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ADVISORY COUNCIL MEETING
AGENDA

 
MONDAY, FEBRUARY 14, 2022
8:30 AM 

1. Call to Order - Roll Call

2. Public Meeting Procedure

The Council Chair shall call the meeting to order and the Clerk of the Boards shall take 
roll of the Council members.  

 Public Comment on Agenda Items: The public may comment on each item on the 
agenda as the item is taken up. Members of the public who wish to speak on matters on 
the agenda for the meeting, will have three minutes each to address the Council. No 
speaker who has already spoken on that item will be entitled to speak to that item again.

REGULAR AGENDA (Items 3 - 6)
 
3. Approval of the Minutes of December 13, 2021

The Council will consider approving the draft minutes of the Advisory Council meeting 
of December 13, 2021. 

4. Building Appliance Rules: Benefits to Outdoor Air Quality and Health

The Advisory Council will receive an overview of the results of a modeling-based 
evaluation of outdoor air quality and health benefits of proposed amendments to rules 
on natural gas-fired space heaters, water heaters, and boilers. 

5. Regulatory Toolbox and PM Health Impacts Methodology

The Advisory Council will receive a presentation on the Air District's regulatory tools 
and how they relate to the development of a PM2.5 local risk methodology. 

6. 2022 Advisory Council Work Plan Discussion

The Council will review and discuss the 2022 Advisory Council work plan. 
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OTHER BUSINESS
 
7. Report of the Executive Officer/APCO

8. Public Comment on Non-Agenda Matters

Pursuant to Government Code Section 54954.3
Members of the public who wish to speak on matters not on the agenda for the meeting, 
will have three minutes each to address the Council.

9. Council Member Comments / Other Business

Council members may make a brief announcement, provide a reference to staff about 
factual information, or ask questions about subsequent meetings. 

10. Time and Place of Next Meeting

At the Call of the Chair. 

11. Adjournment

The Council meeting shall be adjourned by the Chair.
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CONTACT:
 MANAGER, EXECUTIVE OPERATIONS
 375 BEALE STREET, SAN FRANCISCO, CA 94105
 vjohnson@baaqmd.gov 

(415) 749-4941 
FAX: (415) 928-8560

 BAAQMD homepage: 
www.baaqmd.gov 

 Any writing relating to an open session item on this Agenda that is distributed to all, or a 
majority of all, members of the body to which this Agenda relates shall be made available 
at the Air District’s offices at 375 Beale Street, Suite 600, San Francisco, CA 94105, at 
the time such writing is made available to all, or a majority of all, members of that body.

Accessibility and Non-Discrimination Policy

The Bay Area Air Quality Management District (Air District) does not discriminate on the 
basis of race, national origin, ethnic group identification, ancestry, religion, age, sex, sexual 
orientation, gender identity, gender expression, color, genetic information, medical condition, 
or mental or physical disability, or any other attribute or belief protected by law.  

It is the Air District’s policy to provide fair and equal access to the benefits of a program or 
activity administered by Air District. The Air District will not tolerate discrimination against 
any person(s) seeking to participate in, or receive the benefits of, any program or activity 
offered or conducted by the Air District. Members of the public who believe they or others 
were unlawfully denied full and equal access to an Air District program or activity may file a 
discrimination complaint under this policy. This non-discrimination policy also applies to 
other people or entities affiliated with Air District, including contractors or grantees that the 
Air District utilizes to provide benefits and services to members of the public. 

Auxiliary aids and services including, for example, qualified interpreters and/or listening 
devices, to individuals who are deaf or hard of hearing, and to other individuals as necessary 
to ensure effective communication or an equal opportunity to participate fully in the benefits, 
activities, programs and services will be provided by the Air District in a timely manner and 
in such a way as to protect the privacy and independence of the individual.  Please contact 
the Non-Discrimination Coordinator identified below at least three days in advance of a 
meeting so that arrangements can be made accordingly.  

If you believe discrimination has occurred with respect to an Air District program or activity, 
you may contact the Non-Discrimination Coordinator identified below or visit our website at 
www.baaqmd.gov/accessibility to learn how and where to file a complaint of discrimination.

Questions regarding this Policy should be directed to the Air District’s Non-Discrimination 
Coordinator, Suma Peesapati, at (415) 749-4967 or by email at speesapati@baaqmd.gov.
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  BAY AREA AIR QUALITY MANAGEMENT DISTRICT
375 BEALE STREET, SAN FRANCISCO, CA 94105
FOR QUESTIONS PLEASE CALL (415) 749-4941

EXECUTIVE OFFICE:
MONTHLY CALENDAR OF AIR DISTRICT MEETINGS   

FEBRUARY 2022
TYPE OF MEETING DAY DATE TIME ROOM

Advisory Council Meeting Monday 14 8:30 a.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Legislative Committee Monday 14 1:00 p.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Meeting Wednesday 16 9:00 a.m. Webcast only pursuant to 
Assembly Bill 361

 
Board of Directors Administration 
Committee

Wednesday 16 1:00 p.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Legislative Committee
 - Cancelled and rescheduled to Monday, 
February 14, 2022 at 1:00 p.m.

Wednesday 16 1:00 p.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Stationary Source and 
Climate Impacts Committee – Cancelled and 
rescheduled to Monday, February 28, 2022 
at 9:00 a.m.

Monday 21 9:00 a.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Budget and Finance 
Committee

Wednesday 23 9:30 a.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Mobile Source and 
Climate Impacts Committee - Cancelled

Thursday 24 9:30 a.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Stationary Source and 
Climate Impacts Committee

Monday 28 9:00 a.m. Webcast only pursuant to 
Assembly Bill 361

Path to Clean Air Community Emissions 
Reduction Plan Steering Committee

Monday 28 5:30 p.m. Webcast only pursuant to 
Assembly Bill 361
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MARCH 2022

HL 2/4/2022 – 2:50 P.M.                                        G/Board/Executive Office/Moncal

TYPE OF MEETING DAY DATE TIME ROOM

Board of Directors Meeting Wednesday 2 9:00 a.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Community Equity, 
Health and Justice Committee

Thursday 3 9:30 a.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Legislative Committee Monday 14 1:00 p.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Special Meeting as the 
Sole Member of the Bay Area Clean Air 
Foundation

Wednesday 16 8:30 a.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Meeting Wednesday 16 9:00 a.m. Webcast only pursuant to 
Assembly Bill 361

 
Board of Directors Administration 
Committee

Wednesday 16 1:00 p.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Stationary Source and 
Climate Impacts Committee

Monday 21 9:00 a.m. Webcast only pursuant to 
Assembly Bill 361

Path to Clean Air Community Emissions 
Reduction Plan Steering Committee

Monday 21 6:00 p.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Budget and Finance 
Committee

Wednesday 23 9:30 a.m. Webcast only pursuant to 
Assembly Bill 361

Board of Directors Mobile Source and 
Climate Impacts Committee

Thursday 24 9:30 a.m. Webcast only pursuant to 
Assembly Bill 361
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AGENDA:     3. 

BAY AREA AIR QUALITY MANAGEMENT DISTRICT
      Memorandum

To: Chairpersons Linda Rudolph and Gina Solomon, and Members
of the Advisory Council 

From: Jack P. Broadbent
Executive Officer/APCO 

Date: February 14, 2022 

Re: Approval of the Minutes of December 13, 2021

RECOMMENDED ACTION

Approve the attached draft minutes of the Advisory Council meeting of December 13, 2021. 

BACKGROUND

None. 

DISCUSSION

Attached for your review and approval are the draft minutes of the Advisory Council meeting of 
December 13, 2021. 

BUDGET CONSIDERATION/FINANCIAL IMPACT

None. 

Respectfully submitted,

Jack P. Broadbent
Executive Officer/APCO

Prepared by: Marcy Hiratzka
Reviewed by: Vanessa Johnson
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ATTACHMENTS:

.
1.  Draft Minutes of the Advisory Council Meeting of December 13, 2021
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Draft Minutes – Advisory Council Regular Meeting of December 13, 2021

Bay Area Air Quality Management District
375 Beale Street, Suite 600
San Francisco, CA 94105

(415) 749-5073

DRAFT MINUTES

Advisory Council Regular Meeting
Monday, December 13, 2021

An audio recording of the meeting is available on the website of the Bay Area Air Quality 
Management District at 

http://www.baaqmd.gov/about-the-air-district/advisory-council/agendasreports

This meeting was conducted under procedures authorized by Assembly Bill 361. Members 
of the Council participated by teleconference.

1. CALL TO ORDER

Advisory Council (Council) Co-Chairperson, Dr. Linda Rudolph, called the meeting to order at 
8:31 a.m.

            Roll Call:

Present: Advisory Council (Council) Co-Chairpersons Drs. Linda Rudolph and 
Gina Solomon; Vice Chairperson Prof. Michael Kleinman; and Members 
Dr. Danny Cullenward, Dr. Adrienne Hollis, Garima Raheja; and Board 
Liaison David Haubert.

Absent: Member Dr. Pallavi Phartiyal.

2. APPROVAL OF THE MINUTES OF OCTOBER 25, 2021, AND NOVEMBER 8, 
2021

Public Comments

No requests received.

Council Comments

None.

Council Action on Minutes of October 25, 2021

Dr. Hollis made a motion, seconded by Dr. Cullenward, to approve the Minutes of October 25, 
2021; and the motion carried by the following vote of the Board:
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Draft Minutes – Advisory Council Regular Meeting of December 13, 2021
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AYES: Cullenward, Hollis, Kleinman, Raheja, Rudolph, Solomon.
NOES: None.
ABSTAIN: None.
ABSENT: Haubert, Phartiyal. 

Council Action on Minutes of November 8, 2021

Vice Chair Kleinman made a motion, seconded by Dr. Hollis, to approve the Minutes of 
November 8, 2021; and the motion carried by the following vote of the Board:

AYES: Cullenward, Hollis, Kleinman, Raheja, Rudolph, Solomon.
NOES: None.
ABSTAIN: None.
ABSENT: Haubert, Phartiyal. 

3. OVERVIEW OF PARTICULAR MATTER

NOTED PRESENT: Board Liaison Haubert was noted present at 8:40 a.m.
 

Greg Nudd, Deputy Air Pollution Control Officer of Policy, Dr. David Holstius, Senior 
Advanced Projects Advisor, and Dr. Ranyee Chiang, Director of Meteorology and Measurement, 
gave the staff presentation Overview of Particulate Matter (PM), including: highlights from 
Council recommendations (December 2020); permitting regulatory needs; modeling local-scale 
PM2.5 impacts for risk management; overview/framing; update: state of the science; policy-
relevant range; emissions, concentrations, exposures; risk: PM2.5 and mortality; from modeling to 
evaluation; complexity: multiple metrics and population dependence; selected references; setting 
an air quality target; highlights from Council recommendations (December 2020); objectives and 
considerations; options for implementing recommendations; tools to identify issues and 
demonstrate progress; regional approach; local disparities approach; other open questions on 
metrics; and particulate matter key issues.

Public Comments

Public comments were given by Charles Reed, Emerald New Deal; Dr. Stephen Rosenblum, Palo 
resident; and Tara Cahn, Tara Cahn Architecture. 

Council Comments

The Council and staff discussed the types of air pollution issues that the Air District studies and 
subsequent processes, and whether the Bay Area Air District is the only California air district 
pursuing the issues that it pursues; how Air District Board members can utilize the scientific 
information it receives from the Council; whether the Air District should consider morbidity 
rates; background levels of PM exposure and how wildfire smoke could be incorporated into 
standard PM regulation; whether studies regarding exposure of disproportionate burden on race 
(and gender or income), versus an average population, are available; whether the Air District 
should prioritize the protection of vulnerable/overburdened populations, versus average 
populations, in studies and in policy interventions, and how the Air District would respond if a 
member of the public inquired about that; why the Air District believes that current federal 
standards are not health protective, and whether the Air District believes that the federal 
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standards will become more stringent over time; the cumulative effects of multiple sources of air 
pollution, and whether it is more beneficial to analyze regional, versus local, air pollution; and 
the need for a health protective standard for regional PM. 

Council Action

None; receive and file.

4. DISCUSSION OF ADVISORY COUNCIL MEETINGS AND 2022 TOPICS

Mr. Nudd gave the staff presentation Discussion of Advisory Council Meetings and 2022 Topics, 
including: research and discussion questions: climate, equity and community health, and PM.

Public Comments

Public comments were given by Dr. Stephen Rosenblum, Palo Alto resident; Jan Warren, 
Interfaith Climate Action Network of Contra Costa County; Christine Wolfe, California Council 
for Environmental and Economic Balance; and Tara Cahn, Tara Cahn Architecture.

Council Comments

The Council and staff discussed the Air District’s impact on green economy jobs; the suggestion 
of looking at co-benefits regarding climate change, and prioritizing things that the Air District 
can do to reduce Toxic Air Contaminants, PM, and climate gases; the suggestion of establishing 
a budget to address health risks in various communities; the suggestion of initiating a series of 
case studies with a modeling approach that looks at various populations, health metrics, and time 
periods; how to prioritize interventions regarding climate pollution, and the difficulties of doing 
so when regulation has legal limitations; tradeoff decisions that the Air District faces, regarding 
the high impacts but short atmospheric lifetimes of non-carbon dioxide pollutants; which average 
PM2.5 standards (24-hour or annual) are most utilized by the United States Environmental 
Protection Agency’s (EPA) Clean Air Scientific Advisory Committee and California’s Office of 
Environmental Health Hazard Assessment; how PM emissions from wildfires fit into 
California’s assessment; the Air District’s partnerships with the US EPA and California Air 
Resources Board to address community climate resilience clean air centers, particularly at 
schools for children during high-exposure (wildfire) situations; and whether the Air District has a 
standard method for presenting scientific information to its Board of Directors. 

Council Action

None; receive and file.

