an action or seeking funding to pass through, while important secondary parts of the agency’s toolkit, do not approach the Air District’s core responsibility to meet its public health mission and its core authority under state law to achieve it.

Demonstrably, the Air District does not have as much trouble with these “soft power” sorts of activities as it does meeting its core regulatory responsibility with respect to stationary and area sources. The dynamic of agency staff actively arguing in your meetings against many of the components and legal frameworks that would make up “maximum feasible action” is a difficult and unfortunately familiar one, but it’s important to base recommendations on what is required, not what existing staff feels like doing. It is also important to remember that the policy-making authority of the Air District falls to its elected Board of Directors and not its staff.

2. Especially in light of the huge wildfire PM load we can expect, we need to aim low when setting our targeted concentration from controllable pollution. An 8 mcg/m3 annual average limit +~4 mcg/m3 annual average contribution from wildfire smoke would still equal 12 mcg/m3, the federal standard that is so injurious to health that it spurred the EPA ISA process and the foundational discussions of this Advisory Council process. So for the purposes of RA1 and its own associated PM5, we would suggest leaving the 10 mcg/m3 limit out and focusing on setting the target “as low as 8 mcg/m3 annual average.”

3. The recommendation in RA28 that the District seek authority from the state to set its own tighter air quality standards is critically important, notwithstanding staff’s attempts to steer the Council away from it. Setting an air quality standard requires (1) actually making a plan to meet it, (2) taking “all feasible actions” to meet the standard, and (3) reporting in detail about why you didn’t meet it and what exactly you are going to do to meet it. It is precisely this robust planning, robust implementation, and robust accountability that the agency’s counsel described in your meeting as “additional regulatory overhead” when he said having the authority “doesn’t really add much except additional regulatory overhead.”

As far as robust planning, we heard for the first time at your meeting that staff does not intend to develop a comprehensive PM reduction plan—news to the community members who have driven this
PM process at the District beginning in late 2018. As far as robust implementation, we also saw staff at the meeting advise weakening or striking many of the most actionable recommendations that were originally included under Rules, Permitting, and Authority. And as far as robust accountability, there is certainly no mechanism to assess compliance, engage in adaptive management, and ensure public accountability—nor will there be with a loosey-goosey “target” that the Air District will unofficially set.

Setting a PM standard, being in non-attainment of that standard, and being forced to take “all feasible measures” to address the problem is what is required to shake the agency out of its torpor. Our proposals on PM regulation and discussions with supportive board members beginning two years ago led to this Council proceeding, and even after constant engagement over that time, staff is still attempting to minimize the amount of additional work they will need to do. A little tough love and effective public oversight are overdue.

4. Relatedly, the approach in RA27 of regulating PM like a toxic air contaminant will be useful for getting at local sources that a regional standard would not address, but will not be sufficient on its own to meet a meaningful emissions reduction goal. Our invited presentation to the Council at your May 2020 meeting laid out in detail the agency’s stunning and singular failure to implement its hallmark rule purporting to use health risk as a legal framework and forcing mechanism (Rule 11.18). When staff says they want to regulate PM like a toxic, they are saying they intend to use this approach for all regulatory emissions reductions. This would be demonstrably disastrous. Among other glaring flaws, no reductions in deadly pollution—responsible for 2,000 to 3,000 early deaths per year in the region—would begin for several years. How the agency can legally achieve needed PM reductions has been a huge and central focus of staff’s communication with the public over this two-year discussion, but this subject was glaringly absent in your meeting today. We need a regional and a local approach, as your findings indicate. Effectuating this requires not only regulating PM further like a toxic but also further as a criteria pollutant, which the standard-setting authority discussed in the last point would allow.

5. The Air District is already discussing mechanisms to get rid of natural gas in new construction with 350 Bay Area, Building Decarbonization Coalition, Rocky Mountain Institute, and others. We encourage you to re-strengthen RA14 and recommend that the District use all its authority to push building de-carbonization based on air quality impacts. Staff indicated today that a subset of appliances fall under their existing outdoor air quality authority, however the Board of Directors has received a presentation indicating more NOx is generated indoor from natural gas appliances than is generated from all power plants in the state, with definite impacts to health, and additional standard-setting authority would fill in the gaps here that were causing staff to tiptoe today around pushing an zero-emissions building environment.

6. RA15 on energy efficiency seemed unnecessary if RA14 is implemented appropriately. Improvements to fossil fuel infrastructure at this late date should primarily employ replacement with feasible zero-emission alternatives. Expanding the discussion in RA14 from new construction to include renovations, replacements, changeouts, etc., will effectively take care of iterative efficiency improvements, reduce GHGs and morbidity, and help reduce over time the looming stock of building retrofits that will need to be done.

7. Woodsmoke has been dropped from this discussion at some point; we’re not sure when. But including further controls on wood-burning is still warranted, especially given that we’re breathing woodsmoke for weeks to months each year at this point. Please re-include policy recommendations to reduce woodsmoke and any other significant sources of PM in the region.

8. RA16 is an example of one fairly nondescript rule among many that will be required to reduce emissions instead of simply talking about it. It is uncontroversial that this rule needs to be expanded, but as with many, the language was weakened incommensurate with the urgency called for in your
findings and in F1. We need so many rules, robustly implemented and robustly enforced, to meet this challenge—and your recommendations shouldn’t shrink away from this inconvenient truth.

9. RA18 could usefully be broadened to include rules on all significant sources of refinery PM. The communities bordering these facilities are the definition of environmental justice communities, whose long-disproportionate impacts to health and life must be addressed. Even now, heated discussions are underway at the agency about amendments to Rule 6-5 on refinery fluid catalytic cracking units, the largest single source of PM at the facilities. Sulfur is just one element, no pun intended.

10. The site-wide health risk approach in RA19 is essentially a Rule 11-18 for PM. Again, see our May presentation to the Council and Air District staff’s own reports to the Board of Directors on this rule for an illustration of its unfortunately fatal flaws. This is a losing approach to addressing this critical and deadly pollution burden, and it’s one the community will not support.

11. In regards to RA20 and RA21, cumulative impact and piecemealing are definitely two separate issues of permitting. Cumulative impact refers to the impacts to overburdened communities over time. Currently, an air permit is approved if it meets its own internal conditions, regardless of whether that new emissions source is the first significant source on the block or the hundredth. Addressing cumulative impact in permitting in RA20, which Air District staff says they are pursuing, would take the actual spatial and temporal emissions environment into account for the benefit of giving overburdened and disproportionately impacted communities an overdue break.

Piecemealing, on the other hand— which Air District staff has no intention of addressing for fear of upsetting the fossil fuel industry and other deep-pocketed parties—refers to separating a large project into smaller pieces to avoid regulation of various kinds, including Air District permit rules and emissions regulations. People live and die based on whether Air District legal staff classifies a refinery proposal as two or more “minor modifications” instead of one “major modification,” to use just one example.

Thank you again for the extra speaking time at your meeting and for the consideration of these comments as your pursue and complete your deliberations. The Advisory Council proceedings on PM that are winding to an end here are well ahead of the discourse at the state level, to say nothing of the federal, and relying on those levels of government to lead on PM reduction is misplaced. The Air District can and should lead with maximal feasible and innovative action on PM to save lives, address its mission, and do so in a timely manner. Your strong recommendations will be key to the region’s success.

Best regards,

Jed Holtzman

Senior Policy Analyst
Appendix C: Symposium Summaries and Presentations
Symposium Summary: Health Effects and Exposures and Risk

October 28, 2019
Table of Contents

Executive Summary ... 2
Background .. 6

Morning Panel: PM Health Effects .. 8
Current State of Particulate Matter Science: Particulate Matter Integrated Science Assessment (PM ISA) (Working Draft Conclusions) (Jason Sacks, MPH, U.S. Environmental Protection Agency) .. 8
Particulate Matter: A Complex Mixture that Affects Health (Prof. Michael Kleinman, University of California at Irvine) .. 10
Particulate Matter Health Effects: What Do We Know and What Do We Still Need to Know? (Dr. John Balmes, University of California at San Francisco & Berkeley) ... 12
Recent Developments in the Scientific Review of the National Ambient Air Quality Standards for Particulate Matter (Prof. Christopher Frey, North Carolina State University) ... 14
PM Health Effects: Discussion Summary ... 16

Afternoon Panel: PM Exposure and Risk ... 17
Exposure and Risk Panel Particulate Matter: Spotlight on Health (Dr. Lauren Zeise, Cal/EPA, Office of Environmental Health Hazard Assessment) .. 17
Location- and source-specific strategies: Consider impact, marginal impact, and environmental justice (Prof. Julian Marshall, University of Washington) .. 19
Review of the National Ambient Air Quality Standards for Particulate Matter: Overview of the Draft Policy Assessment (Dr. Scott Jenkins, U.S. Environmental Protection Agency) .. 21
Targeting Particulate Matter: West Oakland Community Emissions Reduction Program (Dr. Phil Martien, Bay Area Air Quality Management District) ... 24
PM Exposure and Risks: Discussion Summary .. 26

Public Comment ... 27

Advisory Council Deliberation ... 29

Next Steps ... 31
Executive Summary

On October 28, 2019, the Bay Area Air Quality Management District (Air District) convened a symposium, at the request of its Advisory Council, to obtain input from leading experts on the best available science concerning impacts of particulate matter (PM). The morning panel focused on PM health effects; the afternoon panel focused on PM exposure and risk. After hearing from national and state air quality experts on the panels and from community members during public comment periods, the Advisory Council drafted the following Sense of the Advisory Council statement:

The current PM standards are not adequately health protective. Further reductions in particulate matter will realize additional health benefits. We ask the Air District staff to bring forward with urgency options within the legal authority of the Air District that would further limit PM exposure, especially in high-risk communities.

This consensus was reached upon consideration of information presented by the panelists and public commenters demonstrating: adverse health effects of PM, including mortality, at concentrations below the current standard; disproportionate burden of PM exposure and risk on disadvantaged communities, including those within the Air District; and emerging evidence of the health impact of ultrafine particles (UFP) and wildfires, both of which are understudied.

PM Health Effects

Draft PM ISA. Jason Sacks, Project Lead on the Particulate Matter Integrated Science Assessment (PM ISA) and Senior Epidemiologist at the Environmental Protection Agency’s (EPA) National Center for Environmental Assessment, reviewed the structure and findings of the Draft PM ISA (https://www.epa.gov/isa/integrated-science-assessment-isa-particulate-matter). His presentation demonstrated that PM causes more health problems than previously known, at lower concentrations than previously known, and disproportionately affects vulnerable populations. In particular, the Draft PM ISA found new causal or likely-to-be causal associations between nervous system effects and long-term exposure to PM$_{2.5}$ and, independently, to the portion of PM$_{2.5}$ considered to be ultrafine particles (UFP), and between cancer and long-term exposure to PM$_{2.5}$. Children and non-white populations are at increased risk of adverse health effects of PM, and there is no evidence of a concentration threshold below which effects are not observed.

Mechanisms of PM impact. Advisory Council Vice Chair Michael Kleinman, Professor of Environmental Toxicology at UC Irvine and Co-Director of the Air Pollution Health Effects Laboratory, focused on the formation, composition, and mechanistic health effects of PM and new insights from his research concerning the toxicity of PM. He discussed how the connection between PM and health effects can be traced mechanistically, with oxidative stress from biological reactions to PM leading to inflammation, cell death, and cardiovascular events. He
also discussed how the toxicity of PM may be attributable to its coating rather than its core, although metals in the core can also produce health effects.

PM burdens and wildfire impacts. Dr. John Balmes, Professor of Medicine at UC San Francisco, Professor of Environmental Health Sciences at UC Berkeley, and Director of the Northern California Center for Occupational and Environmental Health, covered numerous topics associated with particulate matter including sources, effects, challenges with UFP, disproportionate burdens of exposure, and wildfire impacts. His presentation demonstrated that PM exposure leads to a wide range of health problems and disproportionately affects low-income communities and people of color, who suffer cumulative impacts from multiple exposures and disadvantages. In California, exposure to wildfire smoke is associated with increases in health care utilization for both respiratory and cardiovascular problems.

Independent PM Review Panel. Christopher Frey, Chair of the Independent Particulate Matter Review Panel and Glenn E. Futrell Distinguished Professor of Environmental Engineering at North Carolina State University, explained how recent changes to the review process for the federal National Ambient Air Quality Standards (NAAQS) led to the formation of the Independent Particulate Matter Review Panel. He summarized the conclusions of that panel:

- The scientific evidence for PM$_{2.5}$ health effects is robust.
- The current PM$_{2.5}$ standards are not adequately protective of public health.
- The annual standard should be lowered to 10 micrograms per cubic meter (µg/m3) to 8 µg/m3 (versus the current 12 µg/m3 standard).
- The 24-hour standard should be lowered to 30 µg/m3 to 25 µg/m3 (versus current 35 µg/m3 standard).
- These changes would save thousands of lives.
- The PM$_{10}$ standard should be adjusted downward consistent with these changes.
- There appears to be no threshold; lower levels would produce still greater benefits.
- For African Americans, the relative risk of health impacts from PM is three times higher than for the U.S. as a whole.

PM Exposures and Risks

OEHHA research. Lauren Zeise, Director of the California Office of Environmental Health Hazard Assessment (OEHHA) and Leading Developer of CalEnviroScreen, described some of OEHHA’s current research efforts to understand the relationships between specific PM sources and community health outcomes. After explaining that there is great variability in the relationship between PM concentration and health risk, she discussed how OEHHA is conducting biomonitoring studies to track whether biomarkers indicate reductions in risk following reduced air pollution concentrations. These data, along with indoor air samples, questionnaires, activity diaries, and information from GPS trackers, will be combined with source pollution mapping data to determine how exposures are occurring. Dr. Zeise also demonstrated that wildfires are causing PM standards to be exceeded for both 24-hour and annual averages. OEHHA is presently investigating relationships between the 2017 Northern California Wildfires and
numerous health outcomes in the area including respiratory, cardiovascular, and neurological problems.

Silver buckshot, not silver bullet. Julian Marshall, Kiely Endowed Professor of Civil & Environmental Engineering and Adjunct Professor of Global Health at the University of Washington, described an approach to reducing health risks from PM involving combined analysis of sources of emissions, concentrations at geographical locations, levels of exposure to different sources of emissions, and racial and income disparities affecting environmental justice. Because PM comes from many sources, he concluded that reducing PM exposure requires many strategies, describing this approach as “silver buckshot, not a silver bullet.” With respect to health risks from PM, he demonstrated that income matters, and race matters, but race matters more than income. To get the most “bang for the buck” on health impacts, he argued that interventions should focus on areas where high impact from PM meets high inequity in terms of environmental justice.

Draft PM Policy Assessment. Scott Jenkins, Project Lead on the EPA’s review of National Ambient Air Quality Standards for PM and Senior Environmental Health Scientist in EPA’s Office of Air Quality Planning and Standards, presented an overview of the approach and conclusions of the EPA’s Draft PM Policy Assessment completed in response to the Draft PM ISA. The PM Policy Assessment featured a risk assessment indicating that thousands of lives per year in the U.S. could be saved if annual average PM$_{2.5}$ concentrations are reduced. The assessment included an argument for revising the annual PM$_{2.5}$ standard downward based on the science, as well as a discussion of how retaining the current standard could be justified by placing very little weight on the epidemiological evidence and risk assessment and greater weight on the uncertainties and limitations of the data.

West Oakland Community Action Plan. Phil Martien, Director of Assessment, Inventory, & Modeling for the Air District, described the analysis conducted for the recently completed West Oakland Community Action Plan, the first in a series of community emissions reduction programs that the Air District is developing in response to California’s Assembly Bill 617 legislation (AB 617). Per the community’s requests, the study took a hyperlocal approach, modeling block-by-block exposures. Disparate exposure levels were seen within West Oakland: the cleanest blocks are experiencing on average 3 µg/m3 lower PM concentrations than the most polluted blocks. Sources of PM also differed, with some areas experiencing PM$_{2.5}$ emissions primarily from street traffic and others experiencing the greatest proportion of PM$_{2.5}$ emissions from highways or permitted sources. The West Oakland Community Action Plan demonstrates how hyperlocal modeling can be accomplished, but also highlights the need for other agencies to act, such as California Air Resources Board (CARB), the City of Oakland, and the Port of Oakland, in order to reach community emissions reduction targets.

Public comment

Public comment was taken during two designated periods during the event. The general sentiment expressed by many commenters was, “We need action, not more discussion.”
Several people spoke about their personal experiences with toxic emissions in their neighborhoods. The disproportionate impact of air pollution on disadvantaged communities was a central point of focus.

Discussion and Deliberation

The discussion between the Advisory Council and the morning panel focused on cost considerations and the appropriateness of a “no safe level” stance, and broached the topic of recommending Air District priorities, which led to further discussion regarding the monitoring of ultrafine particles. The discussion between the Advisory Council and the afternoon panel was brief and comprised of one question concerning margin of safety considerations in the Draft Policy Assessment (which Dr. Jenkins clarified was the exclusive domain of the EPA Administrator).

The Advisory Council’s deliberation followed, resulting in the Sense of the Advisory Council statement presented above. Advisory Council members also expressed interest in further exploring the potential for:

- Treating PM as a toxic;
- Monitoring ultrafine particles;
- Encouraging the State of California to adopt stricter PM standards;
- Ensuring local permits are consistent with the PM standard supported by the science;
- Disaggregating solutions with climate co-benefits, solutions unrelated to climate strategies, and emergencies;
- Identifying strategies to maximize impact or “bang for the buck”; and
- Creating an Air District Implementation Plan.

Next Steps

The Advisory Council will reconvene on December 9, 2019. During that meeting, in response to the Advisory Council’s requests, the Air District will present on its current activities to reduce PM exposures, including monitoring of ultrafine particles. It will also discuss additional “options within the legal authority of the Air District that would limit PM exposure, especially in high-risk communities,” in accordance with the Sense of the Advisory Council, in order to inform the Advisory Council’s advice to the Air District’s Board of Directors. The Advisory Council is expected to receive and comment on this symposium summary document during the December 9 meeting.

Planning continues for a second PM symposium focused on community and other stakeholder input and engagement; the event will take place in Spring 2020.
Background

On October 28, 2019, the Bay Area Air Quality Management District (Air District) convened a symposium, at the request of its Advisory Council (Council), in order to obtain input from leading experts on the best available science concerning health effects of particulate matter (PM). Serving as an official meeting of the Advisory Council, which advises and consults with the Air District’s Board of Directors and Executive Officer on technical and policy matters, the symposium sought to discuss:

PM Health Effects
- what health effects are observed from PM exposure, including exceptionally high acute PM exposures (e.g., wildfire smoke);
- what biological systems are affected and by what mechanisms;
- what population groups are most at risk; and
- what uncertainties are most relevant.

PM Exposure and Risk
- what the emission sources are that contribute to PM;
- what exposures to airborne PM occur and to whom;
- what health risks are posed by those PM exposures; and
- what subset of sources contribute most to PM risk, particularly in the most highly impacted communities.

The symposium followed several relevant policy developments at the state and federal levels. In California, Assembly Bill 617 passed in 2017 directing the California Air Resources Board and all local air districts to protect communities disproportionally impacted by air pollution. Implementation in the Bay Area Air Quality Management District to date includes the development of a community-led plan for air quality improvement in West Oakland (adopted by the Air District’s Board of Directors in October 2019) and an air quality monitoring program for the Richmond area (underway).

At the federal level, staff of the Environmental Protection Agency (EPA) released a Draft Integrated Science Assessment (ISA) for Particulate Matter (PM) in October 2018, followed by a Draft PM Policy Assessment regarding the standard-setting implications of the PM ISA in September 2019. These drafts were submitted for review to the Clean Air Scientific Advisory Committee (CASAC), which provides advice to the EPA Administrator on the setting of national ambient air quality standards. Additionally, a separate, independent response to both EPA draft documents was released in October 2019 by the Independent Particulate Matter Review Panel, whose members served previously on the CASAC PM Review Panel until their dismissal in October 2018 by EPA Administrator Andrew Wheeler.

The timing of the symposium also coincided with the outbreak of the Kincade Fire in Sonoma County and associated evacuations. Additionally, widespread power outages within the Air
District’s jurisdiction were intentionally executed by Pacific Gas & Electric (PG&E) as wildfire prevention measures given the dry conditions and high winds. This crisis formed a backdrop to the proceedings.

Particulate matter experts presenting at the event included the lead authors of the EPA PM ISA (Jason Sacks), the EPA PM Policy Assessment (Dr. Scott Jenkins), the Independent Review Panel document (Professor Christopher Frey), and the West Oakland Community Action Plan (Dr. Phil Martien). They were joined by Independent Particulate Matter Review Panel Members Professor Michael Kleinman and Dr. John Balmes, Director of the California Office of Environment Health Hazard Assessment Dr. Lauren Zeise, and University of Washington Professor Julian Marshall. These speakers were organized into a morning panel focused on PM health effects and an afternoon panel focused on PM exposure and risks.

The event, which was open to the public, included two public comment periods. The midday lunch break featured a keynote address by former EPA Administrator Gina McCarthy, who also answered questions from community attendees.

The morning and afternoon panels were each followed by joint discussions between the Advisory Council members and panelists. The event concluded with a brief Advisory Council deliberation.

The event was shared live via webcast, the video archive of which can be viewed at http://baha.granicus.com/MediaPlayer.php?clip_id=6194.
Morning Panel: PM Health Effects

Jason Sacks
Project Lead, Particulate Matter Integrated Science Assessment (PM ISA)
Senior Epidemiologist, National Center for Environmental Assessment, EPA

Main takeaway
PM causes more health problems than previously known, at lower concentrations than previously known, and disproportionately affects vulnerable populations.

Presentation Summary
Mr. Sacks reviewed the structure and findings of the initial draft of the EPA’s recent Particulate Matter Integrated Science Assessment (PM ISA), which aims to provide an updated review of the science in order to assist federal rulemaking. The Draft PM ISA addresses the question:

“Is there an independent effect of PM on health and welfare at relevant ambient concentrations?”

The PM ISA drafters reviewed the body of new research since 2009 including epidemiological studies, animal toxicological studies, and controlled human exposure studies at PM levels analogous to ambient concentrations in U.S. communities.

Health effects
The Draft PM ISA found new causal or likely-to-be causal associations between:

- Nervous system effects and long-term exposure to PM$_{2.5}$ and, independently, to the portion of PM$_{2.5}$ considered to be ultrafine particles (UFP)
- Cancer and long-term exposure to PM$_{2.5}$

The science also confirmed and strengthened the evidence of previously known causal or likely-to-be-causal associations between respiratory, cardiovascular, and mortality effects of both short- and long-term exposure to PM$_{2.5}$. Additional PM exposure associations with metabolic and reproductive effects suggested causality but did not meet the strict criteria for “causal” or “likely-to-be-causal,” often due to a limited quantity of data.
At-risk populations. Children and non-white populations are at increased risk of adverse health effects of PM. Further evidence regarded as “suggestive” points to increased health risk for people with low socioeconomic status, overweight and obese populations, people with pre-existing cardiovascular and respiratory disease, and people with certain genetic variants.

Chemical components of PM. The evidence does not indicate that any one specific chemical component of PM is a disproportionate concern over others.

Advisory Council Q&A with Panelist

No threshold. Council Member Rudolph inquired whether any evidence supported a threshold concentration value below which health effects from PM$_{2.5}$ could not be observed. The panelist responded that there does not appear to be any such threshold.

Changes to health effect determinations. Chair Hayes requested further clarification on the new findings from the ISA since 2009, which are outlined above and in Slide 15 of the presentations.

Relevance of animal studies concerning UFP. Council Member Solomon asked if there was any reason to question whether results seen in animal studies concerning UFP would be consistent with human health effects. The panelist replied that the inconsistency was in the size of the particles considered to be UFP. There has not been a consistent metric or definition for UFP, which has limited the ability to draw conclusions.

Publication bias. Council Member Borenstein inquired whether studies with null results were being published; if not, there may be a concern that the presentation represented only the fraction of research that observed positive associations with health effects. The panelist clarified that this concern drove the decision to focus on multi-city studies in order to ensure that null results would be incorporated.

Wildfires and sub-daily exposures. Given the Kincade Fire that was burning at the time of the event, Chair Hayes inquired about the influence of sub-daily exposures to high levels of PM. The panelist responded that there are some controlled human exposure studies that would be equivalent to a person walking along a busy road, during which some changes in cardiac and lung function have been observed, but sub-daily studies are scarce and he was not aware of research that would be directly relevant to wildfire exposures.
Particulate Matter: A Complex Mixture that Affects Health

Michael Kleinman
Professor of Environmental Toxicology, University of California, Irvine
Co-Director, Air Pollution Health Effects Laboratory

Professor Kleinman is also Vice Chair of the Air District’s Advisory Council.

<table>
<thead>
<tr>
<th>Main takeaways</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM can be mechanistically and causally linked to cardiovascular health effects. The toxicity of PM may be more attributable to its coating than its core, although metals in the core can also produce health effects.</td>
</tr>
</tbody>
</table>

Presentation Summary

Professor Kleinman’s presentation focused on the formation, composition, and mechanistic health effects of PM and new insights from his research concerning the toxicity of PM.

Basic PM process. A key source of PM is the combustion of fossil fuels. After these fuels break down during combustion, they cool, become radicalized, and agglomerate. Additional chemicals adhere to these particles and can form highly toxic compounds that may include contaminants such as chlorine, bromine, and metals. When these particles are inhaled and enter the respiratory tract, they can react with proteins and fluids in the lungs and release highly reactive free radicals, causing chemical imbalances throughout the body. If these free radicals overwhelm the body’s antioxidant self-protection capabilities, the process can result in inflammation, cell death, and organ failure. Because oxidative stress can oxidize lipids in the blood, it can also lead to the development of atherosclerotic plaque and coagulation factors that can contribute to cardiovascular events such as stroke and heart attack.

“The icing, not the cake.” Professor Kleinman’s laboratory experimented with removing the organic coating from ambient air particles to which animals were exposed to determine whether, in the words of Chair Hayes, the problem was “the icing or the cake.” They found that stripping the particles of their organic coating appeared to mitigate their toxicity.

Additional key points:

- **Data limitations concerning chemical components.** PM$_{2.5}$ total mass is regarded as a more relevant concern than specific components within it, but this may be due to the much smaller database available for chemical components than for PM$_{2.5}$ as a category.
- **Measurement challenges.** Ultrafine particles are difficult to measure and monitor because they have almost no mass.
- **Risks for California.** Sunlight, which is plentiful in California, is involved in the formation of pollutants. In addition to PM, health is also affected by air pollutants such as ozone, which is a strong oxidant. The combined effects of PM and ozone, which can be
experienced in the same day, may cause high levels of oxidative stress. Additionally, Professor Kleinman’s research indicates that particles formed on warmer days result in worse health effects than those formed on cooler days, which portends additional problems in an era of climate change.

Advisory Council Q&A with Panelist

Incomplete combustion and control technology. Council Member Long inquired whether UFP resulted from incomplete combustion and whether newer technologies were effective in controlling their formation. The panelist responded that to his knowledge all combustion resulted in the formation of ultrafine particles (along with other particles). He noted that although modern diesel engine afterburner controls denuded particles in a manner similar to his animal toxicology experiments, they also produced high amounts of UFP.

Greenhouse gas impacts. Council Member Rudolph asked whether the process of stripping components from PM would change the release of carbon dioxide from combustion, emphasizing that “climate change is the greatest existential threat to human health right now.” She questioned whether targeting the toxicity of the results of combustion should be a goal rather than trying to reduce combustion itself in order to reduce greenhouse gas emissions. The panelist shared his view that in the short-term “we can improve public health by mitigating what we’re making right now,” while in the long-term pursuing strategies to reduce reliance on fossil fuels.
Particulate Matter Health Effects: What Do We Know and What Do We Still Need to Know?

John Balmes, M.D.
Professor of Medicine, UC San Francisco
Professor of Environmental Health Sciences, UC Berkeley
Director, Northern California Center for Occupational and Environmental Health

Main takeaways

PM exposure leads to a wide range of health problems and disproportionately affects low-income communities and people of color, who suffer cumulative impacts from multiple exposures and disadvantages. In California, exposure to wildfire smoke is associated with increases in health care utilization for both respiratory and cardiovascular problems.

Presentation Summary

Dr. Balmes covered numerous topics associated with particulate matter (PM) including sources, effects, challenges with UFP, disproportionate burdens of exposure, and wildfire impacts.

Sources of PM. PM derives not only from combustion particles, but also from crustal and biological sources; for example, road dust is a significant source of PM. Dust particles may carry biological components that can cause health effects.

Health effects. In addition to re-emphasizing the health effects covered in Mr. Sacks’ and Professor Kleinman’s presentations, Dr. Balmes further noted:

- the smaller the particle, the farther it travels into the body, with some PM particles small enough to enter the bloodstream and even cross the blood-brain barrier;
- PM2.5 is associated with increased risk of metabolic effects, including diabetes;
- fetal PM2.5 exposures can result in low birth weight, pre-term birth, and changes in gene expression; and
- brain inflammation from PM can affect both ends of the life spectrum - neurodevelopment and neurodegeneration.

Challenges with UFP. As mentioned by previous presenters, because UFP is not regulated independently from other PM2.5, there is limited monitoring, which presents challenges for epidemiological research, although toxicological studies suggest UFP is a high-risk hazard. Further, innovations designed to reduce climate change impacts, such as gasoline direct injection, can result in higher UFP emissions.

Disproportionate burdens and cumulative impacts. People of color and people with low socioeconomic status are more likely to be exposed to PM, and the risk from these exposures is compounded by the lack of health-promoting resources in these communities such as health
care, fresh produce, and green spaces. Dr. Balmes shared the example of Richmond, CA, which is within the Air District’s jurisdiction. People living in the Liberty/Atchison Villages in Richmond are next to the railyard, near the freeway, next to the General Chemical Corporation (which recently had a serious accident), and downwind from the Chevron Refinery. Stating, “This cumulative risk concept is something that we need to be including in our thinking about air quality management,” Dr. Balmes also noted that the Air District is a leader in this regard.

Wildfires. While acknowledging that “we need to know more than we currently do,” Dr. Balmes asserted that there is a well-known association between wildfires and increased health care utilization for people with respiratory conditions such as asthma and chronic obstructive pulmonary disease. Additionally, a recent California study associates wildfire smoke with cardiovascular events including heart attack, stroke, and heart failure.

Advisory Council Q&A with Panelist

Wildfire contribution to cumulative impact. Council Member Rudolph asked whether wildfires should be understood as an additional layer of cumulative impact. The panelist responded that although he hadn’t considered that framing, it was accurate, as people with lower socioeconomic status are those most likely to be without the means to relocate during wildfires. Rural agricultural workers are one example of a community that may be working outdoors despite poor air quality from wildfires. Council Member Rudolph asked whether it was accurate to say, “It’s even more important to reduce our baseline exposures because we know these acute exposures are going to be happening more frequently” due to climate change, or if the two issues of baseline and acute exposures should not be viewed as interrelated. The panelist asserted that Council Member Rudolph’s statement was accurate.

Bay Area studies? Referring to slide 76, which mapped Los Angeles county data comparing the distribution of non-white people and people living in poverty alongside the distribution of cumulative air quality hazard, Council Member Solomon asked whether the same analysis could be performed for the Bay Area. The panelist replied that although he was not aware of such an analysis having been performed, it should be possible. He indicated that he would speak with an expert he believed to be capable of executing the task.
Recent Developments in the Scientific Review of the National Ambient Air Quality Standards for Particulate Matter

Christopher Frey
Chair, Independent Particulate Matter Review Panel
Glenn E. Futrell Distinguished Professor of Environmental Engineering, North Carolina State University

Main takeaways
- The federal administration truncated the National Ambient Air Quality Standard science review process and purged the Clean Air Scientific Advisory Committee (CASAC) and the supporting CASAC PM Review Panel of critical scientific expertise. The scientists who were dismissed from the CASAC PM Review Panel continued their review work independently and found that the current PM standards are insufficient to protect public health.

Presentation Summary

Professor Frey explained how recent changes to the review process for the federal National Ambient Air Quality Standards led to the formation of the Independent Particulate Matter Review Panel. He then summarized the conclusions of that panel, which he leads.

Federal PM Review

Process: The scientific review process that for four decades involved an iterative sequence of assessments flowing from science to policy has been severely abridged. Notably, the EPA’s PM Policy Assessment (PA) must now be finalized without reviewing the EPA’s final PM Integrated Science Assessment (ISA). Additionally, members of the Clean Air Scientific Advisory Committee (CASAC) PM Review Panel were dismissed, leaving the current CASAC without, by its own admission, the necessary expertise to respond to the documents. Acknowledging the good work accomplished by EPA staff in completing the Draft PM ISA and Draft PM PA in difficult circumstances, Professor Frey emphasized the need for the Air District “to look elsewhere than the EPA’s Chartered Clean Air Scientific Advisory Committee” for guidance on PM science review.

Findings: As of October 25, 2019, the remaining six CASAC members were split 4-2 on their national ambient air quality standards (NAAQS) recommendations, with the majority supporting retaining all current standards.

Independent Particulate Matter (PM) Review Panel

Process: Led by Professor Frey, the scientists that were dismissed from the CASAC PM Review Panel continued to meet, without compensation, to complete the public service to which they had committed as CASAC PM Review Panel members. With logistical support from the Union of
Concerned Scientists, the Independent PM Review Panel met for two days in October 2019 and developed a consensus report that was sent to the EPA Administrator. The report and the video-recorded proceedings can be accessed at https://ucsusa.org/meeting-independent-particulate-matter-review-panel.

Findings: The scientific evidence for PM$_{2.5}$ health effects is robust. The current PM$_{2.5}$ standards “are not protective of public health, not even close."

- The annual standard should be lowered to 10 µg/m3 to 8 µg/m3 (versus the current 12 µg/m3 standard)
- The 24-hour standard should be lowered to 30 µg/m3 to 25 µg/m3 (versus the current 35 µg/m3 standard)
- These changes would save thousands of lives
- The PM$_{10}$ standard should be adjusted downward consistent with these changes
- There appears to be no threshold; lower levels would produce still greater benefits
- For African Americans, the relative risk of health impacts from PM is three times higher than for the U.S. population as a whole

See Slides 102 and 103 for Professor Frey’s rapid-fire answers to questions posed by the Air District.

Advisory Council Q&A with Panelist

Response to Independent PM Review Panel. Council Member Long asked whether the Independent PM Review Panel received a response from the EPA Administrator or had been mentioned in the press. The panelist replied that the Administrator had not responded, but may not yet have received the report. However, the Independent PM Review Panel also submitted their report as public comment to CASAC, and several CASAC members referred to the report during their deliberations on October 25, 2019. There has been some press coverage of the Independent PM Review Panel, for example in the Guardian and Rolling Stone.

Safety at 8 µg. Council Member Solomon expressed the concern that, if there is no threshold below which health effects cannot be observed, 8 µg/m3 cannot be regarded as safe, particularly for vulnerable individuals. The panelist replied that the recommendation is given within the policy context of national ambient air quality standards (NAAQS) and is intended to support a standard that could withstand judicial review. The number is based on the available science, which focuses on ambient air pollution levels observed in epidemiological studies. The Clean Air Act requires that the standards protect public health “allowing an adequate margin of safety,” which should protect the general population and at-risk groups, but will not necessarily protect every individual.

The post-presentation Q&A segued into the general discussion between the Advisory Council and the PM Health Effects panel. This discussion is described in the following section.
PM Health Effects: Discussion Summary

The discussion between the Advisory Council and the morning panel focused on cost considerations and the appropriateness of a “no safe level” stance and broached the topic of recommending Air District priorities, which led to further discussion regarding UFP.

Cost considerations and appropriateness of “no safe level” language. Council Member Borenstein expressed discomfort with the language of “no safe level” of PM, emphasizing the need to assess the costs, including health costs, of implementing more stringent standards and using the analogy of motor vehicles to demonstrate that all areas of safety concern must accept some risks. Professor Frey responded that the U.S. Supreme Court’s interpretation of the Clean Air Act expressly forbids cost considerations in setting National Ambient Air Quality Standards and stated that voluntary activities such as driving should not be equated to the involuntary act of breathing. He also clarified that the conclusion “there is no evidence of a threshold” is not in itself an argument for banning all particulate emissions. Dr. Balmes addressed the topic from his perspective as a physician member of the California Air Resources Board (CARB). He clarified that whereas CARB does consider economic impacts, the Independent PM Review Panel, following the procedures that had until recently governed CASAC, was restricted from mingling health and economic concerns. He also emphasized that while the most precautionary stance would consider levels below 8 µg/m³, the lack of data on lower levels of exposure makes it appropriate to recommend 8 µg/m³ for a present limit. In response to a question from Council Member Solomon, Professor Frey clarified that this 8 µg/m³ recommendation did take into consideration the increased sensitivity to pollution impacts of African American populations.

Recommending Air District priorities. Chair Hayes asked for guidance in identifying the most important areas of focus for the Air District, given the science and the particular challenges for the area, including wildfires. Dr. Balmes emphasized the need for community-level monitoring in accordance with AB 617 to identify air pollution “hot spots” and hypothesized that black carbon, a form of PM, may be a vital concern for these communities. He also expressed support for monitoring ultrafine particles (UFP) and collecting epidemiological data concerning wildfires. Council Member Long emphasized the need for a strategic plan.

Ultrafine particles. The discussion of UFP continued with Mr. Sacks underscoring that while animal toxicological studies show effects of UFP, little is known about UFP’s effects on the human population. One challenge for such research is that particles emitted as UFP may not stay in that size range. He further noted that UFP are contained within PM_{2.5} and efforts to control PM_{2.5} therefore may also bring down UFP concentrations. In response to Chair Hayes’ requests for guidance regarding UFP, Professor Frey suggested establishing monitoring stations in carefully selected locations as a long-term strategy and public education/consumer ratings regarding automobile ventilation and filtration systems as more immediate tactics. Professor Kleinman noted that there may be an opportunity for regulation to stimulate innovation with respect to decreasing UFP emissions and that the European Union already requires vehicles to share “particle numbers” regarding in-cabin air quality.
Afternoon Panel: PM Exposure and Risk

Exposure and Risk Panel
Particulate Matter: Spotlight on Health

Lauren Zeise
Director, California Office of Environmental Health Hazard Assessment
Leading Developer, CalEnviroScreen

| Main takeaways | There is a high degree of variability among individuals in the relationship between PM exposure concentration and health risk. OEHHA is pursuing research to determine the most important sources of air pollution with respect to health effects. Wildfires are causing PM standards to be exceeded for both 24-hour and annual averages. |

Presentation Summary

After explaining how health risks from PM can vary, OEHHA Director Zeise described some of OEHHA’s current research to understand the relationships between specific PM sources and community health outcomes. She also shared some initial data on PM levels from wildfire.

Variability. There is a high degree of variability in concentration-response relationships relating PM exposure concentration to resulting health risks, due to multiple factors including:
- variable individual vulnerability (e.g., health status, genetic factors, demographic factors)
- variable doses at a given concentration (e.g., breathing rates, other physiological factors)
- variable concentrations within a location (e.g., in West Oakland, can be five times higher)

Given this variability, one way to get the most “bang for the buck” is to focus on improving air quality in communities with the highest exposures and highest vulnerabilities.

Current research at OEHHA. Several relevant studies are underway in alignment with AB 617 that will provide valuable input to PM risk management efforts. A key feature of these studies is biomonitoring to determine whether biomarkers indicate reductions in health risk following reduced air pollution concentrations. For example, the East Bay Diesel Exposure Project is a pilot study measuring exposure to diesel exhaust among community residents. This project collects urine samples in addition to indoor air samples, questionnaires, activity diaries, and information from GPS trackers. These data collected from residents will be combined with source pollution mapping data to determine how exposures are occurring.

Wildfires. PM concentrations during the 2017 Napa Wildfire reached 24-hour averages close to 200 µg/m³ and one-hour averages above 300 µg/m³ in some areas. In West Oakland, wildfire
impacts on PM have driven annual averages above the national standard, to 12.9 µg/m³ in 2017 and 14.4 µg/m³ in 2018. OEHHA is presently investigating relationships between the Napa Wildfire and numerous health outcomes in the area including respiratory, cardiovascular, and neurological problems.