5. REPORT OF THE EXECUTIVE OFFICER/APCO

Mr. Nudd reported that Jack P. Broadbent, Executive Officer/APCO, chose to waive his report. 

6. PUBLIC COMMENT ON NON-AGENDA MATTERS

No requests received.
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7. COUNCIL MEMBER COMMENTS/ OTHER BUSINESS

Co-Chair Solomon asked whether it can be proven that woodsmoke air pollution is greater than 
motor vehicle and refinery pollution during the winter in the Bay Area, and whether the Air 
District models wildfire smoke PM impacts by neighborhood. 

Co-Chair Rudolph asked how much air pollution is generated by commercial operations and 
expressed the desire to hold such facilities accountable for their emissions.  

Vice Chair Kleinman suggested that the Air District invite Dr. Timothy Larson of the University 
of Washington to speak about his findings regarding the health effects woodsmoke.

8. TIME AND PLACE OF NEXT MEETING

The time and place of the next Council meeting was originally at the Call of the Chair. After the 
meeting adjourned, the time and place of the next meeting was set for Monday, February 14, 
2022, at 8:30 a.m., via webcast, conducted under procedures authorized by Assembly Bill 361.

9. ADJOURNMENT

The meeting adjourned at 11:03 a.m.

Marcy Hiratzka
Clerk of the Boards
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AGENDA:     4. 

BAY AREA AIR QUALITY MANAGEMENT DISTRICT
      Memorandum

To: Chairpersons Linda Rudolph and Gina Solomon, and Members
of the Advisory Council 

From: Jack P. Broadbent
Executive Officer/APCO 

Date: February 14, 2022 

Re: Building Appliance Rules: Benefits to Outdoor Air Quality and Health

RECOMMENDED ACTION

None; receive and file. 

BACKGROUND

The Air District’s 2017 Clean Air Plan identifies the importance of reducing nitrogen oxide 
(NOx) emissions from residential appliances; these sources are responsible for a significant 
portion of total NOx emissions in the Bay Area. To reduce these emissions, Air District staff 
recently crafted draft amendments to Regulation 9, Rule 4: Nitrogen Oxides from Fan Type 
Residential Central Furnaces (“Rule 9-4”) and Regulation 9, Rule 6: Nitrogen Oxides Emissions 
from Natural Gas-Fired Boilers and Water Heaters (“Rule 9-6”). In the near term, these draft rule 
amendments include low-NOx requirements. In the longer-term (initial compliance dates from 
2027 to 2031), they introduce a zero-NOx requirement. In practice, a zero-NOx standard would 
be expected to eliminate combustion emissions from new equipment and encourage adoption and 
development of alternative technologies for building appliances in the Bay Area. Air District 
staff plan to bring the proposal for adoption of the draft amendments to the Board of Directors in 
the summer of 2022.
 
As supplemental information to support the development of Rules 9-4 and 9-6, Air District staff 
have conducted a modeling-based evaluation of the impacts of natural gas combustion from 
residential and commercial space heaters, water heaters, and boilers. This evaluation quantifies 
benefits to outdoor air quality and health from the rules. It includes an estimate of the health 
benefits of reductions in secondary fine particulate matter (PM2.5) that would result from 
reducing NOx. It also includes an estimate of the health benefits of reductions in total PM2.5 
(directly emitted and secondary) from eliminating all natural gas combustion emissions from 
these building appliances. This item presents progress to date on the modeling-based evaluation.
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DISCUSSION

Air District staff applied its regional air quality modeling system to estimate air pollution levels 
in a baseline emissions scenario and a control emissions scenario, with reductions in the control 
scenario matching emission estimates from natural gas-fired building appliances covered under 
Rules 9-4 and 9-6. Differences between baseline and control scenarios provided an estimate of 
the building appliance contributions to outdoor air pollution. Differences in PM2.5 were used as 
inputs to the US Environmental Protection Agency's (EPA) Benefits Mapping and Analysis 
Program (BenMAP) to estimate health benefits from the proposed rules and monetary valuations 
associated with those benefits. Methods applied for this Bay Area study were similar to those 
applied in prior studies of the benefits of eliminating natural gas combustion in building 
appliances in the U.S. and in California. This presentation includes a summary-level comparison 
to those prior studies, in terms of methods and findings.
 
Modeled benefits of eliminating primary and secondary PM2.5 generated by natural gas-fired 
combustion from the building appliances targeted in amendments to Rules 9-4 and 9-6 included 
the prevention of 39 to 89 premature deaths per year, with lower and upper estimates 
corresponding to the set of functions used by the US EPA to link PM2.5 concentrations to health 
outcomes. Modeled benefits also included reductions in many non-fatal adverse health outcomes, 
such as heart attacks, strokes, and asthma onset and symptoms. The total valuation of all 
modeled health benefits was estimated to be between 410 and 930 million dollars per year. 
About 60% of the estimated benefits were attributed to reductions in secondary PM2.5.
 
Under this item, staff will seek Advisory Council guidance on ideas for refining health impact 
evaluations, for enhancing presentation materials, and for identifying productive next steps. 
Because this study may serve as a prototype for future assessments, such guidance may find 
broader application in the Air District’s future work. One next step, currently underway, is an 
equity assessment to evaluate exposures of residential populations, by race and ethnicity, to 
identify who is most and least exposed to the PM2.5 generated by the building appliances 
covered under the proposed rule amendments. Staff will specifically invite Advisory Council 
suggestions and ideas on well-designed and informative equity assessment methods, examples, 
and clear visual representations and framings of findings. 

BUDGET CONSIDERATION/FINANCIAL IMPACT

None. 

Respectfully submitted,

Jack P. Broadbent
Executive Officer/APCO
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Prepared by: Phil Martien
Reviewed by: Greg Nudd

ATTACHMENTS:

None.
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AGENDA:     5. 

BAY AREA AIR QUALITY MANAGEMENT DISTRICT
      Memorandum

To: Chairpersons Linda Rudolph and Gina Solomon, and Members
of the Advisory Council 

From: Jack P. Broadbent
Executive Officer/APCO 

Date: February 14, 2022 

Re: Regulatory Toolbox and PM Health Impacts Methodology

RECOMMENDED ACTION

None; receive and file. 

BACKGROUND

The 2020 Advisory Council researched and provided a report to the Air District Board of 
Directors on particulate matter at a joint meeting of the Advisory Council and Board of Directors 
in December 2020. In 2021, the Advisory Council received a presentation on particulate matter 
health impacts.

This report highlighted the significant health impacts of localized exposure to fine particulate 
matter (PM2.5). Unfortunately, the current tools for regulating air pollution do not adequately 
address these impacts. The Air District has been working with the Office of Environmental 
Health Impacts Assessment, the California Air Resources Board, and the U.S. Environmental 
Protection Agency on a new methodology for quantifying the localized health impacts of PM2.5. 
A detailed white paper on the draft methodology is attached. 

DISCUSSION

In order to guide the development of the PM2.5 health impacts methodology, it's important to 
understand the regulatory context in which that methodology is likely to be used.

The Air District's regulatory authority over stationary sources of air pollution can be described 
by three complimentary approaches:

 New Source Review Permitting—New Source Review applies to new and modified 
sources; any significant modifications at a regulated stationary source trigger a new 
source review. Smaller sources may be exempt from permitting because they are 
individually not significant contributors to regional air pollution.
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 Regulations for Existing Sources—Regulations for Existing Sources require feasible 
emissions reductions at existing sources and usually require retrofits. Regulations of 
Existing Sources may include emission limits or health impact limits.

 Point-of-Sale Rules—Point-of-Sale Rules set emissions performance limits for air 
pollution-emitting products sold and used within the Air District’s jurisdiction. Examples 
of this include volatile organic compound limits on architectural coatings or nitrogen 
oxides limits on residential space and water heaters.

The Air District's regulatory authority is limited to stationary sources. Mobile sources are 
regulated under the jurisdiction of the California Air Resources Board (CARB) and/or the U.S. 
Environmental Protection Agency. In addition, there must be technically feasible mechanisms 
for reducing emissions and the source or source category must significantly contribute to 
emissions and/or health risk.

The Air District’s work on the development of a PM2.5 local risk methodology will fill gaps in 
the Air District’s regulatory tools and strengthen the Air District’s ability to reduce emissions. 
As the Air District develops this methodology, it must consider key questions including the 
following: 

 Focus on mortality or include other health endpoints?
 How to incorporate baseline incidence rates?

Air District staff will provide a detailed presentation and request the Advisory Council’s input 
and feedback. 

BUDGET CONSIDERATION/FINANCIAL IMPACT

None. 

Respectfully submitted,

Jack P. Broadbent
Executive Officer/APCO

Prepared by: Sonam Shah-Paul
Reviewed by: Greg Nudd
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ATTACHMENTS:

.

1.  BAAQMD Modeling Local Sources of Fine Particulate Matter (PM2.5) for Risk 
Management Methodology, Implementation, and Case Studies
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Executive Summary

The Bay Area Air Quality Management District (BAAQMD) has assembled a draft

methodology for use in managing health risks posed by specific sources of fine par-

ticulate matter (PM2.5) at the community level. Its primary purpose is to inform

PM2.5 air quality assessments and policies designed and implemented by local air

quality agencies, including technical assessments, regulations, and plans to reduce

local PM2.5 emissions and exposures.

In this whitepaper, we focus on adult mortality from long-term exposures, guided

primarily by evidence and methods reviewed, summarized, and applied by the US

EPA (US EPA 2019, 2021b, 2021a). We also focus on modeling a certain class of

facilities: those with inventoried PM2.5 emission rates that are a relatively small

fraction of regional totals, but still large enough to be a significant local concern.

Compared to the largest permitted stationary sources, such facilities typically have

larger exposure factors (impact per ton of emissions). They are often located in closer

proximity to residential populations and may not be equipped with the tall, hot stacks

associated with the largest sources.

As a proof-of-concept, BAAQMD conducted two case studies, drawing upon recent

air quality modeling conducted in support of the recent West Oakland Community

Action Plan (BAAQMD and WOEIP 2019). We caution that our purpose in this

report is not to attribute impacts or risks to any actual facility. For our case studies,

we assumed baseline conditions and population characteristics uniformly equivalent

to a Bay Area average, and a relative risk consistent with important cohort studies

on which US EPA evaluations are based. With these assumptions, we estimated that

PM2.5 emissions from such a facility could be increasing mortality rates by approx-
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imately +3/M (i.e., deaths per million persons per year) per facility, on average,

across residential neighborhoods in a community similar to West Oakland in size and

composition. The impact at short distances could be on the order of +100/M. These

estimates are for a statistically representative resident of the Bay Area, without any

added margin of safety.

Within a larger risk-management context, we recommend that known modifiers of

risk be considered. At the time of this writing, for the endpoint we are considering,

the US EPA has determined these to include lifestage and race/ethnicity (US EPA

2019, 2021b). We provide information and sensitivity analyses for race/ethnicity

alongside the results from our case studies. In the Discussion, we articulate some

relevant limitations and tradeoffs in calculations for at-risk groups.

We modeled several metrics of impact: concentrations; relative risks; risk differences;

exposures; and burdens. The ideal metric or set of metrics to model and evaluate

depends on the functional form and intent of the larger risk-management process. For

example: whether it is to be based on a maximum impact or an impact across a local

area; whether additional endpoints are to be considered; tolerance for uncertainties

and errors of different kinds; and the relative weight placed on other aspects of the

process, such as implementation requirements, transparency, and robustness. Some

combinations of these argue for a metric based on relative risk; others, for a risk

difference; still others, a population-dependent metric such as exposure or burden.

Next steps for this work include the assessment, in consultation with risk assessors

and managers, of the relative feasibility and fitness-for-purpose of each.

In the text that follows, we explain the components of the framework and how we

arrived at the statements above. The explanation is presented in three parts: (1) a

description of the general framework and concepts; (2) details of our implementation,

including datasets and parameters; and (3) the results of our case studies. We close

by discussing the strengths, limitations, and implications of the work, including issues

that we are actively working to resolve.
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1 Introduction

Our purpose in this report is to propose a general methodology, demonstrate its ap-

plication, and discuss its strengths, limitations, and implications for the practice of

regulating fine particulate matter (PM2.5) at the community level. National- and

regional-scale health impact assessments (HIAs) for PM2.5 have been conducted for

many years (Fann et al. 2011; Howard et al. 2019; Tanrikulu, Tran, and Beaver

2011; Tanrikulu et al. 2019), corresponding to the needs of current regulatory frame-

works that focus on reducing regional PM2.5 levels to meet the National Ambient

Air Quality Standards (NAAQS). Continuous observation of ambient PM2.5 levels,

through agencies’ official measurement networks, has also been successful in mon-

itoring and verifying the success of policies to reduce average ambient PM2.5 and

meet the NAAQS in many regions, including the Bay Area. However, it has become

increasingly clear that gaps left by the NAAQS-centered approach must be addressed.

A gap that this work contributes to closing is the persistent exposure of some commu-

nities and populations to locally elevated concentrations of PM2.5. Although a large

fraction of PM2.5 is regionally contributed (Blanchard 2004; Robinson et al. 2007),

variations in exposure exist within communities (Colmer et al. 2020; Chambliss et al.

2021; Wilson et al. 2005; Blanchard 2004; Eeftens et al. 2012) and have been linked

to legacies of structural and institutional discrimination (Morello-Frosch and Lopez

2006; Fisher, Kelly, and Romm 2006; Houston et al. 2004; Houston, Krudysz, and

Winer 2008; Quiros et al. 2013; Jacobson, Hengartner, and Louis 2005).

One way to accelerate the closure of this gap may be to introduce a complementary

approach to local air quality regulation, one that relies on estimates of health impacts

from specific sources at small spatial scales. Such an approach has been taken for

9

DRAFT

Page 27 of 108

https://www.epa.gov/air-trends/particulate-matter-pm25-trends


many years to regulate the impacts from toxic air contaminants (TACs) emitted by

individually permitted sources, but not the impacts from PM2.5.1

1With the exception of diesel exhaust particulate matter (DPM), which is treated as a TAC.
DPM is typically a small fraction of total ambient PM2.5 by mass.
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2 Concepts and Methods

In this section, we describe a methodology for the estimation of impacts from long-

term exposure to PM2.5 on adult mortality. We introduce the relevant concepts

and methods in two parts: first, the general framework; and second, an example

implementation of that framework. Its application is illustrated through case studies

sited in West Oakland, the results of which are reported in the following section.

Additional details and considerations may be found in the Discussion.

2.1 General Framework

The general framework proposed here is similar in some ways to a framework that is

widely employed in health risk assessments (HRAs) of toxic air contaminants (TACs).

For the reader who is already familiar with such HRAs, understanding the similarities

and differences may be helpful.1

Table 2.1 lists ten elements common to both (a) the proposed framework (“PM2.5 →

Mortality”), and (b) the TAC framework (“TAC → Cancer”).2 Below, we explain

each of these elements, comparing and contrasting them with respect to (a) and (b).

1In comparing the two frameworks, we are not advancing any arguments for any particular legal
justification for the regulation of PM2.5. Neither are we endorsing the TAC framework, or its use in
practice, without reservation. Rather, we are simply illustrating by way of analogy.

2For a complete description of the “TAC → Cancer” framework, see OEHHA (2015) and
ARB/CAPCOA (2015). See also Appendix B.
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Table 2.1: Elements of established and proposed frameworks.

TAC → Cancer PM2.5 → Mortality

Emissions As inventoried As inventoried

Concentrations Modeled ambient (annual
average)

Modeled ambient (annual
average)

Health Endpoint Cancer Mortality

Exposure
Duration

Long-term (30 years) Long-term (chronic)

Population All ages Adults

Response
Function

Linear Log-linear, though
approximately linear

Intermediate
Factors

Linear decomposition into
components of exposure
and dose (age-dependent)

Not applicable; population
responses are estimated
directly from ambient
concentrations

Effect Size From toxicological and/or
epidemiological studies

From epidemiological
studies

Baseline
Conditions

Not applicable Baseline mortality rate

Margin of Safety Included in slope and
unit-risk factors

To be determined
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Emissions and Concentrations

Both frameworks shown in Table 2.1 assume that contributions to near-field ambient

concentrations can be adequately estimated using dispersion models. These models

rely on user input of pollutant emission rates, release parameters, site conditions, and

meteorological conditions to predict annual average concentrations on a user-defined

grid of coordinates (“receptor locations”).

In the TAC → Cancer framework, modeled concentrations are weighted by “toxic-

ity factors” that are effectively determined by both the particular TAC and by the

scope of the assessment (e.g., inhalation-only vs multipathway). This step puts all

designated carcinogens on a common scale. In this PM2.5 → Mortality framework,

the intensity of PM2.5 concentrations is assumed to be adequately captured by a

mass-concentration metric (US EPA 2019).

Because of the short distances (and hence, short timescales) involved, we consider here

only emissions and transport of primary PM2.5, holding aside the complex chemistry

involved in the formation of secondary PM2.5. While we acknowledge that there is

evidence for varying toxicity among PM2.5 subspecies, we do not yet have enough

information to conduct assessments based on subspecies (US EPA 2019, 2021b).

Health Endpoint

In principle, the mortality endpoint can be evaluated for all age groups, but for

reasons explained in Section 2.2, we restricted it to adults ≥ 30 years of age.

Mortality rate. Dividing mortality (deaths) by population size and time (over which

both the deaths and the persons are counted) yields a metric known as the mortality

rate. Conventionally, annual mortality rates are typically reported as “deaths per

100,000 persons [per year].” For ease of comparison with the TAC → Cancer frame-

work, hereafter we will express them in terms of “deaths per million persons [per
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year].”

Mortality risk. As a corollary, “annual mortality risk” is analogous to what “annual

cancer risk” would be in the TAC → Cancer framework (which actually evaluates

contributions to a lifetime risk of cancer.) Risk in a technical sense is the probability

of an outcome in a given period of time; the length of time is important, since the

lifetime risk of mortality is always 100%.

Although risks to human health are technically only present where exposures are not

zero, in practice many stakeholders use the work “risk” to mean risk conditional on

a “statistically representative person” being exposed. In this whitepaper, we follow

that convention.

Mortality. Finally, “mortality” (count of deaths [per year]) is analogous to “cancer

burden” (count of cases). The equations in the next section estimate mortality rates

(𝑦) — or changes therein (Δ𝑦) — rather than mortality counts. Simply multiplying

𝑦 by the size of the population at risk yields mortality instead; likewise, multiplying

Δ𝑦 by the population size yields an estimated change.

Response Function

A response function—also known as a health impact function, an exposure-response

function, or a concentration-response function—expresses a relationship between 𝑥
(an independent variable; often but not always “exposure”) and 𝑦 (the outcome). In

our context, 𝑥 is a “unit increment” of exposure to PM2.5 (e.g., 10 µg/m3), while 𝑦 is

a mortality rate.

Generally, a response function can be written in the form of a mathematical equation,

like the ones that follow. In the TAC → Cancer framework, the response function

𝑦 = 𝑓(𝑥) is linear in 𝑥. This means that an additive change in 𝑥 induces, and can

only induce, an additive change in 𝑦. In this proposed PM25 -> Mortality framework,
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the response function, Equation (2.1), is nonlinear.3 (See Section 4.4 and Appendix

C for discussion.)

ln(𝑦) = 𝛽𝑥 + 𝐶

𝑦 = exp(𝛽𝑥 + 𝐶)
(2.1)

The term 𝑒𝛽 Δ𝑥 in Equations (2.2) and (2.3) expresses relative risk (RR), or the

multiplicative change in 𝑦 that is associated with a linear change in 𝑥. However,

suppose we are interested in modeling excess risk on an additive scale, as in the TAC

→Cancer framework. Let Δ𝑥 = 𝑥−𝑥0 and Δ𝑦 = 𝑦−𝑦0, where 𝑥0 and 𝑦0 represent the

baseline (i.e., existing) PM2.5 concentration and mortality rate, respectively. Taking

Δ𝑥 > 0 to mean an increase in PM2.5, and Δ𝑦 > 0 a corresponding increase in 𝑦, we
have:

𝑦/𝑦0 = 𝑒𝛽 Δ𝑥 (2.2)

Δ𝑦 = 𝑦 − 𝑦0 = 𝑦0 (𝑒𝛽 Δ𝑥 − 1) (2.3)

In the TAC → Cancer framework, because risk is assumed to increase linearly with

exposure, “risk” always means “risk difference” (additive scale), never “relative risk”

(multiplicative scale). As such, an estimate of baseline risk (𝑦0) is never needed. (See

Section 4.5.3 and Appendix A for discussion.)

A delta-response function can offer a more convenient way of evaluating a change

in impacts, starting with a change in PM2.5. This can be evaluated either on a

multiplicative scale, as in Eq (2.2), or on an additive scale, as in Eq (2.3). In either

case, when a source does not yet exist, we can set Δ𝑥 in Eq (2.2) or (2.3) proportional

to the potential PM2.5 concentrations attributable to that source, or to a proposed

3Note: 𝐶 is a constant offset, not an ambient concentration.
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increase. When a source already exists, we may wish to estimate the benefit from a

potential reduction in emissions. The same equations can be used; the signs on Δ𝑥
and Δ𝑦 should be positive, corresponding to reductions in emissions and damages

respectively.4

Effect Size, Exposure, and Dose

The effect size, or the change in 𝑦 associated with a unit change in 𝑥, is represented
in Equations (2.2) and (2.3) by the term 𝛽. Typically, 𝛽 will be based on an epi-

demiological study in which ambient PM2.5, measured or estimated at some locations,

was the independent variable. This means that 𝛽 will encompass all of the factors

(indoor/outdoor ratios, breathing rates, fractions of time at home, etc.) that lay on

the causal pathways between ambient PM2.5 and mortality for the population that

was studied. Generally, epidemiological studies estimate 𝛽 by adjusting for other

measured factors in such a way that 𝛽 will (ideally) approximate the causal effect

of 𝑥 alone. Most such studies report an estimated risk ratio, such as a relative risk

(RR), hazard ratio (HR), or odds ratio (OR), for a given increment of PM2.5 (such

as +10 µg/m3). In the equations above, 𝛽 is effectively the natural logarithm of that

risk ratio.

Baseline Conditions

In Equation (2.3), the parameter 𝑦0 stands for the baseline mortality rate. It is

not the mortality rate that would exist in the absence of any PM2.5, but rather the

mortality rate in the world as-is. Issues related to obtaining or estimating 𝑦0 do not

arise in the TAC → Cancer framework, which is independent of baseline conditions.

4In some settings, a positive Δ𝑥 > 0 is instead taken to mean a reduction, rather than an
increase. Similarly, a positive Δ𝑦 > 0 is instead interpreted as beneficial, rather than harmful.
For such an interpretation, the appropriate form of the equation is Δ𝑦 = 𝑦0 (1 − 𝑒−𝛽 Δ𝑥). See
Appendix C for details.
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These are discussed in Section 4.5.3.

Estimates of baseline rates can be allowed to vary by subgroup. This may some-

times, but not always, be protective of at-risk populations; Section 3.3 illustrates this

paradox using example data.

Conceptual Diagram

Figure 2.1 is a conceptual diagram of the relationships between the concepts and

metrics described above. Generally, these increase in complexity as one moves from

top to bottom. Figure 2.1 also serves as a guide to the next full section (Results and

Case Studies).

Concentrations and Relative Risks. We begin with a spatially resolved map

of predicted concentrations, which itself depends on emissions and meteorology (not

shown). With an estimated effect size (𝛽) that is spatially invariant and population-

average, we can apply Eq (2.2) to generate a map of relative risk that looks essentially

the same.5 This relative risk can itself be visualized as a smooth surface or converted

to contour lines (see Figure 3.1 for an example).

Risk Differences. We can then incorporate a constant baseline (𝑦0) to arrive at a

risk difference map. Since our case studies do not cross county lines, we can readily

adopt either a county-specific baseline, or a regional average; for our case studies, we

opt for the former.

It is also possible to estimate a “local” baseline rate by combining stratified6 county-

level rates with similarly stratified block-level population counts. This option requires

the determination of a “local” boundary (i.e., which blocks to include in an assess-

ment). We do not take that path here, but we report such an estimate for the purposes

5The units will be different, of course, and there will be some nonlinear warping of the surface,
but the apparent difference is small and the shapes of contours do not change.

6Commonly-used strata include age, sex, and race/ethnicity. Any combination is possible.
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Population
(Fig. 3.2)

Concentration
(Fig 3.1)

Exposure
(Fig. 3.3)

Relative Risk
(Fig. 3.1)

Constant 
effect size (β)

Risk Difference(s)
(Fig. 3.1)

Constant 
baseline (y₀)

Group-specific 
effect sizes (β)

Small-area 
baselines (y₀)

Group-specific  
baselines (y₀)

Excess Cases
(Fig 3.4)

Figure 2.1: Pathways to the construction of spatially-resolved predictions of: ambient
concentrations, population exposures, excess risk, and excess cases of, e.g., mortality.
Dashed lines indicate certain options that can increase the specificity of predictions,
potentially at some cost to reliability or feasibility. Tradeoffs and recommendations,
as well as enhancements not depicted here, are taken up in the Discussion.
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of sensitivity analysis.

Constant vs Group-Specific Parameters. To construct maps of population-

average relative risks or risk differences, we do not require data on the spatial dis-

tribution, composition, and/or risk factors of the local population. We can think of

these as estimates of the excess risk conditional on a “statistically average person”

being exposed.

It is also possible to incorporate group-specific effect sizes and baselines into risk-

difference maps, which in effect generates maps of risks for different hypothetical

populations. We do not take that path here, for reasons articulated in the Discussion,

but we supply Table 2.4 and accompanying results in order to demonstrate that

incorporating some baseline variation alone, without considering effect modification,

is not necessarily protective of at-risk populations.

Exposure and Excess Mortality. Excess mortality (deaths) can be calculated by

combining a risk-difference estimate with population-density data. This is conceptu-

ally equivalent to combining estimates of relative risk and exposure.

The Discussion covers additional considerations relevant to risk management,

decision-making, and the selection and/or combination of appropriate metrics. The

next section outlines the specifics of our implementation, including parameters and

datasets that we used to construct our case studies.

2.2 Implementation and Case Studies

Our implementation has three kinds of elements: first, the input data; second, our

additional assumptions; and third, the methods and tools used to calculate results.

From a procedural perspective, we can also think of these as comprising:

• Estimates of PM2.5 emissions from the BAAQMD inventory;
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• The dispersion model AERMOD;

• US EPA methodology, consistent with its BenMAP implementation (US EPA

2021a, 2021c);

• Estimate(s) of effect sizes; and

• Estimate(s) of baseline mortality rates (for risk differences) and/or population

(for exposure and burden).

To illustrate the application of this methodology, we conducted two case studies. Each

simulated a single facility having multiple sources of PM2.5 emissions. We caution

that these simulations are intended to illustrate and explain our implementation,

rather than to quantify the actual impacts of any actual facility. For a discussion of

the representativeness of these case studies, see Section 4.10.

West Oakland

Our case studies focus on West Oakland, a community in the San Francisco Bay Area

(Figure 2.2). West Oakland has previously been the subject of relatively extensive

air quality measurement studies and modeling efforts — see, for example, the West

Oakland Community Action Plan (BAAQMD and WOEIP 2019) and its supporting

projects, including a regional-scale photochemical model developed by BAAQMD

(Tanrikulu et al. 2019).