Advisory Council Q&A with Panelist

Wildfire research outcomes. Chair Hayes asked if any preliminary health outcome results could be shared from the Napa Fire study, to which the panelist replied that she could not yet share results but expected to do so in the near future. Chair Hayes also asked if OEHHA would be including other years in the study. The panelist replied that while the Napa Fire study is a stand-alone project, the OEHHA epidemiology team has also been involved in a study of primates (macaques) in captivity that tracks outcomes to exposure to wildfires that occurred in 2008. This natural experiment of mother-infant pairs indicates that the exposure resulted in impacts on lung function and immunological markers. Chair Hayes remarked that such findings were consistent with studies in Southern California indicating issues with lung function in children.

Communicating importance of sub-daily exposures. Council Member Borenstein introduced the topic of communicating with the public about risks and precautions, citing the example of a group of teenage girls, presumably a high school track team, who were running, outdoors, while a nearby wildfire caused the air quality index (AQI) to be over 150. The panelist agreed that there is a need for more effective communication strategies and highlighted the misconception that filtration masks allow the wearers to safely exercise outdoors. She referenced a forthcoming meeting in Sacramento in April that will bring together representatives from OEHHA, EPA, Center for Disease Control (CDC), National Institute of Health (NIH), and other agencies to specifically discuss how to advise the public with respect to filtration.

Approaching PM as a non-threshold contaminant. Council Member Solomon inquired about the process for quantifying risk if PM is approached as a non-threshold contaminant. The panelist replied that while it was a difficult task that would involve creating estimates of risk that would differ across communities, it can be done and she anticipates that “working together we can come up with approaches to implement pretty soon.”
Location- and source-specific strategies: Consider impact, marginal impact, and environmental justice

Julian Marshall
Kiely Endowed Professor, Civil & Environmental Engineering, University of Washington
Adjunct Professor, Global Health, University of Washington

Main takeaways

| Reducing PM requires many strategies: “silver buckshot, not a silver bullet.” With respect to risks, income matters and race matters, but race matters more than income. To get the most “bang for the buck” on health impacts, focus on areas where high impact meets high inequity. |

Presentation Summary

Professor Marshall described an approach to reducing health risks from PM involving combined analysis of sources of emissions, concentrations at locations, levels of exposure to different sources of emissions, and racial and income disparities affecting environmental justice.

Many sources of PM. PM$_{2.5}$ comes from many sources, and not only from primary emissions but also through formation of PM$_{2.5}$ in the atmosphere from other compounds. No one single source is dominant. At the national level, several sources make up a substantial fraction of emissions, including fuel combustion, agriculture, road dust, and residential wood burning. However, there are many other meaningful contributors and therefore tackling PM$_{2.5}$ will require multiple strategies.

Intake fraction in California. When the levels of emissions from different sources are combined with the percentage of those emissions that are inhaled, relative contributions to exposure can more clearly be seen. In California, industrial emissions and on-road mobile sources are particularly high contributors to PM$_{2.5}$ exposure. Importantly, this conceptualization makes clear that emissions reductions are not all equal in impact. For example, reducing one ton of emissions from on-road mobile sources will have greater impact than reducing one ton of emissions from industrial sources because the former category has a higher intake fraction.

Race and income disparities. In California, white people and wealthier people are least exposed to pollution, and the racial difference is more predictive than the income difference. Looking at patterns of consumption, it is also evident that white people are the greatest consumers of the products of polluting activities despite being the least exposed to the resulting pollution.

Mobile measurements and low-emission zones. Dr. Marshall described mobile PM measurement technology as “really promising” for identifying local pollution hotspots and pointed to Google and Aclima as innovators. He also described the policy tool of “low-emission zones” that have been used around the world, although not yet in the U.S., to reduce risks for
vulnerable populations subjected to high PM concentrations. Even if some polluting activity relocates outside the zone, positive health outcomes can still be achieved with this strategy.

Advisory Council Q&A with Panelist

How much pollution comes from local sources? Council Member Long inquired how much of the contaminant load in West Oakland (depicted in the panelist’s slide showing the results of mobile measurement) could be attributed to local versus regional sources. The panelist replied that the study did not investigate sources and deferred to Phil Martien, the final presenting panelist, to address the question of local versus regional contamination affecting West Oakland. (Dr. Martien’s presentation revealed that the majority of PM$_{2.5}$ in West Oakland comes from regional sources; see Slide 198.)

Air District authority. In response to the panelist’s question about the Air District’s powers, Council Member Borenstein clarified that the Air District regulates stationary but not mobile sources and does not have the power to impose prices or taxes. Although the Air District does impose fines on a limited basis, these can only recover the costs of doing business, and emitters are not required to assume the costs of pollution below the standard. He went on to advocate for the Air District to “lobby Sacramento” for the authority to impose prices to help overcome a situation he described as “trying to make policy with one arm tied behind our back.”

Other beneficiaries of polluting activities. Referring to the panelist’s analysis of the drivers of pollution, which focused on consumption, Council Member Borenstein commented that additional beneficiaries of polluting activities should be considered: shareholders and workers.
Review of the National Ambient Air Quality Standards for Particulate Matter: Overview of the Draft Policy Assessment

Scott Jenkins
Project Lead, EPA review of National Ambient Air Quality Standards for PM
Senior Environmental Health Scientist, Office of Air Quality Planning and Standards, EPA

| Main takeaways | New studies available since the previous NAAQS review strengthen evidence of serious PM$_{2.5}$ health effects, including premature death, and add additional health concerns. Available scientific information calls into question the adequacy of the public health protection afforded by current standards. Risk assessment results show that reducing PM to alternative standard levels below the current standards would achieve significant additional health benefits, including thousands of lives spared per year in the U.S. Alternatively, retaining the current standards would require placing "little weight" on that information. |

Presentation Summary

Dr. Jenkins presented an overview of the approach and conclusions of the EPA’s Draft PM Policy Assessment completed in response to the agency’s Draft PM Integrated Science Assessment. He explained that the PM Policy Assessment is intended to serve as a bridge between science and rulemaking, which is expected to take place by the end of 2020. The assessment included an argument for revising the annual PM$_{2.5}$ standard downward based on the science, as well as a discussion of how retaining the current standard could be justified by placing little weight on the epidemiological evidence and risk assessment and greater weight on the uncertainties and limitations of the data.

Focus on “typical” exposures. The NAAQS review process focuses on exposures that represent the middle of the U.S. air quality distribution curve, rather than its extremes. In most U.S. locations, the annual standard is the controlling standard. Epidemiological data is not very informative with respect to the impact of 24-hour exposures on the upper end of the concentration distribution curve, and sub-daily (2-hour) controlled human exposure studies correspond to concentrations considered to be outside the typical distribution curve. The implication of this focus is that the review does not inform analysis of conditions analogous to those occurring during California wildfires.

Pseudo-design values and hybrid modeling. The review examined health effects seen in areas for which PM monitoring data could be used to calculate whether the area’s air quality would have met the current standards. This “pseudo-design value” approach approximated the design value statistics used to describe air quality relative to the NAAQS. The review also examined
hybrid modeling studies that incorporated not only air quality monitoring but also a range of other data including satellite imagery and land use and transportation information.

Risk Assessment. The risk assessment considered likely mortality outcomes if national air quality was to “just meet” the current 12 µg/m³ standard in comparison to “just meeting” 11, 10, and 9 µg/m³. Although estimates differed according to the study being used and whether a primary or secondary PM-based modeling approach was employed, the overall implication was that thousands of lives would be spared at lower concentrations.

Conclusions. The Draft PM Policy Assessment states that “The available scientific information can reasonably be viewed as calling into question the adequacy of the public health protection afforded by the current annual and 24-hour primary PM$_{2.5}$ standards.” This conclusion relies on the long-standing body of health evidence, strengthened in the latest review, and risk assessments indicating that current standards allow for thousands of PM$_{2.5}$-associated deaths per year at concentrations above 10 µg/m³. However, the assessment also states that a conclusion that current standards are sufficient could be reached if very little weight is placed on the large body of epidemiological evidence, particularly the newly available studies regarding lower concentrations, and more weight is placed on uncertainties in the literature.

Advisory Council Q&A with Panelist

Wildfires excluding Bay Area from risk assessment. Chair Hayes asked for clarification on why the Bay Area was not included in the risk assessment. The panelist responded that the assessment aimed to simulate impact from anthropogenic sources, so the focus was on areas for which that adjustment could reliably be done using available data. The implication appeared to be that it was difficult to disentangle wildfire effects from anthropogenic effects.

Lessons for areas controlled by 24-hour standard? Given that the focus of the Draft PM Policy Assessment was on areas in which the annual standard is controlling, Chair Hayes asked what the Air District, which experiences 24-hour concentrations well above the standard during wildfires, should take away from the analysis. The panelist acknowledged that the epidemiology driving the assessment is focused on the middle of the air quality distribution and does not offer many insights for areas experiencing very high 24-hour and sub-daily concentrations.

Deaths from air pollution. Referring to Slide 155, Chair Hayes asked how the review process determines acceptable risk in terms of PM$_{2.5}$-associated deaths. The panelist responded that the estimates of PM$_{2.5}$-related deaths are not meant to be read as absolute numbers but rather used as a basis for comparison between outcomes at different concentration levels to indicate the magnitude of public health impact. He further noted that risk assessments have not historically been the drivers of decisions regarding NAAQS. Council Member Solomon asked if lower concentrations had also been considered in the risk assessment. The panelist replied that they had, and that estimated deaths are reduced by 10-15% for each 1 µg/m³ reduction.
PM thresholds? Council Member Borenstein asked if the panelist had seen any evidence of a PM threshold. The panelist replied that he had not. However, he explained that there may be thresholds for individuals that cannot be seen in population-level studies.
Targeting Particulate Matter:
West Oakland Community Emissions Reduction Program

Phil Martien
Director, Assessment, Inventory, & Modeling, Bay Area Air Quality Management District
Project Lead, Technical Assessment of AB 617 West Oakland Community Action Plan

Main takeaways

In response to California’s AB 617 and in collaboration with communities, the Bay Area Air Quality Management District is implementing community-specific emissions reduction programs. The West Oakland plan demonstrates how hyperlocal modeling can be accomplished, but other agencies will also need to act in order to reach emissions reduction targets.

Presentation Summary

Dr. Martien described the analysis conducted for the recently completed West Oakland Community Action Plan, the first in a series of community emissions reduction programs that the Air District is developing in response to California’s AB 617 legislation.

Response to AB 617. California’s Assembly Bill 617 mandates a statewide program to address long-standing air pollution concerns in disadvantaged communities. The Air District has committed to work collaboratively with disadvantaged communities experiencing disproportionately high levels of air pollution. The first year of implementation focused on Richmond and West Oakland; Richmond requires more measurements to be collected, but West Oakland had a large amount of data and was able to launch directly into planning an emissions reduction program. Beginning in year two, Air District efforts will expand to six more communities: Vallejo, the Pittsburg-Bay Point Area, Eastern San Francisco, the East Oakland-San Leandro Area, Tri-Valley, and San Jose.

Approach to West Oakland. West Oakland was chosen as the first implementation site both because its population experiences high socioeconomic burdens alongside low air quality and because West Oakland has a well-established and experienced community group, the West Oakland Environmental Indicators Project, that was able to guide the process in collaboration with the Air District. The study employed a hybrid modeling approach that first accounted for pollution originating outside the area in order to then zero in on local sources. In response to community requests, the study took a hyperlocal approach, modeling block-by-block exposures. Seven local impact zones were identified using data from specially equipped Google Street View vehicles. Sources modeled comprised the Port of Oakland, railyards and trains, vehicles on freeways and streets, truck-related businesses, and permitted stationary sources.

Results. Although the Port of Oakland was the primary contributor to diesel PM emissions, PM$_{2.5}$ showed a more distributed source allocation, with highway, street, port, and permitted sources all contributing significantly to PM$_{2.5}$ levels. However, approximately 34% of PM$_{2.5}$ came
from sources not included in the model, such as construction, restaurants, and residential wood burning. For each zone, the proportional contributions of the different sources were calculated, with different allocations evident for each zone. For example, 60% of modeled PM$_{2.5}$ could be attributed to street traffic in Zone 3, whereas street traffic made up only 28% of PM$_{2.5}$ emissions in Zones 1 and 2. Disparate exposure levels were seen within the studied West Oakland zones: the cleanest blocks are experiencing on average 3 µg/m3 lower PM concentrations than the most polluted blocks.

Action priorities. The West Oakland Community Action Plan established the goal of bringing all zones to average levels for the area by 2025 and to the level of today’s cleanest residential West Oakland neighborhood by 2030. However, it is important to note that most of the pollution experienced in West Oakland comes from regional sources outside the West Oakland local area, and most of the local pollution sources are outside the Air District’s jurisdiction. That said, priorities for decreasing exposures from local sources center on addressing sources with higher shares of modeled impact, which include heavy-duty trucks and harbor craft for diesel PM and road dust and passenger vehicles for PM$_{2.5}$.

Advisory Council Q&A with Panelist

West Oakland levels in comparison to other District areas. Council Member Rudolph asked how the “average” and “cleanest” levels in West Oakland that were set as targets compare to air pollution levels elsewhere in the Air District. The panelist responded that he does not have that information because other areas have not yet been assessed. However, he asserted that differences in pollution levels between West Oakland other parts of the Air District are likely to be driven by local impacts, so addressing disparities within the Air District can be accomplished by considering local pollution sources.

Electric vehicles and road dust. Council Member Rudolph pointed out that if road dust is a significant concern in terms of PM$_{2.5}$ exposure, then solutions like electric vehicles will not address that problem. The panelist agreed.

Capturing unrecorded emissions. Council Member Rudolph asked whether further analysis would be conducted to better understand the PM$_{2.5}$ contributors that were not accounted for in the study. The panelist indicated that expanding the list of modeled sources was among the “homework activities” for the Air District team developing further AB 617 action plans.

Translating findings into action. Council Member Long asked for clarification on how the information presented would be translated into concrete actions to improve air quality in West Oakland. The panelist acknowledged the challenge of the Air District’s limited jurisdiction and asserted that the West Oakland community had a “realistic perspective” on what can be done. He described the West Oakland Community Action Plan (which calls for the implementation of strategies by the City of Oakland, Port of Oakland, Caltrans, CARB, PG&E, and others in addition to the Air District) as “a starting point.”
PM Exposure and Risks: Discussion Summary

Because the event was running long and Advisory Council members had addressed their questions to the individual panelists, the discussion between the Advisory Council and the afternoon panel was brief.

Margin of safety. Vice Chair Kleinman asked for clarification on whether the risk assessment within the Draft PM Policy Assessment considered margin of safety for particulate matter. Dr. Jenkins responded that the risk assessment does not address margin of safety because the concept of safety rests solely within the judgement of the EPA Administrator.
Public Comment

Public comment was taken during two designated periods during the event. A list of the commenters during those periods follows the summary. Questions were also addressed to the lunchtime keynote speaker, former EPA Administrator Gina McCarthy.

Comment Summary

The general sentiment expressed by many commenters was, “We need action, not more discussion.” Several people spoke about their personal experiences with toxic emissions in their neighborhoods. The disproportionate impact of air pollution on disadvantaged communities is a central point of focus.

Additional themes that emerged in public comment:

Physicians. A group of physicians expressed their position that they are not able to protect the health of their patients due to air pollution, particularly children with asthma. They emphasized the return on investment from improving air quality.

African American communities. Two attendees who addressed Gina McCarthy during her keynote speech focused on the challenges of African American communities in the Air District relative to cumulative impacts of air pollution problems and the need for education, training, and investment in environmental health.

Refineries. Several speakers expressed concerns about refineries in the Air District, both with respect to air pollution and the need to reduce or eliminate reliance on fossil fuels.

Mobile-source increases from stationary permits. A speaker from East Oakland highlighted air quality challenges from a local crematorium, not only from its direct emissions but also from diesel trucks making frequent deliveries.

Climate change. Concerns about climate change aspects of air pollution were emphasized in addition to the need to address immediate health issues.

Community representation. The suggestion was made to form a community advisory board for the Air District “with teeth,” i.e., with the power to make and enact decisions.
List of commenters

PUBLIC COMMENT ON AGENDA MATTERS (ITEM 3)
Dr. Ashley McClure, California Climate Health Now
Sarah Schear, California Climate Health Now

PUBLIC COMMENT ON NON-AGENDA MATTERS (ITEM 7)
Katherine Funes, Rose Foundation for the Communities and the Environment
Jed Holtzman, 350 Bay Area
Jan Warren, Interfaith Climate Action Network of Contra Costa County
Dr. Amanda Millstein, California Climate Health Now
Dr. Cynthia Mahoney, California Climate Health Now
Sarah Schear, California Climate Health Now
Maureen Brennan, Rodeo citizen
Charles Davidson, Sunflower Alliance
Ken Szutu, Citizen’s Air Monitoring Network
Margie Lewis, Communities for a Better Environment
Steve Nadel, Sunflower Alliance
Advisory Council Deliberation

The symposium concluded with the Advisory Council’s deliberation regarding the implications of the information presented. The Advisory Council arrived at the following Sense of the Advisory Council statement:

The current standard is not adequately health protective. Further reductions in particulate matter will realize additional health benefits. We ask the Air District staff to bring forward with urgency options within the legal authority of the Air District that would limit PM exposure, especially in high-risk communities.

Council Member Borenstein reflected the sentiment of the Advisory Council in stating, “We need more science, and we should act.”

Additionally, Advisory Council members expressed interest in further exploring the potential for:

Treating PM as a toxic. Council Member Solomon stated that the lack of evidence for a threshold for PM health effects argues for treatment of PM as a linear, non-threshold toxic in the same manner as other toxic air contaminants and carcinogens.

Monitoring ultrafine particles. Council Member Solomon indicated support for continuing monitoring of ultrafine particles in the Bay Area or increasing monitoring if the costs are not unreasonable. The Air District’s Deputy Air Pollution Control Officer Greg Nudd proposed that the Air District present to the Advisory Council regarding the UFP monitoring that is already occurring in order to better inform the Advisory Council’s recommendations.

Encouraging the State of California to adopt stricter PM standards. Acknowledging that the District does not have the authority to set ambient air standards, Vice Chair Kleinman suggested that those present in the room should encourage the State to adopt stricter PM standards.

Ensuring local permits are consistent with PM standards supported by the science. Vice Chair Kleinman stated that because local permits and emission requirements for stationary sources are the specific purview of the Air District, the Advisory Council should focus on advising the Board on how the Air District could make those determinations consistent with improved ambient air standards.

Disaggregating solutions with climate co-benefits, solutions unrelated to climate strategies, and emergencies. Council Member Long argued for separately approaching three different categories of strategies for addressing PM: 1) strategies that reduce particulate matter as a co-benefit of addressing climate change, such as making engines more efficient and decarbonizing electricity; 2) strategies regarding issues such as road dust that are independent of climate
action (given that more efficient or electric cars still produce brake, tire, and road dust); and 3) emergencies including wildfires and explosions at permitted sites.

Bang for the buck. Council Member Long stressed the need to identify strategies with the greatest potential for impact and to track the outcomes of the strategies that are implemented.

Air District Implementation Plan. Vice Chair Kleinman stated the need for an Air District Implementation Plan in accordance with cleaner air standards. Chair Hayes expressed interest in the idea of an Air District Implementation Plan but stated that he was not yet ready to endorse the strategy and needed to gain a better understanding of what it would entail.
Next Steps

Three primary action items emerged from the first PM symposium:

1. **Air District delivery of presentations** to the Advisory Council on the Air District’s current activities and capabilities to monitor ultrafine particles and to address PM exposures;
2. **Advisory Council discussion and deliberation** on these current and potential activities in light of the information presented at the October 28 symposium and summarized in this document; and
3. **Planning for a second symposium** for Spring 2020 to focus on community and other stakeholder input and engagement concerning PM exposures and health risks.

The Advisory Council will reconvene on **December 9, 2019**.

During that meeting, in response to the Advisory Council’s requests, the Air District will present on its current activities to reduce PM exposures, including monitoring of ultrafine particles. It will also discuss additional “options within the legal authority of the Air District that would limit PM exposure, especially in high-risk communities,” in accordance with the Sense of the Advisory Council, in order to inform the Advisory Council’s advice to the Board.

The Advisory Council is expected to receive and comment on this symposium summary document during the December 9 meeting.

Planning for the Spring 2020 event continues with input from community representatives and other stakeholders.
Particulate Matter: Spotlight on Health Protection
Call to Order
Pledge of Allegiance
Public Comment
Approval of Minutes

Stan Hayes
Welcome Remarks

Jack Broadbent
Introduction

Jeff McKay
PM Symposium Series

- **28 Oct.** State of the science
- **9 Dec.** Advisory Council deliberation
- **Feb./Mar. 2020** Policy discussion and community participation
- **2nd Qtr. 2020** Joint Advisory Council/Board Meeting – District response to the PM Challenge
Health Effects
Jason Sacks, M.P.H.

• Senior Epidemiologist in the Center for Public Health & Environmental Assessment within U.S. EPA’s Office of Research and Development

• Assessment lead for the Particulate Matter Integrated Science Assessment

• Key leadership roles in synthesizing the health effects evidence of air pollution for various National Ambient Air Quality Standards reviews

• International training on U.S. EPA’s Environmental Benefits Mapping and Analysis Program – Community Edition

• M.P.H. from Johns Hopkins University in 2003
Current State of Particulate Matter Science: Particulate Matter Integrated Science Assessment (PM ISA) (Working Draft Conclusions)

Particulate Matter: Spotlight on Health Protection
Bay Area Air Quality Management District

Jason Sacks
Center for Public Health and Environmental Assessment
Office of Research and Development
U.S. Environmental Protection Agency
October 28, 2019
This presentation is based on information provided in the external review draft Integrated Science Assessment for Particulate Matter (PM ISA) as well as ongoing revisions to the PM ISA based on comments provided by the public and Clean Air Scientific Advisory Committee (CASAC). It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
• PM NAAQS Milestones
• PM ISA
 • Weight-of-Evidence Evaluation
 • Scope
 – Ultrafine Particles (UFPs)
 – Causality Determinations: Health Effects
 • Likely to be Causal
 • PM$_{2.5}$ Sources and Components
 • Populations/Lifestages at Increased Risk
 – Next Steps
Overview of the Process for Reviewing the PM NAAQS

- **IRP:** Planned approach, schedule
- **ISA:** Assesses the available scientific information on public health and welfare effects; provides the science foundation for the review
- **PA:** Transparent analysis of the adequacy of the current standards and, as appropriate, potential alternatives

2014-2016
Planning
- Call for Information and Public Workshop: Feb. 2015

2018-2020
Assessment
- Integrated Science Assessment (ISA):
 - Final ISA: Dec. 2019
- Policy Assessment (PA): Sep. 2019

2020
Rulemaking
- Agency decision making, interagency review and public comments process

Clean Air Scientific Advisory Committee (CASAC) review and public comment:
- ISA: Dec. 2018
- PA: Oct. 2019

Note: This NAAQS Review Process was originally outlined in Administrator Pruitt’s May 9, 2018 “Back to Basics” Memo.
Weight-of-Evidence Approach for Causality Determinations for Health and Welfare Effects

- Provides transparency through structured framework
- Developed and applied in ISAs for all criteria pollutants
- Emphasizes synthesis of evidence across scientific disciplines (e.g., controlled human exposure, epidemiologic, and toxicological studies)
- Five categories based on overall weight-of-evidence:
 - Causal relationship
 - Likely to be causal relationship
 - Suggestive of, but not sufficient to infer, a causal relationship
 - Inadequate to infer the presence or absence of a causal relationship
 - Not likely to be a causal relationship
- ISA Preamble describes this framework
 - Preamble is now stand-alone document (http://www.epa.gov/isa)
- CASAC extensively reviewed the Agency’s causal framework in the process of reviewing ISAs from 2008 – 2015; its use was supported in all ISAs
Scope

- **Scope:** The ISA is tasked with answering the question “Is there an independent effect of PM on health and welfare at relevant ambient concentrations?”

- **Health Effects**
 - Studies will be considered if they include a composite measure of PM (e.g., PM$_{2.5}$ mass, PM$_{10-2.5}$ mass, ultrafine particle (UFP) number)
 - Studies of source-based exposures that contain PM (e.g., diesel exhaust, wood smoke, etc.) if they have a composite measure of PM and examine effects with and without particle trap to assess the particle effect
 - Studies of components of PM if they include a composite measure of PM to relate toxicity of component(s) to current indicator
 - Studies will be considered if PM exposures are relevant to ambient concentrations (< 2 mg/m3; 1 to 2 orders of magnitude above ambient concentrations)
Ultrafine Particles (UFPs)

- Ultrafine particles are generally considered to be PM with a diameter less than or equal to 0.1 μm (100 nm)
- Uncertainties:
 - Highly variable concentration in space and over time due to physical and chemical processing in the atmosphere
 - UFP concentrations are highest in urban areas and during rush hour, and are highly episodic during winter
 - Lack of U.S. monitoring network and limited data on spatial and temporal UFP concentrations
 - UFP measured using multiple methods, varying in the size ranges examined - some capturing multiple size ranges below 100 nm, while others can include sizes above 100 nm
 - Contributed to difficulty in evaluating evidence within and across epidemiologic and experimental studies
Draft PM ISA Health Effects: Causality Determinations

Table 1-5. Summary of causality determinations for health effect categories for the draft PM ISA.

<table>
<thead>
<tr>
<th>ISA</th>
<th>Current PM Draft ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM$_{2.5}$</td>
</tr>
<tr>
<td>Respiratory</td>
<td></td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular</td>
<td></td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td>*</td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
</tr>
<tr>
<td>Nervous System</td>
<td>*</td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
</tr>
<tr>
<td>Reproductive</td>
<td></td>
</tr>
<tr>
<td>Male/Female Reproduction and Fertility</td>
<td></td>
</tr>
<tr>
<td>Pregnancy and Birth Outcomes</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>*</td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
</tr>
</tbody>
</table>

* = new determination or change in causality determination from 2009 PM ISA.
Recent evidence supports the conclusions of the 2009 PM ISA, and continues to support a likely to be causal relationship between short-term PM$_{2.5}$ exposure and respiratory effects.

- **Epidemiologic evidence:**
 - Consistent evidence for asthma exacerbation in children and COPD exacerbation in adults; respiratory mortality.

- **Experimental evidence:**
 - Animal models of asthma and COPD demonstrate worsening of allergic airway disease and/or subclinical effects.

- **Remaining Uncertainties:**
 - Lack of coherence between epidemiologic and animal toxicological evidence because most effects demonstrated in healthy animals.
 - Minimal evidence from controlled human exposure studies for respiratory effects.
 - Limited assessment of potential copollutant confounding.

Figure 5-2. Summary of associations between short-term PM$_{2.5}$ exposures and asthma hospital admissions for a 10 μg/m3 increase in 24-hour average PM$_{2.5}$ concentrations.

Red = recent studies;
Black = U.S. study evaluated in the 2009 PM ISA
Recent evidence supports the conclusions of the 2009 PM ISA, and continues to support a likely to be causal relationship between long-term PM$_{2.5}$ exposure and respiratory effects

• Epidemiologic evidence:
 - Consistent changes in lung function and lung function growth
 - Increased asthma incidence, asthma prevalence and wheeze in children
 - Acceleration of lung function decline in adults
 - Improvements in lung function growth with declining PM$_{2.5}$ concentrations
 - Consistent evidence for increased risk of respiratory mortality

• Experimental evidence:
 - Impaired lung development and development of allergic airway disease
 - Biological plausibility for decrements in lung function growth in children and asthma development

• Remaining Uncertainties:
 - Limited evidence from animal toxicological studies
 - Limited assessment of potential copollutant confounding
Nervous System Effects

• Long-term PM$_2.5$ Exposure (Likely to be Causal – NEW conclusion)
 o Epidemiologic evidence:
 ▪ Consistent evidence for cognitive decline/impairment and decreased brain volume
 ▪ Limited evidence for neurodegeneration (e.g., Alzheimer’s disease and dementia)
 o Experimental evidence:
 ▪ Consistent evidence for inflammation, oxidative stress, morphologic changes, and neurodegeneration in multiple brain regions of adult animals
 ▪ Limited evidence for early indicators of Alzheimer’s disease, impaired learning/memory, altered behavior in adult animals, and morphologic changes during development
 o Remaining Uncertainties:
 ▪ Challenge conducting epidemiologic studies of neurodegeneration because often a genetic component
 ▪ Epidemiologic studies of neurodevelopmental effects limited due to the small number of studies, and uncertainty regarding critical exposure windows
 ▪ Limited assessment of potential copollutant confounding
Nervous System Effects

- Long-term UFP Exposure **(Likely to be Causal – NEW conclusion)**
 - **Epidemiologic evidence:**
 - Limited evidence for effects on cognitive development in children
 - **Experimental evidence:**
 - Consistent evidence for inflammation, oxidative stress, and neurodegeneration in adult animals
 - Limited evidence of Alzheimer’s disease pathology in a susceptible animal model
 - Strong evidence of developmental effects, mainly from one laboratory, for inflammation, morphologic changes including persistent ventriculomegaly, and behavioral effects following pre/postnatal exposure
 - **Remaining Uncertainties:**
 - Relative lack of epidemiologic studies
 - Inconsistency in size range of UFPs examined across disciplines
 - Spatial and temporal variability in UFP concentrations
 - Relative lack of UFP monitoring data
 - Long-term exposure to UFPs
Long-term PM$_{2.5}$ Exposure (Likely to be Causal – NEW conclusion)

- Decades of research on whole PM exposures:
 - Genotoxicity
 - Epigenetic effects
 - Carcinogenic potential
 - Characteristics of carcinogens
- Experimental and epidemiologic studies examining PM$_{2.5}$ support:
 - Genotoxicity
 - Epigenetic effects
 - Carcinogenic potential
 - Characteristics of carcinogens
- Epidemiologic evidence:
 - Lung cancer incidence and mortality
- Remaining Uncertainties:
 - Inconsistency in specific cancer-related biomarkers across disciplines
 - Limited assessment of copollutant confounding

Note: Red = recent studies; Black = studies evaluated in the 2009 PM ISA

Figure 10-3. Summary of associations reported in previous and recent cohort studies that examined long-term PM$_{2.5}$ exposure and lung cancer mortality and incidence.
PM Components and Sources

• Conclusion:
 o Many PM$_{2.5}$ components and sources are associated with many health effects, and the evidence does not indicate that any one source or component is more strongly related with health effects than PM$_{2.5}$ mass
 ▪ Evaluation of individual components, based largely on evidence from epidemiologic studies
 ▪ Evaluation of sources limited to a smaller subset of studies
 • Across studies, consistent evidence for effects with various combustion-related sources (e.g., industrial activities, traffic, wildfires, biomass burning, etc.)
National Trend in PM$_{2.5}$ Component Concentrations

2003 - 2005:
- As % of total mass, sulfate higher in East; OC in West

2013 – 2015:
- Reduction in sulfate contribution in East; contributions similar to 2003 – 2005 in West
- Organic carbon has replaced sulfate as the most abundant component of PM$_{2.5}$ in many locations, specifically in the eastern U.S.

Working Draft: Do Not Cite or Quote
Example: PM$_{2.5}$ Components and Cardiovascular Effects

Figure 6-15. Distribution of associations for hospital admissions and emergency department visits for cardiovascular-related effects and short-term PM$_{2.5}$ and PM$_{2.5}$ components exposure.
• The NAAQS are intended to protect both the population as a whole and those potentially at increased risk for health effects in response to exposure to criteria air pollutants
 – *Are there specific populations and lifestages at increased risk of a PM-related health effect, compared to a reference population?*

• The ISA identified and evaluated evidence for factors that may increase the risk of PM$_{2.5}$-related health effects in a population or lifestage, classifying the evidence into four categories:
 – Adequate evidence; suggestive evidence; inadequate evidence; evidence of no effect

• Conclusions:
 – **Adequate**: children and nonwhite populations
 – **Suggestive**: pre-existing cardiovascular and respiratory disease, overweight/obese, genetic variants glutathione transferase pathways, low SES
 – **Inadequate**: pre-existing diabetes, older adults, residential location, sex, diet, and physical activity
PM ISA Team

NCEA Team
- Jason Sacks (Assessment Lead)
- Barbara Buckley (Deputy Lead)
- Michelle Angrish
- Renee Beardslee**†
- Adam Benson**†
- James Brown
- Evan Coffman
- Elizabeth Chan**
- Allen Davis
- Steve Dutton
- Brooke Hemming
- Erin Hines
- Ellen Kerrane
- Dennis Kotchmar
- Meredith Lassiter
- Vijay Limaye##†
- Tom Long
- Tom Luben
- April Maxwell**†
- Joseph McDonald***

Health & Environmental Effects Assessment Division
- John Vandenbarg, Director
- Steve Dutton, Associate Director
- Jane Ellen Simmons, Branch Chief
 - **NCEA Management (Retired/Previously Acting)**
 - Debra Walsh, Deputy Director (Retired)
 - Reeder Sams, Deputy Directory (Acting)
 - Andrew Hotchkiss, Branch Chief (Acting)
 - Alan Vette, Branch Chief (Acting)
 - Jennifer Richmond-Bryant, Branch Chief (Acting)
 - Tara Greaver, Branch Chief (Acting)
 - Jennifer Nichols, Branch Chief (Acting)

Technical Support
- Marieka Boyd
- Ryan Jones

External Authors
- Neil Alexis
- Matt Campen
- Sorina Eftim
- Allison Elder
- Jay Gandy
- Katie Holliady
- Veli Matti Kerminen
- Igor Koturbash
- Markku Kulmala
- Petter Ljungman
- William Malm
- Loretta Mickley
- Marianthi-Anna Kioumourtzoglou
- James Mulholland
- Maria Rosa
- Armistead Russell
- Brett Schichtel
- Michelle Turner
- Laura Van Winkle
- James Wagner
- Greg Wellenius
- Eric Whitsel
- Catherine Yeckel
- Antonella Zanobetti
- Max Zhang

* ORISE
** Postdoctoral Fellow
*** NRMRL/OTAQ
Region 5
NERL
++ OAQPS
† Separated
Supplemental Materials
Framework for Causality Determinations in the ISA

<table>
<thead>
<tr>
<th>Health Effects</th>
<th>Ecological and Other Welfare Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causal relationship</td>
<td>Evidence is sufficient to conclude that there is a causal relationship with relevant pollutant exposures. That is, the pollutant has been shown to result in health effects in studies where results are not inconsistent, or (2) animal toxicological evidence from multiple studies from different laboratories demonstrate effects, but limited or no human data are available. Generally, the determination is based on multiple high-quality studies.</td>
</tr>
<tr>
<td>Likely to be a causal relationship</td>
<td>Evidence is suggestive of a causal relationship with relevant pollutant exposures but is limited, and chance, confounding, and other biases cannot be ruled out. For example: (1) when the body of evidence is relatively small, at least one high-quality epidemiologic health outcome and/or at least one effects relevant to humans in animal, or mode of action information) are limited or small- to medium-scale field studies) provide the strongest evidence for a causal relationship.</td>
</tr>
<tr>
<td>Suggestive of, but not sufficient to infer, a causal relationship</td>
<td>Evidence is suggestive of a causal relationship with relevant pollutant exposures but is limited, and chance, confounding, and other biases cannot be ruled out. For example: (1) when the body of evidence is relatively small, at least one high-quality epidemiologic health outcome and/or at least one effects relevant to humans in animal, or mode of action information) are limited or small- to medium-scale field studies) provide the strongest evidence for a causal relationship.</td>
</tr>
<tr>
<td>Inadequate to infer a causal relationship</td>
<td>Evidence is insufficient to conclude that there is a causal relationship with relevant pollutant exposures. The available evidence is of insufficient quantity, quality, consistency, or statistical power to permit a conclusion regarding the presence or absence of an effect.</td>
</tr>
<tr>
<td>Not likely to be a causal relationship</td>
<td>Evidence indicates there is no causal relationship with relevant pollutant exposures. Several adequate studies examining relationships with relevant pollutant exposures show that human beings are not exposed at any level of exposure.</td>
</tr>
</tbody>
</table>
Evaluation of the Scientific Evidence

- Organize relevant literature for broad outcome categories
- Evaluate studies, characterize results, extract relevant data
- Integrate evidence across disciplines for outcome categories
- Develop causality determinations using established framework
- Evaluate evidence for populations potentially at increased risk
- Consideration of evidence spans many scientific disciplines from source to effect:
 - Atmospheric chemistry
 - Exposure
 - Controlled human exposure studies
 - Epidemiologic studies
 - Animal toxicologic studies
Cardiovascular Effects

A large body of recent evidence supports and extends the conclusions of the 2009 PM ISA that there is a causal relationship between short- and long-term PM$_{2.5}$ exposure and cardiovascular effects.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Lag</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>†Lee et al. (2015)a</td>
<td>3 Southeast states, U.S.</td>
<td>0-1</td>
<td>Cardiovascular CHF, MI, Stroke</td>
</tr>
<tr>
<td>†Dai et al. (2014)</td>
<td>75 U.S. cities</td>
<td>0-1</td>
<td>Cardiovascular MI, Stroke</td>
</tr>
<tr>
<td>†Samoli et al. (2013)</td>
<td>10 European Med cities</td>
<td>0-1</td>
<td>Cardiovascular Cardiac CHF</td>
</tr>
<tr>
<td>†Samoli et al. (2014)</td>
<td>10 European Med cities</td>
<td>0-1</td>
<td>Cardiovascular Cardiac CHF, Cerebrovascular Acute Coronary Events, Arrhythmias</td>
</tr>
<tr>
<td>†Pascal et al. (2014)</td>
<td>9 French cities</td>
<td>0-1</td>
<td>Cardiovascular Cardiac IHD</td>
</tr>
<tr>
<td>†Milojevic et al. (2014)</td>
<td>England and Wales</td>
<td>0-1</td>
<td>Cardiovascular CHF, MI, Stroke</td>
</tr>
<tr>
<td>†Shah et al. (2015)</td>
<td>Meta-analysis</td>
<td>---</td>
<td>Stroke</td>
</tr>
<tr>
<td>†Wang et al. (2014)</td>
<td>Meta-analysis</td>
<td>---</td>
<td>Stroke</td>
</tr>
</tbody>
</table>

Note: Red = recent studies; Black = studies evaluated in the 2009 PM ISA.

Figure 6-7. Percent increase in cause-specific cardiovascular mortality outcomes for a 10 µg/m3 increase in 24-hour average PM$_{2.5}$ concentrations observed in multicity studies and meta-analyses.
Recent evidence supports and extends the conclusions of the 2009 PM ISA that there is a **causal relationship** between short-term PM$_{2.5}$ exposure and mortality.

Figure 11-1. Summary of associations between short-term PM$_{2.5}$ exposure and total (nonaccidental) mortality in multicity studies for a 10 µg/m3 increase in 24-hour average concentrations.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnett and Goldberg (2003)</td>
<td>8 Canadian cities</td>
<td>1</td>
</tr>
<tr>
<td>Klemm and Mason (2003)</td>
<td>6 U.S. cities</td>
<td>0-1</td>
</tr>
<tr>
<td>Burnett et al. (2004)</td>
<td>12 Canadian cities</td>
<td>1</td>
</tr>
<tr>
<td>Zanobetti and Schwartz (2009)</td>
<td>112 U.S. cities</td>
<td>0-1</td>
</tr>
<tr>
<td>Dominici et al. (2007)</td>
<td>96 U.S. cities (NMMAPS)</td>
<td>1</td>
</tr>
<tr>
<td>Franklin et al. (2007)</td>
<td>27 U.S. cities</td>
<td>1</td>
</tr>
<tr>
<td>Franklin et al. (2008)</td>
<td>25 U.S. cities</td>
<td>0-1</td>
</tr>
<tr>
<td>Ostro et al. (2006)</td>
<td>9 CA counties</td>
<td>0-1</td>
</tr>
<tr>
<td>†Lippmann et al. (2013)</td>
<td>148 U.S. cities</td>
<td>0</td>
</tr>
<tr>
<td>†Baxter et al. (2017)</td>
<td>77 U.S. cities</td>
<td>0-1</td>
</tr>
<tr>
<td>†Dai et al. (2014)</td>
<td>75 U.S. cities</td>
<td>0-1</td>
</tr>
<tr>
<td>†Krall et al. (2013)</td>
<td>72 U.S. cities</td>
<td>1</td>
</tr>
<tr>
<td>†Kloog et al. (2013)</td>
<td>New England, U.S.</td>
<td>0-1</td>
</tr>
<tr>
<td>†Lee et al. (2015)a</td>
<td>3 Southeast states, U.S.</td>
<td>0-1</td>
</tr>
<tr>
<td>†Janssen et al. (2013)</td>
<td>Netherlands</td>
<td>0</td>
</tr>
<tr>
<td>†Samoli et al. (2013)</td>
<td>10 European Med cities</td>
<td>0-1</td>
</tr>
<tr>
<td>†Stafoggia et al. (2017)</td>
<td>8 European cities</td>
<td>1</td>
</tr>
<tr>
<td>†Lanzinger et al. (2016)b</td>
<td>5 Central European cities (UFIREG)</td>
<td>0-1</td>
</tr>
<tr>
<td>†Pascal et al. (2014)</td>
<td>9 French cities</td>
<td>0-1</td>
</tr>
<tr>
<td>†Lee et al. (2015)</td>
<td>11 East Asian cities</td>
<td>0-1</td>
</tr>
<tr>
<td>†Di et al. (2017)c</td>
<td>U.S. - Nation</td>
<td>0-1</td>
</tr>
<tr>
<td>†Zanobetti et al. (2014)c</td>
<td>121 U.S. cities</td>
<td>0-1</td>
</tr>
<tr>
<td>†Shi et al. (2015)c</td>
<td>New England, U.S.</td>
<td>0-1</td>
</tr>
<tr>
<td>†Young et al. (2017)</td>
<td>8 CA air basins</td>
<td>0-1d</td>
</tr>
<tr>
<td>†Ueda et al. (2009)f</td>
<td>20 Japanese areas</td>
<td>1</td>
</tr>
<tr>
<td>†Atkinson et al. (2014)</td>
<td>Meta-analysis</td>
<td>--g</td>
</tr>
<tr>
<td>†Adar et al. (2014)</td>
<td>Meta-analysis</td>
<td>--h</td>
</tr>
</tbody>
</table>

Note: Red = recent multi-city studies; Black = multi-city studies evaluated in the 2009 PM ISA.
Recent evidence supports and extends the conclusions of the 2009 PM ISA that there is a causal relationship between long-term PM\textsubscript{2.5} exposure and mortality.

Figure 11-18. Associations between long-term PM\textsubscript{2.5} and total (nonaccidental) mortality in recent North American cohorts.

Note: Associations are presented per 5 µg/m3 increase in pollutant concentration.

Red = recent studies; Black = studies evaluated in the 2009 PM ISA

Table: Associations between Long-term PM\textsubscript{2.5} and Mortality

<table>
<thead>
<tr>
<th>Reference</th>
<th>Cohort</th>
<th>Notes</th>
<th>Years</th>
<th>Mean (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>†Pope et al. 2014</td>
<td>ACS</td>
<td></td>
<td>1982-2004</td>
<td>12.6</td>
</tr>
<tr>
<td>†Lepeule et al. 2012</td>
<td>Harvard Six Cities</td>
<td></td>
<td>1974-2009</td>
<td>11.4-23.6</td>
</tr>
<tr>
<td>†Thurston et al. 2015</td>
<td>NH-AARP</td>
<td></td>
<td>2000-2009</td>
<td>10.2-13.6</td>
</tr>
<tr>
<td>Zeiger et al. 2008</td>
<td>MCAPS Eastern</td>
<td></td>
<td>2000-2005</td>
<td>14.0 (3.0)</td>
</tr>
<tr>
<td>Zeiger et al. 2008</td>
<td>MCAPS Central</td>
<td></td>
<td>2000-2005</td>
<td>10.7 (2.4)</td>
</tr>
<tr>
<td>†Di et al. 2017</td>
<td>Medicare</td>
<td>exp<12</td>
<td>2000-2012</td>
<td>11.5</td>
</tr>
<tr>
<td>†Di et al. 2017</td>
<td>Medicare</td>
<td>nearest monitor</td>
<td>2000-2012</td>
<td>11.5</td>
</tr>
<tr>
<td>†Kioumourtzoglou et al. 2016</td>
<td>Medicare</td>
<td></td>
<td>2000-2010</td>
<td>12</td>
</tr>
<tr>
<td>†Shi et al. 2015</td>
<td>Medicare</td>
<td>mutual adj</td>
<td>2003-2008</td>
<td>8.12 (3.78)</td>
</tr>
<tr>
<td>†Shi et al. 2015</td>
<td>Medicare</td>
<td>exp <10, mutual adj</td>
<td>2003-2008</td>
<td>8.12 (3.78)</td>
</tr>
<tr>
<td>†Shi et al. 2015</td>
<td>Medicare</td>
<td>no mutual adj</td>
<td>2003-2008</td>
<td>8.12 (3.78)</td>
</tr>
<tr>
<td>†Shi et al. 2015</td>
<td>Medicare</td>
<td>exp <10, no mutual adj</td>
<td>2003-2008</td>
<td>8.12 (3.78)</td>
</tr>
<tr>
<td>†Wang et al. 2017</td>
<td>Medicare</td>
<td>exp<12</td>
<td>2000-2013</td>
<td>10.7 (3.8)</td>
</tr>
<tr>
<td>†Wang et al. 2017</td>
<td>Medicare</td>
<td>exp<12</td>
<td>2000-2013</td>
<td>10.7 (3.8)</td>
</tr>
<tr>
<td>Lipert et al. 2006</td>
<td>Veterans Cohort</td>
<td></td>
<td>1997-2001</td>
<td>14.34</td>
</tr>
<tr>
<td>†Crouse et al. 2015</td>
<td>CanCHEC</td>
<td></td>
<td>1991-2001</td>
<td>8.9</td>
</tr>
<tr>
<td>†Chen et al. 2016</td>
<td>EFFECT</td>
<td></td>
<td>1999-2011</td>
<td>10.7</td>
</tr>
<tr>
<td>†Weichenthal et al. 2014</td>
<td>Ag Health</td>
<td></td>
<td>1993-2009</td>
<td>8.84</td>
</tr>
<tr>
<td>†Weichenthal et al. 2014</td>
<td>Ag Health</td>
<td>more precise exp</td>
<td>1993-2009</td>
<td>8.84</td>
</tr>
<tr>
<td>†Pinault et al. 2016</td>
<td>CCHS</td>
<td></td>
<td>1998-2011</td>
<td>6.3</td>
</tr>
<tr>
<td>†Lipsitt et al. 2011</td>
<td>CA Teachers</td>
<td></td>
<td>2000-2005</td>
<td>15.6 (8.0)</td>
</tr>
<tr>
<td>†Ostro et al. 2010</td>
<td>CA Teachers within 30 km</td>
<td></td>
<td>2002-2007</td>
<td>17.5 (6.1)</td>
</tr>
<tr>
<td>†Ostro et al. 2010</td>
<td>CA Teachers within 8 km</td>
<td></td>
<td>2002-2007</td>
<td>17.6 (6.1)</td>
</tr>
<tr>
<td>†Ostro et al. 2015</td>
<td>CA Teachers</td>
<td></td>
<td>2001-2007</td>
<td>17.9 (6.6)</td>
</tr>
<tr>
<td>†Puet et al. 2009</td>
<td>Nurses Health</td>
<td>nearest monitor</td>
<td>1992-2002</td>
<td>13.9 (3.6)</td>
</tr>
<tr>
<td>†Hart et al. 2015</td>
<td>Nurses Health</td>
<td>spatio-temp. model</td>
<td>2000-2006</td>
<td>12.7</td>
</tr>
<tr>
<td>†Hart et al. 2015</td>
<td>Nurses Health</td>
<td>Health Prof full model</td>
<td>2000-2006</td>
<td>12</td>
</tr>
<tr>
<td>†Puet et al. 2011</td>
<td>TIPS</td>
<td></td>
<td>1989-2003</td>
<td>17.8 (4.3)</td>
</tr>
<tr>
<td>†King et al. 2012</td>
<td>MA cohort</td>
<td>CV/Resp</td>
<td>2000-2008</td>
<td>9.9 (1.6)</td>
</tr>
<tr>
<td>†Garcia et al. 2015</td>
<td>CA cohort</td>
<td>Kriging</td>
<td>2006</td>
<td>13.06</td>
</tr>
<tr>
<td>†Garcia et al. 2015</td>
<td>CA cohort</td>
<td>IDW</td>
<td>2006</td>
<td>12.94</td>
</tr>
<tr>
<td>†Garcia et al. 2015</td>
<td>CA cohort</td>
<td>closest monitor</td>
<td>2006</td>
<td>12.68</td>
</tr>
<tr>
<td>†Wang et al. 2016</td>
<td>NJ Cohort</td>
<td></td>
<td>2004-2009</td>
<td>11.3</td>
</tr>
<tr>
<td>Enstrom 2005</td>
<td>CA Cancer Prev</td>
<td></td>
<td>1973-1982</td>
<td>23.4</td>
</tr>
<tr>
<td>Enstrom 2005</td>
<td>CA Cancer Prev</td>
<td></td>
<td>1983-2002</td>
<td>23.4</td>
</tr>
<tr>
<td>Enstrom 2005</td>
<td>CA Cancer Prev</td>
<td></td>
<td>1973-2002</td>
<td>23.4</td>
</tr>
</tbody>
</table>

Working Draft: Do Not Cite or Quote
Policy-Relevant Considerations (Chapter 1)

- **Copollutant Confounding**: Across recent studies examining various health effects and both short- and long-term PM$_{2.5}$ exposures, associations remain relatively unchanged in copollutant models.

- **Concentration-Response (C-R) Relationship**: Across studies evidence continues to support a linear, no-threshold C-R relationship.

- **PM Components and Sources**: Many PM$_{2.5}$ components and sources are associated with many health effects, and the evidence does not indicate that any one source or component is more strongly related with health effects than PM$_{2.5}$ mass.
Figure 5-25. Distribution of associations for all respiratory effects and short-term PM$_{2.5}$ mass and PM$_{2.5}$ components exposure.
Figure 6-15. Distribution of total (nonaccidental) mortality associations for short-term PM$_{2.5}$ and PM$_{2.5}$ components exposure.
– Welfare Effects
 o Focus is on non-ecological welfare effects
 o Visibility Impairment
 o Climate Effects
 o Materials Effects
 o Ecological effects resulting from the deposition of PM and PM components are being considered as part of the review of the secondary (welfare-based) NAAQS for oxides of nitrogen, oxides of sulfur and PM
Welfare Effects: Causality Determinations

<table>
<thead>
<tr>
<th>Welfare Effect</th>
<th>ISA</th>
<th>Current PM Draft ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
<td></td>
<td>PM</td>
</tr>
<tr>
<td>Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Causal**
- **Likely causal**
- **Suggestive**
- **Inadequate**

* = new determination or change in causality determination from 2009 PM ISA
Welfare Effects (Chapter 13)

Recent evidence supports and extends the conclusions of the 2009 PM ISA that there is a causal relationship between PM and welfare effects

• Visibility Impairment (Causal)
 o Long-term visibility improvements throughout the U.S as PM concentrations have decreased
 o Regional and seasonal patterns in atmospheric visibility parallel PM concentration patterns
 o More evidence supporting the relationship between visibility and PM composition

• Climate Effects (Causal)
 o New evidence provides greater specificity about radiative forcing
 o Increased understanding of additional climate impacts driven by PM radiative effects
 o Improved characterization of key sources of uncertainty particularly with response to PM-cloud interactions

• Materials Effects (Causal)
 o New information for glass and metals including modeling of glass soiling
 o Progress in the development of quantitative dose-response relationships and damage functions for materials in addition to stone, including glass and metals
 o Quantitative research on PM impacts on energy yield from photovoltaic systems
At-Risk Framework Description

<table>
<thead>
<tr>
<th>Classification</th>
<th>Health Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate evidence</td>
<td>There is substantial, consistent evidence within a discipline to conclude that a factor results in a population or lifestage being at increased risk of air pollutant-related health effect(s) relative to some reference population or lifestage. Where applicable, this evidence includes coherence across disciplines. Evidence includes multiple high-quality studies.</td>
</tr>
<tr>
<td>Suggestive evidence</td>
<td>The collective evidence suggests that a factor results in a population or lifestage being at increased risk of air pollutant-related health effect(s) relative to some reference population or lifestage, but the evidence is limited due to some inconsistency within a discipline or, where applicable, a lack of coherence across disciplines.</td>
</tr>
<tr>
<td>Inadequate evidence</td>
<td>The collective evidence is inadequate to determine whether a factor results in a population or lifestage being at increased risk of air pollutant-related health effect(s) relative to some reference population or lifestage. The available studies are of insufficient quantity, quality, consistency, and/or statistical power to permit a conclusion to be drawn.</td>
</tr>
<tr>
<td>Evidence of no effect</td>
<td>There is substantial, consistent evidence within a discipline to conclude that a factor does not result in a population or lifestage being at increased risk of air pollutant-related health effect(s) relative to some reference population or lifestage. Where applicable, the evidence includes coherence across disciplines. Evidence includes multiple high-quality studies.</td>
</tr>
</tbody>
</table>

Excerpt from Preamble to ISAs
Particulate Matter: Spotlight on Health Protection
Michael Kleinman, Ph.D.

• UC Irvine Professor of Environmental Toxicology
• Co-Director of the Air Pollution Health Effects Laboratory in the Department of Community and Environmental Medicine
• Adjunct Professor in College of Medicine
• Serves on the Air District Advisory Council
• Ph.D. in Environmental Health Sciences from New York University
PARTICULATE MATTER: A COMPLEX MIXTURE THAT AFFECTS HEALTH

Michael T. Kleinman
With the help of David Herman, Rebecca Johnson, Lisa Wingen and a lot of other people
University of California, Irvine
Overall Goal of this Presentation is to Address These Questions

- Why are some species of PM more dangerous than others?
- How does PM affect health?
- Do ultrafine particles (UFPs) have a special role?
What are the health-relevant components of urban air?

- Emissions from power plants, motor vehicles, dust.
- Pollutants gases:
 - Ozone and NO\textsubscript{2} are major problems in California.
 - SO\textsubscript{2} and organic vapors are also important.
- Particles or Particulate Matter (PM):
 - Particles are associated with increased heart-related deaths during air pollution episodes.
 - Toxicology studies show that PM2.5 accelerates the development of atherosclerosis.
 - The strongest associations with human heart-related illness and death are with PM.
 - PM composition includes toxic organic and inorganic chemicals
- Combustion sources generate fine and ultrafine PM often coated with toxic substances.
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - Carbonyls (acrolein, formaldehyde)
 - Quinones
Particles come from many sources and affect health and climate.

Greenhouse gases absorb infrared radiation.

Aerosols interact with sunlight (radiation and cloud interactions).

Smaller droplet size → clouds last longer → increase albedo → less precipitation.

NMVOCs + CO₂ + CH₄ → OH + NOₓ → Smaller droplet size → clouds last longer → increase albedo → less precipitation.

Black carbon

Sulfate

Organic carbon

Pollutant sources

Surface of the Earth
Fine (PM2.5) and ultrafine particles (UFP) are the most biologically active
Combustion Sources Produce Toxic Air Contaminants

Figure 1. Combustor reaction zones. Zone 1, preflame, fuel zone; zone 2, high-temperature, flame zone; zone 3, postflame, thermal zone; zone 4, gas-quench, cool zone; zone 5, surface-catalysis, cool zone. PBDD/Fs, polybrominated dibenzo-p-dioxins and dibenzofurans. Reaction products from upstream zones pass through downstream zones and undergo chemical modifications, resulting in formation of new pollutants. Zone 2 controls formation of many “traditional” pollutants (e.g., carbon monoxide, sulfur oxides, and nitrogen oxides). Zones 3 and 4 control formation of gas-phase organic pollutants. Zone 5 is a major source of PCDD/Fs and is increasingly recognized as a source of other pollutants previously thought to originate in zones 1–4.

Origin and Health Impacts of Emissions of Toxic By-Products and Fine Particles from Combustion and Thermal Treatment of Hazardous Wastes and Materials

Alphonse A. Donnelly, PhD
Dennis L. Loomis, PhD
Wayne Boucher, PhD and Barry M. DeFeo, PhD

Department of Biological Sciences, and Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
Department of Environmental Sciences, Texas A&M University Health Science Center, Bryan, Texas, USA
PM2.5 and UFP From Combustion Sources is a Mixture of Solid and Liquid Droplets that we call “SOOT”

- Black carbon (BC) is a major component of “soot”, a complex light-absorbing mixture that comprised of a mixture of Elemental Carbon (EC) and Particulate Organic Carbon (OC).
- BC is the most strongly light-absorbing component of particulate matter (PM), and is formed by the incomplete combustion of fossil fuels, biofuels, and biomass.
- BC is emitted directly into the atmosphere in the form of fine particles (PM$_{2.5}$) and ultrafine particles (PM$_{0.1}$). These are also considered nanoparticles.
- BC is the most effective form of PM, by mass, at absorbing solar energy: per unit of mass in the atmosphere, BC can absorb a million times more energy than carbon dioxide (CO$_2$).
- Organic carbon aerosols are a significant absorber of solar radiation. The absorbing part of organic aerosols is referred to as "brown" carbon (BrC).

http://www.epa.gov/blackcarbon/basic.html
1 in 6 deaths, worldwide, is attributable to Pollution
Air Pollution Contributes to Multiple Diseases

The Lancet Commission on pollution and health, Lancet, October 2017

Figure 6: Estimated contributions of all pollution risk factors to deaths caused by non-communicable diseases, 2015

GBD Study, 2016.
A Mechanistic Framework for PM2.5 Effects Leading to Cardiovascular Disease
We can examine the health effects of specific pollutants using controlled exposures and help understand the mechanisms by which PM causes or worsens cardiovascular diseases.
Rats or Mice Can Be Exposed to Purified Air or CAPs in Sealed Chambers

The Sealed Chambers Can Be Placed Onto Racks to Facilitate Transport

ECG and Blood Pressure Telemetry Devices can be Implanted to provide physiology data before, during and after exposures.
Exposure Protocol

• ApoE-/- mice were surgically implanted with ECG telemetry devices.
• Mice were exposed 5 hr per day (8AM to 1 PM) 4 days per week for 8 weeks at UC Irvine and were housed in filtered air-supplied caging systems between exposures.
• ECG data were monitored during exposures and while the mice were in housing (21 hr / day).
• All animal protocols were approved by the Institutional Animal Care and Use Committee.
What Happens When You Denude Quasi-Ultrafine CAPs ($d_p < 180$ nm)?

- Particle number and mass are reduced.
- Refractory constituents, such as heavy metals and elemental carbon, were only marginally affected by heating.
- Labile species such as total and water soluble organic carbon and PAHs showed progressive loss in concentration with increase in TD temperature.
Health-related characteristics of Ultrafine PM

- **Organics**
- **Sulfate**
- **Ammonium**
- **Nitrate**

m/z 44 (CO$_2^+$) / m/z 55 (C$_4$H$_7^+$) ≈ 4

- Ultrafines
 - Less oxygenated
 - (to denuder)

- Quasi-ultrafines
- Accumulation mode

- Larger particles
 - Oxygenated

When you denude the UFP

Graphs
- **DTT activity, nmol/min/m3**
 - Ambient
 - Denuded
 - 50°C: 42%, 100°C: 47%, 200°C: 66%

- **Concentration, pg/m3**
 - HMW PAHs
 - Ambient
 - Denuded
 - 50°C: 14%, 100°C: 53%, 200°C: 81%
Removing the Organic Constituents From Ambient UFP Blocks CV Effects

<table>
<thead>
<tr>
<th></th>
<th>Air</th>
<th>CAP</th>
<th>deCAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaque Size (％ area of plaque in of total lumen CS)</td>
<td>14.5 ± 6.3</td>
<td>29.9 ± 10.0*</td>
<td>2.3 ± 0.1</td>
</tr>
<tr>
<td>Lipid Accumulation (％ area of lipid in total tissue CS)</td>
<td>5.1 ± 3.3</td>
<td>8.9 ± 2.4*</td>
<td>2.2 ± 0.3</td>
</tr>
<tr>
<td>Lipid Peroxidation (nM MDA/mg protein)</td>
<td>134 ± 29</td>
<td>218 ± 32*,**</td>
<td>141 ± 17</td>
</tr>
</tbody>
</table>
These data show an association between ambient temperature and toxicity measured using heart rate variability (HRV).

The composition of the particles, which determines particle toxicity, is a function of atmospheric chemical reactivity, which is dependent on temperature and photochemical processes.
Conclusions

• PM exposures can exacerbate lung disease, heart disease and cancer

• UFP and PM2.5 contain toxic components and carcinogens

• Children, elderly and Individuals with pre-existing lung and heart conditions are at elevated risk

• The human studies and the toxicology studies support the premise that PM can be mechanistically and causally linked to cardiovascular health effects.
Funding Sources

- Research using advanced instrumentation (AMS and SMPS) was through AirUCI and funded by the National Science Foundation.

Moving the AMS is a group effort!

Health studies are currently sponsored by the California Air Resources Board, the South Coast Air Quality Management District and the NIEHS.
Questions and Discussion
Particulate Matter: Spotlight on Health Protection
John R. Balmes, M.D.

- Professor of Medicine at UC San Francisco
- Professor of Environmental Health Sciences in the School of Public Health at UC Berkeley
- Director of the Northern California Center for Occupational and Environmental Health
- Authored over 300 papers on occupational and environmental health-related topics
- Physician Member of the California Air Resources Board
Particulate Matter Health Effects: What Do We Know and What Do We Still Need to Know?

John R. Balmes, MD
University of California,
San Francisco and Berkeley
Outline

• Particulate Pollution
 – What Do We Know
 – New Evidence

• Exposure Inequality
 – Cumulative Risk

• Wildfire PM
 – Cardiovascular Risk
Ambient Particulate Matter (PM)

- PM is a mixture, including particles of differing origin (combustion, crustal, biological) and varying size.
- Multiple sources
 - Ultrafines ($PM_{<0.1}$): Fuel (including biomass) combustion
 - $PM_{2.5}$: Fuel (including biomass) combustion
 - $PM_{10-2.5}$: Road dust, crustal, and biological material
Particulate Matter: Health Effects

- Asthma
 - Exacerbation
 - New-onset
- Decreased lung function growth
- Mortality
 - Ischemic heart disease
- Lung cancer
Key Questions

• Are current PM standards sufficiently protective?
 -- No margin of safety

• How has the PM health evidence been strengthened?
 – New evidence of mortality effect at levels below the current NAAQS
Ambient Particulate Air Pollution and Daily Mortality in 652 Cities
Fine-Particulate Air Pollution and Life Expectancy in the United States

Key Questions

• What new health effects are now recognized?
 – Adverse birth outcomes
 – Metabolic effects
 – Neurological effects
What is role of ultrafine particles (UFP)?

• UFP (PM<0.1μm) are generated both as primary emissions from combustion processes and as secondary products of atmospheric chemistry

• Toxicological studies suggest UFP are a high-risk hazard, but epidemiological data are sparse because there is no monitoring network
Key Questions

• Are there “new” sensitive groups?
 – Children
 – People of color and low SES

• How should we account for spatial scale of effects (i.e., regional versus local-scale impacts, including proximity to major sources)?
Demographics of Children Living Near Freeways

- Children of color 3x more likely to live near high traffic density in California

 Gunier et al., California Dept of Health Services, 2003

- Schools near busy roads have a disproportionate number of children who are economically disadvantaged and non-white

Environmental Inequality and Cumulative Impacts in Richmond, CA

Liberty/Atchison Villages

Richmond Parkway

Rail yard

Interstate

Marine Port

General Chemical Corp

Chevron Refinery
Cumulative Risk

• People of color and low SES have
 – Greater exposures to outdoor particulate pollution
 – Disproportionate proximity to polluting land uses and toxic emissions

• Poor communities have more health-damaging factors and less health-promoting amenities
 – Less access to healthy food and health care
 – Less green space and recreational programs
 – Poor quality housing and greater violence
Key Questions

• What are health impacts of high-concentration acute events (e.g., wildfires)? How should we compare them to day-to-day PM impacts?
Clear evidence of an association between wildfire smoke and respiratory health

- Asthma exacerbations significantly associated with higher wildfire smoke in nearly every study
- Exacerbations of chronic obstructive pulmonary disease (COPD) significantly associated with higher wildfire smoke in most studies
- Growing evidence of a link between wildfire smoke and respiratory infections (pneumonia, bronchitis)
Wildfire-PM$_{2.5}$ associated with heart attacks and strokes for all adults, particularly for those over 65 years old

Increase in risk the day after exposure:
- All cardiovascular, 12%
- Heart attack, 42%
- Heart failure, 16%
- Stroke, 22%
- All respiratory causes, 18%
- Abnormal heart rhythm, 24%
 (on the same day as exposure)
Thank you
Particulate Matter: Spotlight on Health Protection
H. Christopher Frey, Ph.D., F. A&WMA, F. SRA

- Glenn E. Futrell Distinguished University Professor of Environmental Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University
- Adjunct professor in the Division of the Environment and Sustainability at the Hong Kong University of Science and Technology
- Fellow of the Air & Waste Management Association and of the Society for Risk Analysis
- Ph.D. in Engineering and Public Policy from Carnegie Mellon
Recent Developments in the Scientific Review of the National Ambient Air Quality Standards for Particulate Matter

H. Christopher Frey
frey@ncsu.edu

Department of Civil, Construction & Environmental Engineering
North Carolina State University
Raleigh, NC 27695

Presented at:
Particulate Matter: Spotlight on Health Protection
Bay Area Air Quality Management District
San Francisco, CA

October 28, 2019
Key Points

• The National Ambient Air Quality Standard (NAAQS) Science Review Process Worked Well Until 2017

• EPA Administrators Pruitt and Wheeler Have Broken the Process

• Particulate Matter Science Review By the EPA Clean Air Scientific Advisory Committee (CASAC) is Highly Deficient: Appropriate to Look Elsewhere

• Disbanded CASAC PM Review Panel Reconvened Itself

• Key Findings of the Independent Particulate Matter Review Panel
Generic “Full” National Ambient Air Quality Standard (NAAQS) Science Review from Document Perspective

CASAC = Clean Air Scientific Advisory Committee
IRP = Integrated Review Plan
ISA = Integrated Science Assessment
REA = Risk and Exposure Assessment
PA = Policy Assessment
Pruitt/Wheeler (P/W) Particulate Matter NAAQS Science Review from Document Perspective

TIME

Draft IRP

Final IRP

1st Draft ISA

1st Draft PA

Final ISA

Final PA

CASAC and Public Review

??????
Pruitt/Wheeler EPA CASAC Particulate Matter Review Panel (6 last week, 7 by statute)
• CASAC is split 4-2:
 – Four recommend keeping all current standards (primary PM2.5, coarse PM, secondary PM2.5) as is.
 – Rationales offered for keeping the annual primary PM2.5 standard:
 » “beta” coefficients used in the risk assessment are not causal
 » Exposures in recent studies are “estimated”
 » Temperature has not been properly accounted for
 » The concentration-response slopes from new studies are approximately the same as from old studies, so there’s nothing new here
 » EPA should have informed the CASAC of an acceptable risk level
 I listened for both days. I can’t recall any of these four acknowledging anything learned from new studies

There Should be 26 People at This Table, Not 6 (one is EPA staff)
• CASAC is split 4-2:
 – Four recommend keeping all current standards (primary PM$_{2.5}$, coarse PM, secondary PM$_{2.5}$) as is.
 – Rationales offered for keeping the annual primary PM$_{2.5}$ standard are ill-informed or inappropriate, given the state of the science, lack of needed expertise and obvious lack of understanding of the statutory mandate of the Clean Air Act.
Independent Particulate Matter Review Panel

- Formerly the CASAC PM Review Panel
- Disbanded October 10, 2018
- Met October 10, 2019 to October 11, 2019 in Crystal City, VA
- Follow-up Teleconference October 18, 2019 to finalize report

+ Others On-Line

Panel report at ucsusa.org/pmpanel
Independent Particulate Matter Review Panel

- Dr. H. Christopher Frey, Chair, North Carolina State University
- Dr. Peter Adams, Carnegie Mellon University
- Dr. John L. Adgate, Colorado School of Public Health
- Mr. George Allen, NESCAUM
- Dr. John Balmes, University of California at San Francisco
- Dr. Kevin Boyle, Virginia Tech
- Dr. Judith Chow, Desert Research Institute
- Dr. Douglas W. Dockery, Harvard T.H. Chan School of Public Health
- Mr. Dirk Felton, NY State Dept. of Environmental Conservation
- Dr. Terry Gordon, New York University School of Medicine
- Dr. Jack Harkema, Michigan State University
- Dr. Joel Kaufman, University of Washington
- Dr. Patrick Kinney, Boston University School of Public Health
- Dr. Michael T. Kleinman, University of California at Irvine
- Dr. Rob McConnell, University of Southern California
- Mr. Richard Poirot, Independent Consultant
- Dr. Lianne Sheppard, University of Washington
- Dr. Jeremy Sarnat, Rollins School of Public Health, Emory University
- Dr. Barbara Turpin, University of North Carolina at Chapel Hill
- Dr. Ronald Wyzga, Retired, Electric Power Research Institute
Independent Particulate Matter Review Panel

• Followed the same process and procedures as we did formerly as the CASAC PM Review Panel
• Developed a letter to the EPA Administrator and Consensus Responses to EPA Charge Questions on the Draft Policy Assessment
• Submitted our report to CASAC, the docket, and the Administrator
• ucsusa.org/pmppanel
Acknowledgment of EPA Staff

• The Panel finds that the EPA staff in the Office of Air Quality Planning and Standards have undertaken a good faith effort to produce a first draft of the PA.

• This draft was produced under extenuating, unprecedented, and inappropriate constraints.

• The Panel commends the staff for this effort.
Causality Determinations

- The weight of evidence framework for causality determination that is applied by EPA is an appropriate and well-vetted tool for drawing causal conclusions.
- The epidemiologic evidence, supported by evidence from controlled human studies and toxicological studies, supports the ‘causal’ and ‘likely to be causal’ determinations that are the focus of the draft PA.
- “The epidemiologic evidence provides strong scientific support for recommendations regarding current and alternative standard levels.”
- Arguments to retain the current primary PM$_{2.5}$ standards “would require disregard of the epidemiological evidence,” and “are not scientifically justified and are specious.”
Major Findings: Fine Particle Standards

- The current primary fine particle (PM$_{2.5}$) annual and 24-hour standards are **not protective of public health**.
- Retain current indicators, averaging times, and forms.
- The **annual** standard should be $10 \, \mu\text{g/m}^3$ to $8 \, \mu\text{g/m}^3$ (versus $12 \, \mu\text{g/m}^3$ now).
- The **24-hour** standard should be $30 \, \mu\text{g/m}^3$ to $25 \, \mu\text{g/m}^3$ (versus $35 \, \mu\text{g/m}^3$ now).
- **Consistent epidemiological evidence** from multiple multi-city studies, augmented with evidence from single-city studies, at policy-relevant ambient concentrations in areas with design values at and below the levels of the current standards.
- **Supported** by research from experimental models in animals and humans and by accountability studies.
Major Findings: Fine Particle Standards

- A motivation for strengthening the 24-hour PM$_{2.5}$ standard is high 24-hour to annual ratios related to **residential wood combustion** in some areas.
- Panel notes **growing frequency and severity of so-called “wildfires.”**
Accounting for Limitations

• The Panel considered in detail uncertainties and limitations of available epidemiologic evidence, such as:
 – Use of linear, multipollutant models
 – Possibility that co-pollutants may be effect modifiers rather than confounders
 – Confounding by individual characteristics has been considered and evaluated
 – No rationale or empirical support for confounding by temperature in annual studies

• Consistency among multiple multicity models, for which there is variability in relative ambient mixtures of co-pollutants, population demographics, climatic zones, and distributions of housing characteristics, supports the robustness of their results.
Recommended Range for Annual PM$_{2.5}$ Standard

- At 10 µg/m3 there is a very high degree of scientific confidence in the relationship between exposure to fine particles and adverse effects.
- The risk is linear with no threshold below the current standard down to an annual level of 8 µg/m3 or lower.
- The Panel finds that there is not sufficient scientific certainty below 8 µg/m3 to support a lower recommendation.
Other Issues: At Risk Groups

- Di et al. (2017a) chronic Medicare study shows that the relative risk for African Americans is three times higher than that of the entire population (hazard ratio of 1.21 per 10 µg/m³ increase in PM$_{2.5}$).
BAAQMD’s Questions

• Are current PM standards sufficiently protective? **Emphatic NO** – definitely not for PM$_{2.5}$.

• How has the PM health evidence been strengthened? **Better “exposure” models**, much larger study populations at much lower levels than before.

• What new health effects are now recognized? **Strengthening of some causality determinations**, but largely the focus is still premature mortality, respiratory morbidity, and cardiovascular morbidity.

• New endpoints like cancer and central nervous system effects? **Opinions differ**.

• New sensitive groups, like children and lower socioeconomic status, SES, populations? **Growing recognition of “at risk” groups**.

• Are all types of PM equal? **Probably not**. Or, are some more dangerous than others? **Probably. But, more work needed. No components are as yet ‘exonerated.’**

• How severe are PM health risks? **Premature mortality is severe**.

• What additional health benefits can be achieved by further reducing PM to below current standards? **Difficult to quantify with certainty but on the order of tens of thousands of deaths nationally.**
BAAQMD’s Questions

- How important are short-term PM events, like wildfires? **Not well-known scientifically but of concern for potential or anticipated effects. Research recommended.**
- How should we weight them in comparison with ongoing day-to-day PM levels? **No simple answer. Depends... can they be controlled? If so, how? Via a state implementation plan? And would you slap non-attainment on an area just devastated by a wildfire?**
- How important are ultrafine particles, UFPs? **Current evidence of adverse effects is generally weak but there is concern for potential or anticipated effects. Need more monitoring to support more epidemiological studies. Panel recommends a UFP FRM for this purpose.**
- Should we consider more than just PM mass? **(meaning particle number concentration?) In research, absolutely. In regulation, too soon, unless one takes a very precautionary, highly risk-averse decision approach.**
- Which is most protective, an annual average target or a 24-hour average one? Or, a sub-daily average? **For most parts of the country, annual can offer protection also for 24-hour averages. For other parts, not so. Panel comments on this. Health data on sub-daily is too limited as yet to support a standard at the national level, but Panel has recommendations to look at this further.**
Next Steps

• CASAC will release its draft report on the draft PM Policy Assessment within a few weeks.
• CASAC will meet on December 3, 2019 to review and likely finalize its report to the Administrator
• Opportunity for public comment in writing beforehand and oral comment at the meeting.
• CASAC will review the draft ISA and draft PA for Ozone at the Dec 3-6, 2019 meeting.
Key Points

• The NAAQS Science Review Process Worked Well Until 2017

• EPA Administrators Pruitt and Wheeler Have Broken the Process

• Particulate Matter Science Review By CASAC is Highly Deficient: Appropriate to Look Elsewhere

• Disbanded CASAC PM Review Panel Reconvened Itself

• Key Findings of the Independent Particulate Matter Review Panel
Acknowledgments

- Union of Concerned Scientists hosted the October 2019 meetings of the Panel. Special thank you to Dr. Gretchen Goldman.
- Mr. Chris Zarba acted in the role of a designated officer for the panel.
- Mr. John Bachmann and Mr. Steven Silverman provided technical and legal clarifications, respectively.
- This presentation has not been reviewed or approved by anyone. The author is solely responsible for its content.
frey@ncsu.edu

Report of the Independent Particulate Matter Review Panel is at:

ucsusa.org/pmpanel
Overview of EPA’s Process for Reviewing National Ambient Air Quality Standards, 2016

1. Workshop on science-policy issues
2. Integrated Review Plan (IRP): timeline and key policy-relevant issues and scientific questions
3. Integrated Science Assessment (ISA): evaluation and synthesis of most policy-relevant studies
4. Risk/Exposure Assessment (REA): quantitative assessment, as warranted, focused on key results, observations, and uncertainties
5. REA Planning Document
6. Clean Air Scientific Advisory Committee (CASAC) review
7. Public comment
8. Policy Assessment (PA): staff analysis of policy options based on integration and interpretation of information in the ISA and REA
9. Interagency review
10. Agency decision making and draft proposal notice
11. EPA proposed decisions on standards
12. Public hearings and comments on proposal
13. Agency decision making and draft final notice
14. Interagency review
15. EPA final decisions on standards
Generic “Full” NAAQS Science Review from CASAC and Public Perspective

CASAC Meeting* Topic

<table>
<thead>
<tr>
<th>Meeting</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 2</td>
<td>Draft Integrated Review Plan</td>
</tr>
<tr>
<td>3 & 4</td>
<td>1st Draft Integrated Science Assessment</td>
</tr>
<tr>
<td></td>
<td>Risk & Exposure Assessment Plan</td>
</tr>
<tr>
<td>5 & 6</td>
<td>2nd Draft Integrated Science Assessment</td>
</tr>
<tr>
<td></td>
<td>1st Draft Risk & Exposure Assessments</td>
</tr>
<tr>
<td>7 & 8</td>
<td>2nd Draft Risk & Exposure Assessments</td>
</tr>
<tr>
<td></td>
<td>1st Draft Policy Assessment</td>
</tr>
<tr>
<td>9 & 10</td>
<td>2nd Draft Policy Assessment</td>
</tr>
</tbody>
</table>

*Meetings 1, 2, 4, 6, 8, 10 by teleconference; Meetings 3, 5, 7, 9 face-to-face. Public Comment at EVERY meeting (10 opportunities)
Pruitt/Wheeler (P/W) Particulate Matter NAAQS Science Review from CASAC and Public Perspective

<table>
<thead>
<tr>
<th>CASAC Meeting*</th>
<th>Topic</th>
<th>2016 Before P/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 2</td>
<td>Draft Integrated Review Plan</td>
<td></td>
</tr>
<tr>
<td>3 & 4</td>
<td>1st Draft Integrated Science Assessment</td>
<td></td>
</tr>
<tr>
<td>5 & 6</td>
<td>1st Draft Policy Assessment</td>
<td></td>
</tr>
</tbody>
</table>

*Meetings 1, 2, 4, 6 by teleconference; Meetings 3, 5 face-to-face
Public Comment at EVERY meeting (6 opportunities) [Only 4 in P/W era]
Wheeler Ad Hoc “Pool” of External Consultants for PM and O₃ Reviews

“Pool” of 12
May only interact with CASAC in writing

No Iteration
Within Pool Or With CASAC

No Interactive Deliberation

Written questions from CASAC

Written answers from “Pool”

CASAC
Typical Pre-Pruitt/Wheeler CASAC for PM and O₃ Reviews: CASAC Augmented with PM and O₃ Panels

- ucsusa.org/pmpanel
- 11 page letter (5 pages of text)
- Attachment A: Panel Roster (2 pages)
- Attachment B: Consensus Responses (43 pages)
- Attachment C: Individual Member Comments (117 pages)
- Attachment D: History, Membership Criteria, and Administrative Procedures of the Panel
- Attachment E: Panel Member Biosketches
Major Findings: Coarse PM

• Coarse PM (PM$_{10}$ as an indicator for PM$_{10-2.5}$)
 – Retain current indicator, form, and averaging time (24-hour)
 – Current level of protection should at least be maintained
 – Need to revise downward with downward revision of 24-hour PM$_{2.5}$ standard.
 – Should move to PM$_{10-2.5}$ as the indicator in the next review.
Major Findings: Visibility

- Welfare (Secondary) Standards
 - Current annual standard has no effect (15 μg/m3 vs. 12 μg/m3 for primary PM$_{2.5}$ standard.
 - Annual should at least match primary annual.
 - 24-hour standard is not adequate to protect against visibility effects.
 - A second draft of the PA should identify and analyze alternatives.
 - Panel offers recommendations regarding alternative indicators, averaging times, forms, and levels to be considered.
Process Issues (Overview, Examples)

- Since 2017, the Panel finds that the EPA has made unwarranted changes to the CASAC and the NAAQS review process.
- Detailed recommendations to reverse the unwarranted changes are in the consensus responses.
- A second draft of the ISA should be reviewed by CASAC and the public, and the ISA should be finalized, prior to release of a second external review draft of the PA.
- The CASAC PM Review Panel should be reappointed to provide CASAC with the expertise it needs.
New Federal Reference Methods Needed

• The Panel recommends that Federal Reference Methods be developed for Ultrafine Particles and Black Carbon

• FRMs for UFP and BC should be deployed to collect data needed for health studies and for baselines
Break
Advisory Council Discussion with Health Effects Panel
Discussion Questions

Are current PM standards sufficiently health protective?