There is one BAAQMD-run air quality monitoring site in West Oakland, and another

nearby at Laney College (Figure 2.2). In recent years (2016-2018), three-year average

PM2.5 concentrations at these two sites have ranged from approximately 9 to 12

µg/m3 (US EPA 2020).7 For comparison, in a recent modeling assessment conducted

at 1×1km scale, simulated annual average PM2.5 concentrations across West Oakland

varied from approximately 7 to 9 µg/m3 (Tanrikulu et al. 2019).
7The upper end of this range has been significantly influenced by wildfires. The main point

is that, in terms of magnitude, average ambient PM2.5 concentrations in West Oakland are much
closer to 10 µg/m3 than 100 µg/m3.
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Figure 2.2: Map of the West Oakland study area

Emissions

Estimated PM2.5 emission rates (Table 2.2) were taken from BAAQMD’s emission

inventory. These were derived by applying source-specific or category-specific speci-

ation factors (PM2.5 / PM10) to inventoried estimates of PM10. We note that they

have not been evaluated against direct measurements of PM2.5 from these specific

sources. For further discussion, see Sections 4.10 and 4.12.

Modeled PM2.5

To generate estimates of the primary PM2.5 attributable to modeled sources, we

used the AERMOD model (US EPA 2018) to predict directly attributable ambient

PM2.5 concentrations (ΔPM2.5) on a 20×20m scale for each source at each facil-

ity. AERMOD is a steady-state plume model that incorporates air dispersion based
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Table 2.2: Emissions from modeled sources, as inventoried.

Facility Source Type Emissions (ton/yr)
Stack 0.002
Stack 0.010
Stack 0.000

Facility A

Fugitive 0.564
Fugitive 0.714Facility B
Fugitive 0.769

on planetary boundary layer turbulence structure and scaling concepts, including

treatment of both surface and elevated sources. Details regarding our AERMOD

configuration (local meteorology, release heights, flow rates, etc.) can be found in

the technical appendices to the West Oakland Action Plan (BAAQMD and WOEIP

2019).

After generating modeled 20×20m annual average PM2.5 concentrations with

AERMOD, we also computed the corresponding area-weighted arithmetic means

for all West Oakland Census blocks, for use in calculating block-level risks and

exposures.

Population

Estimates of the size of the West Oakland population vary, depending on how the

boundary is defined and which populations are counted (e.g. residents vs daytime).

We adopted the boundary shown in Figure 2.2, which is consistent with the West

Oakland Action Plan (BAAQMD and WOEIP 2019). Using the PopGrid tool in-

cluded with the BenMAP-CE platform, we extracted block-level residential adult

(age ≥ 30) population counts from from 2010 US Census data, stratified by age, sex,

race, and ethnicity,Using the PopGrid tool included with the BenMAP-CE platform,

we extracted block-level residential adult (age ≥ 30) population counts from from
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Table 2.3: Selected estimates of the long-term effect of PM2.5 on adult mortality.

Basis
Publication Cohort Exposure RR per 10 𝜇𝑔/𝑚3

Jerrett (2013) ACS CSP-IIa LUR-DSA1 1.065 (1.035, 1.096)
Jerrett (2013) ACS CSP-IIab LUR-DSA1 1.060 (1.003, 1.120)
Pope (2015) ACS CSP-IIa LUR-BME2 1.07 (1.06, 1.09)
Turner (2016) ACS CSP-IIa Hybrid34 1.06 (1.04, 1.08)
Di (2017) Medicarec Hybrid3 1.073 (1.071, 1.075)
Di (2017) Medicarec Monitor5 1.061 (1.059, 1.063)
1 Land Use Regression with Deletion-Substitution-Addition
2 Land Use Regression with Bayesian Max Entropy kriging of residuals
3 Ground-level monitoring combined with photochemical model predictions
4 Hierarchical Bayesian space-time model (HBM)
5 Nearest ground-level monitor within 50 km
a Adults age ≥ 30
b California subset of national cohort
c Adults age ≥ 65

2010 US Census data for blocks contained within or intersected by that boundary.

We then used the Woods and Poole (2015) forecasting method, as implemented by

BenMAP-CE, to predict block-level population counts for 2018.

Effect Sizes and At-Risk Populations

Table 2.3 lists different estimates of the effect of a +10 µg/m3 increase in long-

term PM2.5 exposure on an adult population. For our case studies, we provisionally

adopted a relative risk estimate of 1.07. As Table 2.3 shows, despite variation among

the exposure-assignment methods used, and the cohorts studied, there is enough

agreement to consider this a serviceable estimate.8

Although PM2.5 has varying effects on different kinds of mortality (cardiopulmonary,

8For the purposes of this whitepaper, we can set aside more complex techniques like pooling or
meta-analysis. The point is to illustrate and examine the framework itself, for which one digit of
precision is enough.
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all-cause, etc.), these studies examined all-cause adult mortality. Therefore, we also

used an all-cause adult mortality baseline when calculating risk differences, and re-

stricted our estimates of excess exposure and mortality to an adult population as well

(age ≥ 30).

Table 2.4: Hazard ratios for a +10 µg/m3 increase in annual mean PM2.5 exposure.
Reproduced from the Supplement to Di et al (2017); these data also appear in the
current version (v1.5.8) of BenMAP-CE.

Race / Ethnicity Relative Risk

White 1.063 (1.060, 1.065)

Black 1.208 (1.199, 1.217)

Asian 1.096 (1.075, 1.117)

Hispanic 1.116 (1.100, 1.133)

Native American 1.100 (1.060, 1.140)

(All) 1.073 (1.071, 1.075)

As described in Section 2.1, it is possible to incorporate group-specific effect-size esti-

mates. Table 2.4, reproduced from the Supplement to Di et al (2017), lists estimates

obtained from a large cohort study of PM2.5 and mortality in the United States.

According to these data, for the same fixed increment of PM2.5, the relative risks

for non-white populations are larger. For example, the excess relative risk for Black

cohort members is estimated to be 2.8 times as large as the average.9 In the Results

(Section 3.3), we use these data to illustrate the effects of incorporating group-specific

variation.

9A ratio of excess relative risks is calculated as (𝑅𝑅1 − 1)/(𝑅𝑅0 − 1).
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Baseline Mortality Rate

To obtain an estimate of the risk difference (RD), equation (2.3) requires an estimate

of the baseline mortality rate (𝑦0) as input. For our primary analysis, we used the

crude (not age-adjusted) 2007-2016 rate for the nine counties in the San Francisco

Bay Area. For a sensitivity analysis, we obtained two additional rates from CDC-

WONDER10: an age-adjusted regional rate, and a county-level crude rate. We also

derived a (provisional) community-specific estimate for West Oakland by downscaling

age- and race/ethnicity- stratified adult mortality rates for Alameda County, using

similarly stratified BenMAP-exported population projections for 2018. Specifically,

we calculated a single 𝑦0 for West Oakland as:

𝑦0 = ∑ (𝑃𝑖𝑗 × 𝑅𝑗)
∑ 𝑃𝑖𝑗

(2.4)

… where:

• 𝑖 is the geographic unit11;

• 𝑗 is the population stratum12;

• 𝑃𝑖𝑗 is the population size for block 𝑖, stratum 𝑗; and
• 𝑅𝑗 is the county-level mortality rate (deaths/person) for stratum 𝑗.

Geographic units 𝑖 consisted of Census blocks in West Oakland. Strata for the mor-

tality rates 𝑅𝑗 were limited by BenMAP to the crossing of Race (WHITE / Non-WHITE)

with Age (7 brackets). Strata for 𝑃𝑖𝑗 were consolidated to match, with ages restricted

to 30 years and up.

10Wide-ranging Online Data for Epidemiologic Research (WONDER) database, operated by the
U.S. Centers for Disease Control and Prevention (CDC).

11Frequently-encountered geographic units include Census blocks, Census blockgroups, Census
tracts, and ZIP code tabulation areas (ZCTAs). In our case studies, we used Census blocks.

12The population strata may be defined by a combination of variables including Age, Race,
Ethnicity, and/or Sex.
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See Appendix A for tables of stratified mortality rates (𝑅𝑗), as well as examples and

discussion of issues related to small counts, age-adjustment, and race/ethnicity.

Increments vs Ambient Concentrations

Of interest in this proposed framework are not total ambient concentrations per se,

but rather incremental concentrations (that is, contributions or changes to those

totals).13 These increments are generally on the order of ±1 µg/m3 or less, within a

policy-relevant range centered on roughly 10 µg/m3. Figure 2.3 illustrates that there

is ample evidence, based on contrasts within that policy-relevant range, supporting

the two major U.S. cohort studies listed in Table 2.3.14 Estimates of the impacts of

such increments, within that range, will therefore be well supported. For extended

discussion, please see US EPA (2021a), Section 4.4, and the Appendices.

13To maintain the distinction, we have attempted to prefix incremental concentrations and their
corresponding impacts with a plus symbol (“+”) throughout this report.

14US EPA (2021a) characterizes the range for cohort studies evaluated for the 2019 ISA at 5.9
to 16.5 µg/m3, and the range for the most recent studies as 5.9 to 11.65 µg/m3.
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Figure 2.3: Cumulative percentile of PM2.5 cohort exposure from the ACS CSP-II,
Medicare, and CanCHEC cohorts. Reproduced from p. 98 of EPA-HQ-OAR-2020-
0272 (EPA 2021 TSD).
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3 Results and Case Studies

3.1 Overview

Five types of calculated impacts are presented in this section: PM2.5 concentration;

relative risk; risk difference; exposure, and excess mortality. For a conceptual dia-

gram, see Figure 2.1 in the previous section.

3.2 PM2.5

Figure 3.1 shows the incremental contributions to ambient concentrations (ΔPM2.5)

modeled using AERMOD. For each facility, a contour line is drawn corresponding to

an increment of ΔPM2.5 = +0.1 µg/m3. (This is approximately 1% of total annual

average ambient PM2.5 in the Bay Area.) Both facilities are modeled using the same

meteorological data and model parameters (deposition, etc.), so the results differ only

due to differences in release parameters and emission rates. A slightly smaller +0.1

µg/m3 contour line is associated with Figure A, which has lower emissions (Table

2.2). However, the two contour lines are similar in shape.

Across the modeled domain, the population-weighted average ΔPM2.5 contributed

by Facility A is 0.049 µg/m3; for Facility B, it is 0.042 µg/m3. For Facility A, the

maximum1 modeled ΔPM2.5 for any receptor within a residential block is +17.5

µg/m3. For Facility B, it is +0.8 µg/m3.

1Maxima for gridded ΔPM2.5 can be sensitive to aspects of the grid that was used, including
its orientation, offset, and resolution. In typical applications of the TAC → Cancer framework,
screening for maxima is limited to identifiable residential parcels, rather than all locations within a
residential block.
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Facility A

0 0.5 1km

Facility B

0.0
0.2
0.4
0.6
0.8
1.0+

µg m3

Figure 3.1: Modeled contributions to PM2.5 from selected facilities. For each facility,
a contour line is drawn at an increment of +0.1 µg/m3. With assumptions (see text),
these same contour lines also correspond to an excess relative risk of +0.07%, or a
risk difference of +6/M.
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3.3 Risk

As discussed in Section 2.1, excess risk can first be calculated on a multiplicative scale.

This is relative risk (RR), which does not depend on baseline conditions. Using an

estimate of baseline risk, that relative risk can be converted to risk on an additive

scale. This is known as a risk difference (RD).

Relative Risk (Multiplicative)

With the assumptions described in Section 2.2 (i.e., a relative risk of 1.07 per +10

µg/m3 PM2.5), an increment of +0.1 µg/m3 PM2.5 corresponds to an increase in the

annual risk of mortality, for our hypothetical population, of approximately +0.07%.

The same +0.1 µg/m3 PM2.5 contour line in Figure 3.1 thus also corresponds to that

measure of excess risk (+0.07%).

Risk Difference (Additive)

To convert a relative risk into a risk difference, an estimate of the baseline (𝑦0) is

required. This baseline can be taken as constant across the study area, or it can be

allowed to vary geographically. In our case studies, we employ the former approach;

see Section 4.5.3 for our rationale.

For the Bay Area as a whole, the 2007-2016 crude regional all-cause adult mortality

rate obtained from CDC-WONDER is 8,733/M (Table 3.1). In other words, approxi-

mately 0.87% of the adult population died each year during that ten-year span. From

detailed historical and/or auxiliary data, it can be possible to forecast more accurate

present-day or future rates, but we do not attempt that here. (See Section 4.5.3 for

discussion.)

Taking that estimate of 8,733/M as serviceable, the +0.1 µg/m3 contour line in Figure
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Table 3.1: 2007-2016 all-cause adult mortality rates (age ≥ 30). Basis: CDC-
WONDER.

Geography Method Rate Analysis Difference*

Bay Area Crude 8,896/M Primary —
Bay Area Age-adjusted 8,733/M Sensitivity -2%
Alameda County Crude 8,608/M Sensitivity -3%
Alameda County Adjusted 9,102/M Sensitivity +2%
West Oakland Downscaled 8,982/M Sensitivity +1%
* For risk-difference and mortality metrics, compared to primary analysis.

3.1 corresponds not only to a relative risk increment of +0.07%, but also to a risk

difference of +6/M.

Tables 3.3 and 3.4 contain summaries of modeled block-level risk differences, as well

as summaries of other metrics of impact, which the reader is encouraged to consider.

Using a different baseline mortality rate would affect the overall result in a linear way.

See Table 3.1 for examples, and Section 4.7 for discussion.

Group-Specific Parameters

In Equation (2.3), we can allow the baseline (𝑦0) to vary by subgroup. This results

in different calculated risk differences for different subpopulations. Crucially, this is

not the same as allowing the effect size (𝛽) to vary. It can actually have an opposite

effect, which we illustrate by example below.