Are some species of PM more dangerous than others?

What is role of ultrafine particles (UFPs)?

How should air quality targets be set? Should form of target expand to account for more than just mass?

How should we include draft PM ISA’s new “likely-causal” health endpoints (nervous system effects, cancer) and new more sensitive populations (children, lower socio-economic status)?

What are health impacts of high-concentration acute events (e.g., wildfires)? How should we compare them to day-to-day PM impacts?
Lunch

Keynote – Gina McCarthy
Gina McCarthy

• Former EPA Administrator
• Finalized the Clean Power Plan and the Clean Water Rule
• Professor of the Practice of Public Health in the Department of Environmental Health at Harvard T.H. Chan School of Public Health
• Director of the Center for Climate, Health, and the Global Environmental
• Member of the Board of Directors of the Energy Foundation and Ceres
• M.Sc. in Environmental Health Engineering, Planning and Policy from Tuft’s University
Particulate Matter: Spotlight on Health Protection
Exposure and Risk
Lauren Zeise, Ph.D.

- Appointed by Gov. Brown as Director of the California Office of Environmental Health Hazard Assessment in December 2016
- Former Chief of the cancer unit at the California Department of Health Services
- Leading role in OEHHA’s development of CalEnviroScreen
- Co-led the team that developed the hazard trait regulation for California’s Safer Consumer Products program
- Member, fellow, former editor, and former councilor of the Society for Risk Analysis
- 2008 recipient of the Society’s Outstanding Risk Practitioner Award
- Ph.D. from Harvard University
Exposure and Risk Panel
Particulate Matter: Spotlight on Health
Bay Area Air Quality Management District
October 28, 2019

Lauren Zeise
California Environmental Protection Agency
Office of Environmental Health Hazard Assessment
Population Concentration-Response Relationships

Incidence of Effect

Background
Variability Underlying Concentration Response Observations

Variable Risk at a Given Dose

Population Frequency

Increasing Risk

Variable Concentration with Location

High: Low ~ 5:1

Median

Sarah Vogel svogel@edf.org
Considerations for Interventions

- Risk determined by individual’s biologic make-up, health status, endogenous and exogenous exposures that affect toxic chemical process
- Differences among people in these factors affect the shape of the concentration response curve
Individual vs Population Concentration-Response

<table>
<thead>
<tr>
<th></th>
<th>Individual level</th>
<th>Population Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An individual's:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Probability of Effect</td>
<td>Fraction of Population Affected</td>
</tr>
<tr>
<td>The population:</td>
<td>Background - Concentration</td>
<td>Concentration</td>
</tr>
<tr>
<td>Linear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. An individual's:</td>
<td>Probability of Effect</td>
<td>Fraction of Population Affected</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Background - Concentration</td>
<td>Concentration</td>
</tr>
<tr>
<td>The population:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. An individual's:</td>
<td>Probability of Effect</td>
<td>Fraction of Population Affected</td>
</tr>
<tr>
<td>Linear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The population:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Measure exposures to diesel exhaust in East Bay community residents
 - Biomonitoring – urine (1-Nitropyrene metabolites)
 - Dust in home
 - Indoor Air (1-Nitropyrene, Black carbon with real-time sensor)

• Measure in child-parent pairs to evaluate exposure patterns within family and across ages

• Collect urine & air samples at two time points to look at seasonal differences
 - 25 families: one urine sample at end of 4 day periods
 - 15 families: daily urine samples x 4 days

• Collect information related to sources and activities
 - Exposure questionnaire
 - GPS data loggers – every 5 minutes
 - Activity diaries
EBDEP Participant Locations

- East Bay
- Neighborhoods with a range of diesel exhaust exposure, based on:
 - CalEnviroScreen's diesel particulate matter indicator (based on CARB data)
 - Diesel truck traffic patterns
 - Local air pollution mapping

Zeise OEHHA October 28 2019
GIS Diesel Source Layers and Maps

- Permitted stationary emission sources (BAAQMD)
- Railway lines and railway road crossings
- Caltrans Truck Network
- Caltrans Bottlenecks (highway congestion)
- AC Transit and Amtrak bus routes and stops
- Major roads
- Industrial land use zoning maps (county)
- Highway Performance Monitoring System traffic data
- California ports
Complementary Pilot Air Quality Study

• Measure ambient air concentrations of black carbon and selected PAHs in areas of Richmond relevant to EBDEP

• Conduct field sampling for several days during periods of moderate and high pollution

• Analyze results to:
 • Compare levels across location and time
 • Examine patterns for possible clues on sources

Principal Investigator: Betsey Noth, UC Berkeley
OEHHA funded
OEHHA Biomonitoring to Support AB 617

• Directly measure exposure to a chemical(s) of concern
• Establish baseline exposures prior to reduction efforts
• Examine exposures associated with a specific source(s) in the community, and/or
• Evaluate the effectiveness of exposure reduction efforts
Estimated PM$_{2.5}$ Source Contribution by Monitoring Site

Annual Average PM$_{2.5}$ µg/m3

<table>
<thead>
<tr>
<th>Source</th>
<th>Marker Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>EC, OC, K</td>
</tr>
<tr>
<td>Secondary Ammonium Nitrate</td>
<td>NO$_3^-$, NH$_4^+$</td>
</tr>
<tr>
<td>Secondary Ammonium Sulfate</td>
<td>SO$_4^{2-}$, NH$_4^+$</td>
</tr>
<tr>
<td>Resuspended Soil</td>
<td>Al, Si, Ca, Fe, Ti</td>
</tr>
<tr>
<td>Vehicular Emissions</td>
<td>EC, OC, Fe, Cu, Zn</td>
</tr>
</tbody>
</table>
PM$_{2.5}$ in Bay Area During 2017 Napa Wildfire

Health Outcomes Being Investigated
- Cardiovascular Disease
- Ischemic Heart Disease
- Acute Myocardial Infarction
- Dysrhythmia
- Cerebrovascular Disease
- Transient Ischemic Attack
- Peripheral Vascular Disease
- Diabetes
- Respiratory Disease
- Asthma/Wheeze
- Pneumonia
- Chronic Lower Respiratory Disease
- Acute Upper Respiratory Infection
- Mental/Behavioral Disorders
Wildfire Affects Annual Average of PM$_{2.5}$

- Wildfire PM adds to underlying “baseline”
- Monitor in West Oakland:
 - 2017: 12.9 µg/m3
 - 2018: 14.4 µg/m3
Chemical Stressor

Background Exposure (Endogenous and Exogenous)

Susceptibility: Health & Disease Status, Genetics, Age, Sex

Individual’s Response

Chemical Concentration

Inter-individual Heterogeneity in Susceptibility and “Background”

Population Response

Chemical Concentration
Acknowledgements

• OEHHA Community Health and Environmental Impacts Section: Rupa Basu, Keita Ebisu, et al.

• OEHHA Safer Alternatives Assessment and Biomonitoring Section: Sara Hoover, Russ Bartlett, Duyen Kauffman et al.
Particulate Matter: Spotlight on Health Protection
Julian Marshall, Ph.D.

• Kiely Endowed Professor of Environmental Engineering at University of Washington with a focus on air quality management
• Founded and runs the Grand Challenges Impact Lab, a UW study abroad program in Bangalore, India
• Associate Editor for Environmental Health Perspectives and Development Engineering
• Published over 100 peer-reviewed journal articles
• Ph.D. in Energy and Resources from UC Berkeley
Particulate Matter: Spotlight on Health Protection
Scott Jenkins, Ph.D.

- Senior Environmental Health Scientist in EPA's Office of Air Quality Planning and Standards (OAQPS)
- Currently leading EPA’s review of the National Ambient Air Quality Standards (NAAQS) for Particulate Matter (PM)
- Howard Hughes Postdoctoral Research Fellow in the Department of Cell Biology at Duke University
- Ph.D. in Behavioral Neuroscience from the University of Alabama at Birmingham
REVIEW OF THE NATIONAL AMBIENT AIR QUALITY STANDARDS FOR PARTICULATE MATTER

OVERVIEW OF THE DRAFT POLICY ASSESSMENT

Scott Jenkins
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards

Presentation to the Bay Area Air Quality Management District

October 28, 2019
Outline of Presentation

• Overview of the standards, process and schedule

• Key information and analyses in draft Policy Assessment

• Preliminary conclusions on the primary PM\textsubscript{2.5} standards
Current PM Standards Under Review

Current Standards – Last Review Completed in 2012*

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Averaging Time</th>
<th>Primary/Secondary</th>
<th>Level</th>
<th>Form</th>
<th>Decisions in 2012 Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>Annual</td>
<td>Primary</td>
<td>12.0 µg/m³</td>
<td>Annual arithmetic mean, averaged over 3 years</td>
<td>Revised level from 15 to 12 µg/m³**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secondary</td>
<td>15.0 µg/m³</td>
<td></td>
<td>Retained**</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>Primary and Secondary</td>
<td>35 µg/m³</td>
<td>98th percentile, averaged over 3 years</td>
<td>Retained</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>24-hour</td>
<td>Primary and Secondary</td>
<td>150 µg/m³</td>
<td>Not to be exceeded more than once per year on average over a 3-year period</td>
<td>Retained</td>
</tr>
</tbody>
</table>

*Prior to 2012, PM NAAQS were reviewed and revised several times – established in 1971 (total suspended particulate – TSP) and revised in 1987 (set PM$_{10}$), 1997 (set PM$_{2.5}$), 2006 (revised PM$_{2.5}$, PM$_{10}$)

**EPA eliminated spatial averaging for the annual standards
Process and Anticipated Schedule for This Review of the PM NAAQS

Planning: Identified new scientific information, policy-relevant issues
- Call for Information
 - Workshop
 - Planning Document

Assessment: Scientific evidence, risk information, potential policy implications for standards (indicator, averaging time, form, level)
- Integrated Science Assessment – final in Dec 2019
- Policy Assessment – final in Jan 2020

Rulemaking: Agency decision making, interagency review and public comments process
- Proposed Decision – Spring 2020
- Final Decision – Dec 2020

Clean Air Scientific Advisory Committee (CASAC) review

Public comments
Evaluating Primary PM$_{2.5}$ Standards: Summary of Approach

- The **annual PM$_{2.5}$ standard** is viewed as the principle means of providing public health protection against the bulk of the distribution of short- and long-term PM$_{2.5}$ exposures.

- In previous reviews, conclusions on the annual PM$_{2.5}$ standard have been informed by consideration of the PM$_{2.5}$ air quality distributions associated with mortality or morbidity in epidemiologic studies.
 - The current level of 12.0 μg/m3 was set below the overall means of the long- and short-term PM$_{2.5}$ exposure estimates in key studies.

- In this review, the draft PA characterizes those distributions by identifying overall means of PM$_{2.5}$ exposure estimates, concentrations corresponding to the lower quartiles of data (when available), and study-area metrics similar to design values (pseudo-design values).

- The **24-hour PM$_{2.5}$ standard**, with its 98th percentile form, is viewed as a means of providing protection against short-term exposures to peak PM$_{2.5}$ concentrations, such as can occur in areas with strong contributions from local or seasonal sources, even when mean PM$_{2.5}$ concentrations remain relatively low.

- Controlled human exposure studies provide evidence for health effects following single, short-term PM$_{2.5}$ exposures to concentrations that typically correspond to upper end of the PM$_{2.5}$ air quality distribution in the U.S. (i.e., “peak” concentrations – see additional slides).
PM$_{2.5}$ Concentrations in Epidemiologic Studies

- Overall mean concentrations reflect study averages of daily or annual PM$_{2.5}$ exposures – bulk of data generally occurs around overall means.
- Key studies consistently reporting positive and statistically significant associations have overall mean PM$_{2.5}$ concentrations > 8.0 μg/m3.
- In studies with data available, 75% of health events occurred in areas with mean PM$_{2.5}$ concentrations ≥ 11.5 μg/m3 (U.S. studies) or 6.5 μg/m3 (Canadian studies).

*Colored squares reflect overall study-reported mean (or median) PM$_{2.5}$ concentrations. Circles reflect the mean PM$_{2.5}$ concentrations corresponding to the 25th (filled) and 10th (open) percentiles of health events.
PM$_{2.5}$ Concentrations in Epidemiologic Studies (Continued)

- Many new studies have used hybrid modeling approaches to estimate PM$_{2.5}$ exposures in monitored and unmonitored locations.
- Approaches use information from multiple sources, potentially including satellites and models, in addition to ground-based monitors.
- All of these key studies report positive and statistically significant associations and have overall mean PM$_{2.5}$ concentrations > 8.0 µg/m3.
- In most studies with data available, 75% of exposures (or deaths) are at predicted ambient PM$_{2.5}$ concentrations > 6.0 µg/m3.

Uncertainties in using this information to inform conclusions on standards include:

- Mean and lower quartile concentrations are not the same as those used by the EPA to compare with standard levels.
- Studies have not identified a threshold concentration below which associations do not occur.
- Hybrid model performance varies by location, with factors contributing to poorer performance (e.g., sparse monitoring) often coinciding with relatively low ambient PM$_{2.5}$ concentrations.

Hybrid Model-Predicted PM$_{2.5}$ Concentrations

*Colored squares reflect overall study-reported mean PM$_{2.5}$ concentrations. Circles reflect the mean PM$_{2.5}$ concentrations corresponding to the 25th (filled) and 10th (open) percentiles of exposures or deaths.
The draft PA also identifies monitor-based metrics – similar to design values – in study locations (annual and 24-hr pseudo-design values).

For most of the 29 key studies evaluated, ≥ about 25% of study area health events/populations were in locations that generally would have met both standards during study periods.

For 9 key studies, > 50% of study area health events/populations were in such locations.

For 4 key studies, > 75% of study area health events/populations were in such locations.

Uncertainties include:
- Many studies examine a mix of locations and time periods meeting and violating standards
- Values are not available in unmonitored areas
- Values do not reflect current near-road monitoring requirements

PM$_{2.5}$ Annual Pseudo-Design Values in Locations of Key Studies

<table>
<thead>
<tr>
<th>Country</th>
<th>Endpoint Group</th>
<th>Citation</th>
<th>Study Years</th>
<th>Geographic Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>Mortality</td>
<td>Lapele et al., 2012*</td>
<td>2001-2009</td>
<td>U.S. Cities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Komurthong & et al., 2010</td>
<td>2000-2010</td>
<td>U.S. Cities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di et al., 2017*</td>
<td>2000-2012</td>
<td>U.S. Nationwide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wang et al., 2015</td>
<td>2000-2013</td>
<td>7 SE U.S. States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shi et al., 2016</td>
<td>2000-2013</td>
<td>6 NE U.S. States</td>
</tr>
<tr>
<td></td>
<td>Morbidity</td>
<td>Urban et al., 2016</td>
<td>2002-2007</td>
<td>8 CA Counties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monnern et al., 2010</td>
<td>2000-2011</td>
<td>10 CA Communities</td>
</tr>
<tr>
<td></td>
<td>Canada Mortality</td>
<td>Piñualte et al., 2016</td>
<td>2000-2011</td>
<td>Multiple</td>
</tr>
</tbody>
</table>

* Whiskers correspond to 5th and 95th percentiles, boxes correspond to 25th and 75th percentiles, central vertical lines correspond to 50th percentiles.
PM$_{2.5}$ Risk Assessment

- Examined PM$_{2.5}$-associated mortality risk in 47 urban study areas
- Assessed current standards; alternative annual standards with levels of 11.0, 10.0, and 9.0 µg/m3; alternative 24-hour standard with a level of 30 µg/m3
- 2015 analysis year
- Examined two approaches to adjusting air quality
 - Focus on primary PM
 - Focus on secondary PM

47 urban study areas (population ≥ 30 years: ~60M)
- 30 annual-controlling (population ≥ 30 years: ~50M)
- 11 daily-controlling (population ≥ 30 years: ~4M)
- 6 mixed (population ≥ 30 years: ~5M)
Summary of Risk Estimates

Estimates of PM$_{2.5}$-associated deaths in the full set of 47 study areas

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Study</th>
<th>Air quality simulation approach*</th>
<th>Current Standard Absolute Risk (12/35 µg/m3)</th>
<th>CS (12/35) % of baseline**</th>
<th>Alternative Standard Absolute Risk</th>
<th>Alternative Annual (10 µg/m3)</th>
<th>Alternative 24-hr (30 µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term exposure related mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic Heart Disease</td>
<td>Jerrett 2016</td>
<td>Pri-PM</td>
<td>16,500 (12,600-20,300)</td>
<td>14.1</td>
<td>14,400 (11,000-17,700)</td>
<td>16,400 (12,500-20,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>16,800 (12,800-20,500)</td>
<td>14.3</td>
<td>14,200 (10,900-17,500)</td>
<td>16,500 (12,600-20,200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pope 2015</td>
<td>Pri-PM</td>
<td>15,600 (11,500-19,400)</td>
<td>13.3</td>
<td>13,600 (10,100-17,000)</td>
<td>15,400 (11,500-19,200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>15,800 (11,800-19,600)</td>
<td>13.4</td>
<td>13,400 (9,870-16,700)</td>
<td>15,600 (11,600-19,400)</td>
<td></td>
</tr>
<tr>
<td>All-cause</td>
<td>Di 2017</td>
<td>Pri-PM</td>
<td>46,200 (45,000-47,500)</td>
<td>8.4</td>
<td>40,300 (39,200-41,400)</td>
<td>45,700 (44,500-47,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>46,900 (45,600-48,200)</td>
<td>8.5</td>
<td>39,700 (38,600-40,800)</td>
<td>46,200 (44,900-47,500)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pope 2015</td>
<td>Pri-PM</td>
<td>51,300 (41,000-51,400)</td>
<td>7.1</td>
<td>44,700 (35,700-53,500)</td>
<td>50,700 (40,500-60,700)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>52,100 (41,600-52,300)</td>
<td>7.2</td>
<td>44,000 (35,100-52,700)</td>
<td>51,300 (41,000-61,400)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thurston 2015</td>
<td>Pri-PM</td>
<td>13,500 (2,360-24,206)</td>
<td>3.2</td>
<td>11,700 (2,050-21,100)</td>
<td>13,300 (2,330-24,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>13,700 (2,400-24,600)</td>
<td>3.2</td>
<td>11,500 (2,010-20,700)</td>
<td>13,500 (2,360-24,200)</td>
<td></td>
</tr>
<tr>
<td>Lung cancer</td>
<td>Turner 2016</td>
<td>Pri-PM</td>
<td>3,890 (1,240-6,360)</td>
<td>8.9</td>
<td>3,390 (1,080-5,560)</td>
<td>3,850 (1,230-6,330)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>3,950 (1,250-6,460)</td>
<td>9.1</td>
<td>3,330 (1,060-5,470)</td>
<td>3,890 (1,240-6,370)</td>
<td></td>
</tr>
<tr>
<td>Short-term exposure related mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cause</td>
<td>Baxter 2017</td>
<td>Pri-PM</td>
<td>2,490 (983-4,000)</td>
<td>0.4</td>
<td>2,160 (850-3,460)</td>
<td>2,460 (970-3,950)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>2,530 (990-4,060)</td>
<td>0.4</td>
<td>2,120 (837-3,400)</td>
<td>2,490 (982-3,990)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Itc 2013</td>
<td>Pri-PM</td>
<td>1,180 (-16.2-370)</td>
<td>0.2</td>
<td>1,020 (-14.2-2050)</td>
<td>1,160 (-16.2-340)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>1,200 (-16.2-400)</td>
<td>0.2</td>
<td>1,000 (-14.2-2020)</td>
<td>1,180 (-16.2-370)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanobetti 2014</td>
<td>Pri-PM</td>
<td>3,810 (2,530-5,080)</td>
<td>0.7</td>
<td>3,300 (2,190-4,400)</td>
<td>3,760 (2,560-5,020)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>3,870 (2,570-5,160)</td>
<td>0.7</td>
<td>3,250 (2,160-4,330)</td>
<td>3,810 (2,530-5,070)</td>
<td></td>
</tr>
</tbody>
</table>

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

** CS denotes the current standard.
Uncertainty in risk estimates results from uncertainties in the underlying epidemiologic studies, in the air quality adjustments, and in the application of study and air quality information to develop quantitative estimates of PM$_{2.5}$-associated mortality risks.

Distributions of estimated risks in the 30 study areas where the annual standard is controlling

Estimates of ischemic heart disease deaths associated with long-term PM$_{2.5}$ exposures for air quality adjusted to simulate "just meeting" the current and alternative primary standards (based on Jerrett et al., 2016)
Preliminary Conclusions on the Current Primary PM$_{2.5}$ Standards

• The available scientific information can reasonably be viewed as calling into question the adequacy of the public health protection afforded by the current annual and 24-hour primary PM$_{2.5}$ standards

• Basis for this preliminary conclusion:
 – Long-standing body of health evidence, strengthened in this review, supporting relationships between PM$_{2.5}$ exposures and various outcomes, including mortality and serious morbidity effects
 – Recent U.S. and Canadian epidemiologic studies reporting positive and statistically significant health effect associations for PM$_{2.5}$ air quality likely to be allowed by the current standards
 – Analyses of pseudo-design values indicating substantial portions of study area health events/populations in locations with air quality likely to have met the current PM$_{2.5}$ standards
 – Risk assessment estimates that the current primary standards could allow thousands of PM$_{2.5}$-associated deaths per year – most at annual average PM$_{2.5}$ concentrations from 10 to 12 µg/m3 (well within the range of overall mean concentrations in key epidemiologic studies)
Preliminary Conclusions on the Current Primary PM$_{2.5}$ Standards (Continued)

• In contrast, a conclusion that the current primary PM$_{2.5}$ standards do provide adequate health protection would place little weight on the epidemiologic evidence or the risk assessment.

• Such a conclusion would place greater weight on uncertainties and limitations, including:
 – Increasing uncertainty in the biological pathways through which PM$_{2.5}$ exposures could cause serious health effects as the ambient concentrations being considered fall farther below the PM$_{2.5}$ exposure concentrations shown to cause effects in experimental studies.
 – Increasing uncertainty in the potential public health impacts of air quality improvements as the ambient concentrations being considered fall farther below those present in accountability studies that document improving health with declining PM$_{2.5}$
 • Accountability studies evaluate air quality improvements with “starting” mean PM$_{2.5}$ concentrations (i.e., prior to the reductions evaluated) from ~13 to > 20 µg/m3.
 – Uncertainty in the risk assessment results from uncertainties in the underlying epidemiologic studies, in the air quality adjustments, and in the application of study and air quality information to develop quantitative estimates of PM$_{2.5}$-associated mortality risks.
Preliminary Conclusions on the Annual Standard Level

• If consideration is given to revising the primary PM$_{2.5}$ standards to increase public health protection, it would be appropriate to focus on lowering the level of the annual standard

• Support for particular levels depends on the weight placed on various aspects of the science and uncertainties

• For example, a level as low as 10.0 µg/m3 could be considered if weight is placed on:
 – Setting a standard to maintain mean PM$_{2.5}$ concentrations below those in most key U.S. epidemiologic studies
 – Setting the standard level at or below the pseudo-design values corresponding to about the 50th percentiles of study area health event/populations in key U.S. studies
 – Setting a standard estimated to reduce PM$_{2.5}$-associated health risks, such that a substantial portion of the risk reduction is estimated at annual average PM$_{2.5}$ concentrations ≥ ~8 µg/m3

• A level below 10.0 µg/m3, potentially as low as 8.0 µg/m3, could be supported to the extent more weight is placed on PM$_{2.5}$ health effect associations and estimated risks at lower concentrations and less weight is placed on uncertainties at lower concentrations
Preliminary Conclusions on the 24-Hour Standard Level

• Purpose of the 24-hour standard is to provide protection against the short-term exposures to peak PM$_{2.5}$ concentrations, such as those that can occur in areas with strong contributions from local or seasonal sources even when overall mean concentrations remain relatively low.

• In considering potential support for additional protection against short-term exposures to “peak” concentrations, we focus on the evidence from key epidemiologic studies and human clinical studies:
 – Key epidemiologic studies do not indicate that PM$_{2.5}$ health effect associations are driven disproportionately by peak concentrations.
 – Human clinical studies report effects following single short-term PM$_{2.5}$ exposures, but these studies generally examine exposures well above those measured in areas meeting the current standards.

• Thus, the evidence provides little support for the need to provide additional protection against short-term peak concentrations in areas meeting the current 24-hour standard and the current, or revised (i.e., with a lower level), annual standard.
Additional Information
Two-Hour PM$_{2.5}$ Concentrations

- In human clinical studies, statistically significant effects on one or more indicators of cardiovascular function are often, though not always, reported following 2-hour exposures to average PM$_{2.5}$ concentrations at and above about 120 µg/m3.

- There is less consistent evidence for effects following exposures to lower concentrations.

Figure 2-14. Frequency distribution of 2015–2017 2-hour averages for sites meeting or violating the annual PM$_{2.5}$ NAAQS for October to March (blue) and April to September (red).
Annual and 24-Hour DVs

Draft PA Figure 2-11

It is likely that some of the annual and daily design values above are impacted by potential exceptional events associated with wildfire smoke that have yet to be removed from the calculations.
PM$_{2.5}$: Recent Concentrations

- Highest annual average and 98th percentile PM$_{2.5}$ concentrations are in California.
- Fires in the Northwest were frequent during the 2015-2017 period.
- Most Eastern sites had annual average and 98th percentile values below 10 and 25 µg m$^{-3}$, respectively.
• The annual average and 98th percentile values have decreased over much of the Eastern US since 2000

• In the Western US, many sites have had no trend in the 98th percentile values in part because of the impact of meteorology and wildfires
Key PM$_{2.5}$-Related Health Outcomes Considered in the Draft PA

<table>
<thead>
<tr>
<th>Exposure Duration</th>
<th>Outcome</th>
<th>2009 ISA Conclusion</th>
<th>2018 Draft ISA Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-Term</td>
<td>Mortality</td>
<td>Causal</td>
<td>Causal</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular</td>
<td>Causal</td>
<td>Causal</td>
</tr>
<tr>
<td></td>
<td>Respiratory</td>
<td>Likely to be causal</td>
<td>Likely to be causal</td>
</tr>
<tr>
<td></td>
<td>Cancer</td>
<td>Suggestive</td>
<td>Likely to be causal</td>
</tr>
<tr>
<td></td>
<td>Nervous System</td>
<td>None</td>
<td>Likely to be causal</td>
</tr>
<tr>
<td>Short-Term</td>
<td>Mortality</td>
<td>Causal</td>
<td>Causal</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular</td>
<td>Causal</td>
<td>Causal</td>
</tr>
<tr>
<td></td>
<td>Respiratory</td>
<td>Likely to be causal</td>
<td>Likely to be causal</td>
</tr>
</tbody>
</table>
Calculation of PM$_{2.5}$ Pseudo-Design Values

Approach

- Identify study areas (counties/cities) with sufficient monitoring data to calculate pseudo-design values.
- For each monitored area and each 3-yr period of the study, identify the highest monitored PM$_{2.5}$ value.
- For each monitored area, calculate the study-period average of these highest values.
- Link study locations to study populations or health events.
- Arrange study locations by ascending pseudo-design values.
- Identify the cumulative percent of population or health events in study locations with various pseudo-design values.

Example for Di et al. (2017)

![Graph showing cumulative percent of study area population against annual pseudo-design values. The 50th percentile is marked at 11.7 µg/m3.](image)
Particulate Matter: Spotlight on Health Protection
Phil Martien, Ph.D.

- Director of the Assessment, Inventory, & Modeling Division at the Bay Area Air Quality Management District
- Leading role in the Technical Assessment of AB617’s West Oakland Community Action Plan
- Leading role in the Technical Assessment of the Air District’s 2017 Clean Air Plan: Spare the Air, Cool the Climate
- Leading role in the Air District's Community Air Risk Evaluation Program
- Ph.D. from UC Berkeley
Targeting Particulate Matter: West Oakland Community Emissions Reduction Program
Acknowledgements

- Bay Area Air Quality Management District
- West Oakland Environmental Indicators Project
- West Oakland Steering Committee
- California Air Resources Board
Assessment of Particulate Matter (PM) in West Oakland

- Motivation
 - Implementing Assembly Bill (AB) 617: West Oakland Community Emissions Reduction Program

- Modeling-based assessment approach

- Findings
 - Source contributions to impacts
 - Equity-based targets
 - Effective emission reduction measures
Motivation
Implementing AB 617

- Address environmental justice concerns: higher air pollution in some communities

- Key mandates:
 - Local air districts to partner with community groups
 - Identify top sources of community impacts
 - Develop and implement plans to reduce emissions
West Oakland: Year 1 Community Emissions Reduction Plan

- Established partner: WOEIP has decades of experience

- High mobile-source emissions
 - Adjacent to the Port of Oakland
 - Surrounded by the I-880, I-80, I-580, and I-980 freeways
 - Industrial sources

- High health burdens and socio-economic vulnerabilities
Assessment Approach
Regional-Scale and Community-Scale Modeling (2017)

Regional-scale modeling: covers the Bay Area

Local-scale modeling: covers West Oakland, including impacts in receptor area (white) from sources in source area (red)
Pollutants
- PM$_{2.5}$
- Diesel PM
- Air toxics (cancer risk)

Sources modeled
- Port of Oakland and marine
- Railyards and trains
- Vehicles on freeways, streets
- Truck-related businesses
- Permitted stationary sources

Not modeled
- Construction, residential woodburning, and restaurants
West Oakland
Emissions by Source Category (2017)

(a) PM$_{2.5}$

(b) Diesel PM

(c) Cancer risk-weighted toxics
Impact Varies by Location

Local Impact Zones
Local Impact Zones

1. Lower bottom/West Prescott
2. Third Street
3. Seventh Street
4. Acorn
5. Upper Adeline
6. Clawson
7. West Grand and San Pablo

Black Carbon above Median (Env. Def. Fund, 2019-01-13)
Impact Zones on Census Blocks
Source Apportionment
Grand total of modeled impacts from local sources

Sub-total from trucks, cars, and other vehicles on streets and highways

Sub-total from locomotive engines and railyards

Sub-total from harbor craft, ocean-going vessels, drayage, cargo handling, etc.

For any location, we can use the sub-totals to draw pie charts showing the relative impacts of sources A, B, C, etc.
Modeled Diesel PM (from Local Sources)

with Source Apportionment in Impact Zones
Modeled PM$_{2.5}$ (from Local Sources)

with Source Apportionment in Impact Zones
Equity-Based Targets
Unequal Impacts: Diesel PM Across West Oakland

* Contributed by modeled “present-day” emissions from existing local sources. Impacts from sources outside West Oakland not included.
Unequal Impacts: PM$_{2.5}$ Across West Oakland

* Contributed by modeled "present-day" emissions from existing local sources. Impacts from sources outside West Oakland not included.
Targets and Source Contributions for Diesel PM

Targets:

2025 – Today’s average residential neighborhood

2030 – Today’s cleanest residential neighborhood

Source:

- Highway
- Street
- Port
- Rail
- Permitted
- Permitted
- Other

2025 target: 0.25 ug/m³

2030 target: 0.13 ug/m³

* Contributed by emissions from modeled local sources. Impacts from sources outside West Oakland not included.
Targets and Source Contributions for PM$_{2.5}$

Targets:

2025 – Today’s *average* residential neighborhood

2030 – Today’s *cleanest* residential neighborhood

* Contributed by emissions from modeled local sources. Impacts from sources outside West Oakland not included.
Impact Per Ton Varies by Source

What Moves the Needle?
Impact Per Ton: Diesel PM in West Oakland

Circles are modeled local sources. Red is more impact. Blue is less impact. Percentages are shares of modeled impact.
Impact Per Ton: PM$_{2.5}$ in West Oakland

Circles are modeled local sources. Red is more impact. Blue is less impact. Percentages are shares of modeled impact.
More Information

- baaqmd.gov/communityhealth/community-health-protection-program/
- woeip.org/
- arb.ca.gov/ourwork/programs/community-air-protection-program
- pmartien@baaqmd.gov
Extra Slides
How Much is Local?
Local vs. Regional

PM$_{2.5}$

- **Local model – mapped impacts***
 - 1.7 µg/m3

- **Regional model (minus West Oakland)**
 - 0.3 µg/m3

*Construction, residential woodburning, and restaurants not modeled
Thank you
Break
Advisory Council Discussion with Exposure and Risk Panel
Discussion Questions

What are major sources of PM in the Bay Area?

What PM levels exist in Bay Area? What health risks do they pose?

How much additional health benefit can be achieved?

How should we account for spatial scale of effects (i.e., regional versus local-scale impacts, including proximity to major sources)?

How should we determine which measures would most move public health needle?
Advisory Council Deliberation
Adjournment
Particulate Matter: Spotlight on Health Protection
Advisory Council Meeting Summary: BAAQMD Update on Current and Emerging Efforts on Particulate Matter

December 9, 2019
Table of Contents

Executive Summary .. 2

Background and Timeline .. 6

Update on Particulate Matter (PM) Air District Work: Regional- and Local-Scale PM$_{2.5}$ Source Apportionment..... 8

Update on Particulate Matter (PM) Air District Work: Monitoring .. 12

Update on Particulate Matter (PM) Air District Work: Grants and Incentives ... 18

Update on Particulate Matter (PM) Work: CARB PM Research and Rules .. 23

Update on Particulate Matter (PM) Air District Work: PM Rules and Regulatory Development 27

Discussion of Draft October PM Symposium Report and Advisory Council Q&A Document 30

Public Comment .. 31

Next Steps ... 33

Appendix — Questions from Advisory Council and Air District sent to October PM Symposium Panelists 34
Executive Summary

The December 9, 2019 meeting of the Advisory Council (Council) of the Bay Area Air Quality Management District (Air District) focused on the Air District’s current and emerging work to understand, monitor, reduce, and control regional and localized particulate matter (PM) concentrations.

As the timeline below illustrates, this Advisory Council meeting followed the October PM Symposium, which focused on the state of the science, and preceded the upcoming March PM Symposium. The March PM Symposium will focus on local community work, needs, and priorities. The PM Symposium Series as a whole will inform recommendations from the Advisory Council to the Air District’s Board concerning further action the Air District can take to protect the health of Bay Area residents, particularly those who are disproportionately impacted by PM exposure.

[Note: At the time of the presentation, the PM Symposium Series was anticipated to continue through July; however, due to the COVID-19 pandemic and the Bay Area shelter-in-place order, this timeline has changed. Air District staff, together with the Advisory Council and community members, are continuing to discuss particulate matter reduction strategies.]

The December meeting featured presentations regarding local, regional, and state PM reduction initiatives from Air District staff members and a representative from the California Air Resources Board (CARB). Additional agenda items included Advisory Council discussion of a written report on the October PM Symposium; development of a new document by the Advisory Council, which will provide responses to the questions originally posed by the Advisory Council and the Air District to the October PM Symposium panelists; and public comment.
Presentations

Source Apportionment. Phil Martien, Director of Assessment, Inventory, and Modeling, presented the Air District’s current knowledge and information gaps regarding the sources of fine particulate matter (PM) in the Bay Area (excluding wildfires). New priorities require the Air District and its partners (CARB, Caltrans) to evaluate and update source apportionment procedures and corresponding regulatory frameworks. As PM emissions from previously dominant sources (such as vehicle emissions) are reduced, additional sources emerge as priorities for controlling PM, yet less information is available about these newly emergent top sources. In particular, models for brake and tire wear and road dust have not been updated since the 1980s. Equally, the Air District’s new focus on local-scale exposures requires new approaches to data collection, analysis, and rulemaking regarding stationary-source emissions. Point sources that are not significant at the regional level have not historically been prioritized for monitoring and control. These sources may be significant contributors of PM$_{2.5}$ at the local level.

Monitoring. Ranyee Chiang, Director of Meteorology and Measurements, along with assistant managers Ila Perkins and Katherine Hoag, presented regarding the Air District’s monitoring network. They discussed both region-wide monitoring — largely designed to track progress against national ambient air quality standards — and more recently deployed monitoring approaches that are designed to address the Air District’s emerging focus on community-scale concentrations or impacts from specific sources of emissions. In response to the Advisory Council’s requests, additional information was shared regarding ultrafine particles and wildfires. Ultrafine particle monitoring has been in place for several years but is limited in scope by costs and scientific limitations of the instrument. Wildfires have caused dramatic increases to PM$_{2.5}$ concentration levels in the Bay Area, reversing a decade-long downward trend. The Air District is currently conducting an Integrated PM Network Assessment to evaluate its PM measurement network and recommend improvements.

Grants and Incentives. Karen Schkolnick, Director of Strategic Incentives, presented a summary of the Air District’s grant revenue sources, current grants and incentive programs, and recent program results. Because these grant programs generally require emission reductions that go beyond regulatory requirements, the majority of the Air District’s grant funding is targeted at reducing PM$_{2.5}$, other criteria pollutants, air toxics, and greenhouse gases from mobile sources and complementing the Air District’s regulatory PM reduction strategies targeting stationary sources. She highlighted several key initiatives focused on reducing mobile-source emissions through adoption of the cleanest commercially available technology (such as Diesel Free by ’33 and Port of Oakland partnerships) and discussed how these programs connect to other Air District priorities including health risk reduction in communities disproportionately impacted by air pollution. Since 1991, more than $1.2 billion has been invested through the Air District’s grants and incentives programs, resulting in significant emissions reductions and accelerated adoption of cleaner and zero-emission technology. However, each program is constrained by the requirements of its funding source — for example, only one of the Air District’s sources of funding can be used to target vehicle miles traveled (VMT) reduction.
CARB PM Research and Rules. Alvaro Alvarado, Manager of Health & Ecosystems Assessment for CARB, described the PM research currently being conducted at CARB and the emerging regulations designed to further decrease PM emissions. In line with the Advisory Council’s requests, he focused on research concerning wildfires, brake and tire wear, and ultrafine particles. Wildfire research includes study of a monkey colony at UC Davis, mobile platforms to monitor in-home exposures, and collaboration with NASA to track wildfires using aircraft. Brake and tire wear research includes laboratory studies to quantify emissions as well as exposure studies with UC Riverside and health effects studies with UCLA. Studies of ultrafine particles include modeling annual average concentrations and speciation throughout the state and associating mortality with long-term exposures using the California Teachers Study cohort. With respect to rulemaking, several regulations are underway or forthcoming to reduce emissions from trucks, cars, and trains.

Air District PM Rules and Regulatory Development. Victor Douglas, Manager of Rule Development, presented a brief overview of the history, current efforts, and emerging directions for rule development in the Air District, which continues to update its rules and regulations to further limit PM exposures. As its focus shifts from an exclusively regional perspective to reducing risks for disproportionately impacted local communities, the Air District is exploring further regulation regarding restaurants, wood smoke, and indirect or magnet sources (e.g. warehouses), as well as the possibility of treating PM as a toxic air contaminant. Although the State of California does not presently recognize undifferentiated PM as an air toxic, it may be possible for the Air District to do so independently.

Discussion of Draft October PM Symposium Report

The Advisory Council discussed the draft report on the October PM Symposium prepared by consulting technical writer Elisabeth Andrews on behalf of the Air District, available online at https://www.baaqmd.gov/news-and-events/conferences/pm-conference. Three clarifying edits were made to the section on “Advisory Council Deliberation,” and consensus was reached on releasing the draft report for public comment.

Advisory Council Q&A Document

Advisory Council Chair Stan Hayes introduced a document he initiated that provides responses to the questions originally posed by the Advisory Council and the Air District to the October PM Symposium panelists concerning PM health effects, exposures, and risks. His aim was to distill the information shared by the panelists into concise answers to each of the questions. Council Member Gina Solomon volunteered to assist Chair Hayes in further developing the question-and-answer document.
Public Comment

Commenters focused on the urgency of decreasing PM exposures and articulated a need to phase out fossil fuels and transition to a zero-carbon economy. Specific suggestions for the Air District included setting PM threshold levels based on sensitive subgroups rather than population averages, utilizing data from low-cost sensors and the California Household Exposure Study, and developing messaging campaigns focused on demonstrating the connection between specific sources of air pollution and health outcomes.

Next Steps

The next PM symposium will take place on March 24, 2020 in Oakland and is focused on presentations from community organizations and leaders. The May event is expected to focus on formulating potential Air District plans to further reduce Bay Area health risks from PM. The final event in the series brings together the Advisory Council and the Air District’s Board of Directors to discuss the information and suggestions shared throughout the PM Symposium Series. During the July meeting, the Advisory Council is expected to present its findings to the Air District’s Board of Directors regarding particulate matter and health in the Bay Area.
Background and Timeline

The December 9, 2019 meeting of the Advisory Council (Council) of the Bay Area Air Quality Management District (Air District) followed the October PM Symposium with updates on the Air District’s current work on particulate matter (PM). Recognizing that PM is the overwhelming driver of health risks from Bay Area air quality, the Advisory Council requested that the Air District convene the PM Symposium Series in order to clarify the state of the science (October 28, 2019), describe current and forthcoming Air District work (December 9, 2019); learn about local community efforts, needs, and priorities (March 24, 2020); and present potential policy strategies (May 2020). As the timeline below illustrates, the series will culminate in recommendations from the Advisory Council to the Air District’s Board of Directors concerning further action the Air District can take to protect the health of Bay Area residents, particularly those who are disproportionately impacted by PM exposure. An additional goal of the Air District and Advisory Council is to provide national leadership on improving air quality at a time when the federal government is retreating from this mission.

![PM Symposium Series Timeline](image)

[Note: At the time of the presentation, the PM Symposium Series was anticipated to continue through July; however, due to the COVID-19 pandemic and the Bay Area shelter-in-place order, this timeline has changed. Air District staff, together with the Advisory Council and community members, are continuing to discuss particulate matter reduction strategies.]

The first symposium took place on October 28, 2019, convening national, state, and local experts to discuss the state of the science on PM health effects, exposures, and impacts. Details on the presenters and the information they shared can be found in the Draft October PM Symposium Report available at https://www.baaqmd.gov/news-and-events/conferences/pm-conference. Following that event, Chair Hayes presented to the Air District Executive
Committee of the Board of Directors on November 6, 2019 and to its full Board of Directors on November 20, 2019 concerning the Advisory Council’s takeaways from the October PM Symposium.

Chair Hayes summarized those presentations at the December meeting. He highlighted several key topics discussed at the October PM Symposium: new evidence of causal relationships between PM and adverse health outcomes including premature death, evidence that the health of children and non-white people are disproportionately harmed by PM, strategies for understanding the sources and distribution of PM, and associations between wildfires and both respiratory and cardiovascular illness. He shared the Sense of the Advisory Council statement that emerged from deliberation at the close of the October PM Symposium:

 The current standards are not adequately health protective.
 Further reductions in PM will realize significant additional health benefits.
 We need more science, and we should act now.

Chair Hayes also listed the topics the Advisory Council sought to explore further: approaching PM as an air toxic, expanding monitoring of ultrafine particles, examining health effects of acute PM exposures (e.g. wildfire smoke), identifying PM species that are particularly dangerous, assisting the Air District in identifying strategies with the “highest bang for the buck” in terms of health protection, and pursuing strategies that have climate and other co-benefits.

These priorities set the agenda for the December meeting, which focused on the Air District’s current and emerging work to understand, monitor, reduce, and control regional and localized PM concentrations. A representative from the California Air Resources Board (CARB) also presented on state-level PM research and regulations. Additional agenda items included Advisory Council discussion of a written report on the October PM Symposium as well as public comment.

The meeting was shared live via webcast, the video archive of which can be viewed at http://baha.granicus.com/MediaPlayer.php?clip_id=6369.
Update on Particulate Matter (PM) Air District Work: Regional- and Local-Scale PM$_{2.5}$ Source Apportionment

Phil Martien
Director, Assessment, Inventory, & Modeling, Bay Area Air Quality Management District
Project Lead, Technical Assessment of AB 617 West Oakland Community Action Plan

| Main takeaway | New priorities require the Air District and its partners (CARB, Caltrans) to evaluate and update source apportionment procedures and corresponding regulatory frameworks. As PM emissions from previously dominant sources are reduced, additional sources emerge as priorities for controlling PM, yet less information is available about these newly emergent top sources. This is particularly true for brake and tire wear and re-entrained road dust. Equally, the Air District’s new focus on local-scale exposures requires new approaches to data collection, analysis, and rulemaking regarding stationary-source emissions. |

Dr. Martien presented the Air District’s current knowledge and information gaps regarding the sources of fine particulate matter in the Bay Area (excluding wildfires). He first described how sources contribute to PM$_{2.5}$ concentration levels at the regional level and then turned to the Air District’s community-scale analysis of local sources of PM$_{2.5}$ for West Oakland. The report provided here reflects both the presentation from Dr. Martien and the additional comments and clarifications from other Air District staff members during the presentation.

Current Air District Work

Proportion of regional vs local contributions. Regional sources are the main driver of Bay Area PM$_{2.5}$ concentrations: in West Oakland, local sources appear to contribute about 20% of the overall PM$_{2.5}$ burden in the community. However, time constraints on the West Oakland analysis precluded modeling approximately 30% of local PM$_{2.5}$ sources including construction, residential wood burning, and commercial cooking; these sources may constitute an additional proportion of local contribution to PM$_{2.5}$ concentration levels. Moreover, local sources may have highly significant impacts for people living or working in the immediate vicinity of those sources.

Regional Scale Apportionment

Based on newly updated modeling, peak levels of annual-average PM$_{2.5}$ in the Bay Area are on the order of 10 micrograms per cubic meter (µg/m3). In Air District modeling the highest values are seen in the Central Valley. It now appears that secondary PM formation contributes almost half of PM$_{2.5}$, which is higher than earlier estimates.
Sources of PRIMARY PM$_{2.5}$ in the Bay Area:

- **Permitted sources (23%)** - Within this category, refineries produce more than 40% of emissions from permitted sources. The top five emitters contribute approximately half of all PM$_{2.5}$ from permitted facilities.

- **On-road mobile sources (27%)** - Within this category, vehicle exhaust now contributes less than 20% of on-road mobile emissions. Brake and tire wear and road dust are far more significant contributors.

- **Non-road mobile sources (16%)** - Within this category, construction activity and commercial marine vessels each account for approximately one third of emissions from non-road mobile sources.

- **Area sources (34%)** - These sources tend to be individually small emitters that collectively make up a large portion of PM$_{2.5}$ emissions, including residential wood combustion and commercial cooking (largely char-broilers).

Sources of SECONDARY PM$_{2.5}$ in the Bay Area:

- **Diesel** trucks and off-road equipment contribute NO$_x$.

- **Stationary sources** (including refineries and manufacturing plants) contribute SO$_2$.

- **Agricultural activity** contributes NH$_3$.

Community Scale Apportionment

Hyperlocal analysis of local-source primary PM$_{2.5}$ emissions was conducted for West Oakland, as described in the report on the October PM Symposium (https://www.baaqmd.gov/news-and-events/conferences/pm-conference) and the West Oakland Community Action Plan. Annual averages of PM$_{2.5}$ concentrations exclusively from local sources were calculated for each census block. PM$_{2.5}$ concentration levels were observed to vary seasonally, across the week, and even hour-by-hour with local activity.

Roadways and permitted facilities. Roadways and permitted facilities emerged as predominant local sources of primary PM$_{2.5}$ in West Oakland (acknowledging again that time constraints precluded modeling construction, residential wood burning, and commercial cooking).

Hyperlocal variation in source apportionment. Predominant sources of local-source PM$_{2.5}$ vary within West Oakland: in its southwest corner, the contributions of port and rail to local-source PM$_{2.5}$ are as high as 25%; roadway contributions in some locations are more than 75%; in other locations stationary sources contribute on the order of 40% of local-source PM$_{2.5}$.

Unequal impacts. Certain census blocks in West Oakland are exposed to much higher levels of local-source PM$_{2.5}$ than others.
Forthcoming Air District Work

The Air District faces challenges in overcoming information gaps concerning newly dominant sources of PM$_{2.5}$. As PM emissions from top sources are reduced, additional sources emerge as priorities, yet less information is available about these other sources. As a result of this lag between re-prioritization and updated scientific literature, there is considerable uncertainty in the estimates of source apportionment, and this uncertainty cannot yet be quantified.

Road dust. As emissions from vehicle exhaust are reduced, the proportion of PM$_{2.5}$ attributed to re-entrained road dust increases. However, calculations for re-entrained road dust were last updated in the late 1980s. These methods are being currently evaluated and updated by CARB and Caltrans.

More analysis of permitted sources. Point sources that are likely significant contributors of PM$_{2.5}$ at the local level may not be significant at the regional level. Because the Air District’s focus has historically been at the regional level, direct measurements have not been collected for most of these sources. For example, because West Oakland permitted facilities account for only about 0.5% of emissions in the Bay Area, they have not historically been prioritized for monitoring and control. The Air District’s new focus on localized impacts demands greater attention to these sources. For other Bay Area locations, particularly those in which the top five stationary-source emitters are located, the Air District is also in the process of determining local-scale impacts for residents. It is not yet clear how much exposure people experience from these emissions, particularly where emissions are distributed through tall stacks.

Post-Presentation Discussion

Brake and Tire Wear and Road Dust

- Council Member Linda Rudolph inquired about the climate impacts of newly emerging PM$_{2.5}$ priorities such as brake and tire wear and road dust. Dr. Martien responded that different PM$_{2.5}$ species can have different climate effects: soot tends to be warming, whereas secondary aerosol can be cooling. Air District Deputy Air Pollution Control Officer Greg Nudd added that road dust tends to be a localized issue as concentrations drop off quickly in spatial terms. However, brake and tire wear have emerged as water quality issues: microplastics in the San Francisco Bay have been shown to originate from tire wear.
- Council Member Severin Borenstein inquired about technologies to reduce these effects; Mr. Nudd and Air District Deputy Air Pollution Control Officer Damien Breen responded that reduction in vehicle miles traveled (VMT) is the primary control strategy as few technologies have emerged apart from vacuuming highways and some new European experiments in under-vehicle misting technologies. He later remarked that successful strategies for reducing road dust involve reducing the load on the road; while sweeping can have some positive effect, reducing track-out from construction and limiting roadside contributions through landscaping or paving tend to be more successful.
Chair Hayes confirmed with Dr. Martien that brake and tire wear and road dust contribute significantly to both local and regional PM$_{2.5}$ exposures and remarked that addressing this issue will be an **important issue for the Air District**.

Council Member Borenstein inquired about the **relationship between speed, congestion, and PM$_{2.5}$**. Mr. Breen explained that less speed generally means higher exhaust emissions; Dr. Martien stated that dynamometer testing is currently investigating the relationship between speed and brake wear for light- and heavy-duty vehicles.

Air toxics approach. Council Member Michael Kleinman suggested that the greatest benefit to public health may be gained through focusing on the most toxic components of PM$_{2.5}$. He provided the example of lead-contaminated particles from the cement plant in Cupertino posing more of a public health threat than ammonium sulfate aerosols (from secondary PM$_{2.5}$ formation) and stated that many of the secondary aerosols in PM$_{2.5}$ are less toxic than the primary aerosols.

Challenges with commercial cooking and residential wood burning. Council Member Solomon inquired about the Air District’s authority with respect to commercial cooking, noting that the categories of regionally significant sources of PM$_{2.5}$ that are within the Air District’s jurisdiction appear to make up 43% of the total regional apportionment. Mr. Nudd, with confirmation from Air District Legal Counsel Brian Bunger, explained that the Air District’s regulatory authority for commercial cooking is clear. The Air District has an existing rule for large charbroilers. However, available post-combustion controls for restaurant cooking are too large to fit on a restaurant roof and too expensive to preserve profit margins. With respect to reducing residential wood burning, the challenge lies in overcoming cultural barriers.
Update on Particulate Matter (PM) Air District Work: Monitoring

Ranyee Chiang
Director, Meteorology & Measurements, Bay Area Air Quality Management District

Ila Perkins
Assistant Manager, Meteorology & Measurements, Bay Area Air Quality Management District

Katherine Hoag
Assistant Manager, Meteorology & Measurements, Bay Area Air Quality Management District

| **Main takeaway** | The Air District’s new focus on community-scale monitoring complements its ongoing region-wide monitoring efforts. UFP monitoring has been in place for several years but remains limited in scope by costs and scientific limitations of the instruments. Wildfires have caused dramatic increases to PM$_{2.5}$ concentration levels in the Bay Area, reversing a decade-long downward trend. |

Dr. Chiang presented along with two assistant managers in Meteorology & Measurements, Ms. Perkins and Dr. Hoag, on the Air District’s current monitoring network. They discussed both region-wide monitoring — largely designed to track progress against national ambient air quality standards — and more recently deployed monitoring approaches that are designed to address the Air District’s emerging focus on community-scale concentrations or impacts from specific sources of emissions. In response to the Advisory Council’s requests, additional information was shared regarding ultrafine particles and wildfires.

Current Air District Work

Regional/Regulatory Network

The Air District currently has 35 fixed air monitoring stations (as well as 20 meteorology stations) that provide timely air quality data to the public, compare PM concentration levels with national and state standards, inform air quality forecasts for the Spare the Air program, and support research studies. Most sites are selected based on the distribution of the population (2010 Census) and the concentration of pollutants, with some additional sites placed downwind of major pollution sources, to describe regional transport of pollutants, or in areas representing general background PM levels.

The measurement instrumentation used for Air District PM monitoring is described in Table 1. Mass measurements support compliance with California and national PM$_{10}$ and PM$_{2.5}$ health-based standards and designate which areas are in attainment or nonattainment; chemically
resolved or speciated data measurements support emission reduction strategies; and particle
counts of smaller particle sizes support science on emissions, air quality impacts, and health
effects of types of PM for which there is currently no health-based standard.

Table 1 - Air District PM Instrumentation

<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>Mass</th>
<th>Chemically resolved or speciated</th>
<th>Particle count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement application</td>
<td>Compliance with standards; Designate areas as attainment or nonattainment</td>
<td>Support emission reduction strategies</td>
<td>Assess air quality impacts and exposures</td>
</tr>
<tr>
<td>Analytical Target</td>
<td>PM$_{10}$ mass</td>
<td>PM$_{2.5}$ mass</td>
<td>Black carbon</td>
</tr>
<tr>
<td>Analytical Methods</td>
<td>Gravimetric</td>
<td>Gravimetric or Filter-based beta attenuation</td>
<td>Filter-based light attenuation</td>
</tr>
<tr>
<td>Number of Active Monitors</td>
<td>7</td>
<td>20</td>
<td>7</td>
</tr>
</tbody>
</table>

Ultrafine Particle Monitoring

Strengths. The Air District has conducted ultrafine particle monitoring for more than seven years in a range of sites, producing data that can be used to understand diurnal and seasonal patterns and trends as well as differences between background, near-road, and typical urban settings.

Limitations. Ultrafine particle instrumentation is costly ($60,000-$100,000 per unit), requires frequent maintenance in PM-burdened areas, and cannot presently support identification of sources and sinks or robust links to specific health impacts.

Results. Air District ultrafine particle monitors installed in a variety of locations reveal that UFP concentrations reflect fresh, primary particulate emissions from both combustion and secondary formation. Higher levels of ultrafine particles are seen in near-road environments, with peaks at high-commute hours and the middle of the day, indicating a photochemical signature.

Wildfires

Prior to 2017, occasional impacts from wildfires did not have a significant influence on year-to-year trends, yet recent wildfires have dramatically affected Bay Area PM$_{2.5}$ concentration levels. Figure 1 shows the overwhelming effect of wildfires in 2017 and 2018. With wildfire days
removed, there has been a downward trend in PM$_{2.5}$ concentration levels for the past decade, yet wildfires have caused a sharp reversal of that trend, resulting in the Bay Area substantially exceeding the 24-hour federal standard for 2016 – 2018.

![Graph showing PM$_{2.5}$ concentration levels over time with a downward trend interrupted by wildfires.]

Figure 1 - Wildfire impact on 24-hour PM$_{2.5}$ concentration levels

Air District initiatives to minimize exposure to wildfire PM include:
- Communicating with the public about reducing personal exposure
- Collaborating with public health officers and other agencies to ensure consistent messaging
- Funding Clean Air Centers in which vulnerable people can seek refuge
- Offering grants and incentives for recovery assistance
- Providing guidance for local organizations, particularly schools

Forthcoming Air District Work

Community-Scale Monitoring

Several new developments support the Air District’s new focus on community-scale monitoring:

Hyperlocal monitoring

In partnership with Aclima, the Air District is conducting street-by-street monitoring using vehicle-mounted sensor-based instrumentation measuring NO$_x$, CO, O$_3$, and PM$_{2.5}$, similar to previous studies Aclima performed in West Oakland and other areas. Measurements for a short-term study in the AB 617 Richmond-San Pablo study area will soon be available, and the Air District aims to use this technology to map average baseline hyperlocal air quality for the entire Bay Area within two years.
Mobile Laboratories
The Air District is also developing a van with mobile monitoring capabilities that can perform high-accuracy, detailed mobile or short-term measurements of PM and many specific gaseous air toxics, including the amount of PM of different sizes. Potential uses of this new monitoring van include supporting localized source apportionment and prioritization, confirming and improving the understanding of air quality issues identified by the AB 617 Steering Committees, and identifying locations for further fixed-site or portable monitoring.

Portable platforms
Highly portable, suitcase-sized monitoring systems will also be developed for battery-powered, continuous, real-time PM measurements. Although these technologies are expensive, they could enable measurements during power outages, which is important for supplying real-time air quality data during wildfires and periods of heightened wildfire hazard. These instruments can also be used to verify data from lower-cost sensor networks (such as PurpleAir).

Combining Monitoring Strategies

Whereas the regional fixed site network is primarily focused on large-scale assessments and long-term trends, the special projects and sensor networks described in Table 2 enable more community-specific assessment. The Air District’s engagement in sensor networks involves working closely with community organizations and companies to provide technical capacity building and advice regarding the advantages, limitations, and uncertainties of different technologies.

Table 2 – Air District PM Monitoring Strategies and Objectives

<table>
<thead>
<tr>
<th>Network</th>
<th>Measurements</th>
<th>Objectives</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Network</td>
<td>PM${2.5}$ and PM${10}$ mass</td>
<td>-Comparison with standards</td>
<td>-High cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Public information</td>
<td>-Information gaps at community scale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Track long-term trends</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Assess out-of-area transport</td>
<td></td>
</tr>
<tr>
<td>Special projects:</td>
<td>PM size distribution</td>
<td>-Source identification</td>
<td>-High cost</td>
</tr>
<tr>
<td>-fixed site</td>
<td>-PM speciation</td>
<td>-Assessment of specific emission sources</td>
<td></td>
</tr>
<tr>
<td>-mobile laboratory</td>
<td>-Ultrafine particles</td>
<td>-Characterization of near-road environments</td>
<td></td>
</tr>
<tr>
<td>-portable platforms</td>
<td>-Black carbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor networks:</td>
<td>PM mass</td>
<td>-Public education</td>
<td>-Higher level of uncertainty</td>
</tr>
<tr>
<td>-fixed site</td>
<td>-Particle count</td>
<td>-Personal exposure monitoring</td>
<td></td>
</tr>
<tr>
<td>-mobile/portable</td>
<td></td>
<td>-Identification of hot spots</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Comparative assessment of local air quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Tracking high-PM episodes</td>
<td></td>
</tr>
</tbody>
</table>

To strengthen these approaches, the Air District will complete an Integrated PM Network Assessment by July 2020 to evaluate its PM measurement network and recommend
improvements. The assessment aims to determine how available resources and multiple monitoring approaches can best be deployed not only to continue addressing federal and state requirements but also to support and expand community-scale air monitoring activities and other Air District programs.

Post-Presentation Discussion

Ultrafine Particles

- **Monitoring costs.** Council Member Solomon inquired whether ultrafine particles monitoring equipment costs are expected to drop in the foreseeable future. Ms. Perkins replied that the Air District relies on one primary manufacturer and does not anticipate near-term cost reductions. Council Member Solomon introduced the idea of a challenge to technology developers to accelerate innovation in the direction of affordability. Dr. Chiang responded that she would contact representatives from the Environmental Protection Agency and CARB to investigate the possibility of pooling resources to propose such an initiative.

- **Data application.** Council Member Rudolph asked how the Air District’s ultrafine particle data is being used to improve public health. Dr. Hoag responded that the data adds to the imperative to reduce roadway emissions. Mr. Nudd added that the Air District is implementing project grants to install filtration in near-roadway schools and is advising the Plan Bay Area initiative on limiting near-roadway exposures.

- **“We need more science, and we should act.”** Chair Hayes reiterated the message from the first PM Symposium that while it is clear that more science is needed on UFP — including a federal reference method standardizing ultrafine particle measurement and epidemiological studies linking exposures to health effects — the Air District should also take immediate action.

- **Near-road health effects.** Following clarifications from Air District staff that the high levels of monitored UFP were due to roadway proximity, Council Member Kleinman pointed out that the documented health effects of near-road environments include low birth weight and cardiovascular problems. While there are many challenges for ultrafine particle research, including the difficulty of assessing dosage due to the extraordinarily low mass of UFP, studying the health effects of near-road environments may be an effective approach to understanding UFP exposures. He added that ultrafine particle concentrations drop precipitously as the distance from the roadway increases, with particle counts dropping by 80% at a 100-meter distance from the center of the road (and an additional 80% at a further 100 meters). Therefore, zoning regulations, berms, and buffers can make a significant difference in limiting exposures.

- **Combustion as source of UFP.** Dr. Hoag clarified in response to Council Member Borenstein’s question about brake and tire wear and road dust that the source of UFP is combustion, not vehicle wear or road dust. She further clarified in response to Council Member Tim Lipman’s question about ultrafine particle precursors that the sources of UFP appear to be anthropogenic.
• **Stationary sources and UFP.** Council Member Solomon asked whether the Air District has investigated UFP emissions from stationary sources. Dr. Hoag responded that such analysis has not been conducted, in part because UFP concentrations are unlikely to remain high outside the perimeter of the facilities due to the distance-based decreases in particle counts described above. However, she stated that this type of measurement could be a possible application for the new mobile and portable monitoring technologies.

• **UFP gradient studies in the Bay Area.** Council Member Solomon asked whether the Air District is conducting studies to assess the persistence of UFP concentrations at increasing distances from Bay Area roadways. Dr. Hoag replied that this analysis had not been undertaken as part of UFP monitoring in the Bay Area but that many previous studies had established the patterns of near-roadway UFP distribution, including the influence of meteorology, topography, and roadway design.

Data sharing. Council Member Rudolph also asked for clarification on how data is being shared with the public. Mr. Breen stated that regional network monitoring data is available on the Air District website (http://www.baaqmd.gov/about-air-quality/current-air-quality). Dr. Hoag added that the community-scale data being collected by Aclima will also be publicly available once it has undergone quality assurance.
Update on Particulate Matter (PM) Air District Work: Grants and Incentives

Karen Schkolnick
Director, Strategic Incentives, Bay Area Air Quality Management District

Main takeaway

Since 1991, more than $1.2 billion has been invested through the Air District’s grants and incentives programs, resulting in significant emissions reductions and accelerated adoption of cleaner and zero-emission technology. Because these initiatives are not subject to regulatory constraints, the Air District is able to use the great majority of funds to target mobile sources. However, programs are constrained by the requirements of the funder — for example, there is only one source of funding that can be used for VMT reduction.

Ms. Schkolnick presented a summary of the Air District’s grant revenue sources, current grants and incentive programs, and recent program results. She highlighted several key initiatives that incentivize the accelerated adoption of the cleanest commercially available technology and discussed how these programs connect to other Air District priorities including health risk reduction in communities disproportionately impacted by air pollution.

Current Air District Work

Prioritization Process

Because grants and incentive programs are not tied to regulatory constraints, the Air District is able focus almost all of its funding through these programs (90 to 95%) on reducing mobile-source emissions. Most of this funding goes toward accelerating the adoption of the cleanest commercially available technology. An additional priority is expediting emissions reductions in disproportionately impacted communities.

The cost effectiveness (CE) of nearly all programs is evaluated using the following formula (or a variant) from the Carl Moyer Program, established by the State of California and CARB:

\[
CE = \frac{\text{Funds Awarded}}{\text{Tons of NOx} + \text{ROG} + (\text{PM}_{10} \times 20) \text{ reduced}}
\]
Notably, this formula has changed over 20 years by incrementally increasing the weighting of PM from 1 to 20, reflecting the State’s interest in health protection.

Current Funding Allocation

$97 million from grants and incentives in 2018 were allocated to:

- **On-road emissions reduction** — $32 million (one third), supporting both deployment and infrastructure for lower- or zero-emission light-, medium-, and heavy-duty vehicles (cars, trucks, and buses). Notably, pass-through programs also support this category, so the total amount of support is higher than this number.

- **Off-road mobile source emissions** — $44.4 million (almost half), from sources such as cargo handling equipment, agricultural equipment, marine and locomotive vehicles, and airport ground support. These are primarily diesel emissions and the cleanest commercially available technology in most cases is cleaner diesel, transitioning from Tier 0 or 1 to Tier 4 engines, although some electrification is now occurring such as Caltrain and lighter cargo handling and air ground-support equipment.

- **Vehicle Miles Traveled (VMT) reduction** — $6.2 million (plus nearly $9 million in pass-through), including shuttle and ride-share services connecting to mass transit, pilot services such as Bay Area Bike Share (now sponsored by Lyft), and expansion of bikeways and bike parking. The Spare the Air program is also funded in this category. For the Spare the Air program, funding is also supplied through pass-through programs, so the total amount of support is higher.

- **Household technology and local climate action** — $5.1 million, including lawn and garden equipment replacement, wood smoke reduction (now focused on reducing combustion through transition to heat pumps), and capacity-building for schools and local government.

- **Pass-through to county transportation agencies** — $9.5 million, primarily to implement trip reduction and on-road vehicle emissions reduction.

Notable Initiatives

Diesel Free by ’33

This program focuses on introducing zero-emission technology in each category of vehicles and equipment as soon as it becomes commercially available. While the present focus is on the light-duty sector, the program is designed to incorporate categories such as marine, locomotive, and construction vehicles and equipment as technology evolves.

The **light-duty sector** demonstrates the expected pattern: While hybrid and natural gas vehicles were the best available technology 10 years ago, zero-emission vehicles have since emerged and become a focus for Air District grants and incentives funding. Currently:

- More than $15 million has been invested by the Air District, plus additional investments from the federal and state government and the private sector to help accelerate the adoption of light-duty zero-emissions vehicles

- Almost 8,000 electric vehicle charging ports are in place
- Renewables are included in 25% of Air District-supported charging ports
- Low-income residents are a focus for vehicle electrification programs
- 3% of Bay Area vehicles are electric
- 25% of all electric vehicles in the U.S. are in the Bay Area
- Goal: Five million vehicles by 2050
 - Presently ahead of schedule
 - Limitation is availability of vehicles

R&D advanced technology demonstration programs

The Air District also participates in advanced demonstration programs, which provide proof-of-concept for the deployment of improved technologies that are not yet commercially available. The Air District has recently been serving as the lead administrator for a $2.9 million project in partnership with Goodwill Industries, BYD (a manufacturer of heavy-duty battery electric vehicles and equipment) and CARB. This project will test and deploy 10 electric delivery trucks and one refuse hauler. Another $3 million project in partnership with Golden Gate Zero Emissions Marine and CARB will build, test, and deploy the first hydrogen-powered ferry for passenger service in mid-2020. Both of these projects are funded primarily through the California Climate Investments program from CARB’s Low Carbon Transportation program.

Port of Oakland

Over the course of ten years, Air District grants have invested approximately $120 million in retrofitting and replacing vehicle technology and infrastructure at the Port of Oakland, including replacing approximately 2,000 drayage trucks and more than 1,000 on-road trucks, installing shore power at 14 berths, and updating harbor craft and cargo handling equipment.

Recent (since 2015) Results and Highlights

Significant reductions in regionwide emissions
- \(\text{CO}_2 \): nearly 600K tons
- \(\text{NO}_x \): more than 3K tons
- Reactive organic gas: more than 1K tons
- \(\text{PM}_{10} \): nearly 400 tons

Infrastructure and equipment implemented
- More than 1,000 electric vehicle charging stations
- Approximately 40 miles of bikeways
- More than 1,200 woodstoves and fireplaces replaced
- More than 100 zero-emissions transit and school buses

Supporting disproportionately impacted communities
Approximately 53% of funds went to programs in Community Air Risk Evaluation (CARE) areas.

More than $1.2 billion in total investments
Through 2020, clean air investments from Air District grants and incentives total over $1.2 billion. This figure represents significant growth since these programs were initiated in 1991 with approximately $5 million.

Forthcoming Air District Work

For 2020, an estimated $108 million will be invested through the Air District’s Strategic Incentives programs. In addition to the continuation of the initiatives described above, including the expansion of eligible vehicles and equipment for Diesel Free by ‘33, the Air District will promote:

- expansion of **lawn and garden** equipment replacement programs,
- reducing **motorcycle** usage,
- funding **air filtration systems** and **clean air shelters**,
- funding **climate resilience** programs, and
- securing **new sources of funding** to expand eligibility of existing programs (such as VMT reduction) and initiate new efforts.

Post-Presentation Discussion

Successes. Chair Hayes and Council Member Rudolph commended the Air District’s successes through its grants and incentives programs, particularly with regard to the Port of Oakland and other initiatives targeting diesel particulate matter.

VMT reduction. Council Member Rudolph asked why more funding had not been allocated to VMT reduction and inquired whether the Carl Moyer formula disincentivized VMT as a focus. Ms. Schkolnick explained that while VMT reduction is a priority for the Air District, efforts are limited by available funding sources. The only funding stream that allows for VMT reduction is the Transportation Fund for Clean Air. Annually, of that fund’s approximately $25 million, $9 million is allocated as a pass-through to county transportation agencies and used primarily for VMT reduction. The Air District’s remaining amount from that fund is split between light-duty emission reduction programs and reducing VMT. Additionally, the Air District partners with the Metropolitan Transportation Commission on regional efforts such as the Bay Area Carpool Program through 511.org and Spare the Air. Mr. Breen added that the new focus on VMT and reducing brake and tire wear and road dust comes as a result of the Air District’s successes in reducing emissions from diesel particulate matter, which was previously the predominant source of PM and remains a significant health concern in disproportionately impacted communities. He noted that the science has not yet caught up to the change in priorities, and that the Air District can advocate for changes in legislation once that science is clear.

Retirement of diesel equipment. Council Member Lipman inquired whether the Diesel Free by ‘33 initiative is retiring diesel vehicles and equipment or only adding additional lower- and zero-emissions technologies to fleets. Ms. Schkolnick clarified that nearly all Diesel Free by ‘33 programs are replacement programs.
Evaluation formula. Chair Hayes asked for clarification on the use of the Carl Moyer guidelines for evaluating cost effectiveness. In response to Chair Hayes’ question concerning the designation of PM$_{10}$ as the focus of emissions reduction, Ms. Schkolnick affirmed that the formula does specify PM$_{10}$ rather than PM$_{2.5}$. She added that there has been some discussion about converting the formula to PM$_{2.5}$, but it is not clear how the formula would need to be altered to result in an equivalent evaluation. She also clarified in response to Chair Hayes’ question about sidebar calculations that the Air District does use additional and more complex calculations to further evaluate some programs, such as co-benefits, PM$_{2.5}$, brake and tire wear and road dust, and proximity to disproportionately impacted communities. Council Member Kleinman commented that the risk of specifying PM$_{10}$ is that courser particles are easiest to remove and, due to their greater mass, will reflect a greater apparent reduction of emissions while potentially leaving in place all the PM$_{2.5}$. He noted that to ensure health protection it would be beneficial to apply an alternative formula that balances that risk. Mr. Breen clarified that while the Carl Moyer Program requires the application of the specified formula, the tools that the Air District uses (such as calculating Significant Emissions Rates and using diesel particulate matter filters) do capture PM$_{2.5}$. He acknowledged that the more difficult correlation to establish is the degree to which applying the Carl Moyer guidelines using Air District approaches succeeds in reducing ultrafine PM.

Renewable charging stations. Council Member Kleinman asked how many of the approximately 8,000 electrical vehicle charging stations use renewable energy. Ms. Schkolnick replied that while she did not have information about all of the charging stations in the area, approximately 25% of the stations that the Air District has funded use renewable energy (primary solar).
Update on Particulate Matter (PM) Work: CARB PM Research and Rules

Alvaro Alvarado
Manager, Health & Ecosystems Assessment, California Air Resources Board (CARB)

Main takeaway
CARB is currently conducting research to better understand the air quality impact of wildfires, brake and tire wear, and ultrafine particles. New and forthcoming regulations will soon be implemented to further reduce emissions from mobile sources.

Dr. Alvarado described the PM research currently being conducted at the California Air Resources Board and the emerging regulations designed to further decrease PM emissions. In line with the Advisory Council’s requests, he focused on research concerning wildfires, brake and tire wear, and ultrafine particles. Several regulations are underway or forthcoming regarding trucks, cars, and trains.

Current CARB Research

Why PM? Dr. Alvarado began his presentation by highlighting the health impacts of PM including approximately 7,200 premature deaths each year in California. Although CARB regulations specifically track hospitalizations and emergency room visits as health outcomes of PM, CARB is also aware of and concerned with outcomes such as asthma attacks and other respiratory symptoms, adverse brain effects, and work loss days. He noted that regulations implemented over the past 25 years, particularly with respect to trucks, have contributed to substantial decreases in average PM$_{2.5}$ concentrations.

Wildfires

Millions of Californians — by some estimates, the entire State population — were exposed to wildfire smoke in 2018, and wildfires are expected to become more frequent and widespread as a result of climate change. Although the current assumption is that all PM is equally toxic, this may not be the case; as wildfires cause more extensive damage there will be more combustion of structures and vehicles that could cause more toxic smoke. Effects could be particularly pronounced for children and older adults. Current CARB research includes:

- **Monkey study at UC Davis.** As Office of Environmental Health Hazard (OEHHA) Director Lauren Zeise described during the first Air District PM symposium, UC Davis researchers are investigating the effects of the 2008 wildfires on an outdoor captive monkey colony. When compared to monkeys in the population born in 2009, monkeys that were infants in 2008 experienced impaired immune function, changes in lung structure, and reduced
lung function, which persisted into adulthood. Moreover, immune effects were passed on to the next generation.

- **Wildfire emissions research.** Researchers at UC Berkeley and UC Riverside are using mobile monitoring platforms to investigate in-home exposures to wildfire smoke, and CARB is partnering with NASA to use aircraft to collect wildfire data.

Brake and Tire Wear

As previously noted by other presenters, as tailpipe emissions are reduced, brake and tire wear become more predominant sources of mobile-source PM. These emissions are more localized; whereas tailpipe emissions are associated with secondary PM and downwind exposures, brake and tire wear primarily affect people living near roadways. Health effects from brake and tire wear may be distinct from tailpipe emissions due to the presence of metals and plastics in wear-based PM emissions. Current CARB research includes:

- **Laboratory studies** quantifying brake and tire wear emissions using dynamometers,
- **Community exposure** studies with UC Riverside, and
- **Health effects** studies with UCLA.

Ultrafine Particles

Dr. Alvarado reiterated that ultrafine particles are difficult to measure and study, that it travels from the lungs to other organs including the brain, and that concentrations vary by space and time with peaks near roadways and during traffic that taper off at a distance and at night. He noted that prior research, primarily in Europe, has limited utility as it tends to focus on short-term exposures (one to four days) measured at only one location and using the extreme outcomes of hospitalizations and premature death. If ultrafine particles are similar to PM$_{2.5}$, long-term exposures can be expected to be far more significant than short-term exposures and indexed to population proximity and vulnerability.

To begin closing these research gaps, current CARB research is 1) **modeling ultrafine particles** annual average concentrations and speciation throughout the state and 2) **associating mortality** with long-term exposures using the California Teachers Study cohort. Preliminary results suggest an increased risk of premature death with high exposure to ultrafine particles. Additionally, to better understand health effects of short-term exposures to UFP, CARB is working with Council Member Kleinman to identify gaps in available research and develop a research plan.

Forthcoming CARB Regulations

A number of regulations will soon be implemented to further reduce mobile source emissions.
Heavy-Duty Trucks

- Advanced Clean Truck Regulation will transition heavy-duty trucks to zero emissions starting in 2024.
- Heavy-duty vehicle inspection and maintenance will require trucks to pass an inspection similar to a smog check in order to register with the California Department of Motor Vehicles.
- Innovative Clean Transit will transition public transit buses to zero emissions.
- Airport shuttles will also be transitioned to zero-emission vehicles by 2035.
- The Heavy-Duty Low NOx omnibus rule will reduce NOx as well as PM from diesel trucks, thereby addressing both primary and secondary PM.

Warehouses

- CARB is developing a Freight Handbook outlining best practices for warehouses to reduce their contributions to emission levels.
- New regulations are being developed for:
 - Transport refrigeration units,
 - Drayage trucks, and
 - Cargo handling equipment.

Passenger Cars

- Advanced Clean Cars 2 will increase the number of zero-emission vehicles on the road and reduce tailpipe emission through 2026.
- Catalytic converter theft reduction is being implemented to ensure that converters are stamped by manufacturers and registered with cars.

Trains

CARB is currently working with railyards in southern California to reduce idling. Lessons from this effort will be applied statewide, potentially through regulation, to reduce emissions from trains.

Post-Presentation Discussion

Next steps? Chair Hayes asked for the presenter’s opinion on the next steps to improve public health. Dr. Alvarado, who clarified that he was speaking on behalf of himself and not CARB, replied that his priority would be to utilize low-cost in-home monitors to better understand how short-term localized exposures are affecting people in disadvantaged communities. This information could be used to direct regulations and resources toward improving health among the most vulnerable Californians, in line with AB 617.
Addressing brake and tire wear and road dust. Noting that Dr. Martien’s presentation revealed that the great majority of PM emissions experienced in West Oakland are from regional sources, Chair Hayes inquired whether brake and tire wear and road dust contribute to these regional-source exposures and whether these issues are under CARB’s regulatory authority. Dr. Alvarado replied that he could not speak to CARB’s authority on these matters, but that brake and tire wear and road dust are more localized issues. Council Member Kleinman commented that regenerative braking technology appears to reduce brake wear and could be a useful target for incentive structures. Council Member Lipman clarified that such technology can only be used with hybrid vehicles, but that it could be promising as an innovation that benefits both fuel efficiency and PM reduction.

Relative health impact of wildfires. Chair Hayes asked the presenter to characterize the relative contribution of wildfires to public health risk in comparison to day-to-day PM emissions from other sources. Dr. Alvarado responded that while there was not sufficient research to quantify the impact of wildfires at their newly intensified levels, it does appear that wildfire smoke has health effects similar to those of other types of PM exposure.

Defining premature death. Council Member Lipman asked for clarification on how premature death is defined in CARB’s calculations. Dr. Alvarado, along with Council Members Kleinman and Rudolph, clarified that the calculation is a statistical analysis of population-level loss of life relative to life expectancy.