It is well-established that, despite a number of higher-than-average risk factors, His-

panic/Latino populations in the United States consistently exhibit a lower-than-

average mortality rate (Ruiz, Steffen, and Smith 2013). This has been termed the

“Hispanic mortality advantage,” and it holds true within the Bay Area. Taking

Alameda County as an example, the 2007-2016 age-adjusted all-cause adult mortal-

ity rate for Hispanic individuals was 7,558/M, -17% lower than the county average.

Regionally, the rate was -16% lower. (See also Appendix A.)
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If we do not allow 𝛽 to vary in Equation (2.3), a lower mortality rate (𝑦0) always

yields a lower estimated risk difference. However, recall the data in Table 2.4: for a

fixed increment of PM2.5, the incremental relative risk borne by Hispanic populations

is estimated to be larger than average (1.6 times as large, to be exact).

Table 3.2 shows three different results obtained by using this data, allowing (a) the

effect size, and/or (b) the baseline rate, to vary while we calculate results for the

Hispanic population. For the sake of illustration, this example uses age-adjusted

rates for Alameda County.2

Table 3.2: Three example calculations performed for a Hispanic population exposed
to a PM2.5 increment of +0.1 𝜇𝑔/𝑚3. Second row: when using a group-specific
baseline, the calculated risk difference is decreased. Third row: when a group-specific
effect size is also incorporated, the result is increased, even beyond the original result.

Effect Size Baseline Mortality

Basis1 Relative Risk Basis2 Value Risk Difference

(All) +7.3% (All) 9,102/M +6/M

(All) +7.3% Hispanic 7,558/M +5/M

Hispanic +11.6% Hispanic 7,558/M +8/M
1 Di et al (2017) and the BenMAP-CE User Manual (EPA 2021)
2 Alameda County, 2007-2016 (age-adjusted all-cause adult, CDC-WONDER)

In the first row of Table 3.2, we rely on a population-wide mortality rate, and on

a population-wide estimate of the effect size. We are simply not taking any group-

specific information into account. In the second row, we use a baseline mortality rate

that is specific to the Hispanic population (7,558/M). Because it is lower than average,

this step lowers the calculated risk difference. In the third row, we additionally employ
2Age-stratified calculations, such as those that would be performed by BenMAP if this particular

set of response functions were selected, would be more difficult to follow. If regional data are used,
instead of county-specific data, the results are identical to one significant digit.
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an effect-size estimate (RR = 1.116) that is also group-specific. This increases the

risk difference, even compared to the first row.

Thus, if we did not take a group-specific effect size into account, but only a group-

specific baseline, we would obtain an estimate for impact on Hispanic individuals that

was smaller than average. If we took both into account, the estimate would be larger.

We note that this does not apply to all groups—only those for which there is an effect

size that is both larger and in the opposite direction from the baseline, relative to the

average.

3.4 Population

Figure 3.2 shows the modeled spatial distribution of the 2018 residential population

within the West Oakland area. The definition (i.e., boundary) of the area is taken

from the West Oakland Action Plan (BAAQMD and WOEIP 2019). Figure 3.2 also

shows, for reference, the same contour lines depicted in Figure 3.1 and discussed in

Section 3.2.

Within this area, we calculated the total residential population (all ages) to be 𝑛 =

32,697 persons. Of these, 61% (𝑛 = 20,040) were adults (age ≥ 30). For additional

breakdowns by age and race/ethnicity, see Appendix A.

3.5 Exposure

Figure 3.3 combines the adult population-density data (Figure 3.2) with the modeled

PM2.5 data (Figure 3.1). The result is a map of population-weighted impacts, which

are larger where (a) the concentration of PM2.5 is greater, or (b) the concentration of

adult residents is greater.

Despite having similar contour lines, the impact of Facility A—as measured by expo-
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Figure 3.2: Block-level residential population density. For ease of reference, the
contour lines from Figure 3.1 are reproduced here. In later calculations of exposure
and mortality (Figures 3.3 and 3.4), results are restricted to the adult population
(age ≥ 30). The all-ages population is shown here for reference.
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Table 3.3: Summary of modeled impacts for residential blocks in West Oakland.

Metric Facility A Facility B Unit
Maximum relative risk at any block +1.79% +0.23% (unitless)
Maximum risk difference at any block +156/M +20/M death/person-yr
Average risk difference across all blocks +2.9/M +2.5/M death/person-yr
Total population exposure across all blocks +983 +843 person-µg/m3

Total excess mortality across all blocks +0.058 +0.050 death/yr
Note:
All metrics reported in this table are restricted to the adult population (age ≥ 30).

Table 3.4: Counts of impacted residents and blocks, split by facility and level of
impact. Impact levels are divided into four tiers.

Excess Risk Facility A Facility B
PM2.5 Relative1 Difference12 Blocks Population Blocks Population
0 to 0.1 0 to 0.07% 0 to 6/M 337 18,401 324 18,294
0.1 to 0.6 0.07 to 0.4% 6 to 40/M 31 1,515 48 1,746
0.6 to 1 0.4 to 0.7% 40 to 60/M 3 70 – –
>1 >0.7% >60/M 1 54 – –
Note:
All metrics reported in this table are restricted to the adult population (age ≥ 30).
1 Assuming effect size of 1.07 per +10 µg/m3 PM2.5.
2 Assuming baseline mortality rate of 8,733/M.

sure, so defined—is larger, as it is located in closer proximity to more adult residents.

3.6 Excess Mortality

Figure 3.4 shows the block-by-block variation in impacts attributed to each facility,

given a baseline mortality rate of 8,733/M. Since we used a spatially invariant baseline

mortality rate, the block-by-block variation is solely driven by (a) variation in the

modeled PM2.5 contributions, and (b) variation in population density, just as in Figure

3.3. As with our risk-difference results, adopting a sub-regional mortality rate would

change these results by a small percentage (Table 3.1).

36

DRAFT

Page 54 of 108



Facility A

0 0.5 1km

Facility B

0.0k
0.5k
1.0k
1.5k
2.0k
2.5k+

µg

m3
⋅
pop

km2

Figure 3.3: Adult exposure, calculated as the product of adult residential population
density (pop/km2) and PM2.5 concentration (µg/m3).
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Figure 3.4: Excess mortality, calculated using a constant baseline mortality rate 𝑦0
= 8,733/M and an effect size 𝑅𝑅 = 1.07 per +10 µg/m3 PM2.5.
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4 Discussion

In this section, we discuss the strengths, limitations, and implications of the proposed

methodology for the assessment and regulation of impacts from PM2.5 emissions at

community scale. We also discuss issues related to (a) nonlinearity, (b) baseline

mortality rates, and (c) subgroup analyses. We use examples from the results of

our case studies to illustrate these issues. Supporting material is provided in the

Appendices.

4.1 Health Endpoint and Exposure Duration

The EPA’s most recent Integrated Science Assessment (US EPA 2019) has linked

PM2.5 exposure to a broad set of human health outcomes, including respiratory ef-

fects, cardiovascular effects, nervous system effects, cancer, and mortality (Table 4.1).

Studies consistently find that long-term exposure to PM2.5 is associated with increased

risk of lung cancer, cardiovascular, respiratory and all-cause mortalities (Pope et al.

2002, 2020; Pope and Dockery 2006; Krewski et al. 2009; Lipsett et al. 2011; Jerrett

et al. 2013; Ostro et al. 2010, 2015; Thurston et al. 2016).

Table 4.1: Causality determinations for PM2.5, adapted from Table 1-1 of EPA (2019).
A ”causal” determination reflects the highest degree to which the evidence reduces
chance, confounding, and other biases in the exposure-health effect.

Health Effect Category Short-Term Long-Term
Mortality Causal Causal
Cardiovascular Causal Causal
Nervous System – Likely to be causal
Cancer – Likely to be causal
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Mortality is a critical endpoint and, as such, a useful motivation for this methodology.

In spite of decades of progress, current PM2.5 pollution has been estimated to be

responsible for over 30,000 deaths each year in the United States (Bennett et al.

2019). There are also known populations at risk for increased impacts (US EPA

2019, 2021b, 2021a).

The risks of premature mortality induced by long-term exposures and short-term

exposures may overlap. The position taken by the US EPA in its 2021 Technical Sup-

port Document (TSD) for the Final Revised Cross-State Air Pollution Rule Update

for the 2008 Ozone Season NAAQS is as follows:

“We assume that effects found in studies of long-term exposures may

include some effects of short-term exposures. Therefore, only mortality

impacts from long-term PM2.5 exposure will be quantified, so as not to

overestimate impacts. This may potentially bias […] estimates toward the

null in the main benefit estimate.” (US EPA 2021a)

We note that our focus on long-term exposures in this whitepaper in no way precludes

the consideration of of short-term exposures in future work (Section 4.12).

Apart from mortality, other health endpoints are significant and clearly merit atten-

tion. And, the set of impacts considered could affect evaluations or decisions. As an

example: cases of impaired lung development will be driven by the presence of younger

populations, whose spatial distribution differs from that of the adult population. See

Section 4.9 for discussion of multiple metrics and their evaluation.

4.2 Comparing Frameworks

Health risk assessments (HRAs) conducted to estimate impacts of toxic air contam-

inants (TACs) are a mainstay of regulatory activity. Our proposed framework has

much in common with the framework for these (Table 2.1), including some limitations.
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Examples of limitations common to both frameworks include the accuracy and com-

pleteness of: estimates of emissions; modeled transport of emissions; and the path-

ways, functions, and parameters used to estimate health effects.

Because these shared limitations are widely discussed elsewhere, we focus on other

issues here. However, efforts to address some of them are discussed in Future Work.

4.3 Pathway Composition

HRAs for TACs are conducted using a framework that breaks apart the ambient

concentration → response pathway into a set of factors (Appendix B) which are then

multiplied together. This “bottom-up” approach provides a way to plug in estimates

of different factors for specific parts of the pathway, such as the fraction of time

at home (FAH). This facilitates the integration of information accumulated from

multiple studies, with different scopes and methodologies, over time (US EPA 2005).

𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 → 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 → 𝑑𝑜𝑠𝑒 → 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

The proposed framework takes a different approach. In the epidemiological studies

that it relies on, the total effect size 𝛽 has been estimated directly, using ambient

concentrations as the independent variable, and mortality as the dependent variable.1

Thus, although databases and models of human time-activity patterns (US EPA 2017)

might be used in an attempt to decompose 𝛽 into more specific factors, those factors

have not been left out. Factors in the TAC → Cancer pathway do include margins

of safety, which are not covered by epidemiologically-derived response functions. We

discuss margins of safety in Section 4.11.

1By way of analogy, 𝛽 can thought of as a composite of all the intermediate factors along the
entire pathway, from ambient concentration to response.
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4.4 Linearity

Conventional response functions for PM2.5 → Mortality (Eqs (2.2) and (2.3)) are

non-linear. This is not unique to mortality; any statistical approach used by epidemi-

ologists to estimate a risk ratio for any endpoint will effectively be fitting an equation

of the same log-linear form as Eq (2.1).

In Eq (2.3), the term driving the nonlinearity is 𝛽 Δ𝑥. The smaller this term is, the

more closely Eqs (2.2) and (2.3) will approximate a linear function. In Section 2.2,

we characterized the average annual ambient PM2.5 in West Oakland as being on

the order of ~10 µg/m3 (as opposed to 1 µg/m3 or 100 µg/m3). In our case studies,

and in our envisioned applications, a modeled Δ𝑥 will rarely exceed 10 µg/m3, even

at the most impacted residential blocks (see Table 3.4). Therefore, for any relative

effect size that is close to the one used in our case studies, the shape of Eqs (2.2)

and (2.3) will be approximately linear over the range with which we are concerned.

See Appendix A for figures depicting the magnitude of the non-linearity, given our

assumptions, across a policy-relevant range.

The question of whether the true effect of PM2.5 on mortality is exactly linear, within

the range of PM2.5 concentrations we are considering, cannot be answered directly.

This problem is not unique to PM2.5 (May and Bigelow 2005). However, the scientific

evidence is consistent with a linear concentration-response relationship within the

range, centered on typical ambient concentrations, that we have here characterized

as “policy-relevant” (Section 2.2; (US EPA 2019, 2021b, 2021a).)

Adopting a linear approximation of (2.2) and (2.3) would sidestep a number of the

issues described below. It would also be more consistent with the TAC → Cancer

framework, which does assume linearity. However, exactly how to linearize—and

how to linearize group-specific effect sizes, which have larger estimated exponents for

at-risk populations—would be an important question. Another important question
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would be how to reconcile differences with established tools and frameworks (e.g.,

BenMAP) that rely on log-linear functions for calculating mortality.

4.5 Dependence on Population Characteristics

Some of the metrics we have calculated require data on population characteristics,

while others do not. We divide these characteristics into two kinds, according to their

relevant properties for the selection of appropriate metric(s) by the risk assessor: first,

the spatial distribution, extent, and composition of the local population; and second,

its baseline incidence rate(s).2

Contributions to ambient PM2.5 concentrations, as we have modeled them, are inde-

pendent of the local population. The population-average excess relative risk can also

be calculated independently of the local population density, assuming a constant ef-

fect size, as in the results presented in Section 3.3.3 In contrast, exposure and burden

are dependent (by definition) on population counts and their spatial distributions.

4.5.1 Risk Differences vs Relative Risks

If this approach were to be embedded in a decision tool, a key metric—alone, or

one of several—could be based on thresholds in relative risk(s), rather than risk

differences(s). As an example: rather than drawing a line at a a risk difference for

premature mortality of +6/M, a line could instead be drawn at a relative risk of

+0.07%. As demonstrated in the Results, with our assumptions, those two contours

are essentially the same (to one digit of precision).
2By composition we primarily mean demographics (age, sex, race/ethnicity, etc.). In this

whitepaper, we are concerned only with the baseline incidence of mortality, but future work (Section
4.12) could consider the extent to which our considerations apply to baseline rates for additional
endpoints.