New technologies increasing UFP? Council Member Solomon recalled that when natural gas and diesel reduction technologies were first being developed for transportation, there was some concern that they could increase ultrafine particle emissions. She asked whether that prediction had been accurate. Dr. Alvarado responded that while he would need to check to be certain, he believed that an initial increase in ultrafine particles was seen in early natural gas vehicles, but the problem had since been addressed through controls.
Update on Particulate Matter (PM) Air District Work: PM Rules and Regulatory Development

Victor Douglas
Manager, Rule Development, Bay Area Air Quality Management District

| Main takeaway | The Air District continues to update its rules and regulations to further limit PM exposures. As its focus shifts from an exclusively regional perspective to reducing risks for disproportionately impacted local communities, the Air District is exploring the possibility of treating PM as a toxic air contaminant. Although the State of California does not presently recognize undifferentiated PM as an air toxic, it may be possible for the Air District to do so independently. |

Mr. Douglas presented a brief overview of the history, current efforts, and emerging directions for rule development in the Air District. He described how the Air District’s emerging focus on health risks for local communities is prompting further consideration of rulemaking regarding stationary source emissions and potential treatment of undifferentiated PM as an air toxic.

Current Air District Work

Approaches

The Air District has approached PM regulation in three distinct ways:

1. As a nuisance, which was the initial approach in the first Air District regulations adopted in 1979 and 1980 regarding open burning and dust and aerosols.
2. As a criteria pollutant, which is the current, regional approach to undifferentiated PM governing attainment of ambient air quality standards. These regulations apply to both primary PM (filterable and condensable) and precursors of secondary PM (oxides of nitrogen and sulfur dioxide). With this approach, the Air District selects the most cost-effective strategies to achieve regional standards.
3. As an air toxic, which is the approach taken specifically to diesel PM to limit localized exposures. The air toxic approach can be either risk-based (utilizing modeling) or technology-based (limiting emissions from specific sources, such as dry-cleaning facilities or backup generators).

Mr. Douglas mentioned that a fourth potential approach would be to consider climate impacts.

Regulations and Rules

There are 57 Air District rules that directly or indirectly address PM, housed within a range of regulations including those governing permits, open burning, inorganic gaseous pollutants,
hazardous pollutants, and miscellaneous standards of performance. Several PM regulations and rules have been updated since 2012, including a new Regulation 6 on Particulate Matter established in 2018.

Mr. Douglas specifically highlighted Air District Rule 11-18: Reduction of risk from air toxic emissions at existing facilities. Recent revisions to this rule reduced the threshold limit on toxic air contaminants by an order of magnitude (from 100 per million to 10 per million), requiring approximately 80 existing permitted facilities to develop plans to reduce their emissions or install best available control technologies. This rule is one example of the Air District’s emerging focus on localized, community-specific exposures and health risk. Another example he mentioned is Rule 6-5: Particulate emissions from refinery fluidized catalytic cracking units, which was recently revised to further reduce localized PM emissions from refineries.

Forthcoming Air District Work

Localized Sources

As the Air District turns increasing attention to localized health impacts of PM for disproportionately impacted communities, it is exploring further regulation regarding:

- Restaurants,
- Wood smoke, and
- Indirect or magnet sources (e.g. warehouses, which do not directly emit PM, but attract PM-producing traffic such as diesel trucks).

PM as an Air Toxic

The Air District is also engaged in exploring the possibility of approaching undifferentiated PM as an air toxic. The present constraint is that the Air District has relied on the State of California’s list of toxic air contaminants, which does not include undifferentiated PM. Air District rulemaking that treats PM as a toxic could potentially be developed, independent of state-level air toxics regulations, if the Air District is able to identify appropriate methodology to perform health risk assessments.

Post-Presentation Discussion

Shifting focus to greenhouse gas emissions and global warming? Council Member Rudolph asked how a hypothetical emphasis on climate impacts would shift the Air District’s approach to PM regulation. Mr. Douglas responded that reducing climate impacts is a co-benefit of the other three approaches to PM (as a nuisance, criteria pollutant, and air toxic). Mr. Nudd added that an emphasis on climate impacts could shift the Air District’s focus more heavily toward black carbon, but that he was uncertain of the effect such a shift would have on health risks.
Council Member Rudolph commented that climate change presents the greatest health risk to the population.

Toxics framework. Chair Hayes asked for clarification on the process by which undifferentiated PM could be introduced into the regulatory framework as a toxic air contaminant. Mr. Bunger explained that the first option was for OEHHA to add undifferentiated PM to its list of air toxics, which would immediately trigger its inclusion in several existing Air District rules including 11-18 (existing facilities) and 2-5 (new source review). The Air District has requested this action from OEHHA, and analysis is underway at the state level, but the Air District does not have the power to compel such action by the State. However, in theory, the Air District does have the ability to independently classify undifferentiated PM as a toxic air contaminant and treat it accordingly. To do so, the Air District would need to identify appropriate methodology to use for health risk assessment. Chair Hayes noted that the Air District already concerns itself with controlling source-specific PM emissions in its modeling regarding attainment of ambient air quality standards. Mr. Bunger clarified that such analysis does not presently apply to every source of PM emissions, as it would if PM were classified as an air toxic. Board Member Sinks asked whether OEHHA has committed to a schedule for evaluating undifferentiated PM for potential inclusion on its air toxics list. Mr. Nudd responded that he does not observe a willingness on the part of OEHHA to enact statewide recognition of undifferentiated PM as an air toxic in the near term, likely due to present challenges in some parts of the state with meeting existing federal air quality standards. However, he explained that OEHHA is assisting the Air District with its PM analyses, and does appear willing to support the Air District (at least through peer review) if it moves toward independently recognizing undifferentiated PM as a toxic. Mr. Bunger noted that the Air District is also exploring other distinct PM species (besides diesel PM) as air toxics.

The Advisory Council briefly considered potential updates such as revising the “topics for further exploration” identified in the draft report into Advisory Council findings and creating further content for the “Next Steps” section. Chair Hayes also introduced the prospect of incorporating an additional document into the report. That document, which he initiated, provides responses to the questions originally posed by the Advisory Council and the Air District to the October PM Symposium panelists (see Appendix for the list of questions). His aim was to distill the information shared by the panelists into concise answers to each of the questions. Ultimately, the Advisory Council determined that because the purpose of the October PM Symposium report was to serve as a record of the October PM Symposium, it was appropriate to limit that report’s contents to what had been shared during that event.

Edits to Draft October PM Symposium Report. Three clarifying edits were made to the October PM Symposium report draft, all within the section on “Advisory Council Deliberation.” The Advisory Council agreed to release the draft report for public comment following these edits.

Progress of Q&A document. Council Member Solomon volunteered to assist Chair Hayes in further developing the question-and-answer document. Several Advisory Council members made suggestions regarding the draft Q&A:

- Council Members Solomon and Kleinman supported recommending the treatment of PM as a non-threshold toxic. Council Member Kleinman noted that the dose-response relationship appears to be curvilinear rather than linear.
- Council Member Solomon argued for incorporating information from the forthcoming March PM Symposium (focused on community organizations) into the Q&A.
- Council Member Rudolph stated the need to emphasize new evidence for likely causal relationships between PM and specific health effects and the greater sensitivity of vulnerable populations. She also noted the importance of reducing ambient PM levels as much as possible in the presence of events such as wildfires that cannot be placed into a regulatory framework.
Public Comment

Three opportunities were provided for public comment: prior to presentations from Air District staff, following presentations from Air District staff, and toward the close of the meeting following Advisory Council deliberation on the October PM Symposium Summary draft report. A list of the commenters follows; their comments are categorized by topic and summarized below.

List of Commenters

Dr. Ashley McClure, primary care physician, Oakland
Jed Holtzman, 350 Bay Area
Greg Karas, Communities for a Better Environment
Richard Grey, 350 Bay Area

Comments

Structure of public comment. Dr. McClure suggested that comment on agenda items should take place after the agenda items had been discussed by presenters and the Advisory Council. Mr. Holtzman requested that the Advisory Council determine and publicize the timing of public comment periods in advance of Advisory Council meetings. Council Member Borenstein concurred with Mr. Holtzman’s suggestion, and Chair Hayes indicated that the Advisory Council would implement this suggestion by formally determining public comment periods in advance so that people who wish to comment can plan when to be present at Advisory Council meetings.

Urgency. Dr. McClure stated that the October PM Symposium left little ambiguity regarding the health impacts of PM and asked why further symposia were necessary prior to rulemaking. Mr. Holtzman also questioned the pace of progress and the duration of time between meetings. Council Member Borenstein stated that while the Advisory Council was interested in recommending the Air District move toward stricter PM controls, it was not yet clear precisely what the targets should be. He emphasized the importance of measured and deliberative action, as rulemaking is likely to be challenged in court.

Strong statements. Addressing the need to establish a public record to support rulemaking, Mr. Holtzman urged Advisory Council members to “be very fierce in your statements” regarding the implications of the science.

Zero-carbon economy. All four commenters spoke of a need to phase out fossil fuel combustion and transition to a zero-carbon economy. Tying fossil fuel combustion to the climate conditions that have led to increased wildfires, commenters emphasized that reducing
risks from wildfires can only be achieved by reducing the greenhouse gas emissions that ultimately contribute to their frequency.

Air District actions. Commenters recommended specific actions for the Air District:

- Set PM threshold levels based on sensitive populations (Holtzman)
- Focus separately on top local and regional sources of PM (Holtzman)
- Update modeling approaches for brake and tire wear and road dust (Holtzman)
- Address agriculture as a source of NH$_3$ emissions (Holtzman)
- Use fees on PM emitters to support increased instrumentation for speciation (Holtzman)
- Increase attention to black carbon, which has both health and climate impacts (Holtzman)
- Verify low-cost sensors and utilize their data once verified (Holtzman)
- Tighten controls on ultrafine particles, exposure to which is an environmental justice issue as risks are closely associated with proximity to sources (Karas)
- Utilize findings from the California Household Exposure Study, which measured indoor and outdoor PM$_{2.5}$ concentration levels and found both to be higher near refineries (Karas)
- Focus attention on refineries and the oil industry, particularly fluid cracking units (Grey)
- Develop messaging campaigns to help the public recognize the connection between sources of air pollution and health outcomes (McClure)
- Emphasize, possibly at the March PM Symposium, the meaning and values driving the pursuit of tighter air quality controls; “Give us all something to believe in” (McClure)

Partner actions. Commenters also recommended actions that are outside Air District jurisdiction:

- Pursue a tighter state standard for PM (Holtzman)
- Offer free public transit, either on Spare the Air days or at all times (McClure)
Next Steps

The PM Symposium Series continues as depicted in the timeline below. The next symposium will take place on March 24, 2020, in Oakland, focused on presentations from community organizations and leaders. Planning is currently underway.

Following the March symposium, the May event is expected to focus on formulating potential Air District plans to further reduce Bay Area health risks from PM, particularly for disproportionately impacted communities.

The July event brings together the Advisory Council and the Board of Directors to discuss the information and suggestions shared throughout the PM Symposium Series. During this final meeting in the series, the Advisory Council is expected to present its findings to the Board of Directors regarding particulate matter and health in the Bay Area.
Appendix — Questions from the Advisory Council and Air District sent to October PM Symposium Panelists

GENERAL

• What is bullseye in clean air target? How clean is clean enough?
• How will we know when we get to target? What metrics should we use to track progress?
• How do we combine criteria pollutants and toxics? Cancer and non-cancer health endpoints? Short- and long-term effects?
• How can we make sure everyone is treated fairly?
• How can we ensure that everyone breathes clean air?
• What are most important actions that can be taken now? And, in future?

HEALTH EFFECTS PANEL

• Are current PM standards sufficiently health protective?
• Are some species of PM more dangerous than others?
• What is role of ultrafine particles (UFPs)?
• Should form of target expand to account for more than just mass?
• How should we include draft PM ISA’s new “likely-causal” health endpoints (nervous system effects, cancer) and new more sensitive populations (children, lower socio-economic status)?
• What are health impacts of high-concentration acute events (e.g., wildfires)? How should we compare them to day-to-day PM impacts?

EXPOSURE AND RISK PANEL

• What are major sources of PM in the Bay Area?
• What PM levels exist in Bay Area? What health risks do they pose?
• How much additional health benefit can be achieved?
• How should we account for spatial scale of effects (i.e., regional versus local-scale impacts, including proximity to major sources)?
• How should we determine which measures would most move public health needle?
AGENDA: 4

PM Health Protection Symposium
(Advisory Council Meeting of
October 28, 2019)

Chair Stan Hayes
Advisory Council
December 9, 2019
PM Focus: Context

• Following three years of intense wildfire smoke, focus on reducing diesel PM emissions, and conclusion that PM is overwhelming health risk driver in Bay Area air

• Air District asked Advisory Council to focus on PM

• Provide Advisory Council’s take on latest and best science, in science-affirming way

• Assist Air District to identify those further PM measures that would most move public health needle, especially in most impacted communities
PM Symposia:
Overview

• Convened by Advisory Council as *series of meetings*

• Engage *nationally-recognized experts*, including leading experts previously engaged at the Federal level

• **Support Air District** in identifying health-focused “target” guidelines based on latest science, beyond standards already in effect

• Facilitate **Advisory Council feedback** on Air District planning

• Include *local stakeholders*

• Provide *national leadership*
Key Points

• The National Ambient Air Quality Standard (NAAQS) Science Review Process Worked Well Until 2017

• EPA Administrators Pruitt and Wheeler Have Broken the Process

• Particulate Matter Science Review By the EPA Clean Air Scientific Advisory Committee (CASAC) is Highly Deficient: Appropriate to Look Elsewhere

• Disbanded CASAC PM Review Panel Reconvened Itself

• Key Findings of the Independent Particulate Matter Review Panel
Particulate Matter: Spotlight on Health Protection
Particulate Matter: Spotlight on Health Protection

Date: Oct. 28, 2019 Time: 9:00 am - 4:15pm Advisory Council Chair: Mr. Stan Hayes Facilitator: Jeff McKay

Agenda Items

8:30 AM Registration/Coffee and light breakfast Atrium

9:00 AM Welcome Board Room

9:25 AM PM Health Effects Panel Board Room

11:05 AM Break Atrium

11:15 AM Joint Discussion: Health Effects Panel Board Room

12:00 PM Lunch with Keynote Speaker – Former EPA Administrator Gina McCarthy Yerba Buena

1:15 PM PM Exposure & Risk Panel Board Room

2:55 PM Break Atrium

3:10 PM Joint Discussion: Exposure & Risk Panel Board Room

4:00 PM Advisory Council Deliberation Board Room

Additional information
This is a meeting of the BAAQMD Advisory Council. Public comment will take place during welcome remarks. For ADA related assistance, please contact Aracena Flores at aflores@baaqmd.gov.

375 Beale Street, Suite 600, San Francisco, California 94105 • 415.749.5000 • baaqmd.gov

- ~160 registrants
- 2 panels
 - PM Health Effects
 - PM Exposure & Risk
- 9 leading experts
Gina McCarthy

- **Former EPA Administrator**
- Finalized the Clean Power Plan and the Clean Water Rule
- Professor of the Practice of Public Health in the Department of Environmental Health at Harvard T.H. Chan School of Public Health
- Director of the Center for Climate, Health, and the Global Environmental
- Member of the Board of Directors of the Energy Foundation and Ceres
- M.Sc. in Environmental Health Engineering, Planning and Policy from Tuft’s University
Jason Sacks, M.P.H.

• Senior Epidemiologist in the Center for Public Health & Environmental Assessment within U.S. EPA’s Office of Research and Development

• **Assessment lead for the Particulate Matter Integrated Science Assessment (Draft PM ISA)**

• Key leadership roles in synthesizing the health effects evidence of air pollution for various National Ambient Air Quality Standards reviews

• International training on U.S. EPA’s Environmental Benefits Mapping and Analysis Program – Community Edition

• M.P.H. from Johns Hopkins University in 2003
Michael Kleinman, Ph.D.

• UC Irvine Professor of Environmental Toxicology

• Co-Director of the Air Pollution Health Effects Laboratory in the Department of Community and Environmental Medicine

• Adjunct Professor in College of Medicine

• Serves on the Air District Advisory Council

• Ph.D. in Environmental Health Sciences from New York University

• CA Scientific Review Panel on Toxic Air Contaminants; CA Air Quality Advisory Committee
John R. Balmes, M.D.

- Professor of Medicine at UC San Francisco
- Professor of Environmental Health Sciences in the School of Public Health at UC Berkeley
- Director of the Northern California Center for Occupational and Environmental Health
- Authored over 300 papers on occupational and environmental health-related topics
- **Physician Member of the California Air Resources Board**
H. Christopher Frey, Ph.D., F. A&WMA, F. SRA

- Glenn E. Futrell Distinguished University Professor of Environmental Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University
- Adjunct professor in the Division of the Environment and Sustainability at the Hong Kong University of Science and Technology
- Fellow of the Air & Waste Management Association and of the Society for Risk Analysis
- Ph.D. in Engineering and Public Policy from Carnegie Mellon
- Former Chair/Member, EPA Clean Air Scientific Advisory Committee (CASAC)
- Former Chair/Member, 10 different CASAC NAAQS Review Panels
- Chair, Independent PM Review Panel
Lauren Zeise, Ph.D.

- Appointed by Gov. Brown as Director of the California Office of Environmental Health Hazard Assessment in December 2016
- Former Chief of the cancer unit at the California Department of Health Services
- Leading role in OEHHA’s development of CalEnviroScreen
- Co-led the team that developed the hazard trait regulation for California’s Safer Consumer Products program
- Member, fellow, former editor, and former councilor of the Society for Risk Analysis
- 2008 recipient of the Society’s Outstanding Risk Practitioner Award
- Ph.D. from Harvard University
Julian Marshall, Ph.D.

- Kiely Endowed Professor of Environmental Engineering at University of Washington with a focus on air quality management
- Founded and runs the Grand Challenges Impact Lab, a UW study abroad program in Bangalore, India
- Associate Editor for Environmental Health Perspectives and Development Engineering
- Published over 100 peer-reviewed journal articles
- Ph.D. in Energy and Resources from UC Berkeley
Scott Jenkins, Ph.D.

- Senior Environmental Health Scientist in EPA's Office of Air Quality Planning and Standards (OAQPS)
- **Currently leading EPA’s review of the National Ambient Air Quality Standards (NAAQS) for Particulate Matter (PM)**
- Howard Hughes Postdoctoral Research Fellow in the Department of Cell Biology at Duke University
- Ph.D. in Behavioral Neuroscience from the University of Alabama at Birmingham
Phil Martien, Ph.D.

• Director of the Assessment, Inventory, & Modeling Division at the Bay Area Air Quality Management District

• Leading role in the Technical Assessment of AB617’s West Oakland Community Action Plan

• Leading role in the Technical Assessment of the Air District’s 2017 Clean Air Plan: Spare the Air, Cool the Climate

• Leading role in the Air District's Community Air Risk Evaluation Program

• Ph.D. from UC Berkeley
Advisory Council Discussion with Experts

PM Health Effects Panel

PM Exposure & Risk Panel
BAAQMD’s Questions

- Are current PM standards sufficiently protective? Emphatic **NO** – definitely not for PM$_{2.5}$.
- How has the PM health evidence been strengthened? Better “exposure” models, much larger study populations at much lower levels than before.
- What new health effects are now recognized? Strengthening of some causality determinations, but largely the focus is still premature mortality, respiratory morbidity, and cardiovascular morbidity.
- New endpoints like cancer and central nervous system effects? Opinions differ.
- New sensitive groups, like children and lower socioeconomic status, SES, populations? Growing recognition of “at risk” groups.
- Are all types of PM equal? Probably not. Or, are some more dangerous than others? Probably. But, more work needed. No components are as yet ‘exonerated.’
- How severe are PM health risks? Premature mortality is severe.
- What additional health benefits can be achieved by further reducing PM to below current standards? Difficult to quantify with certainty but on the order of tens of thousands of deaths nationally.
Discussion Questions (EXAMPLE, DO NOT CITE)

Are current PM standards sufficiently health protective?
NOT PROTECTIVE, STANDARDS SHOULD BE LOWERED

Are some species of PM more dangerous than others?
QUITE POSSIBLY BUT NOT ENOUGH INFORMATION, NO PM COMPONENTS “EXONERATED”

What is role of ultrafine particles (UFPs)?
NOT YET CLEAR, TOX STUDIES OF CONCERN, NEED UFP FEDERAL REFERENCE METHOD, MORE MONITORING, EPI STUDIES

Should PM “target” expand to account for more than just mass?
IN RESEARCH ABSOLUTELY, IN REGULATION TOO SOON, UNLESS HIGHLY RISK-VERSE

How should we include draft PM ISA’s new “likely-cause” health endpoints (nervous system effects, cancer) and new more sensitive populations (children, lower socio-economic status)?
NEW HEALTH EFFECTS AND GROWING RECOGNITION OF “AT RISK” GROUPS IMPORTANT (SUCH AS CHILDREN AND LOW SES), NEED TO CONSIDER

What are health impacts of high-concentration acute events (e.g., wildfires)? How should we compare them to day-to-day PM impacts?
NOT WELL-KNOWN SCIENTIFICALLY BUT OF CONCERN, DATA ON SUB-DAILY EXPOSURES TOO LIMITED AS YET, POTENTIALLY SERIOUS EFFECTS IN EARLY STUDIES, OTHER STUDIES ONGOING, MORE RESEARCH NEEDED
Advisory Council: Initial Deliberation

Sense of the Council

• The current standards are not adequately health protective.
• Further reductions in PM will realize significant additional health benefits.
• We need more science, and we should act now.

Further Exploration

• Treating PM as an air toxic
• Expanded monitoring of UFP
• Health effects of acute PM exposures, e.g., wildfire smoke
• Identifying PM species that are particularly dangerous
• Assisting District in identifying strategies having “highest bang for buck” for health protection
• Pursuing strategies that have climate and other co-benefits
PM Symposium Series

28 Oct. - State of the science
9 Dec. - Advisory Council deliberation
March - Policy and community discussion
May - District response to the PM Challenge
July - Joint Advisory Council/Board Meeting
Ambient Particulate Matter (PM)

- PM is a mixture, including particles of differing origin (combustion, crustal, biological) and varying size.
- Multiple sources
Recent evidence supports and extends the conclusions of the 2009 PM ISA that there is a **causal relationship** between long-term PM$_{2.5}$ exposure and mortality.

Reference Table

<table>
<thead>
<tr>
<th>Reference</th>
<th>Cohort</th>
<th>Notes</th>
<th>Years</th>
<th>Mean (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pope et al. 2014</td>
<td>ACS</td>
<td></td>
<td>1982-2004</td>
<td>12.6</td>
</tr>
<tr>
<td>Thurston et al. 2015</td>
<td>NH-AARP</td>
<td></td>
<td>2000-2009</td>
<td>10.2-13.6</td>
</tr>
<tr>
<td>Zeiger et al. 2008</td>
<td>MCAPS Eastern</td>
<td></td>
<td>2000-2005</td>
<td>14.0 (3.0)</td>
</tr>
<tr>
<td>Zeiger et al. 2008</td>
<td>MCAPS Central</td>
<td></td>
<td>2000-2005</td>
<td>10.7 (2.4)</td>
</tr>
<tr>
<td>Di et al. 2017</td>
<td>Medicare</td>
<td>exp <12</td>
<td>2000-2012</td>
<td>11.5</td>
</tr>
<tr>
<td>Di et al. 2017</td>
<td>Medicare</td>
<td>nearest monitor</td>
<td>2000-2012</td>
<td>11.5</td>
</tr>
<tr>
<td>Kiomourtzoglou et al. 2016</td>
<td>Medicare</td>
<td></td>
<td>2000-2010</td>
<td>12</td>
</tr>
<tr>
<td>Shi et al. 2015</td>
<td>Medicare</td>
<td>mutual adj</td>
<td>2003-2008</td>
<td>8.12 (3.78)</td>
</tr>
<tr>
<td>Shi et al. 2015</td>
<td>Medicare</td>
<td>exp <10, mutual adj</td>
<td>2003-2008</td>
<td>8.12 (3.78)</td>
</tr>
<tr>
<td>Shi et al. 2015</td>
<td>Medicare</td>
<td>no mutual adj</td>
<td>2003-2008</td>
<td>8.12 (3.78)</td>
</tr>
<tr>
<td>Shi et al. 2015</td>
<td>Medicare</td>
<td>exp <10, no mutual adj</td>
<td>2003-2008</td>
<td>8.12 (3.78)</td>
</tr>
<tr>
<td>Wang et al. 2017</td>
<td>Medicare</td>
<td>exp <12</td>
<td>2000-2013</td>
<td>10.7 (3.8)</td>
</tr>
<tr>
<td>Wang et al. 2017</td>
<td>Medicare</td>
<td></td>
<td>2000-2013</td>
<td>10.7 (3.8)</td>
</tr>
<tr>
<td>Lipfert et al. 2006</td>
<td>Veterans Cohort</td>
<td></td>
<td>1997-2001</td>
<td>14.34</td>
</tr>
<tr>
<td>Crose et al. 2015</td>
<td>CanCHEC</td>
<td></td>
<td>1991-2006</td>
<td>8.9</td>
</tr>
<tr>
<td>Chen et al. 2016</td>
<td>EFFECT</td>
<td></td>
<td>1999-2011</td>
<td>10.7</td>
</tr>
<tr>
<td>Weichenthal et al. 2014</td>
<td>Ag Health</td>
<td></td>
<td>1993-2009</td>
<td>8.84</td>
</tr>
<tr>
<td>Weichenthal et al. 2014</td>
<td>Ag Health</td>
<td>more precise exp</td>
<td>1993-2009</td>
<td>8.84</td>
</tr>
<tr>
<td>Lipsett et al. 2011</td>
<td>CA Teachers</td>
<td></td>
<td>2000-2005</td>
<td>15.6 (8.0)</td>
</tr>
<tr>
<td>Ostro et al. 2010</td>
<td>CA Teachers</td>
<td>within 30 km</td>
<td>2002-2007</td>
<td>17.5 (6.1)</td>
</tr>
<tr>
<td>Ostro et al. 2010</td>
<td>CA Teachers</td>
<td>within 8 km</td>
<td>2002-2007</td>
<td>17.6 (6.1)</td>
</tr>
<tr>
<td>Ostro et al. 2015</td>
<td>CA Teachers</td>
<td></td>
<td>2001-2007</td>
<td>17.9 (9.6)</td>
</tr>
<tr>
<td>Hart et al. 2015</td>
<td>Nurses Health</td>
<td>spatio-temp. model</td>
<td>2000-2006</td>
<td>12.7</td>
</tr>
<tr>
<td>Hart et al. 2015</td>
<td>Nurses Health</td>
<td>Health Prof full model</td>
<td>2000-2006</td>
<td>12</td>
</tr>
<tr>
<td>Puett et al. 2011</td>
<td>TriPS</td>
<td></td>
<td>1988-2003</td>
<td>17.8 (4.3)</td>
</tr>
<tr>
<td>Kioog et al. 2017</td>
<td>CA cohort</td>
<td>Kriging</td>
<td>2006</td>
<td>13.06</td>
</tr>
<tr>
<td>Garcia et al. 2015</td>
<td>CA cohort</td>
<td>IDW</td>
<td>2006</td>
<td>12.94</td>
</tr>
<tr>
<td>Garcia et al. 2015</td>
<td>CA cohort</td>
<td>closest monitor</td>
<td>2006</td>
<td>12.68</td>
</tr>
<tr>
<td>Enstrom 2005</td>
<td>CA Cancer Prev</td>
<td></td>
<td>1973-1982</td>
<td>23.4</td>
</tr>
<tr>
<td>Enstrom 2005</td>
<td>CA Cancer Prev</td>
<td></td>
<td>1983-2002</td>
<td>23.4</td>
</tr>
<tr>
<td>Enstrom 2005</td>
<td>CA Cancer Prev</td>
<td></td>
<td>1973-2002</td>
<td>23.4</td>
</tr>
</tbody>
</table>

Note: Associations are presented per 5 µg/m3 increase in pollutant concentration.

Red = recent studies; **Black** = studies evaluated in the 2009 PM ISA.

Figure 11-18. Associations between long-term PM$_{2.5}$ and total (nonaccidental) mortality in recent North American cohorts.
HUMAN HEALTH EFFECTS

<table>
<thead>
<tr>
<th>Indicator</th>
<th>PM$_{2.5}$</th>
<th>PM$_{10-2.5}$</th>
<th>UFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Metabolic</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nervous System</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Reproductive</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Male/Female Reproduction and Fertility</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Pregnancy and Birth Outcomes</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Cancer</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Long-term exposure</td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

* = new determination or change in causality determination from 2009 PM ISA Working Draft: Do Not Cite or Quote

Table 1-5. Summary of causality determinations for health effect categories for the draft PM ISA.

Draft PM ISA:
- 1,879 pages
- 2,647 references
The NAAQS are intended to protect both the population as a whole and those potentially at increased risk for health effects in response to exposure to criteria air pollutants.

- Are there specific populations and lifestages at increased risk of a PM-related health effect, compared to a reference population?

The ISA identified and evaluated evidence for factors that may increase the risk of PM$_{2.5}$-related health effects in a population or lifestage, classifying the evidence into four categories:

- Adequate evidence; suggestive evidence; inadequate evidence; evidence of no effect

Conclusions:

- **Adequate**: children and nonwhite populations
- **Suggestive**: pre-existing cardiovascular and respiratory disease, overweight/obese, genetic variants glutathione transferase pathways, low SES
- **Inadequate**: pre-existing diabetes, older adults, residential location, sex, diet, and physical activity
Summary of Risk Estimates

Estimates of PM$_{2.5}$-associated deaths in the full set of 47 study areas

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Study</th>
<th>Air quality simulation approach*</th>
<th>Current Standard Absolute Risk (12/35 μg/m3)</th>
<th>CS (12/35) % of baseline**</th>
<th>Alternative Standard Absolute Risk</th>
<th>Alternative Annual (10 μg/m3)</th>
<th>Alternative 24-hr (30 μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term exposure related mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic Heart Disease</td>
<td>Jerrett 2016</td>
<td>Pri-PM</td>
<td>16,500 (12,600-20,300)</td>
<td>14.1</td>
<td>14,400 (11,000-17,700)</td>
<td>16,400 (12,500-20,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>16,800 (12,800-20,500)</td>
<td>14.3</td>
<td>14,200 (10,900-17,500)</td>
<td>16,500 (12,600-20,200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pope 2015</td>
<td>Pri-PM</td>
<td>15,600 (11,600-19,400)</td>
<td>13.3</td>
<td>13,500 (10,100-17,000)</td>
<td>15,400 (11,500-19,200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>15,800 (11,800-19,600)</td>
<td>13.4</td>
<td>13,400 (9,970-16,700)</td>
<td>15,600 (11,600-19,400)</td>
<td></td>
</tr>
<tr>
<td>All-cause</td>
<td>Di 2017</td>
<td>Pri-PM</td>
<td>46,200 (45,000-47,500)</td>
<td>8.4</td>
<td>40,300 (39,200-41,400)</td>
<td>45,700 (44,500-47,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>46,900 (45,600-48,200)</td>
<td>8.5</td>
<td>39,700 (38,600-46,800)</td>
<td>46,200 (44,900-47,500)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pope 2015</td>
<td>Pri-PM</td>
<td>51,300 (41,000-61,400)</td>
<td>7.1</td>
<td>44,700 (35,700-53,500)</td>
<td>50,700 (40,500-60,700)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>52,100 (41,600-62,300)</td>
<td>7.2</td>
<td>44,000 (35,100-52,700)</td>
<td>51,300 (41,000-61,400)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thurston 2015</td>
<td>Pri-PM</td>
<td>13,500 (2,360-24,200)</td>
<td>3.2</td>
<td>11,700 (2,050-21,100)</td>
<td>13,300 (2,330-24,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>13,700 (2,400-24,600)</td>
<td>3.2</td>
<td>11,500 (2,010-20,700)</td>
<td>13,500 (2,360-24,200)</td>
<td></td>
</tr>
<tr>
<td>Lung cancer</td>
<td>Turner 2016</td>
<td>Pri-PM</td>
<td>3,890 (1,240-6,360)</td>
<td>8.9</td>
<td>3,390 (1,080-5,560)</td>
<td>3,850 (1,230-6,300)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>3,950 (1,250-6,460)</td>
<td>9.1</td>
<td>3,330 (1,060-5,470)</td>
<td>3,890 (1,240-6,370)</td>
<td></td>
</tr>
<tr>
<td>Short-term exposure related mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cause</td>
<td>Baxter 2017</td>
<td>Pri-PM</td>
<td>2,490 (983-4,000)</td>
<td>0.4</td>
<td>2,160 (850-3,460)</td>
<td>2,460 (970-3,950)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>2,530 (990-4,060)</td>
<td>0.4</td>
<td>2,120 (837-3,400)</td>
<td>2,490 (982-3,990)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ito 2013</td>
<td>Pri-PM</td>
<td>1,180 (-16,2-370)</td>
<td>0.2</td>
<td>1,020 (-14,2-2050)</td>
<td>1,160 (-16,-2340)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>1,200 (-16,2-400)</td>
<td>0.2</td>
<td>1,000 (-14,2-2020)</td>
<td>1,180 (-16,-2370)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanobetti 2014</td>
<td>Pri-PM</td>
<td>3,810 (2,530-5,080)</td>
<td>0.7</td>
<td>3,300 (2,190-4,400)</td>
<td>3,760 (2,560-5,020)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-PM</td>
<td>3,870 (2,570-5,160)</td>
<td>0.7</td>
<td>3,250 (2,160-4,330)</td>
<td>3,810 (2,530-5,070)</td>
<td></td>
</tr>
</tbody>
</table>

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

** CS denotes the current standard.

Current annual standard of 12 ug/m3 = ~ 47 thousand deaths per year

Lower annual standard from 12 to 10 ug/m3 = ~ 6-7 thousand fewer deaths per year (13-15%)
Preliminary Conclusions on the Current Primary PM$_{2.5}$ Standards

- The available scientific information can reasonably be viewed as calling into question the adequacy of the public health protection afforded by the current annual and 24-hour primary PM$_{2.5}$ standards

- Basis for this preliminary conclusion:
 - Long-standing body of health evidence, strengthened in this review, supporting relationships between PM$_{2.5}$ exposures and various outcomes, including mortality and serious morbidity effects
 - Recent U.S. and Canadian epidemiologic studies reporting positive and statistically significant health effect associations for PM$_{2.5}$ air quality likely to be allowed by the current standards
 - Analyses of pseudo-design values indicating substantial portions of study area health events/populations in locations with air quality likely to have met the current PM$_{2.5}$ standards
 - Risk assessment estimates that the current primary standards could allow thousands of PM$_{2.5}$-associated deaths per year – most at annual average PM$_{2.5}$ concentrations from 10 to 12 µg/m3 (well within the range of overall mean concentrations in key epidemiologic studies)
Primary PM$_{2.5}$ Marginal Damages

Goodkind et al., PNAS, 2019
Goodkind et al., *PNAS*, 2019

Damages and Premature Mortality

- **Damages ($billions per year)**
 - Miscellaneous
 - Industrial processes
 - Fires
 - Road Dust
 - Agriculture
 - Non-road - mobile
 - Road - diesel vehicles
 - Road - gas vehicles
 - Fuel combustion - other non-fossil
 - Fuel combustion - wood-residential
 - Fuel combustion - other fossil
 - Fuel combustion - coal-electric

- **Premature mortality per year (thousands)**
 - PM$_{2.5}$
 - NH$_3$
 - NO$_x$
 - SO$_2$
 - VOC

Ground level vs. Elevated
Regional-Scale and Community-Scale Modeling (2017)

Regional-scale modeling: covers the Bay Area

Local-scale modeling: covers West Oakland, including impacts in receptor area (white) from sources in source area (red)
Clear evidence of an association between wildfire smoke and respiratory health

• Asthma exacerbations significantly associated with higher wildfire smoke *in nearly every study*

• Exacerbations of chronic obstructive pulmonary disease (COPD) significantly associated with higher wildfire smoke in most studies

• Growing evidence of a link between wildfire smoke and respiratory infections (pneumonia, bronchitis)
• Wildfire-PM$_{2.5}$ associated with heart attacks and strokes for all adults, particularly for those over 65 years old

• Increase in risk the day after exposure:
 - All cardiovascular, 12%
 - Heart attack, 42%
 - Heart failure, 16%
 - Stroke, 22%
 - All respiratory causes, 18%
 - Abnormal heart rhythm, 24%
 (on the same day as exposure)
Update on Particulate Matter (PM)

Air District Work:

Regional- and Local-Scale PM$_{2.5}$ Source Apportionment

Phil Martien, PhD
Director of Assessment, Inventory, and Modeling

Advisory Council Meeting
December 9, 2019
Overview

• **Regional-scale PM$_{2.5}$ source apportionment:**
 – Informs actions to maintain attainment of PM standards
 – Reveals information gaps, as top sources are controlled

• **Local-scale PM$_{2.5}$ source apportionment:**
 – Indicates near-source exposures add to total pollution burden
 – Reveals additional information gaps
 – Suggests a regulatory gap: actions to reduce near-source exposures?
Regional Modeling: Primary and Secondary Contributions

Total PM$_{2.5}$

Primary PM$_{2.5}$ (about 53%)

Secondary PM$_{2.5}$ (about 47%)
2016 Bay Area Emissions Summary for Key Secondary PM$_{2.5}$ Precursors

NO$_x$
- **Area Sources**: 8%
- **Point Sources**: 13%
- **Nonroad Mobile Sources**: 42%
- **Onroad Mobile Sources**: 37%

- **Total**: 91,691 tons/yr

Key NO$_x$ Sources: Diesel trucks and diesel-powered off-road equipment

SO$_2$
- **Area Sources**: 2%
- **Nonroad Mobile Sources**: 12%
- **Onroad Mobile Sources**: 3%
- **Point Sources**: 83%

- **Total**: 9,444 tons/yr

Key SO$_2$ Sources: Petroleum refineries, manufacturing plants (cement, chemicals)

NH$_3$
- **Point Sources**: 16%
- **Area Sources**: 65%
- **Nonroad Mobile Sources**: 19%
- **Onroad Mobile Sources**: <1%

- **Total**: 11,582 tons/yr

Key NH$_3$ Sources: Agricultural activity (livestock husbandry, fertilizer application)
PM$_{2.5}$ Bay Area Emissions Summary for Primary PM$_{2.5}$

2016 annual average PM$_{2.5}$ emissions

- Area Sources: 34%
- Nonroad Mobile Sources: 16%
- Onroad Mobile Sources: 27%
- Permitted Stationary Sources: 23%
- Point Sources: 23%

12,392 tons/year
2016 annual average PM$_{2.5}$ emissions
Emissions Inventory Information Gaps

• On-road wear emissions and road dust

• Some area source categories
 – Residential wood combustion
 – Commercial cooking
PM$_{2.5}$ Bay Area Emissions

Apportionment: On-road Vehicles

PM$_{2.5}$ (tons/yr)

Vehicle Miles Travelled (VMT)

Data sources: EMFAC2017, California Air Resources Board 2016 State Implementation Plan Inventory
Regional-scale modeling: covers the Bay Area

Local-scale modeling: covers West Oakland, including impacts in receptor area (white) from sources in source area (red)
Modeled Primary PM$_{2.5}$ (from Local Sources)*

* 30% of PM$_{2.5}$ sources, including construction, residential woodburning, and restaurants not modeled.
Local vs. Regional: West Oakland Example

PM$_{2.5}$

1.7 µg/m3

- Community-scale model – mapped impacts*
- Regional-scale model (minus West Oakland)

*30% of PM$_{2.5}$ sources, including construction, residential woodburning, and restaurants not modeled
Unequal Impacts: PM$_{2.5}$ in West Oakland

PM$_{2.5}$ from local sources (μg·m$^{-3}$)

* Contributed by modeled "present-day" emissions from existing local sources. Impacts from sources outside West Oakland not included.
Additional Emissions Inventory
Information Gaps Identified

• Local-scale exposures: a different lens for evaluating priorities

• Same concerns about on-road wear and road dust emissions estimates

• We require more information about permitted sources that are not top priorities from a regional perspective
PM$_{2.5}$ Emissions (tons/yr) from Permitted Facilities

- West Oakland facilities $\approx 0.5\%$
 - (15 tons/yr, within community boundary)
- Top 5 facilities (Air District-wide) $\approx 50\%$
- (All others)
• Continuing regulatory programs to reduce PM$_{2.5}$ with the current regional focus will improve health throughout the Bay Area

• As top sources are controlled, new sources become priorities and we identify new information gaps

• Local-scale assessments bring to focus the importance of some permitted sources that are a low priority from a regional perspective

• A regulatory gap: a framework that promotes PM$_{2.5}$ reductions from near-source exposures will improve health in Assembly Bill 617 communities
Update on Particulate Matter (PM) Air District Work:

Monitoring

Ranyee Chiang
Director of Meteorology & Measurements

Advisory Council Meeting
December 9, 2019
Measurements in the Bay Area (cont.)