3All else being equal, we can expect that a relative-risk estimate will be more accurate insofar
as the composition of the population matches the cohort(s) that formed the basis of effect-size
estimates.
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An advantage of setting thresholds in terms of relative risk is that this would remove

the dependence on baseline conditions. Relative risk contours for specific at-risk pop-

ulations could be evaluated independently and, if desired, the most health-protective

could be evaluated on its own. This would be functionally equivalent to adding a

margin of safety to the population average (see Section 4.11). However, to combine

group-specific estimates, and arrive at an estimate for the population overall, one

must still weight intermediate results by population. At that point, one is effectively

calculating a risk difference.4

In this PM2.5 → Mortality framework, maps of risk differences can be compromised

to the degree that they depend on outdated or otherwise inaccurate data on popula-

tion characteristics. Some potential disadvantages of relying on impact metrics that

depend on such data are listed and discussed below.

First, reliance on population data brings up the same “when-to-update” challenge

that any reliance on baseline conditions does (Section 4.5.3). Extrapolations from

Decennial base years may miss the net effects of migration, as well as urban or ru-

ral development. For example, the construction of a new housing project will not

be captured in assessments of exposure or burden based on such an extrapolation.

Predictive errors such as these are discussed further in Section 4.5.2.

Second, at smaller spatial scales, residential surveys become less reliable predictors of

out-of-sample and post-survey populations. This issue is exacerbated when the sample

size is smaller relative to the target population (as with the American Community

Survey, which is a primary source of population estimates for inter-decennial years,

and especially for years just preceding the Decennial Census.)

Third, in a large-scale survey like the Census, hard-to-reach populations may be

undercounted to an extent that compromises local risk assessment.

Fourth, while the basis for most conventional population-density estimates (and the
4Technically, one is perfoming all of the calculations needed to generate burden or exposure

estimates as well.
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basis for most health-impact functions derived from epidemiological studies) is the

Census, it is worth noting that a modeled spatial distribution based on residential

locations can be quite different than the actual population distribution during the

day (consider, for example: schools, workplaces, and commercial districts).

Finally, Census data are intentionally imperfect measures of residential density: some

noise is deliberately added to protect individuals from identification.

4.5.2 Prospective Risk Management vs Retrospective Impact

Assessment

The objective of risk management is to intervene on a potential future, rather than

to describe an actual past. Accountability studies conducted using BenMAP may be

similar in appearance to the case studies we have conducted, but they are generally

concerned with describing actual pasts. Such retrospective assessments can include

statistical uncertainties, but they do not include predictive uncertainties.

Like sampling error, predictive error is exacerbated at small spatial scales. It can be

mitigated by more-frequent updates, but in practice, the frequency of updating may

be limited by the factors described in the preceding section. We recommend that

risk assessors establish or consider an appropriate tolerance for predictive error when

selecting between metrics and statistics for use within a prospective risk-management

process (see sections 4.6 and 4.7).

4.5.3 Baseline Rates

In developing this whitepaper, we also considered limitations of baseline mortality-

rate estimates. Many of these are shared with the limitations of population estimates

listed above, so we do not repeat them here. However, we note that the magnitudes

of these limitations are greater, since mortality rates involve smaller counts. In ad-
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dition, rates are ratios, meaning that they also propagate the uncertainties of the

denominator (i.e., population counts).

Dependence on baseline rates challenges a fundamental assumption common to many

risk-assessment frameworks, including the TAC → Cancer framework. This assump-

tion is that the same modeled concentrations would have the same impact on any

population.5 In our proposed framework (PM2.5 → mortality), the risk difference

depends on, and is a multiple of, the existing mortality rate. The form of this model

dictates that the estimated risk difference for a population with higher baseline mor-

tality rates will be greater than for an average population. Besides age, many factors

are known to be associated with higher mortality rates (sex, poverty, racism, educa-

tion, healthcare access, etc.); some of these factors can vary considerably over small

spatial scales and over time.

As with population-count data, the question also arises of how often—or under what

circumstances—to update estimates. This can pose logistical challenges if the need

for updates exceeds the capacity of the risk assessor(s) and manager(s) to generate

and process risk-assessment products. Since risk assessments are part of a larger

social process that unfolds over time, updates can also create challenges in comparing,

standardizing, and settling agreement among products.

When risk-driving factors are under the control or jurisdiction of permit-issuing agen-

cies, it has typically been the practice that risk assessments are only updated when

those factors change (e.g. in response to a change in emissions); such changes are

foreseeable, and can be managed accordingly. Generally speaking, mortality rates in

developed countries are declining over time, but they are not under the direct control

of any regulatory agency. The downward trend has short-term fluctuations, which

are reasonably dampened and/or foreseeable at regional, state, and national scales.

County and city rates may be affected on shorter timescales by demographic trends
5Age-specific sensitivity factors have been added to OEHHA’s guidelines for cancer risk assess-

ment. However, if we think of the resulting risk as being estimated for a statistical person, that
person always has the same exposure window.
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(e.g. migration and aging). However, unusual events may cause even state-level or

national rates to rise temporarily.

We currently recommend against constructing and using “hyper-local” baseline rate

estimates (as small as Census blocks) to generate mortality-risk estimates at the same

hyper-local scale. This is mathematically possible, but it introduces considerable

statistical and predictive uncertainty, to a degree that we consider inadvisable for

prospective local risk management.

Further discussion, examples, and illustrations concerning mortality rates may be

found in Appendix A.

4.6 Selection of Statistic(s)

Maxima exhibit higher variance than sums or averages, which means that all of the

above sources of uncertainty (including predictive error) will be exacerbated if the

risk-assessment method overall focuses on a predicted maximum impact, rather than

an area-wide impact.

Area-wide statistics—such as the burden, exposure, and average risk differences re-

ported in Table 3.3—require that the extent of the area be defined. In our case

studies, we adopted an area that had been previously defined. If this option were

not available, the risk assessor could construct an area defined in terms of the impact

itself—for example, the set of Census blocks for which the predicted PM2.5 increment

exceeded some threshold. The risk assessor could also construct an area, starting

from the location of the source, that proceeded outward until some other limit were

reached—for example, until the number of residents in the area reached some prede-

termined count, or until the total population exposure reached some amount.

Our present position is that the modeled metric that is most acceptable depends on

whether a larger risk-assessment framework is designed to operate on the basis of
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(a) maxima and/or (b) area-wide summaries (for some definition of the local area),

as well as the tolerance (of the risk assessors) of different types and magnitudes of

predictive error, which are grounded in the nature of population-dependent estimates

(counts and rates). In our future work (Section 4.12), we aim to continue to resolve

these tradeoffs, and to work with risk assessors and additional case studies to ensure

feasibility and fitness-for-purpose.

4.7 Selection of Metric(s)

If population-dependence is acceptable, and if risk differences are a preferred met-

ric, then for risk-management purposes attuned to individual facilities, we currently

recommend the use of a baseline rate at a spatial scale that covers at least 1 × 105

people. This is larger than the scale of our case studies, and considerably mitigates

the compromises enumerated above.

Above, we recommended against using hyper-local (e.g., block-level) estimates of

baseline risk to generate and report results—whether single numbers, tables, or

maps—at a hyper-local scale. In particular, we are not persuaded that mortality-rate

estimates at a hyper-local scale are stable or reliable enough to adequately support the

decisions that we would expect to follow. However, if hyper-local calculations were

to be re-aggregated to a larger extent before reporting (as with the community-wide

total excess mortality reported in Table 3.3), the uncertainty would be considerably

mitigated. A risk-management protocol based on such an area-wide measure could be

adequately robust, and would meet calls by scientists to integrate the consideration

of exposure into modern risk-management protocols. It is, however, reasonable to

anticipate calls for “the underlying data,” and the subsequent use of those fine-scale

intermediate calculations in ways that we expect would lead to inadvisable inferences

and/or decisions. See Section 4.7 for additional discussion of area-wide statistics ver-

sus local maxima, and Section 4.12 concerning integration and uptake by communities

48

DRAFT

Page 66 of 108



of practice.

For the purposes of the entity conducting risk assessments, and the other stakeholders

in those assessments, it may be most appropriate to use a community-specific rate, a

county-specific rate, or a regional rate. We note that, compared to other parameters in

the implementation, sensitivity to this choice (i.e., regional vs county vs community-

level) appears relatively low: the values in Table 3.1 are all within ±3% of each other.

For calculating risk differences and mortality burdens, we have used a regional rate.

An advantage of using a regional rate is that no discontinuities will be generated

at county lines. (See Figure A.1 in Appendix A for a comparison of county-specific

rates.)

In calculating exposures and burdens, we have assumed that block-level variation in

residential population is a satisfactory predictor of variations in exposure. As dis-

cussed in the preceding sections, this approach has limitations and known deficiencies.

There may be options available to mitigate some of these deficiencies, which we regard

as potential future work (Section 4.12). However, an exposure or burden metric does

reveal a meaningful difference between the two facilities in our case study: although

their PM2.5 contours are quite similar, the different siting of the facilities (relative

to the residential population) creates a significant difference in the exposures and

burdens attributed to each (Table 3.3; Figure 3.3; Figure 3.4).

4.8 Commensurability

To put “+10/M” (as in the TAC -> Cancer framework) and “+10/M” (as in this

PM25 -> Mortality framework) on the same scale, at least four adjustments could

conceivably be attempted. Making such adjustments is outside the scope of the

current work, but we list them here for the sake of discussion.

• Margin of Safety. A “+10/M” cancer risk value is typically derived from
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published slope factors or unit risk factors that incorporate margins of safety.

For some pollutants, these margins of safety may represent factors of 3, 10, or

more. See Section 4.11 for further discussion.

• Exposure window and time at risk. We estimated changes in annual mor-

tality rates for adults 30+ years of age. In the TAC → Cancer framework, the

exposure window is the third trimester through 30 years of age, and the time

at risk is 70 years (Table 2.1), leading to an estimate of “lifetime” cancer risk.

Future epidemiological studies might support estimates of impacts on mortality

rates for younger adults and children.6

• Maximum point of impact vs weighted average. In the HRA process

that the District follows, which the TAC -> Cancer framework supports, the

cancer-risk metric is calculated for a “maximum exposed individual” (MEI) re-

ceptor, typically the closest residential location outside the facility boundary.

We generated results averaged across Census blocks, which can be aggregated

at any level to produce area-weighted or population-weighted estimates of im-

pact. We did not attempt to identify a maximally exposed individual (MEI) in

terms of a single receptor location. It is practically certain, however, that the

estimated MEI impact within the 16 blocks subject to “over +10/M” impacts

from Facility A would be greater than +10/M.7

• Valuation. Using conventional metrics of loss, cost, and/or preference, mor-

tality is typically weighted more heavily than cancer. BenMAP-CE provides a

library of conventional valuation functions for mortality. Such valuations can

be problematic, however. See Section 4.9 for a brief discussion.

6There are studies available to support infant-mortality impact estimates, which we did not
leverage. In the United States, typically, the population baseline mortality and hence most of the
calculated risk difference accrues at ages 30 and up.

7The likelihood that 665 residents all live on the downwind side (of their block centroids) is,
intuitively, very small.
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4.9 Managing Multi-Dimensional Impacts

It is worth noting that TAC impacts are assessed and regulated not only in terms of

cancer risk, but on the basis of two other metrics as well. These are chronic hazard

and acute hazard, both of which are evaluated using a different metric: the hazard

index, or HI (Strum, Eyth, and Vukovich 2017).

Thus, for several decades, there have actually been three metrics in use for regulation

of impacts from TAC-emitting sources at local scale. A particular source triggers

concern and/or action when any one of these metrics reaches its respective threshold.

The methodology we propose here for assessing impacts from PM2.5 could similarly

support mechanisms that would trigger concern and action.

The logical-composition method described above (𝑌1 > 𝐴 | 𝑌2 > B | 𝑌3 > 𝐶)

is also applied in other contexts, such as NAAQS attainment, or the identification

of over-burdened communities. Other approaches to dimensionality reduction are

possible. For example, it is possible to normalize scores and then combine them: this

is the approach taken to assemble the Hazard Index itself, which is actually a sum

of ratios. The Healthy Places Index (Maizlish et al. 2019) is also a sum, but of z-

scored transformed data. The CalEnviroScreen tool uses both sums and products of

rank-transformed data. Valuation on a currency-based scale is another approach. US

EPA typically provides such valuations, although the appropriateness of combining

or comparing willingness-to-pay (WTP) and cost-based valuations is debated, and

willingness-to-pay is subjective in ways that may differ for at-risk populations.

Many other variations are possible, and some methods may be more desirable in a

particular context. To the extent that the simultaneous reduction of multiple health

endpoints—rather than just mortality—is a goal, the methods above offer some pos-

sibilities.

Another possibility is to manage risk on the basis of modeled exposure, without
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attempting to model health endpoints or pathways directly. Exposure requires infor-

mation on population density, but it does not require an estimate of effect size, nor

an estimate of baseline conditions, nor the selection of a set of endpoints. Exposure

can also be calculated for all age groups, whereas we have had to restrict mortality

estimates to the population aged ≥ 30. (Approximately 39% of the modeled popula-

tion of West Oakland is younger than age 30.) Modeled exposure could be thought

of as offering more general coverage of impacts—compared to a metric based on a

single health endpoint or a finite set of endpoints—but in a manner that is not as

precisely articulated, nor weighted toward any particular endpoint or sub-population

(although exposures can be assessed for specific groups).

Here we have considered only a metric of long-term exposure. If it were deemed

appropriate to consider a shorter-term exposure metric as well, it could be combined

with the long-term exposure metric via logical composition, as above.

4.10 Representativeness

The class of facilities we are interested in characterizing (via these case studies) is

comprised of those that are both (a) sited generally upwind of, and close to, residential

populations, and (b) emitting PM2.5 at rates from one to three orders of magnitude

below that of the largest emitters (Table 4.2). The facilities we simulated are a

convenience sample, in that they were selected from modeling that had already been

conducted (BAAQMD and WOEIP 2019). We believe they are reasonable examples

of the emission rates and exposure factors (Bennett et al. 2002; Roumasset and Smith

1990) encountered among this class of facilities.

Emission rates. As modeled, the emission rates of the facilities in our case studies

(Table 2.2) fall within the first two rows of Table 4.2. We can quantify the sensitivity

of our results to uncertainties in PM2.5 emissions; it is very close to linear (Appendix

C). So, if the true emissions were actually three times larger—holding the siting and
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meteorology constant—then the impacts would be approximately three times larger

as well. Likewise, if the emissions were three times smaller, so would the impacts. A

three-fold adjustment in either direction would still place these facilities within the

class that we are focused on here (Table 4.2).

Table 4.2: Count of Bay Area facilities by magnitude of inventoried PM2.5 emissions,
circa 2016. Fewer than ten facilities in BAAQMD’s jurisdiction emit more than 100
ton/yr PM2.5. Several hundred facilities emit PM2.5 at rates that are one to three
orders of magnitude lower (0.1 to 10 ton/yr).

PM2.5 Emission Rate Facilities (𝑛)
10 to 100 ton/yr 43

1 to 10 ton/yr 146
0.1 to 1 ton/yr 241

Exposure factors. In combination with local meteorology, siting arrangements drive

the exposure factors, or the impact per ton of emissions from a given source (Bennett

et al. 2002; Roumasset and Smith 1990). Siting and meteorology involve many

parameters that are difficult to simulate convincingly in the abstract. Until more

data are available to characterize this part of the exposure pathway for a broad class

of facilities, convenience sampling from available results is our best approximation

strategy.

4.11 Margins of Safety

Incorporating margins of safety within risk assessments is a well-established principle

and practice (NRC 2009; US EPA 2005). However, health-protective margins of safety

are not built in to the approach described thus far.

Published estimates of the effect (𝛽) of PM2.5 on mortality express some uncertainty

in the form of statistical confidence intervals (CIs). This uncertainty can be carried
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forward into risk evaluations, but it is a subset of total uncertainty. The effects of

exposure-assignment error, model selection error, and predictive error may also be of

interest, especially when the intent is to estimate an upper bound or quantile. For

the sake of illustration within this document, we focus on the case where the central

estimate of (𝛽) alone is evaluated, but a margin of safety may be desirable in risk

management contexts.

In cancer-risk assessments, margins of safety are found within slope or unit risk fac-

tors (NRC 2009; US EPA 2005). Margins of safety address many different dimen-

sions of uncertainty and vulnerability.8 Where effect sizes have been estimated from

toxicological studies, for example, safety factors may be introduced to account for

animal-to-human extrapolations. In assessments based on human studies, safety fac-

tors may account for (a) other uncertainties (e.g. in exposure-dose and dose-response

relationships), and for (b) vulnerabilities among the exposed population (stemming

from genetics, predisposing exposures, physiology, lifestage, and/or other factors).

An excerpt from Science and Decisions (NRC 2009) is illustrative:

Consideration of the most exposed receptors (individuals) is accomplished

by estimating chronic exposures at the Census block level … [while] consid-

eration of sensitive subpopulations is considered in so far as it is explicitly

built into the dose-response metrics that EPA uses to estimate risk (i.e.,

where data supporting such distinctions are available). Unit risk estimates

typically incorporate protective low-dose extrapolation assumptions and

are based on statistical upper confidence limits. (NRC 2009)

The effect size (𝛽) we have discussed was estimated directly for humans (as opposed

to animal species), but it is a population-average effect. Characterizing effect mod-

ification for subgroups can require epidemiological studies of very large size, which

8Some “upstream” uncertainties are typically excluded from margins of safety: for example,
uncertainties in emission rates.
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then necessitates tradeoffs in terms of specificity—geographic, demographic, or oth-

erwise. Di et al. (2017) relied on a Medicare population of over 60 million people,

larger than the current total population of the state of California, to estimate the

effect sizes for subgroups listed in Table 2.4. For the purposes of health-protective

decisionmaking, adopting an appropriate margin of safety could help to protect over-

burdened and/or vulnerable groups without requiring infeasible or impossible esti-

mates of group-specific effects.

Typically, an overall margin of safety is composed of more than one factor. Usually

these factors are not precisely estimable; multiples of 3 or 10 are common. The

different dimensions of uncertainty and/or vulnerability captured by these factors

may be independent, synergistic, or associated in positive or negative ways, but the

ultimate goal is for the relevant set of safety factors to be adequately protective when

multiplied together.

A margin of safety could also potentially account for uncertainty in the composition,

and therefore the toxicity, of modeled PM2.5 emissions.

4.12 Future Work

Future work will generally have two aims: (1) improving the inputs and methods;

and (2) expanding the scope of the work.

Improving Inputs

PM2.5 Emissions. For facilities that may impose higher health risks in a local-

scale PM2.5 risk assessment, BAAQMD will work to reduce the uncertainty in the

emissions estimates. Larger sources tend to have the benefit of direct testing, which

can help to improve the precision and accuracy of PM2.5 emission estimates. Fugitive

sources of PM2.5 are more difficult to quantify with comparable certainty. If this
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methodology were to lead to additional facility-level requirements, then it is possible

that requirements for demonstrating compliance, such as stack testing, could be used

in a systematic way to constrain some of the relevant uncertainties.9 A general

discussion of uncertainties in inventoried PM2.5 emission estimates is outside the

scope of this report.10

Emissions → Concentrations. Non-steady-state models, such as CALPUFF and

SCICHEM, are being explored by BAAQMD staff. Comparing results from different

models may help to better understand the uncertainty associated with simulated

ambient PM2.5 concentrations.

Baseline mortality. Collaboration between BAAQMD and OEHHA may improve

estimates of baseline mortality rates (Δ𝑦0). We may also evaluate newly available

tools for producing smoothed and/or age-adjusted small-area estimates (Quick et al.

2019). As illustrated in Appendix A, overall regional and county-specific estimates

will probably not vary by more than ±50%.11 This may be smaller in magnitude

than the uncertainty in our modeled estimates of ΔPM2.5, at least for the class of

facilities considered in our case studies.

Expanding Scope

Health endpoints. This whitepaper has focused on all-cause adult mortality. Other

outcomes are associated with both long- and short-term exposures to PM2.5, and some

of these outcomes have been studied in younger populations (US EPA 2019). There

are ongoing efforts between the Air District and OEHHA to develop estimates of

effect sizes for other outcomes that might be estimated for communities similar to

the one in our case studies.

9See https://www.epa.gov/sites/production/files/2013-09/documents/cmspolicy.pdf.
10For an overview, see NRC (2009), p. 114.
11Within a given county, baseline mortality rates for different race/ethnicities may vary by a

factor of two or more.
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Case studies. We limited our case studies to stationary sources in West Oakland,

but there is no technical reason why the methodology could not also be applied to

mobile sources, nor to sources in other communities. For the West Oakland Ac-

tion Plan (BAAQMD and WOEIP 2019), AERMOD was also applied to generate

20×20m estimates of ΔPM2.5 from mobile sources in and around West Oakland.

The resulting data were archived and are readily available. Results for stationary

and non-stationary sources in another community, Richmond-North Richmond-San

Pablo, are also being developed in parallel with this whitepaper, and could potentially

be used to improve and expand our set of case studies.

Cumulative risks. In principle, the methodology described and illustrated here can

be applied to any number of sources. As mentioned above, for the West Oakland

Action Plan (BAAQMD and WOEIP 2019), AERMOD was also applied to generate

20×20m estimates of ΔPM2.5 for many non-stationary sources. We plan to conduct

future case studies that will incorporate more of this data at the same time.

Uncertainties. In future work, we intend to further characterize the magnitude and

form of the predictive and statistical uncertainties described above. We plan to use a

combination of case studies based on historical data (e.g., 2010 vs 2020 populations),

simulations, and (if possible) consultation with demographers and/or statisticians

with relevant expertise. This will support additional future work aimed at improving

integration with risk management practices.

Integration with risk assessment and management. Our work to date has

been scoped to the development of model-based products that offer spatially-resolved

predictions. These products are intended to be nested within a risk-management

protocol, which itself is nested within larger social processes. The refinement of such

a protocol will be supported by consultations with risk assessors and risk managers.

57

DRAFT

Page 75 of 108



58

DRAFT

Page 76 of 108



A Baseline Mortality

This appendix illustrates and explains several issues related to the selection, use, and

reporting of baseline mortality rates in the Bay Area, with an emphasis on estimates

for specific racial/ethnic populations.

San Mateo Santa Clara Solano Sonoma SFBA (Total)

Alameda Contra Costa Marin Napa San Francisco

B W N H A B W N H A B W N H A B W N H A B W N H A

B W N H A B W N H A B W N H A B W N H A B W N H A
0/M

5,000/M

10,000/M

15,000/M

20,000/M

0/M

5,000/M

10,000/M

15,000/M

20,000/M

Race/Ethnicity
Black or African American
White
American Indian or Alaska Native
Hispanic or Latino
Asian or Pacific Islander

Method
Adjusted
Crude

Figure A.1: Adult (age 25+) all-cause mortality, 2007-2016. Error bars are 95%
confidence intervals. When the crude rate (×) is higher than the age-adjusted rate
(•), the population is older. Adjusting for age brings other factors, like race/ethnicity,
into sharper focus.

59

DRAFT

Page 77 of 108



Figure A.1 depicts 2007-2016 (ten-year average) adult1 mortality rate data from the

Wide-ranging Online Data for Epidemiologic Research (WONDER) database oper-

ated by the U.S. Centers for Disease Control and Prevention (CDC). Tables A.1 and

A.2 show the same data. The CDC’s WONDER database is a primary source of

mortality data for many applications, analyses, and tools, including BenMAP-CE.

Small Counts

In Figure A.1, the error bars vary in size.2 When the error bars for two groups

overlap, as they do for Black adults and White Adults in Sonoma County, a general

rule is to avoid drawing the conclusion that the two rates are different, and rather

to conclude that there is simply not enough evidence to tell either way. The error

bars are largest for racial/ethnic subgroups that are smaller relative to others in the

Bay Area (like Native American adults), especially in counties with fewer people in

total (like Marin County).3 They are smallest for the Bay Area as a whole (bottom

right panel). At a regional scale, there are simply many more people, and many

more events (i.e., deaths) to observe. CDC-WONDER does not provide estimates for

geographic areas smaller than counties, but any source or calculation method that

yields such estimates would—or should—naturally frame them with larger error bars.

A second thing to note is that these are ten-year averages, based on the most recent

data available. We could obtain five-year averages for 2012-2016 instead, three-year

averages for 2014-2016, or even one-year averages for 2016. Since mortality rates

change over time, these would perhaps be better estimates of current rates. However,

they would also be based on increasingly smaller counts of observed deaths, and thus
1“Adult” here means the 25 to 34 age bracket and above.
2For the sake of legibility, error bars are shown only for age-adjusted rates.
3Among Native American adults in Marin County, from 2007 to 2016 there were a total of 28

deaths, or an average of approximately 3 per year. The average size of the adult population in any
given year was 544, according to same data source (CDC-WONDER). The corresponding crude rate
estimate, over that ten-year period, would then be 28 ÷ 5,440 ≈ 5,147/M with a 95% confidence
interval of (3,420/M–7,439/M).
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the error bars would grow larger.

Coding Race/Ethnicity

CDC-WONDER data, like Census data, can be downloaded with race and ethnicity

split in several ways. “Hispanic or Latino Origin” is coded as true or false. “Race”

is independently coded. Often, “Race” and “Hispanic or Latino Origin” (hereafter,

“Hispanic”) are consolidated into a single variable, with one category for “Hispanic”

(of every race combined), and several more categories for non-Hispanic persons, seg-

mented by race. (Labels for these categories do not always include an explicit “non-

Hispanic” qualifier, as it is usually assumed/implied by the existence of a “Hispanic”

category). This is the approach taken in Figure A.1 and the accompanying tables.

We cannot here report data separately for populations that self-identified in the

Census as multi-racial. The CDC applies a technique called race bridging (Ingram

2007) to WONDER data, which essentially re-distributes multi-racial populations

into single-race categories. This is “to make multiple-race and single-race data collec-

tion systems sufficiently comparable to permit estimation and analysis of race-specific

statistics.”4

BenMAP-CE, although it relies on the same underlying CDC-WONDER data, will

only export data grouped into two categories: WHITE and Non-WHITE. These are coded

by BenMAP strictly according to race, and not ethnicity, meaning that WHITE includes

white Hispanic adults (which, in California, constitute over 90% of the Hispanic adult

population). In this Appendix, we use the term WHITE (all caps) when referring to

BenMAP’s categorization, to help avoid confusion with “White” as understood in

many other contexts.

4https://www.cdc.gov/nchs/nvss/bridged_race.htm
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Table A.1: Age-adjusted adult all-cause mortality rates in the Bay Area (2007-2016),
by county and race/ethnicity.

County Black White NatAmer Hispanic Asian
Alameda 13,812/M 9,938/M 10,511/M 7,558/M 5,931/M
Contra Costa 13,328/M 9,733/M 9,384/M 7,254/M 5,927/M
Marin 9,649/M 7,774/M 7,197/M 5,311/M 5,058/M
Napa 10,884/M 10,547/M 10,835/M 6,656/M 6,128/M
San Francisco 16,511/M 9,563/M 10,602/M 7,865/M 6,423/M
San Mateo 11,851/M 8,853/M 7,528/M 6,432/M 5,930/M
Santa Clara 10,973/M 9,107/M 9,310/M 7,836/M 5,488/M
Solano 13,135/M 11,658/M 10,122/M 7,223/M 6,966/M
Sonoma 10,053/M 10,083/M 9,623/M 6,464/M 6,414/M

Age-Adjustment

Two kinds of estimates are shown in Figure A.1: crude rates and age-adjusted rates.