Source Testing

Fenceline Monitoring
Measurements in the Bay Area (cont.)

Portable and Mobile Monitoring

Regional Network
Measurements in the Bay Area (cont.)

Sensor Networks
Outline: PM Monitoring

• Regional Network and Community Monitoring
 – Current capabilities
 – New developments

• What does the data show?
 – Ultrafine particles
 – Wildfire incidents

• Looking ahead
 – How could data be used
 – Options to strengthen air quality monitoring
• Provide timely ambient air quality data to the general public
• Air quality forecasting for Spare the Air Program
• Support compliance with California and national ambient air quality standards
• Support air pollution research studies
Monitoring Network Design Criteria

• Site Types
 – Population-oriented
 – Highest concentration of pollutants
 – Source-oriented (downwind of major pollution sources)
 – General background sites
 – Regional transport (near borders of the Air District)

• Based on population (2010 Census or estimates)
 – Number of monitoring sites in the Bay Area exceeds the required number

40 Code of Federal Regulations 58 Appendix D
Particulate Matter (PM) Measurements

Mass Measurements
- Compliance with California and National PM$_{10}$ and PM$_{2.5}$ standards
- Designate areas as attainment or nonattainment

Chemically Resolved or Speciated Data
- Support emission reduction strategies

Particle Counts
- Explore science on emissions, air quality impacts, and health effects associated with exposures
Air District PM Instrumentation

<table>
<thead>
<tr>
<th>Analytical methods</th>
<th>PM$_{10}$ Mass</th>
<th>PM$_{2.5}$ Mass</th>
<th>PM$_{2.5}$ Speciation</th>
<th>Ultrafine Particles (PM$_{0.1}$)</th>
<th>Black Carbon Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravimetric</td>
<td>Gravimetric or Filter-based beta attenuation</td>
<td>Chemical extraction</td>
<td>Laser-based particle counter</td>
<td>Filter-based light attenuation</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Example photo

![Example photo](image)
Ultrafine PM Monitoring

Strengths:
- 7+ years of experience with deployment in diverse siting applications
- Current data can be used to understand diurnal and seasonal patterns, trends, or differences between background, near-road, and typical urban settings

Limitations:
- Cost ($60k - $100K / unit)
- Instruments in PM-burdened areas require frequent maintenance
- Difficult to assess sources and sinks
- Data may not be robust enough to link to specific health impacts
New Developments: Hyperlocal, Street-by-Street Monitoring

- Partnership with Aclima to determine differences in air quality on a highly localized scale
- Sensor-based instrumentation (NOx, CO, O3, BC, PM2.5)
- Data reported through a public portal
- Began in Richmond-San Pablo in summer 2019; entire Bay Area within two years

Use cases:
- Empower communities with information about air quality typical of where they live and work
- Identify areas having elevated background concentrations for further investigation
New Developments: Mobile Laboratory

- High accuracy, real-time instrumentation to screen for PM and air toxics at a local scale
 - PM concentration
 - Inferred particle age
 - Size-binned measurements (ultrafine through PM$_{10}$)
 - Black carbon
 - Potential to test for chemical components of PM in the future

Use cases:
- Identify and prioritize local sources of air toxics or PM
- Air quality between fixed-site monitors
- Identify locations for portable or fixed-site monitoring stations
New Developments: Portable Platforms

- High quality, battery powered, filter-based PM samplers that are relocatable
- Self-contained “suitcase” for continuous, real-time measurements using high quality, low power instruments

Use cases:
- Concentration variations throughout the day or week near an identified PM hotspot
- Measure air quality when the power is out due to high winds and fire hazard
- Verify low-cost sensor nodes
Outline: PM Monitoring

• Regional Network and Community Monitoring
 – Current capabilities
 – New developments

• What does the data show?
 – Ultrafine particles
 – Wildfire incidents

• Looking ahead
 – How could data be used
 – Options to strengthen air quality monitoring
What Do the Ultrafine Particulate (UFP) Data Show?

Levels influenced by traffic and/or photochemical reactions

- UFP highest at near-road sites
- Some sites consistently low, while others vary

Patterns of UFP throughout region differ from PM$_{2.5}$
Wildfire Smoke Dramatically Affects Bay Area PM$_{2.5}$ Levels

2017 and 2018 wildfire days included

2017 and 2018 wildfire days removed
Air District’s Strategy to Reduce Impacts from Wildfire Smoke

Communication with the public

• Issue smoke advisories and Spare the Air alerts based on air quality forecasts
• Understanding air quality measurements and data
• How to reduce exposure during smoke impacts

Grants and incentives for recovery assistance

Work with other Air Districts and Public Health Officers

• Consistent wildfire health information
• Provide guidance for schools
Outline: PM Monitoring

• Regional Network and Community Monitoring
 – Current capabilities
 – New developments

• What does the data show?
 – Ultrafine particles
 – Wildfire incidents

• Looking ahead
 – How could data be used
 – Options to strengthen air quality monitoring
Combining Monitoring Strategies for Multiple Objectives

<table>
<thead>
<tr>
<th>Network</th>
<th>Measurements</th>
<th>Network Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Network</td>
<td>- PM${2.5}$ and PM${10}$ Mass</td>
<td>- Comparison with health-based standards
- Public information
- Track long-term trends
- Assess out of area transport</td>
</tr>
<tr>
<td>Special Projects (fixed site, portable, or mobile)</td>
<td>- PM size distribution
- PM speciation
- UFP
- Black Carbon</td>
<td>- Source identification
- Assessment of specific emission sources
- Characterization of near-road environments</td>
</tr>
<tr>
<td>Sensor Networks (mobile or fixed)</td>
<td>- PM Mass
- Particle Count</td>
<td>- More challenging to interpret due to higher levels of uncertainty
- Public education
- Personal exposure
- Identification of hot-spots
- Comparative assessment of local air quality
- Tracking high PM episodes</td>
</tr>
</tbody>
</table>
Integrated PM Network Assessment (to be completed by July 2020)

- Evaluate PM measurement network to recommend improvements with available resources
- Address existing requirements and goals
 - Federal and state requirements
 - Understand criteria pollutant levels
- Strengthen network to address gaps
 - Incorporate multiple monitoring approaches
 - Support community air monitoring activities
 - Provide data to support other Air District activities
Update on Particulate Matter (PM) Air District Work:

Air District Grant Programs Overview

Karen Schkolnich
Strategic Incentives Division Director

Advisory Council Meeting
December 9, 2019
Overview

• Background
• Grants Overview and Priorities
 – Project Evaluation
 – Eligible Projects
• Supporting Air District Initiatives
• Results and Highlights
• Next Steps
Background

Monitoring
Planning
Regulations &
Enforcement

Education
&
Outreach

Grants
&
Loans
Grants Overview and Priorities

- Cost-effective air quality and climate protection benefits
- Accelerated adoption of cleanest commercially available technologies and investments in R&D
- Expedited emissions reductions in disproportionately impacted communities
Project Evaluation
Cost-Effectiveness (CE)

\[CE = \frac{\text{Funds Awarded}}{\text{Tons of NOx} + \text{ROG} + (\text{PM}_{10} \times 20) \text{ reduced}} \]

CE* estimates *quantifiable*,

verifiable,

and surplus lifetime emission reductions

CE formula is provided by CARB Carl Moyer Program Guidelines
>$97M Awarded in 2018 to Eligible Projects

Funding Source
- Carl Moyer, AB 617 Community Health Protection: $54.0M
- Goods Movement: $6.4M
- Mobile Source Incentive Fund: $7.9M
- Transportation Fund for Clean Air: $20.9M
- Others*: $8.0M

Project Type
- On-road Vehicles: $32.0M
- Off-road Vehicles & Equipment: $44.4M
- Trip Reduction: $6.2M
- Other: $5.1M
- Passthrough: $9.5M

* Other funding sources include U.S. EPA’s DERA, California Climate Investments, & Air District’s general fund
Eligible Projects
On-road Vehicles

$32.0M
On-road Vehicles

Cars & Charging Stations

Trucks

Buses
Eligible Projects
Off-road Vehicles & Equipment

- Cargo Equipment
- Ag Equipment
- Marine & Locomotive
- Other Off-road

$44.4M

Off-road Vehicles And Equipment

C347
Eligible Projects

Trip Reduction

- Shuttles & Ridesharing
- Pilot Services
- Bicycle Projects

$6.2M Trip Reduction
Eligible Projects
Other & Passthrough

- Lawn & Garden
- Wood Smoke
- Climate Protection
- County Programs

$5.1M Other
$9.5M Passthrough
Supporting Air District Initiatives
Path to Diesel Free by ‘33
Supporting Air District Initiatives
Bay Area Electric Vehicle Trends & Goals

- **7,750 public charging ports**
- **Over $15M invested to date**
- **~25% of funded stations included renewables**
- **3% of the cars are EVs**
- **10+ EV Incentive Programs**

Progress towards our EV Adoption Goals

<table>
<thead>
<tr>
<th>Year</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>15,000</td>
</tr>
<tr>
<td>2018</td>
<td>190,000</td>
</tr>
<tr>
<td>2025</td>
<td>247,000</td>
</tr>
<tr>
<td>2050</td>
<td>~5 million</td>
</tr>
</tbody>
</table>

C351 12
Supporting Air District Initiatives
Advanced Technology Demonstrations

$2.9M to deploy 11 electric trucks & haulers for commercial delivery service

$3M to deploy hydrogen-powered ferry for passenger service
Supporting Air District Initiatives
Early Emissions Reductions at Port of Oakland

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>*DPM Inventory (tons)</th>
<th>2005</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceangoing Vessels</td>
<td></td>
<td>208.5</td>
<td>42.2</td>
</tr>
<tr>
<td>Harbor Craft</td>
<td></td>
<td>13.4</td>
<td>6.1</td>
</tr>
<tr>
<td>Cargo Handling Equipment</td>
<td></td>
<td>21.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Trucks</td>
<td></td>
<td>15.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Locomotives</td>
<td></td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>--</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>261</td>
<td>51</td>
</tr>
</tbody>
</table>

>$100M in grants invested at Port of Oakland including:

- Retrofitted/replaced <1,900 drayage trucks
- Installed shorepower at 14 berths
- Replaced >1,090 on-road trucks

*Diesel Particulate Matter
Results and Highlights

Regionwide Cumulative Emissions Reduced (tons) Since 2015

- **ROG**: 1,329
- **NOx**: 3,237
- **PM$_{10}$**: 359
- **CO$_2$**: 576,899

Highlights 2015 - 2019

- 1,000+ EV charging stations
- ~40 miles of bikeways
- 1,200+ woodstoves and fireplaces
- >100 ZE transit and school buses

53% of funds in CARE areas
Next Steps

Incentive Revenues for 2020 (in millions)

Carl Moyer, AB 617 Community Health Protection, FARMER, Goods Movement

Mobile Source Incentive Fund

Transportation Fund for Clean Air

Others*

$57.8M

$13.0M

$26.0M

$11.3M

Grant Programs

$108M Total

* Others include Clean Cars for All and Climate Tech Finance (loan guarantee)
Next Steps

New & Expanded Grant Programs

• Secure new sources of funding
• Expand eligibility and initiate new programs
 – Expediting public health benefits in disproportionately impacted areas
 – Prioritizing programs that provide co-benefits
Particulate Matter Exposure
CARB Health Research and Rule

Álvaro Alvarado
California Air Resources Board
December 9, 2019
PM Exposure is an Important Public Health Concern

• Why are we concerned about PM?
 • Lots of evidence for health impacts

• If PM2.5 ↓ to background levels, could prevent (annually) about:
 • 7,200 premature deaths
 • 1,900 hospitalizations
 • 5,200 emergency room visits
But That’s Not All – Additional Evidence of PM’s Negative Health Impacts

• Strong evidence for increased:
 • Asthma attacks
 • Respiratory symptoms

• Probable association with:
 • Work loss days
 • Restricted activity days
 • Adverse brain effects
PM2.5 Trend in the San Francisco Bay Area Air Basin

![Graph showing PM2.5 trend with key events labeled: 1993 Cleaner Diesel Fuel, 2001 Truck Engine Standards, 2011 Truck & Bus Regulation. The NAAQS is indicated as 12 µg/m³.]

- Estimated from PM10
CARB’s Current Efforts and New Challenges
Wildfire-related PM Exposures

- Millions of Californians exposed to wildfires in 2018
- Wildfires: more frequent & intense with climate change
- Little known about health impacts
 - PM emitted during fire; post-fire ash
 - More structure/vehicle fires
- Particular concern: children & elderly

Forecast Average Annual Area Burned

Source: CalAdapt.org
CARB Research: Wildfire Health Impacts in Rhesus Macaques

• Infant monkeys in outside enclosures unintentionally exposed to wildfire smoke (Miller, UC Davis)

• As adolescents & young adults:
 • Impaired immune function
 • Changes in lung structure
 • Reduced lung function
 • Changes passed to next generation

© CNPRC, UC Davis
CARB Research, in progress: Wildfire Emissions

• Understanding and mitigating wildfire risks (Goldstein, UC Berkeley)
 • Mobile measurements (in-house research with UC Berkeley & UC Riverside)
• NASA aircraft: investigating wildfire emissions & downwind air quality (Blake, UC Irvine)
PM from Brake & Tire Wear

• Successful reduction of regional PM from vehicle exhaust
• Vehicle tailpipe emissions most important regionally
• Non-tailpipe emissions may have localized importance
• Uncertainties in emissions & health impacts
CARB Research, in progress:
Brake & Tire Wear

• Quantifying brake & tire wear emissions (Kishan, Eastern Research Group)
• Examining real-world brake & tire emissions and exposure to downwind communities (Jung, UC Riverside)
• In-house laboratory research projects
• Understanding potential health impacts (Jerrett, UCLA)
Health Risk from Ultrafine PM (UFPM)

• Potential exposure risks:
 • High numbers & chemicals attach to surface
 • Once inhaled, can go deep into lung
 • Can enter bloodstream, travel to organs
 • UFPM highly variable (space & time)
 • Sparse historical data
CARB Research: Health Effects of UFPM

- Monitoring, modeling, and health impacts of UFPM (Kleeman, UC Davis)
- Preliminary results suggest increased risk of premature death with higher exposure
CARB Research, in progress: Short-term PM Exposure

• White paper: reviewing short-term PM exposure impacts (Kleinman, UC Irvine; in progress)
• Air monitoring in AB 617 communities
 • Localized pollutant exposures
• Determine if need to address short-term exposures
Statewide Mobile Source Strategies Overview

- Heavy Duty Trucks
- Warehouses
- Passenger Cars
- Trains
Heavy Duty Trucks

• Advanced Clean Trucks regulation
• Heavy-duty vehicle inspection and maintenance
• Innovative Clean Transport
• Airport Shuttles
• Low NOx Omnibus Rule
Warehouses

- Freight Handbook
- Transport refrigeration unit regulations
- Drayage truck regulation amendments
- Cargo handling equipment amendment
Passenger Cars

• Advanced Clean Cars 2
• Catalytic converter theft reduction
Trains

• Reduce idling for all rail yard sources
• Potential development of regulation to reduce emissions for locomotives
Thank you
Update on Particulate Matter (PM) Air District Work:

PM Rules and Regulatory Development

Victor Douglas
Rule Development Manager

Advisory Council Meeting
December 9, 2019
Overview

• Approaches to Regulate PM
• PM Rules and Regulations
• Current and Future Efforts
 – Regional attainment
 – Localized impacts
 – Gap analysis
• **Three Ways to Regulate PM:**
 1. Originally regulated as a Nuisance
 • Open burning (original Reg 1)
 • Dust and aerosol (original Reg 2)
 2. Criteria (i.e., regional)
 3. Toxic (i.e., local/community level)
 • Diesel PM
Regional Approach

- Attainment of ambient air quality standards
- Control of Primary PM
 - Filterable
 - Condensable
- Control of Secondary PM
 - Oxides of Nitrogen (NOx)
 - Sulfur Dioxide (SO$_2$)
PM Rules & Regulations

• Regulation 2: Permits
• Regulation 5: Open Burning
• Regulation 6: Particulate Matter
• Regulation 9: Inorganic Gaseous Pollutants
• Regulation 11: Hazardous Pollutants
• Regulation 12: Miscellaneous Standards of Performance
PM Rulemaking Efforts

- 2012 – Rule 2-2 amendments to add New Source Review permitting requirements for PM$_{2.5}$
- 2012 – New Rule 9-13 to reduce PM emissions from Portland cement kilns
- 2013 – New Rule 6-4 and new Rule 12-13 to reduce PM emissions from metal foundries and shredding facilities
PM Rulemaking Efforts

• 2015 – Rule 6-3 amendments to further reduce wood smoke from wood-burning devices

• 2016 – New Rule 9-14 to reduce precursors of secondary PM from petroleum coke calcining operations

• 2018 – New Regulation 6, new Rule 6-6, and Rule 6-1 amendments to reduce PM emissions from fugitive dust sources

• 2019 – Rule 6-3 to extend No Burn Days for the Wildfire Response Program
• New Regulation 6 for common definitions and test methods
• New Rule 6-6 for prohibition of trackout
• Rule 6-1 amendments for general requirements and bulk material handling
• Reduce PM emissions from fugitive dust sources
• Expected emission reductions of 1.6 tpd PM$_{10}$, 0.2 tpd PM$_{2.5}$
Current and Future Efforts

• Continued **regional** efforts on further PM reductions (e.g., Rule 6-5: PM from FCCUs)
• Source categories and rule efforts identified in planning efforts
• Additional areas from gap analysis
 – Restaurants
 – Wood smoke
 – Indirect and magnet sources
 – PM as a toxic pollutant
• To address **localized** PM issues
• Regulatory framework for site-specific localized PM impacts
• Existing localized approaches for toxics
 – Air District Rule 11-18 for Air Toxic Emissions from Existing Facilities
 – AB 2588 Air Toxic Hot Spots Program
Questions?
Discussion Questions

Are current PM standards sufficiently health protective?

Are some species of PM more dangerous than others?

What is role of ultrafine particles (UFPs)?

Should form of target expand to account for more than just mass?

How should we include draft PM ISA’s new “likely-causal” health endpoints (nervous system effects, cancer) and new more sensitive populations (children, lower socio-economic status)?

What are health impacts of high-concentration acute events (e.g., wildfires)? How should we compare them to day-to-day PM impacts?
Discussion Questions

What are major sources of PM in the Bay Area?

What PM levels exist in Bay Area? What health risks do they pose?

How much additional health benefit can be achieved?

How should we account for spatial scale of effects (i.e., regional versus local-scale impacts, including proximity to major sources)?

How should we determine which measures would most move public health needle?
Deliberation Questions

What is bullseye in clean air target? How clean is clean enough?

How will we know when we get to target? What metrics should we use to track progress?

How do we combine criteria pollutants and toxics? Cancer and non-cancer health endpoints? Short- and long-term effects?

How can we make sure everyone is treated fairly?

How can we ensure that everyone breathes clean air?

What are most important actions that can be taken now? And, in future?
Discussion Questions (DRAFT)

Are current PM standards sufficiently health protective?
NOT SUFFICIENTLY PROTECTIVE; MORE STRINGENT STANDARDS NEEDED

Are some species of PM more dangerous than others?
QUITE POSSIBLY BUT NOT ENOUGH INFORMATION; NO PM COMPONENTS “EXONERATED” THOUGH

What is role of ultrafine particles (UFPs)?
NOT YET CLEAR, BUT TOX STUDIES OF CONCERN; NEED UFP FEDERAL REFERENCE METHOD; MORE MONITORING; EPI STUDIES NEEDED

Should PM “target” expand to account for more than just mass?
IN RESEARCH, ABSOLUTELY; IN REGULATION, TOO SOON, UNLESS HIGHLY RISK-AVERSE

How should we include draft PM ISA’s new “likely-causal” health endpoints (nervous system effects, cancer) and new more sensitive populations (children, lower socio-economic status)?
STRONGER EVIDENCE, NEW HEALTH EFFECTS; GROWING RECOGNITION OF “AT RISK” GROUPS (E.G., CHILDREN AND LOW SES); NEED TO CONSIDER

What are health impacts of high-concentration acute events (e.g., wildfires)? How should we compare them to day-to-day PM impacts?
NOT WELL-KNOWN SCIENTIFICALLY, BUT OF CONCERN; DATA ON SUB-DAILY EXPOSURES TOO LIMITED AS YET; POTENTIALLY SERIOUS EFFECTS REPORTED IN EARLY STUDIES; NEW STUDIES ONGOING; MORE RESEARCH NEEDED
Discussion Questions (DRAFT)

What are major sources of PM in the Bay Area?

WEST OAKLAND:
- PM2.5, TOP 3 – PORT (17%), STREET (17%), HIGHWAY (16%);
- DIESEL PM, TOP 3 – PORT (57%), STREET (7%), HIGHWAY (8%)

What PM levels exist in Bay Area? What health risks do they pose?

WEST OAKLAND:
- PM2.5 = 8.7 ug/m3 (ALL SOURCES, AVERAGE), LOCAL SOURCES = 1.5 to 2.2 ug/m3 (BY NEIGHBORHOOD);
- DIESEL PM = 0.7 ug/m3 (AVERAGE);
- HYPER-LOCAL HOT SPOTS COULD BE HIGHER

How much additional health benefit can be achieved?

REDUCING ANNUAL PM2.5 FROM 12 ug/m3 TO 10 ug/m3 COULD REDUCE RISK BY 10-15%; THOUSANDS FEWER DEATHS IN U.S. EACH YEAR

How should we account for spatial scale of effects (i.e., regional versus local-scale impacts, including proximity to major sources)?

SPATIAL SCALE IMPORTANT; REGIONAL- VS. LOCAL- VS. HYPER-LOCAL-SCALE IMPACTS

WEST OAKLAND:
- PM2.5 CONCENTRATION – OVERALL, 80% FROM REGIONAL SOURCES, 20% FROM LOCAL SOURCES;
- DIESEL PM CONCENTRATION – OVERALL, 40% FROM REGIONAL SOURCES, 60% FROM LOCAL SOURCES; HYPER-LOCALIZED HOT SPOTS COULD BE HIGHER

How should we determine which measures would most move public health needle?

NEED MORE SCIENCE, AND NEED TO ACT NOW; OPTIONS TO BE DETERMINED; DISTRICT STAFF TO IDENTIFY
Deliberation Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is bullseye in clean air target? How clean is clean enough?</td>
<td></td>
</tr>
<tr>
<td>How will we know when we get to target? What metrics should we use to track progress?</td>
<td></td>
</tr>
<tr>
<td>How do we combine criteria pollutants and toxics? Cancer and non-cancer health endpoints? Short- and long-term effects?</td>
<td></td>
</tr>
<tr>
<td>How can we make sure everyone is treated fairly?</td>
<td></td>
</tr>
<tr>
<td>How can we ensure that everyone breathes clean air?</td>
<td></td>
</tr>
<tr>
<td>What are most important actions that can be taken now? And, in future?</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY: Community Particulate Matter Discussion
February 27, 2020

NOTE: A full transcript of the event is available from the stenographer. This summary aims to capture key themes in advance of the submission date for background materials for the next PM Symposium.

Overview

Community members, grassroots organization leaders, and Air District staff members met at the Bobby Bowens Center in Richmond on the evening of February 27, 2020 to gather community input on particulate matter (PM) impacts, monitoring, and regulatory efforts. The event was organized by a Design Team of community leaders with assistance from Elinor Mattern of the Air District’s Community Engagement Section. Approximately 30 people attended to express their concerns regarding PM, its sources, and its health effects.

Input from community members centered on the following issues:

Localized PM data availability
- Desire for data beyond West Oakland
- Desire for real-time, continuous, publicly accessible localized monitoring
- Consolidating/sharing community-collected data (e.g. PurpleAir)

Toxicity of different PM species
- Concerns regarding severity of problems from refineries and other permitted sources (e.g. cement plant, concrete crushers, metal processing facilities)
- Skepticism regarding wood burning as a major driver of health impacts

Lack of observable results from prior rulemaking
- 2017 Clean Air Plan
- Crude slate inventory
- General enforceability issues

Potential for problems to worsen
- Issuance of new permits
- Emerging indoor air concerns (e.g. vapor intrusion) beyond the scope of the Air District
- Climate impacts
- Lengthy time horizon prior to implementation (e.g. diesel PM rules took 10 years)

This summary provides a brief background on the event. Additional details regarding these community concerns and the Air District’s clarifications in reply are noted in the transcript.
Background

The February Community Discussion in Richmond was part of a series of Bay Area events focused on health effects of PM. This series began in October of 2019 and will culminate in a set of findings from the Air District’s Advisory Council to be delivered to the Air District Board. The Community Discussion preceded a planned symposium that was to be held in Oakland, originally scheduled for March 24th, 2020, but postponed due to COVID-19, at which representatives from local community organizations would present to the Advisory Council regarding local PM efforts, needs, and priorities. The purpose of the Community Discussion was to gather additional community input and engagement prior to that next Symposium.

The following community leaders worked together to organize the event with assistance from Elinor Mattern of the Air District’s Community Engagement Section:

- Katherine Funes - New Voices Are Rising
- Richard Gray - 350 Marin
- Jed Holtzman - 350 Bay Area
- Ashley McClure - California Climate Health Now
- Steve Nadel - Sunflower Alliance
- Ken Szutu - Vallejo Citizen Air Monitoring Network
- LaDonna Williams - All Positives Possible

A list of community members who attended the event is provided in the attached Appendix, along with information on the missions of the organizations with which they are affiliated.

Structure

The gathering began at 5pm with informal sharing of a meal, followed by introductions from discussion facilitators Azibuike Akaba (Senior Public Information Officer, Air District) and Laura Neish (Executive Director, 350 Bay Area). Jed Holtzman (350 Bay Area) also offered welcoming remarks. Brief presentations by Air District staff preceded the discussion portion of the event:

- Goals of the PM Symposium Series (Greg Nudd)
- Major Sources of Fine Particulate Matter (Phil Martien)
- Current & Potential Rules to Reduce PM (Jacob Finkle)
- Policy Approaches for Particulate Matter (Victor Douglas)

Attendees asked questions and contributed comments following each presentation in addition to participating in the discussion portion of the gathering. Facilitators concluded the event at 8pm. The content of these exchanges is summarized thematically in the following section. Details on Air District presentations are omitted as this information is also being shared in the PM Symposia and details are recorded in the transcript of the Community Discussion.
Key Concerns Expressed by Community Members and Air District Replies

Localized PM data availability

“I think the public needs to have more access to what is going on.”

Desire for data beyond West Oakland. Several community members expressed frustration with the repeated presentation of West Oakland information, as such information has not been provided for other areas. For some community members, this emphasis on West Oakland felt “disrespectful” to other communities.

Air District reply: The localized analysis piloted in West Oakland is a very new approach, so it requires cautious expansion. Vehicle-mounted monitors are in the process of collecting data for the entire Bay Area. Richmond data is now available. Information for other communities will be rolled out over the next couple of years.

Desire for real-time, continuous, publicly accessible localized monitoring. Community members seek the capability to access “readouts” in real time to determine local air quality, particularly in the presence of unusual odors or flares. Concerns were expressed regarding current monitoring accuracy, with the example given of normal readings following permitted-facility accidents. An additional concern was the perception that polluters are not required to pay for monitoring: “Currently all this cost falls onto the community and we don’t have the money. And if we don’t have the money we don’t have the monitoring and the business pollutes freely.”

Air District reply: Monitoring is continuous and publicly accessible but not in real time. The Air District hopes to move toward real-time monitoring, but presently both sample analysis and data analysis create lags. Permitted facilities are required to conduct and pay for their own monitoring, and the Air District performs tests to confirm the accuracy of that monitoring.

Consolidating/sharing community-collected data (e.g. PurpleAir). As organizations and community members have begun collecting air monitoring data themselves using technology such as PurpleAir, they are seeking a means of consolidating and sharing those data. Steve Nadel of the Sunflower Alliance asked whether the Air District is working on that effort.

Air District reply: There is a new third-party “Bay Air Center” (independent of the Air District) that will provide technical support for monitor selection and siting. The California Air Resources Board has agreed to centralize air quality sensor data through their grant program. This process is likely to be challenging.

Toxicity of different PM species

“Just presenting the percentages [from different sources] doesn’t give the full picture of toxicity. Not all particulate matter is created equal.”
Concerns regarding higher severity of PM health effects from permitted sources. Depiction of PM contributions from different sources as percentages of a total raised concerns for attendees who stated that some types of PM are more toxic than others. Many comments in the meeting focused on permitted sources, including oil refineries, metal processing facilities, and concrete crushers. Community representatives want to understand where the “fault lines” lie in terms of permitted facility PM fallout — for example, a community may be downwind of a refinery yet not be considered a “refinery community” depending on where boundaries are drawn.

Air District reply: Compounds that are known to be toxic (e.g. toxic metals) are independently tracked. However, there is insufficient information regarding the toxicity of undifferentiated PM, which is why the Air District takes a precautionary approach assuming all PM to be highly hazardous. Regarding impacts from permitted facilities, studies are currently being conducted by the Air District to better understand PM emissions from refineries and to track exposures from local sources of PM in disproportionately burdened communities. Additionally, new rules regarding fluidized catalytic cracking units are in the final stages of development. With respect to the East Oakland AB&I metal foundry, the Air District is involved in resolving issues with Rules 11-18 and 12-13 regarding air toxics and PM.

Skepticism regarding wood burning as a major driver of health impacts. A significant amount of skepticism was expressed by community members regarding wood burning as a leading PM health issue. Air District measurement and monitoring methods were questioned. There was apparent frustration with the implied equating of wood smoke to refinery smoke.

Note: A community member who was not able to be present at the gathering, Richard Gray of 350 Bay Area, stated upon reading the transcript that in the San Geronimo area where he lives residential wood burning does have a substantial negative impact on air quality. He expressed that certain weather patterns can cause this wood smoke to remain in the immediate area rather than dissipate, and that problems associated with that smoke exposure have prompted numerous residents to relocate.

Air District reply: Data collection on wood burning involves not only surveys and modeling but also filter analysis to reveal the components of localized PM: “We can tell what is on those filters and what fraction is from wood burning.” However, it is expected that wood burning is more prevalent in some areas than others, which will be clarified in the forthcoming community-level studies. Current science indicates that wood smoke is highly toxic.

Lack of observable results from prior rulemaking

“It seems like implementation is a problem.”

2017 Clean Air Plan. Jed Holtzman of 350 Bay Area stated that many of the solutions that the Air District is currently presenting were already in the 2017 Clean Air Plan and asked what institutional constraints are preventing implementation. He also described an existing rule
requiring facilities to conduct health impact assessments and stated that two and a half years after the rule had been developed this is still not happening.

Air District reply: New approaches are being implemented to speed up the process. This PM Symposium Series is designed to ensure that the full impact of PM — as reflected in the science and the community — is clear to decision makers. In addition to the health costs, the economic costs of PM are being calculated in order to further incentivize action. Additionally, the Air District is pursuing innovative means of clarifying jurisdiction for local sources of PM, such as “magnet sources” like warehouses that attract truck traffic.

Crude slate inventory. Rule 12-15, requiring accurate crude inventories, was brought up by Shoshana Wechsler of 350 Bay Area/Sunflower Alliance, who asked for the status of this data.

Air District reply: There have been some reporting difficulties because legal constraints prevented the Air District from specifying formats for data collection. A means of requiring standardized reporting has now been identified and this information will soon be available.

General enforceability issues. Several issues with enforceability were raised, such as lack of moisture content measurement at construction sites to limit dust, and citations of violations being limited to “visibility” issues following fires at permitted facilities. Ken Szutu of the Vallejo Citizen Air Monitoring Network suggested that perhaps rather than arranging community meetings with the Air District’s rulemaking teams, these meetings should be centered on the departments responsible for enforcement.

Air District reply: The Air District does not have “police powers.” The enforcement process is carried out by the District Attorney. The Air District strives to work collaboratively with permitted facilities to ensure compliance.

Potential for problems to worsen

“You can’t stop the cold air coming in if you close a window on one end and then open a different one on the other.”

New permits continue to be issued. Much attendee support was expressed for a comment from LaDonna Williams of All Positives Possible that, despite all the discussion about reducing emissions, the Air District continues to issue permits to new sources.

Air District reply: The Air District is statutorily obligated to issue permits. However, the aim is to put the brakes on emissions in areas that are already overburdened. The Air District is developing an approach intended to consider existing PM exposures in the community in order to ensure that burden is not increased.
Emerging indoor air concerns. Residents are experiencing problems with toxic vapor intrusion of polychlorinated biphenyl (PCB) and trichlorobenzene (TCB) compounds in their water delivery systems. They asked how the Air District can help.

Air District reply: Although household indoor air is not within its authority, the Air District is seeking to collaborate with the Water Control Board and will be involved in a multi-agency workshop to try to speed resolution of this problem.

Climate impacts. A community member inquired about the connection between the health impacts under discussion and the public health threat of the climate crisis.

Air District reply: The 2017 Clean Air Plan demonstrates the linkages, with one of its three pillars focusing on health.

Lengthy time horizon prior to changes being implemented. Citing the example of diesel PM rulemaking taking 10 years, concern was expressed that the present process may be many years away from producing meaningful change: “How do we compress that?”

Air District reply: With the Board’s buy-in, we can start working on elements of our strategy without having to wait years. We are working to compress that timeline.
APPENDIX - Attendee List for Community Particulate Matter Discussion – 2/27/2020

<table>
<thead>
<tr>
<th>Organization</th>
<th>Representative(s) Attending (+ Organizational Role)</th>
<th>Website</th>
<th>Notes on Organization Mission (based on websites)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 Bay Area</td>
<td>Jed Holtzman (Senior Policy Analyst)</td>
<td>https://350bayarea.org/</td>
<td>Bay Area organization supporting policies that promote clean energy, eliminate fossil fuels, and facilitate just and socially equitable solutions to ensure a livable planet for future generations.</td>
</tr>
<tr>
<td>350 Contra Costa</td>
<td>Jackie Garcia</td>
<td>https://350bayarea.org/ 350contracosta</td>
<td>Contra Costa team of 350 Bay Area (see above)</td>
</tr>
<tr>
<td>All Positives Possible</td>
<td>LaDonna Williams (Programs Director), Pat Dodson and Janniece Murray</td>
<td>https://www.guidestar.org/profile/61-1588146</td>
<td>East Bay nonprofit supporting efforts of low-income communities of color to confront crises of environmental health and injustice.</td>
</tr>
<tr>
<td>Bayview Hunters Point Resident</td>
<td>Dr. Raymond Tompkins</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>California Climate Health Now</td>
<td>Ashley McClure, Cynthia Carmichael</td>
<td>https://www.climatehealthnow.org/</td>
<td>California physicians and health professionals “who recognize climate change as the public health and equity emergency of our lifetimes.”</td>
</tr>
<tr>
<td>Communities for a Better Environment</td>
<td>Andrés Soto</td>
<td>http://www.cbecal.org/</td>
<td>California environmental justice organization focused on global climate issues and local transformation toward sustainable communities. Provides organizing skills, leadership training, and scientific and legal assistance.</td>
</tr>
<tr>
<td>Groundwork Richmond</td>
<td>Jen Fong</td>
<td>http://www.groundworkrichmond.org/</td>
<td>Richmond environmental organization helping youth develop leadership potential through science, technology, engineering, arts, and math.</td>
</tr>
<tr>
<td>Higher Ground Neighborhood Development Corp.</td>
<td>Khariyyah Shabazz (Assistant Programmatic Director) and Reggie Archie</td>
<td>http://www.highergrounndndc.com/</td>
<td>Oakland-based neighborhood development corporation focused on youth.</td>
</tr>
<tr>
<td>Interfaith Climate Action Network of Contra Costa County</td>
<td>Will McGarvey,</td>
<td>http://www.ican-cc.org/</td>
<td>Contra Costa County organization educating faith and non-faith communities about mitigating climate change and providing advocacy on their behalf to ensure oppressed community voices are heard by policymakers, industries, and other organizations.</td>
</tr>
<tr>
<td>New Voices Are Rising/Rose Foundation</td>
<td>Katherine Funes (Youth Engagement Co-Director) & 3 youth</td>
<td>https://rosefdn.org/new-voices</td>
<td>Oakland-based project seeking to increase civic participation within underrepresented communities, increase young people’s commitment to environmental justice, and reduce air and water pollution in the SF Bay Area. Part of the Rose Foundation for Communities and the Environment.</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>No Coal in Oakland</td>
<td>Misao Brown</td>
<td>https://nocoalinoakland.info/</td>
<td>Oakland-based organization campaigning to stop the threat of coal being transported by rail into Oakland for export overseas.</td>
</tr>
<tr>
<td>No Coal in Richmond</td>
<td>Jaime Perez</td>
<td>https://ncir.weebly.com/</td>
<td>Richmond-based organization supporting phase-out of coal and pet coke operations to protect health.</td>
</tr>
<tr>
<td>Physicians for Social Responsibility</td>
<td>Robert Gould (President), Jeff Ritterman (Vice President of Board of Directors)</td>
<td>http://sfbaypsr.org/</td>
<td>Bay Area chapter of organization seeking to promote public policies that protect human health from climate change and environmental degradation as well as nuclear war and other weapons of mass destruction, gun violence, and other social injustices.</td>
</tr>
<tr>
<td>Rodeo Citizens Association</td>
<td>Janet Pygeorge, Charles Davidsen</td>
<td>https://rodeocitizensassociation.org/</td>
<td>Non-profit organization devoted to issues concerning the unincorporated community of Rodeo, California. Their primary purpose is to address local concerns to health, safety and the environment.</td>
</tr>
<tr>
<td>Sierra Club Bay Chapter</td>
<td>Dave McCoard (Co-Chair of Energy Committee)</td>
<td>https://www.sierraclub.org/san-francisco-bay</td>
<td>SF Bay Area chapter of national grassroots environmental organization. Chapter has nearly 40,000 members. Issues include energy and climate, sustainable communities, parks and open space, environmental justice, water, and wilderness and wildlife.</td>
</tr>
<tr>
<td>Sunflower Alliance</td>
<td>Steve Nadel and Shoshana Wechsler</td>
<td>https://www.sunflower-alliance.org/</td>
<td>Bay Area citizen group focused on halting fossil fuel production and transport, particularly in the East Bay.</td>
</tr>
<tr>
<td>Vallejo Citizen Air Monitoring Network</td>
<td>Ken Szutu (Chair)</td>
<td>http://citizenairmonitoringnetwork.org/vallejo/</td>
<td>Vallejo citizen group collecting and publicizing local air quality data to enable rapid response to air quality problems.</td>
</tr>
<tr>
<td>Youth vs Apocalypse</td>
<td>2 youth</td>
<td>http://youthvsapocalypse.org/</td>
<td>Bay Area group of diverse young climate justice activists (ages 10-18) working to lift the voices of youth, in particular youth of color, and fight for a livable climate and an equitable, sustainable, and just world through policy advocacy. Supported by 350 Bay Area.</td>
</tr>
</tbody>
</table>
Community Reflections from Feb. 27 Community Summit on PM

Jed Holtzman, MEM
Senior Policy Analyst

on behalf of the
BAAQMD Network

To view a video recording of the following presentation please visit: http://baha.granicus.com/MediaPlayer.php?publish_id=86baaa39-9531-11ea-a2af-0050569183fa. This presentation starts 46 minutes and 30 seconds into the recording (0:46:30). It ends at one hour, 10 minutes, and 10 seconds (1:10:10).
The federal government is moving backwards on PM regulation.

California must lead the nation—and as usual, we here must lead the state—in reducing PM emissions to protect both public health and public coffers.

The current coronavirus pandemic highlights the necessity to prioritize steep PM reductions—particularly in frontline, overburdened, and disadvantaged communities, and those that have experienced environmental injustice and racism.
Communities’ excess exposure to PM makes them significantly more vulnerable to the impacts of SARS-CoV-2 and the other health and environmental challenges that will be expected with ongoing climate warming.

We request that the Advisory Council make the strongest possible statement to the Board on the need for aggressive Air District action to reduce PM to the maximum extent feasible, in order to protect public health.

We need BAAQMD action on all cylinders, we need robust rulemaking, and we need it yesterday. Delay translates directly into death and suffering of Bay Area residents, at the rate of thousands per year.
To even hope to meet a health-protective PM target, we need to attack it from both directions, using both regional AND local approaches.
Regional Approach

There is no safe level of PM exposure, the concentration-response curve is linear, and we could keep saving lives by further reducing PM emissions.

The Air District should set the lowest PM standard available to protect public health given the overwhelming data. If this requires coordinating with ARB and the legislature to take leadership, it won’t be the first time.

Setting a truly health-protective PM standard in the Bay Area will provide the impetus for an effective PM Reduction Plan, with all feasible measures needed to achieve attainment of the standard.
Local Approach

For locally significant sources of PM, staff is proposing to employ a toxic health risk approach.

Given the incredible failure with the implementation of Rule 11-18 on toxic risk reduction, how does the District think it is going to lean this approach to handle all needed PM reductions from local stationary and magnet sources as well?

And how will those reductions come at a relevant time scale, given thousands of deaths per year of delay?
Local Approach

How can we identify problematic local sources and deal with them faster? We can't wait until all burdened communities get AB 617 designation, which is all the more unlikely now in the post-pandemic budgetary environment.

The status quo Air District process on toxics is not working and will not work on the timescale in which we need to see reductions.

So do you ramp up the HRA staff and workflow at the District by more than 10x? Or do you come up with an alternate regulatory strategy? Something must change.
Regional/Local

Whether locally or regionally, our common concerns are the strength and breadth of regulations and the speed and robustness of their implementation.
Paying to Pollute

Penalties for violations of Air District rules with any primary or secondary PM emissions impacts must be increased substantially to reflect the true costs to the Air District and public health.

Both greater penalties for violations and an augmented enforcement regime at facilities are needed to incentivize compliance and provide serious disincentives for multi-billion dollar companies to pollute.

In-plant or in-community reductions of PM should be required instead of allowing trading in PM credits, and a very large (e.g., 20-to-1) offset rate could be employed for out-of-community offsets to ensure reductions stay local.
Permitting

Currently, AD staff is looking at reforming your permit program to take into account cumulative impact of emissions sources, rather than looking at each new permit as taking place on a clean slate.

We need to see other reforms in the permitting system at the Air District—for example:

• To close loopholes—for example, the piecemealing of larger projects into small components to remain under legal and regulatory thresholds and minimize the appearance of project impacts.
• To change calculation methodologies that have resulted in over-permitting facilities (e.g., the 6th refinery problem).
Cost-Benefit Analyses

Air District cost-benefit analyses need to take into account a broader portfolio of monetized health damages beyond the limited subset currently employed.

AD staff is pursuing updating the PM health values used in these analyses, which will make the comparison between costs to a facility and costs to public health less imbalanced and more accurate. We support this critical work, which the state should have moved on many years ago.

This does not replace the need to include the many health benefits/averted health costs that a regulation could achieve when engaging in socioeconomic analyses.
There are so many places where the Air District doesn't have authority and can't ensure emissions will come down as needed to protect—so where you do have authority, you need to take maximal action.

PM counters that at least provide ballpark figures would be superior to subjective opacity determinations.
Conclusions

PM pollution is every bit as injurious and deadly as it was when you met in October and December, but now we are all moving forward trying to address this difficult challenge in a more trying environment.

In this environment, it is even more important than ever to identify and prioritize major sources of PM with a rapid timeline of control.

The most important thing we have learned from this crisis can be summarized in the old Boy Scout motto: BE PREPARED. The Air District can help prepare us for the next health crisis by greatly reducing PM emissions and improving our baseline health and safety.
Thanks!

jed@350bayarea.org
COVID While Black is the lived experiences of Bayo Vista in Rodeo CA, and South Vallejo CA, two frontline African American severely disadvantaged communities located along the shores of the Carquinez Strait. They share a bridge, a strait, invisibility and environmental racism. In addition they suffer from some of the highest negative health rates in the region from living by polluting refineries, petroleum storage companies, huge tanker ships traveling through the Carquinez Strait (transporting millions of tons of gas & oil) releasing scores of toxins into the Carquinez waters and air, and a Wastewater Raw Sewage Treatment Plant located in their neighborhoods.

Further negative impacts from the devastating wildfires, nearby polluting industries, and now COVID-19 undoubtedly are causing heightened physical and mental health trauma, resulting in epic levels of negative health, financial, environmental and mental health crisis on these already overburdened communities. Their lived experiences dealing with unexplained skin lesions, and tumors, bloody noses, high rates of asthma, Bell’s Palsy, premature hair loss, headaches, heart attacks, diabetes, high blood pressure, cancers and death, prematurely burying their families and friends remain largely ignored, invisible to agencies and elected officials. While the white communities like Tormey are personally escorted to safety by officials with their lived experiences being top priority, low-income African American communities like Bayo Vista and South Vallejo are left to shelter in place fending for themselves as agencies and elected officials continue to permit even more increases of toxic emissions into their neighborhoods, routinely telling these residents there’s no threat to their health or environment.

As these communities brace for the next fiery explosions from nearby storage companies like NuStar Energy, or the toxic releases of white and black smoke emissions from the nearby Phillips 66 refinery causing further pollution in their air, while inhaling noxious odors from a close by Wastewater Raw Sewage Treatment Plant, located directly across the street from residents living in low income and/or public housing, and huge tanker ship’s toxic spills releases causing more pollution. Residents continue to plead for help demanding justice from agencies and elected officials with deaf ears who continue to rubber stamp, approve and permit millions of tons of toxic increases of emissions from countless polluters into severely disadvantaged neighborhoods.

The impacts and suffering of severely disadvantaged communities must be treated as a state of emergency! Anything less is supporting environmental and systemic racism, against the most vulnerable populations with the least financial or legal support. Contra Costa County Supervisors continue to rubber stamp expansions of the Phillips 66 refinery, permitting additional millions of tons/gallons of gas and oil and other toxic emissions into the air we breathe. Across the bridge, Solano County Supervisors supported an out-of-country toxic cement plant from Ireland that would have been located in South Vallejo, less than a quarter mile from low-income housing, schools, and places of worship. We thank GOD for the community’s strength and commitment to stop the Orcem cement plant from coming into the community. The elected officials, agencies, and church leaders who continue to permit and support expansions and increases of toxic emissions in severely disadvantaged neighborhoods, while claiming there is no significant risk associated with their approval of these operational expansions must be held accountable for the environmental injustices, deaths and racism in disadvantaged communities.
To view a video recording of the following presentation, please visit: http://baha.granicus.com/MediaPlayer.php?publish_id=86baaa39-9531-11ea-a2af-0050569183fa. This presentation starts one hour, 18 minutes, and 33 seconds into the recording (1:18:33). It ends at one hour, 48 minutes, and 34 seconds (1:48:34).
Bay O Vista Rodeo, CA 10/15/19
Low Income
Bay O Vista
Housing Units
Rodeo, CA
10/15/19
SOUTH VALLEJO CARQUINEZ BRIDGE
HWY 80 10/27/19
Update on Air District Particulate Matter (PM) Potential Policy Strategies

Advisory Council Meeting
May 12, 2020
Greg Nudd
Deputy Air Pollution Control Officer
Major Sources of PM$_{2.5}$ in the Bay Area

Area Sources: 34%
- Permitted Stationary Sources: 23%
- Onroad Mobile Sources: 27%
- Off-road Mobile Sources: 16%

12,392 tons/year

2016 annual average, directly emitted PM$_{2.5}$ emissions
Major Sources of PM$_{2.5}$ in the Bay Area

- Residential Wood Combustion: 8%
- Other Fuel Combustion: 8%
- Other Area Sources: 7%
- Commercial Marine Vessels: 6%
- Construction Activity: 5%
- Other Off-Road Sources: 6%
- Refineries: 10%
- Vehicle Exhaust: 5%
- Brake and Tire Wear: 10%
- Road Dust: 11%
- Other Permitted Sources: 13%

2016 annual average, directly emitted PM$_{2.5}$ emissions

12,392 tons/year
Major Sources of PM$_{2.5}$ in West Oakland

2017 annual average, directly emitted PM$_{2.5}$ emissions

129 tons/year
PM$_{2.5}$ in West Oakland vs Bay Area

West Oakland

- Off-road Mobile Sources: 33%
- Permitted Stationary Sources: 14%
- Onroad Mobile Sources: 26%

Bay Area

- Off-road Mobile Sources: 27%
- Permitted Stationary Sources: 23%
- Onroad Mobile Sources: 27%

2017

2016

Area Sources

- West Oakland: 26%
- Bay Area: 34%
Current and Potential Actions

- Mobile Sources
- Permitted Stationary Sources
- Area Sources
- Magnet Sources
Current and Potential Actions

- **Existing programs:**
 - Diesel Free by ‘33
 - Spare the Air
 - Incentives for trip reduction (shuttles, bicycles)
 - Vehicle Buy-backs
 - Commuter benefits rule
 - Air District Incentives Programs

- **Potential new programs:**
 - Encourage telework
 - Assist local programs to control road dust

On Road Mobile Sources

Regulatory Authority: California Air Resources Board (CARB)
Current and Potential Actions (cont.)

• Existng Programs:
 • Diesel Free by ‘33
 • Robust incentive programs for ships, trains, construction equipment

• Potential New Programs:
 • Push for stricter rules from CARB
 • Seek federal funding for electrification infrastructure
Current and Potential Actions (cont.)

- **Existing Programs:**
 - Restrictions on wood burning devices
 - Winter Spare the Air Program
 - Rule limiting charbroiler emissions

- **Potential New Programs:**
 - Require disabling of wood burning devices upon sale
 - Use regulatory authority to encourage electric space and water heating
 - Incentives for restaurant emission controls

Area Sources

Regulatory Authority: Air District
Current and Potential Actions (cont.)

- **Existing Programs:**
 - Multiple current regulations to reduce PM from refineries, metal foundries, coke calcining, materials handling
 - New requirements under development to limit condensable PM from refineries and the cement kiln
 - Permitting rules cap PM and precursors region-wide

- **Potential New Programs:**
 - New rule to limit site-wide health risk from PM
 - Modify permitting regulations to address localized health risks
Magnet Source Rule(s)

Businesses that attract mobile sources: Examples: US Post Office facilities, port warehouses, and distribution centers

Rule Development status: seeking changes to Air District authority at the state level

Regulatory Authority: ?
Gaps in Authority to Regulate PM

- Fine PM as Toxic Pollutant
- Establish Air Quality Standards for PM
- Magnet Sources of all forms of PM
Reducing Health Impacts of Fine PM

- Considerations of health impacts
 - Community-level health exposure assessments
 - Health-benefit analyses
- Establish “Goals” for PM reductions
- Additional Rule Development Efforts
Questions?
PRESENTATION TO BAAQMD ADVISORY COMMITTEE

Proposed Guiding Principles for Consideration in Forwarding Recommendations to the BAAQMD on PM2.5 Regulation

Frances Keeler, CCEEB
July 31, 2020
The California Council for Environmental and Economic Balance (CCEEB) is a nonpartisan, nonprofit coalition of labor, business, and public leaders that advances strategies for a healthy environment and sound economy. CCEEB represents many facilities that operate in the Bay Area Air Quality Management District.
Guiding Principles

Recommendations from the AC to the BAAQMD should:

- Be based on best peer-reviewed science
- Consider input/lessons learned from other agencies
- Consider PM$_{2.5}$ speciation and source apportionment
- Address regional vs local impacts and control strategies
- Include an economic evaluation
- Prioritize strategies by greatest amount of near-term, cost-effective reductions
Scientifically Based Recommendations

Recommendations:

- Must be informed by the best, scientifically-based data possible
 - *Is more data needed and, if so, what is needed?*
- Should be based on peer-reviewed studies
- Should consider guidance developed by other agencies
- Data collection versus modeling
- Should demonstrate causal relationship before recommending controls
- Should be all inclusive
Coordination Between Agencies

- AC should consult other agencies on health standards
 - CARB - sets SAAQS
 - OEHHA
 - CA Air Districts

- AC Should direct Staff to work with other agencies

- AC should consider measures agencies are implementing to reduce PM and how it might advance the goals of the BAAQMD
 - CARB is adopting many strategies for mobile sources that will reduce PM$_{2.5}$
 - BAAQMD has regulations in the plan and in process to further reduce PM$_{2.5}$
 - State is developing strategies to address wildfires
PM Speciation

- Advisory Council must examine speciation
- There are many contributors to PM2.5
 - Mobile sources
 - Commercial sources (restaurants)
 - Residential sources (wood burning fireplaces, fire pits, BBQs)
 - Material handling
 - Industrial combustion sources
 - Secondary formation sources
 - Naturally occurring sources
 - Wildfires
- Speciation/source apportionment are key to determining the most effective means of reduction
 - Not about exoneration, but about effectiveness
Regional vs Local Controls

- PM$_{2.5}$ levels vary at the localized level
 - Different sources contribute to PM$_{2.5}$ levels in different communities
- Are regional reductions more effective than localized reductions?
- What is the goal and how do we best achieve it?
- Have the COVID response measures changed impacts on either the regional or local level and is any of the change permanent?
Economic Impacts

- Need to focus limited resources where they will be most effective

- AC should review research that includes economic analysis of potential PM control strategies and identify/recommend proven strategies that can be implemented expeditiously and economically
Prioritize Recommended Measures

- Identify the goal and recommend:
 - Measures with greatest ground-level concentration reductions
 - Measure with greatest impact
 - Measures available near-term versus future reductions
 - Most cost-effective measures
 - Measures that reduce the most impactful portion of PM$_{2.5}$
Factors Beyond the Scope of the Advisory Council

- District Authority
 - State and Federal government establish standards/regulate mobile sources
- CEQA analysis of control options
- Resources
- Cost-effectiveness threshold
BAAQMD Action on Advisory Council Recommendations

- Action informed by best, scientifically-based data possible
 - Will help determine what to regulate first and where/how to get the most effective reductions

- Consider input/peer review/actions from other agencies
 - What vetted methods are other agencies doing to reduce PM$_{2.5}$ emissions
 - How might those regulations benefit the Bay Area?

- Regional vs Local Control
 - Where should BAAQMD focus its attention first?

- Consider PM$_{2.5}$ speciation/source apportionment
 - Important to determining the most effective approach

- Include economic evaluation
 - How to obtain the greatest cost-effective reductions?
Assessing the Health Effects of Particulate Matter

Julie E. Goodman, Ph.D., DABT, FACE, ATS
Gradient

Bay Area Air Quality Management District

Advisory Council Meeting
July 31, 2020
Julie E. Goodman, PhD, DABT, FACE, ATS

• SB, Environmental Engineering, MIT, 1996
• ScM, Epidemiology, Johns Hopkins, 2000
• PhD, Toxicology, Johns Hopkins, 2002

• Cancer Prevention Fellow, National Cancer Institute, 2002-2004
• Principal, Gradient, 2004-Present
• Board of Health, Canton, MA, 2008-Present
• Adjunct Faculty, Harvard School of Public Health, 2009-2017
• Diplomate, American Board of Toxicology
• Fellow, American College of Epidemiology
• Fellow, Academy of Toxicological Sciences
Health Sciences

Epidemiology – The study of the distribution and determinants of health effects

Toxicology – The study of potential adverse health effects of substances on living organisms
PM Associations vs. Causation

- PM is associated with morbidity and mortality in many traditional epidemiology studies
- Associations, particularly at low concentrations, are small in magnitude
- Association does not always mean causation
- Most likely explanation
 - Bias (e.g., exposure measurement error)
 - Confounding
 - Chance
 - Inappropriate statistical model

Liu et al. (2019)
• Need to consider population density, multiple pollutants, other factors
• Issues with the validity of using satellite retrieval without ground-based validation
• Larger cities have higher levels of air pollution and an increased opportunity for the spread of disease because there are many more people

There are similar issues with PM epidemiology in general
Daily Average $\text{PM}_{2.5}$ Concentrations in the Bay Area, 2019

Data from https://www.epa.gov/outdoor-air-quality-data
Exposure Measurement Error – Ambient Air Monitors

- Most studies use ambient air monitors
- People often spend a lot of time away from home
- People spend most time indoors
- Average PM exposures can be higher indoors

Long et al. (2000)
Harvard School of Public Health
Exposure Measurement Error – Personal vs. Ambient PM$_{2.5}$ Associations Vary
Exposure Measurement Error – Many Studies Evaluate the Wrong Exposure Window and Overestimate Associations

PM2.5 Air Quality, 2000 - 2019
(Seasonally-Weighted Annual Average)
National Trend based on 406 Sites

2000 to 2019: 43% decrease in National Average

US EPA, 2020

Figure 1. PM$_{2.5}$ Distributions in Illustrative Example
Confounding

- Other exposure window
- Atmospheric conditions
- Other copollutants, allergens
- Socioeconomic status (SES)

- Lifestyle factors (e.g., smoking)
- Access to health care
- Genetics
Model Choice and Measurement Error Linearizes Exposure-response Curve

No Threshold

Threshold
Measurement error in environmental epidemiology and the shape of exposure-response curves

Lorenz R. Rhomberg, Juhi K. Chandalia, Christopher M. Long, and Julie E. Goodman

Gradient, Cambridge, Massachusetts, USA

Abstract
Both classical and Berkson exposure measurement errors as encountered in environmental epidemiology data can result in biases in fitted exposure-response relationships that are large enough to affect the interpretation and use of the apparent exposure-response shapes in risk assessment applications. A variety of sources of potential measurement error exist in the process of estimating individual exposures to environmental contaminants, and the authors review the evaluation in the literature of the magnitudes and patterns of exposure measurement errors that prevail in actual practice. It is well known among statisticians that random errors in the values of independent variables (such as exposure in exposure-response curves) may tend to bias regression results. For increasing curves, this effect tends to flatten and apparently linearize what is in truth a steeper and perhaps more curvilinear or even threshold-bearing relationship. The degree of bias is tied to the magnitude of the measurement error in the independent variables. It has been shown that the degree of bias known to apply to actual studies is sufficient to produce a false linear result, and that although nonparametric smoothing and other error-mitigating techniques may assist in identifying a threshold, they do not guarantee detection of a threshold. The consequences of this could be great, as it could lead to a misallocation of resources towards regulations that do not offer any benefit to public health.

Keywords: Epidemiology, exposure, exposure-response, measurement error, risk assessment
Exposure Misclassification Masks or Biases Thresholds

- True exposure was modeled.
- Corresponding risks calculated for simulated population using error based on observed exposure measurement error.

"True" threshold

Brauer et al. (2002)
University of British Columbia
Causal Methods Example – Burns et al. (2017)
Health Effects Institute Review of 42 Studies of 38 Interventions

Interventions
- Industrial
- Residential
- Vehicular
- Multiple

Comparison: No restrictions

Primary Outcomes
- All cause mortality
- Cardiovascular Mortality
- Respiratory Mortality
- PM$_{10}$
- PM$_{2.5}$
- Coarse PM
- Soot
- Black carbon (BC)
- Black smoke (BS)
- Elemental carbon (EC)

Results: "Evidence for effectiveness was mixed. Most included studies observed either no significant association or an association favoring the intervention, with little evidence that the assessed interventions might be harmful."
Example: PM$_{2.5}$ and Mortality in Greater Boston, 2002, after Quebec Forest Fires

Zu et al. (2016)
Toxicity Studies – There is a threshold below which people can be exposed to PM and not experience health impacts

• If exposures are sufficiently low, PM will not cause adverse health effects because it won't overwhelm the body's natural defenses.
• This is supported by experimental studies in humans and animals.
• CARB relies on this principle for all other non-carcinogenic agents.
• There is no justification for assuming one particle will impact health.
The Peer-review Process Is Not Perfect- Long-term PM and Mortality Example

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM_{2.5} Exposure Assessment</td>
<td>Central site monitoring (low spatial resolution)</td>
<td>X</td>
</tr>
<tr>
<td>No validation for PM_{2.5} data</td>
<td></td>
</tr>
<tr>
<td>Temporal variation not accounted for</td>
<td>X</td>
</tr>
<tr>
<td>Residential mobility not accounted for</td>
<td>X</td>
</tr>
<tr>
<td>No evaluation on multiple exposure windows</td>
<td>X</td>
</tr>
<tr>
<td>Personal activities not accounted for (e.g., time spent indoors)</td>
<td>X</td>
</tr>
<tr>
<td>Mismatch of PM_{2.5} exposure window and mortality</td>
<td>X</td>
</tr>
<tr>
<td>Individual Covariates</td>
<td>No adjustment of individual covariates</td>
<td>X</td>
</tr>
<tr>
<td>Information bias (e.g., self-reported covariates)</td>
<td>X</td>
</tr>
<tr>
<td>Temporal variation not accounted for</td>
<td>X</td>
</tr>
<tr>
<td>Unmeasured confounding (e.g., pre-existing conditions)</td>
<td>X</td>
</tr>
<tr>
<td>Ecological Covariates</td>
<td>No adjustment of ecological covariates</td>
<td>X</td>
</tr>
<tr>
<td>Temporal variation not accounted for</td>
<td>X</td>
</tr>
<tr>
<td>Residential mobility not accounted for</td>
<td>X</td>
</tr>
<tr>
<td>Unmeasured confounding (e.g., access to health care, violence)</td>
<td>X</td>
</tr>
<tr>
<td>Evaluation of Copollutants</td>
<td>No adjustment of copollutants</td>
<td>X</td>
</tr>
<tr>
<td>Central site monitoring (low spatial resolution)</td>
<td>X</td>
</tr>
<tr>
<td>No validation for copollutants data</td>
<td>X</td>
</tr>
<tr>
<td>Temporal variation not accounted for</td>
<td>X</td>
</tr>
<tr>
<td>Residential mobility not accounted for</td>
<td>X</td>
</tr>
<tr>
<td>Personal activities not accounted for (e.g., time spent indoors)</td>
<td>X</td>
</tr>
<tr>
<td>Collinearity/nonlinear relationship with PM_{2.5} not addressed/accounted for</td>
<td>X</td>
</tr>
<tr>
<td>Mismatch of copollutants window and mortality</td>
<td>X</td>
</tr>
<tr>
<td>Statistical Analyses</td>
<td>Model assumptions not tested/relaxed</td>
<td>X</td>
</tr>
<tr>
<td>C-R curves sensitive to df (natural splines)</td>
<td>X</td>
</tr>
<tr>
<td>Nonlinearity not assessed statistically</td>
<td>X</td>
</tr>
<tr>
<td>Threshold not assessed</td>
<td>X</td>
</tr>
</tbody>
</table>
Conclusions – PM Threshold Is Likely Higher than Ambient Concentrations

- High concentrations of PM, and every other substance, can impact morbidity.
- There are clearly statistical associations between PM and morbidity and mortality in many epidemiology studies, even at lower, ambient concentrations.
- Evidence does not indicate associations are causal at ambient concentrations.
- There is a threshold below which people can be exposed to PM and not experience health impacts.
Bay Area Particulate Matter (PM) Modeling-Based Assessments and Next Steps

Advisory Council Meeting
July 31, 2020

Phil Martien, PhD
Director of Assessment, Inventory, & Modeling Division
Overview

- PM modeling for the West Oakland Community Action Plan
 - Review community-scale assessment
- PM modeling of large industrial sources
 - Chevron Richmond Refinery
- Next Steps
Recent PM Assessments

- Identify source-contributions to impacts
 - What is responsible?

- Assess equity of impacts to inform decision-making
 - Support agency goal of reducing air pollution inequities

- Work toward highlighting health risks from fine PM ($\text{PM}_{2.5}$) exposures below federal standard
 - Develop a risk framework consistent with “no identified safe level of $\text{PM}_{2.5}$”
Regional-Scale and Community-Scale Modeling (2017)

Regional-scale modeling: covers the Bay Area

Local-scale modeling: covers West Oakland, including impacts in receptor area (white) from sources in source area (red)
Grand total of modeled impacts from local sources

Sub-total from trucks, cars, and other vehicles on streets and highways

Sub-total from locomotive engines and railyards

Sub-total from harbor craft, ocean-going vessels, drayage, cargo handling, etc.

For any location, we can use the sub-totals to draw pie charts showing the relative impacts of sources A, B, C, etc.
Unequal Impacts: PM$_{2.5}$ Across West Oakland

* Contributed by modeled "present-day" emissions from existing local sources. Impacts from sources outside West Oakland not included.

DRAFT 2019-08-16
Impact Zones
Targets and Source Contributions for PM$_{2.5}$

Targets:

2025 – Today’s average residential neighborhood

2030 – Today’s cleanest residential neighborhood

* Contributed by emissions from modeled local sources. Impacts from sources outside West Oakland not included.

DRAFT 2019-08-16
Impact Per Ton: PM$_{2.5}$ in West Oakland

- Circles are modeled local sources
- Red is more impact, blue is less impact
- Percentages are shares of modeled impact
- Some sources have larger exposure factors (steeper slopes)
Finding Solutions: "Scenario Tool"
Large Industrial Sources:
Chevron Richmond Refinery
Modeling Study

- **Scope:** Tracking directly emitted (primary) PM$_{2.5}$
 - From all permitted sources at Chevron, including the Fluidized Catalytic Cracking Unit (FCCU)

- **Scenarios:**
 1. Baseline = existing emissions
 2. Additional FCCU emission reductions

- **Approach:** Track plumes with the CALPUFF air quality model to map concentrations (2016-2018)
Scenario: Baseline
Scope: All modeled Chevron sources

- Modeled annual-average, primary PM$_{2.5}$ concentrations from all sources at Chevron
- Baseline scenario
- Measured annual-average PM$_{2.5}$ at nearby San Pablo site: about 8-10 µg/m3*

* Excluding 2017-2018 wildfire days; about 8-13 mg/m3 including wildfire days
Chevron PM$_{2.5}$ Concentration Impacts by Residents Exposed

- Each color dot represents one person
- Colors are muted outside the 0.1 µg/m3 contour, “the plume”
- Almost half a million people (~449,000) in the plume
Scenario: Baseline
Scope: All modeled Chevron sources
Scenario: Baseline
Scope: FCCU Only
PM$_{2.5}$ Exposures by Race/Ethnicity

Scenario: Baseline
Scope: Census blocks with 0.1 µg/m3 PM$_{2.5}$ or more from Chevron

- **White** ($n \approx 137,000$ residents)
 - FCCU/Total = 39%
 - Shading indicates FCCU contribution

- **Hispanic/Latino** ($n \approx 135,000$ residents)
 - FCCU/Total = 34%
 - West of 23rd St, Chevron-attributable PM$_{2.5}$ is higher

- **Asian/Pacific Islander** ($n \approx 107,000$)
 - FCCU/Total = 38%

- **African American/Black** ($n \approx 80,000$)
 - FCCU/Total = 35%

Advisory Council Meeting
July 31, 2020
Bay Area Air Quality Management District
Next Steps

- Richmond/San Pablo Community Action Plan
- Additional refineries/large industrial facilities
- Methodology for estimating increased adult mortality risk from local sources of PM$_{2.5}$
 - Highlight risks below the federal standard
 - Based on a recent California epidemiological study
 - Development in partnership with US Environmental Protection Agency (EPA) and the Office of Environmental Health Hazards Assessment (OEHHA)
Summary

- Identify source-contributions to impacts
 - What is responsible?
- Assess equity of impacts to inform decision-making
 - Support agency goal of reducing air pollution inequities
- Work toward highlighting health risks from PM$_{2.5}$ exposures below federal standard
 - Develop a risk framework consistent with “no identified safe level of PM$_{2.5}$”
Appendix D: Advisory Council Information
Information about the Air District, including air quality forecasts, can be found by visiting https://www.baaqmd.gov. In addition, information about the Air District’s Spare the Air program can be found by visiting https://www.sparetheair.org.

PARTICULATE MATTER CONFERENCE WEBPAGE

Webcast, audio, presentation materials, reports and meeting minutes for the Advisory Council Particulate Matter Symposium series can be found by visiting https://www.baaqmd.gov/pmconference.

AIR DISTRICT ADVISORY COUNCIL AGENDAS, MINUTES AND MEDIA

Additional information about the Air District’s Advisory Council, including Advisory Council member biographies, reports, and meeting information can be found by visiting https://www.baaqmd.gov/about-the-air-district/advisory-council. Meeting dates in the Particulate Matter Symposium series:

- October 28, 2019
- December 9, 2019
- May 12, 2020
- July 31, 2020
- October 9, 2020
- November 9, 2020
- December 3, 2020
- December 16, 2020
APPENDIX D: ADVISORY COUNCIL MEMBER BIOGRAPHIES

The following are the biographies of each of the seven Air District Advisory Council members who participated on the Advisory Council over the course of the particulate matter conference series.

CHAIRPERSON STAN HAYES

Principal Emeritus, ENVIRON (now Ramboll)

Stan Hayes has more than 40 years of experience in environmental science and engineering, with particular emphasis on air impact and health risk analysis for both national ambient air quality standards (NAAQS) and hazardous air pollutant (HAP) purposes, including air quality modeling, strategic and regulatory policy analysis, climate assessment, compliance evaluation, exposure and health risk assessment, and air monitoring and meteorological data analysis.

He is a Fellow of the Air & Waste Management Association, for which he has chaired or co-chaired national and international specialty conferences on climate change, greenhouse gas reporting, and homeland security. Previously, he was a member of the U.S. EPA Science Advisory Board Risk and Technology Review (RTR) Methods Panel.

Chairperson Hayes is the primary author of more than 70 scientific papers and presentations, as well as several hundred technical reports on air-related subjects. He has provided expert testimony before federal, state, and local regulatory agencies and in court. Upon invitation, he has given scientific briefings to members of the California legislature and political leaders elsewhere.

For 25 years, until 2015, he was a Principal with global environmental consulting firm ENVIRON (now Ramboll). He is now emeritus.

Chairperson Hayes earned an M.S. in aeronautics and astronautics and a B.S. in mechanical engineering, both from Stanford University.

VICE CHAIR MICHAEL KLEINMAN

Professor, Environmental Toxicology, Co-Director of the Air Pollution Health Effects Laboratory, Adjunct Professor in College of Medicine, University of California, Irvine

Michael T. Kleinman is UC Irvine Professor of Environmental Toxicology and Co-Director of the Air Pollution Health Effects Laboratory in the Department of Community and Environmental Medicine, and Adjunct Professor in the College of Medicine.

Dr. Kleinman brings to the Advisory Council expertise in the health effects of air pollution on animals and humans, as well as expertise in the development of analytical techniques for assessing biological and physiological responses to exposure to environmental contaminants and for determining concentrations of important chemical species in air.
The research in Dr. Kleinman’s laboratory uses immunological and molecular methods to examine the mechanisms by which toxic agents affect the lung and heart. Current studies include the effects of ambient particles on blood pressure and heart rate in sensitive animal models. Other studies examine the link between asthma and environmental exposures to ambient particles near real-world pollutant sources, such as freeways in Los Angeles. Research focuses on mechanisms of cardiopulmonary injury following inhalation of toxic compounds. State-of-the-art methods are used to evaluate the roles of free radicals and oxidative stress in sensitive human volunteers and laboratory animals. In vitro methods are used to evaluate specific mechanisms.

Dr. Kleinman's current studies involve inhalation exposures to manufactured and combustion-generated nanomaterials as fine and coarse particles using state-of-the-art field exposure systems and real-time physiological monitoring methods. Dr. Kleinman’s team is also pursuing how these mechanisms affect pathological and physiological changes in the heart and lungs.

Other interests include analytical and atmospheric chemistry, environmental sampling and analysis, and the application of mathematical and statistical methods to environmental and occupational assessments of exposure and risk.

Dr. Kleinman received a Ph.D. in Environmental Health Sciences from New York University.

TIM LIPMAN

Co-Director, UC Berkeley Transportation Sustainability Research Center

Timothy E. Lipman is an energy and environmental technology, economics, and policy researcher and lecturer with the University of California, Berkeley. He is serving as Co-Director for the campus’ Transportation Sustainability Research Center (TSRC), based at the Institute of Transportation Studies, and has also served as Director of the U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC).

Dr. Lipman's research focuses on electric-drive vehicles, fuel cell technology, combined heat and power systems, biofuels, renewable energy, and electricity and hydrogen energy systems infrastructure. Most of his research projects are related to the transformation of energy systems to support motor vehicles and buildings, examining how both incremental and "leap frog" technologies can be applied to reduce greenhouse gas emissions and other negative environmental and social impacts of energy use. A central concept for his research is that the electrification of the transportation sector can realize synergy with a concentrated effort to reduce the carbon intensity of the electrical grid, yielding benefits for the electricity sector as well as the expanded use of electricity, hydrogen, and biofuels.

Dr. Lipman received his Ph.D. in Environmental Policy Analysis with the Graduate Group in Ecology at UC Davis (1999). He also has received an M.S. degree in the technology track of the Graduate Group in Transportation Technology and Policy, also at UC Davis (1998), and a B.A. from Stanford University (1990).
JANE C.S. LONG
Associate Director for Energy and Environment, retired, Lawrence Livermore National Lab

Jane Long retired from Lawrence Livermore National Laboratory, where she was the Principal Associate Director at Large, Fellow in the LLNL Center for Global Strategic Research, and the Associate Director for Energy and Environment. She is currently a chairperson of the California Council on Science and Technology’s committees on California’s Energy Future and assessment of hydraulic fracturing. Her current work involves strategies for dealing with climate change, including reinvention of the energy system, geoengineering, and adaptation.

Dr. Long was the Dean of the Mackay School of Mines, University of Nevada, Reno, and Department Chair for the Energy Resources Technology and the Environmental Research Departments at Lawrence Berkeley National Lab.

Dr. Long is a fellow of the American Association for the Advancement of Science, an Associate of the National Academies of Science (NAS), and a Senior Fellow and council member of the California Council on Science and Technology (CCST) and the Breakthrough Institute.

She holds a bachelor’s degree in engineering from Brown University and a master’s and Ph.D. from UC Berkeley.

DR. LINDA RUDOLPH
Director, Center for Climate Change and Health

Linda Rudolph is a public health physician with more than four decades of experience in local and state government and non-profit organizations. Currently, Dr. Rudolph is the Director of the Center for Climate Change and Health at the Public Health Institute, where her work has focused on building capacity in local health departments to integrate climate change into public health practice and on supporting health professionals as climate and health champions. She previously served as Deputy Director for Chronic Disease Prevention and Health Promotion in the California Department of Public Health. At CDPH, Dr. Rudolph was the founding chair of the California Health in All Policies Task Force under the auspices of the Strategic Growth Council.

Dr. Rudolph has also served as the Health Officer and Public Health Director for the City of Berkeley, Chief Medical Officer for Medi-Cal Managed Care, and Medical Director for the California Workers’ Compensation Division. She is board-certified in Occupational Medicine and worked for many years in occupational health, initially with the Oil, Chemical, and Atomic Workers’ International Union.

She received her M.D. from the University of California, San Francisco, and her M.P.H. and B.A. from UC Berkeley.
GINA M. SOLOMON, M.D., M.P.H.
Clinical Professor, Division of Occupational and Environmental Medicine, UCSF; Principal Investigator, Public Health Institute

Gina Solomon is a Clinical Professor in the Division of Occupational and Environmental Medicine at the University of California San Francisco (UCSF) and a Principal Investigator at the Public Health Institute in Oakland, CA. She served as the Deputy Secretary for Science and Health at the California Environmental Protection Agency (CalEPA) from 2012 to 2017, and as a senior scientist at the Natural Resources Defense Council from 1996 to 2012. She was also the director of the occupational and environmental medicine residency program at UCSF, and the co-director of the UCSF Pediatric Environmental Health Specialty Unit.

Dr. Solomon’s work has spanned a wide array of areas, including children’s environmental health, the health effects of diesel exhaust, reproductive toxicity of environmental chemicals, cumulative impacts and environmental justice, and the use of novel data streams to screen chemicals for toxicity.

She has also done work in exposure science for air pollutants, pesticides, mold, and heavy metals. She conducted environmental exposure studies in Louisiana in the aftermath of Hurricane Katrina and during the Gulf oil spill, published the first study documenting children's exposure to diesel exhaust inside school buses, and served on the Scientific Guidance Panel for Biomonitoring California, a statewide program to measure contaminants in people. Dr. Solomon has also done work on the health effects of climate change. She published a study documenting the large spike in emergency department visits in California during the 2006 heat wave, and has published work documenting the health costs of climate-related events. She works to educate health care professionals and students about the health effects of climate change.

During her tenure at CalEPA, Dr. Solomon advised the Secretary on a wide range of issues related to chemicals in consumer products, toxic air contaminants, drinking water contaminants, and pesticides. She was also involved in recommending policy changes in the aftermath of the Chevron Richmond refinery fire. She chaired the California Interagency Refinery Task Force and successfully spearheaded regulations to improve refinery safety in California. Dr. Solomon has served on multiple boards and committees of the National Academies of Science, the U.S. EPA Science Advisory Board, and the National Toxicology Program’s Board of Scientific Counselors. She also serves on the U.S. EPA Board of Scientific Counselors Chemical Safety for Sustainability subcommittee.

Dr. Solomon received her bachelor’s degree from Brown University, her M.D. from Yale University, and completed her M.P.H. and her residency and fellowship training in internal medicine and occupational and environmental medicine at Harvard University.
SEVERIN BORENSTEIN

E.T. Grether Professor of Business Administration and Public Policy, Haas School of Business; Faculty Director of the Energy Institute at Haas.

Severin Borenstein is E.T. Grether Professor of Business Administration and Public Policy at the Haas School of Business and Faculty Director of the Energy Institute at Haas. He is an affiliated professor in the Agricultural and Resource Economics department and the Energy and Resources Group at UC Berkeley. He is also Director emeritus of the University of California Energy Institute. Borenstein has been a research associate of the National Bureau of Economic Research (NBER) since 1992 and served as co-Director of NBER’s research project on e-commerce in 1999-2000. Prior to coming to Haas in 1996, he taught at the University of Michigan and University of California at Davis. He has won awards for undergraduate and graduate teaching, and in 2005 received U.C. Berkeley’s Distinguished Faculty Mentor Award for graduate student mentoring.

Borenstein’s research focuses broadly on business competition, strategy, and regulation. He has published extensively on airline, oil and gasoline, and electricity markets, as well as on insurance, e-commerce, mining, natural gas, and other industries. Borenstein’s recent research has focused on competition and profitability in the airline industry, the impact of oil prices on gasoline markets, alternative models of retail electricity pricing, and the economics of renewable energy and climate change. He is a past editor of the Journal of Industrial Economics, past associate editor of The Review of Economics and Statistics and past member of the editorial boards of American Economic Journal: Economic Policy, Journal of Economic Literature, and Journal of the Association of Environmental and Resource Economists.

During 1997-2003, Borenstein was a member of the Governing Board of the California Power Exchange. He served on the California Attorney General’s gasoline price taskforce in 1999-2000. In 2010-11, Borenstein was a member of U.S. Secretary of Transportation Ray LaHood’s Future of Aviation Advisory Committee. In 2012-13, he served on the Emissions Market Assessment Committee, which advised the California Air Resources Board on the operation of California’s Cap and Trade market for greenhouse gases. In 2014, he was appointed to the California Energy Commission’s Petroleum Market Advisory Committee, which he chaired from 2015 until the Committee was dissolved in 2017. From 2015 to May 2020, he served on the Advisory Council of the Bay Area Air Quality Management District. In January 2019, he was appointed to the Governing Board of the California Independent System Operator.

Borenstein has received the 2005 Distinguished Service Award from the Public Utility Research Center at the University of Florida, the Power Association of Northern California’s 2014 Achievement Award, the Industrial Organization Society’s 2015 Distinguished Fellow Award and the International Association for Energy Economics’ 2015 Award for Outstanding Contributions to the Profession.
Borenstein grew up in Oakland and Berkeley, California, where he attended public schools and graduated from Berkeley High School. He received his undergraduate degree from U.C. Berkeley and Ph.D. in economics from MIT.