Crude rates are simply the actual, unadjusted data: deaths divided by population.

Age-adjustment answers the question “if this population had the same age distribution

as a reference population, what would its mortality rate look like?”5

Crude rates are less often reported by public-health agencies. This does not mean

that the crude rates are wrong or in need of correction. Age is not something that

can be changed, so in many epidemiological contexts, age is not a factor of primary

interest. However, it is a dominant predictor of mortality risk. The effects of other

factors, which are of interest, may appear to be washed out (or artificially enhanced)

when they are correlated with age. So, adjusting for age usually helps to bring them

into focus.6 This is a critical tool in public health practice, both for highlighting

disparities and for identifying factors on which we can intervene. For estimating

actual mortalities, however, crude rates can be a more appropriate tool.

5CDC WONDER’s default reference population is the 2000 U.S. Census.
6Old age is associated with declining health; it is also generally associated with lower income,

which we are not adjusting for here. So, even age-adjustment does not always tell the whole story.
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Table A.2: Crude adult all-cause mortality rates in the Bay Area (2007-2016), by
county and race/ethnicity.

County Black White NatAmer Hispanic Asian
Alameda 13,574/M 11,800/M 8,548/M 4,464/M 4,896/M
Contra Costa 11,945/M 12,979/M 7,662/M 4,277/M 4,890/M
Marin 6,978/M 11,441/M 5,147/M 2,687/M 4,717/M
Napa 9,040/M 16,883/M 10,553/M 3,531/M 5,551/M
San Francisco 18,596/M 8,729/M 8,057/M 5,842/M 7,872/M
San Mateo 13,180/M 12,883/M 7,015/M 4,162/M 4,998/M
Santa Clara 8,157/M 11,795/M 7,663/M 4,769/M 4,096/M
Solano 11,036/M 13,808/M 8,596/M 4,337/M 6,693/M
Sonoma 7,652/M 13,921/M 8,484/M 3,319/M 5,621/M

Age-adjustment can cause apparent relationships to reverse. For example, in Contra

Costa County (Figure A.1, Table A.2), the crude rate (x) among Black adults is lower

than among White adults. However, adjusting for age reverses the relationship: the

age-adjusted rate (•) among Black adults is higher than among White adults. The

same thing happens with Marin, Napa, Santa Clara, Solano, and Sonoma. In these

counties, the rate of mortality for Black adults is higher than that of White adults

of the same age. However, the Black adult populations in these counties are younger

than the corresponding White adult populations, and younger adults have much lower

mortality rates.

Small Counts Revisited

In Section 2.2, we explained how we could “downscale” county-level mortality rates to

the level of West Oakland. First we converted rates (death/person/yr) to mortalities

(death/yr), using age-specific population data, and then converted back to mortality

rates using total population data. This is not possible with age-adjusted data, but it

is possible with age-stratified data.

Table A.3 shows crude rates, stratified by age, for Alameda County. When they are
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Table A.3: Crude adult all-cause mortality rates in Alameda County (2007-2016), by
age bracket and race/ethnicity.

Age Black White NatAmer Hispanic Asian
25 to 34 1,985/M 627/M — 603/M 358/M
35 to 44 2,981/M 1,245/M 2,294/M 990/M 642/M
45 to 54 6,431/M 3,037/M 5,710/M 2,428/M 1,566/M
55 to 64 14,415/M 6,912/M 8,355/M 5,591/M 3,603/M
65 to 74 25,597/M 15,574/M 15,786/M 12,448/M 8,953/M
75 to 84 53,909/M 44,491/M 39,482/M 32,959/M 25,461/M
85 and up 125,414/M 135,618/M 128,333/M 98,615/M 91,831/M

stratified by age, the available data (deaths) are again apportioned among many table

cells. This leads to the same small-counts problems identified above, except that we

are now also trying to spend the “data budget” on slicing by age bracket, in addition

to slicing by time, geography, and race/ethnicity. And, in Table A.3, we hit a wall:

the death count for Native Americans ages 25 to 34 in Alameda County is too low,

and has been suppressed. For reasons of confidentiality, CDC-WONDER will not

provide data when the number of deaths is less than 10.7

Downscaling to West Oakland

In Section 2.2, we described how we combined county-level mortality-rate estimates

with (b) block-level population estimates to obtain a “downscaled” estimate of adult

all-cause mortality covering the extent of West Oakland.

For illustration’s sake only, Table A.4 shows, in addition to the rates themselves, the

numerator (deaths) and denominator (persons) within each computed cell. Following

the guideline that any rate with a numerator smaller than 10 should not be reported or

relied upon, we can see that half of the cells in this table are, on their own, unreliable

7This also guards against drawing inferences based on data that are statistically unreliable. To
work around this, BenMAP imputes (“fills in”) suppressed county-level rates by borrowing estimates
from larger geographies (e.g. state averages).
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Table A.4: Mortality rates for West Oakland, derived from block-level estimates.
Units = deaths per million persons.

Age WHITE Non-WHITE (all)

30 to 34 646/𝑀
(1÷1,489)

752/𝑀
(1÷1,549)

700/𝑀
(2÷3,039)

35 to 44 1,190/𝑀
(2÷2,099)

1,193/𝑀
(3÷2,787)

1,192/𝑀
(6÷4,886)

45 to 54 2,936/𝑀
(4÷1,205)

2,982/𝑀
(8÷2,751)

2,968/𝑀
(12÷3,955)

55 to 64 6,769/𝑀
(6÷915)

7,000/𝑀
(20÷2,861)

6,944/𝑀
(26÷3,776)

65 to 74 15,245/𝑀
(7÷474)

14,027/𝑀
(31÷2,189)

14,244/𝑀
(38÷2,663)

75 to 84 42,846/𝑀
(8÷181)

33,339/𝑀
(36÷1,074)

34,711/𝑀
(44÷1,255)

85 and up 131,625/𝑀
(8÷57)

102,106/𝑀
(42÷409)

105,740/𝑀
(49÷466)

(all) 5,565/𝑀
(36÷6,421)

10,349/𝑀
(141÷13,619)

8,817/𝑀
(177÷20,040)

and should be suppressed. We can see, however, that when aggregated to the level of

West Oakland (bottom right), the calculated result has a numerator larger than 10.

In the bottom row of Table A.4, the (crude) rate among the Non-WHITE population

is fully twice the rate among the WHITE population. Recalling that the rates for

Non-WHITE are actually slightly smaller than those for WHITE in the older age brackets,

and that older populations drive the overall mortality rate, we can see that this is

not because WHITE adults in West Oakland are longer-lived, but because Non-WHITE

adults in West Oakland are considerably older, whereas WHITE adults are younger.

Superficially, this yields an intuitive comparison of crude rates by race/ethnicity—

things seem to be in the right direction, with WHITE adult rates being lower. But, the

effect is too large, and the reason for it is not what we are expecting.

Consider what would happen if we applied the same calculation to the populations

of Contra Costa, Marin, Napa, Santa Clara, Solano, and Sonoma counties. In those

65

DRAFT

Page 83 of 108



Table A.5: Projected 2018 population estimates for West Oakland, exported from
BenMAP and then aggregated to match strata for BenMAP-exported mortality rates.
Estimates are displayed to the nearest whole number. Total = 20,040.

Age WHITE Non-WHITE
30 to 34 1,489 1,549
35 to 39 1,235 1,527
40 to 44 864 1,260
45 to 49 682 1,360
50 to 54 523 1,391
55 to 59 521 1,501
60 to 64 395 1,360
65 to 69 263 1,212
70 to 74 211 977
75 to 79 124 682
80 to 84 57 392
85 and up 57 409

counties, the crude mortality rates are highest among White adults, but again, this

is because they are older. The same WHITE/Non-WHITE comparison in those counties

would lead to the opposite result—WHITE being higher—even though we have seen

that WHITE adults in those counties do not have the highest mortality rates, once age

is taken into account.

Table A.4 is based in part on BenMAP-exported mortality rates for Alameda County,

consistent with CDC-WONDER data (Table A.3). The remainder is based on the

population estimates shown in Table A.5, which consolidates BenMAP-exported esti-

mates for adult (age ≥ 30) populations in West Oakland (projected to 2018) into the

same strata as Table A.3. The estimates are originally stratified into 19 brackets for

Age, 4 categories for Race, 2 categories for Ethnicity, and 2 categories for Gender

(sex)8.

Table A.4 shows a combination of the population counts from Table A.5 and the

8Gender, rather than Sex, is the term used by BenMAP and CDC-WONDER. It is coded as M
or F.
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mortality rates from Table A.3. In a smaller font are shown both the corresponding

population, and the calculated deaths (mortality rate × population), in the format

(deaths ÷ population). In combining these, we have made a few small but note-

worthy assumptions:

• The estimated baseline mortality rate (𝑦) for the 25 to 34 bracket is an unbi-

ased estimate of 𝑦 for the 30 to 34 bracket9;

• Estimates of 𝑦 provided for the 10-year brackets 35 to 44, 45 to 54, et cetera

are unbiased estimates of 𝑦 for the corresponding 5-year brackets (35 to 39,

40 to 44), (45 to 49, 50 to 54), etc.; and

• Performing these calculations without also stratifying by Sex is acceptable.

Aggregating the population and death counts across both rows and columns, and

then dividing the total deaths by the total population, should10 yield the same result

reported in Section 3.3 (𝑦0 = 8, 982/𝑀 , bottom right cell). Aggregating across rows,

and then dividing, yields crude (unadjusted) estimates for the WHITE and Non-WHITE

subgroups (bottom row).

9It will probably be biased; ages 25-29 typically have lower mortality rates than ages 30-34.
10The result is not exactly the same. This could be because BenMAP is internally performing

calculations using more and/or finer-grained strata than it will export. We are reaching out to
BenMAP experts about this issue.
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Non-Stratified Rates

For reference, Table A.6 shows adult all-cause mortality rates, obtained from CDC-

WONDER, for all race/ethnicities combined (2007-2016). The corresponding crude

regional rate (for all nine counties combined) is 8,896/M, and the age-adjusted re-

gional rate is 8,733/M.

Table A.6: Crude and age-adjusted adult all-cause mortality rates, 2007-2016.

County Age-Adjusted Crude
Alameda 9,102/M 8,608/M
Contra Costa 9,228/M 9,753/M
Marin 7,570/M 9,801/M
Napa 9,808/M 12,414/M
San Francisco 8,621/M 8,664/M
San Mateo 7,984/M 8,757/M
Santa Clara 7,944/M 7,429/M
Solano 10,501/M 10,243/M
Sonoma 9,636/M 11,363/M
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B TAC Framework

Risk assessments conducted by the Bay Area Air Quality Management District

(BAAQMD) for toxic air contaminants (TACs) follow guidelines from Cal/EPA’s

Office of Environmental Health Hazard Assessment (OEHHA) and the risk manage-

ment guidance for stationary sources adopted by the California Air Resources Board

(CARB) and the California Air Pollution Control Officers Association (CAPCOA).

(OEHHA 2015; ARB/CAPCOA 2015) In this framework, some TACs (here,

“pollutants”) are specific chemicals; others may be classes of compounds (e.g. PAHs

or DPM). Two types of endpoints are covered by the OEHHA/CARB/CAPCOA

guidance: (a) cancer outcomes; and (b) non-cancer outcomes (both chronic and

acute). For brevity’s sake, we focus here on cancer.

Cancer-Risk Calculations

Cancer risks are calculated by multiplying annual average pollutant concentrations,

estimated using an air dispersion model, by the pollutant intakes and the pollutant-

specific potency factors (CPFs). Pollutant concentrations are modeled utilizing site-

specific release parameters, from the point of release to the point of exposure at

downwind locations. The pollutant intake or dose describing the frequency and dura-

tion of the exposure is estimated using receptor’s breathing rates, exposure duration,

and exposure frequency. In accordance with OEHHA’s revised health risk assessment

guidelines, California Air Districts have adopted more stringent intake methodology

that addresses children’s greater sensitivity and health impacts from early exposure

to carcinogenic compounds. The updated calculation procedures include the use of
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age-specific weighting factors, breathing rates, fraction of time at home, and reduced

exposure durations.

The cancer risk is equal to the dose multiplied by the pollutant-specific CPF.

CPF is specific to the pathway whereby individuals are exposed to the pollution

via inhalation, ingestion, or dermal contact. To account for exposure through all

pathways, multi-pathway CPFs are available from OEHHA. Contributions from all

significant sources including stationary and mobile sources are aggregated to deter-

mine the cumulative risks. Risks are not estimated for pollutants lacking OEHHA

approved toxicity values.

The pollutant intake or dose describes the frequency and duration of the exposure,

estimated using the breathing rates, exposure durations, and exposure frequencies. In

accordance with OEHHA’s revised health risk assessment guidelines (OEHHA 2015;

ARB/CAPCOA 2015), the intake methodology was updated to address children’s

greater sensitivity and health impacts from early exposure to carcinogenic compounds.

Dose Equation (Inhalation-Only)

The equation used to calculate the dose for the inhalation pathway is as follows:

Dose𝑖 = CF × EF × ∑
𝑗

(C𝑖,𝑗 × DBR𝑗 × FAH𝑗 × ED𝑗 × ASF𝑗) ÷ AT (B.1)

where:

• Dose𝑖 = Accumulated dose for an individual breathing carcinogen 𝑖 from the

3rd trimester through the 30th year of life ( 𝑚𝑔
𝑘𝑔⋅𝑑𝑎𝑦);

• CF = Conversion factor (10−6 mg⋅𝑚3

𝑔⋅𝐿 )
• EF = Exposure frequency (350 𝑑𝑎𝑦/𝑦𝑟);
• DBR𝑗 = Daily breathing rate ( 𝐿

𝑘𝑔⋅𝑑𝑎𝑦) for year 𝑗;
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• FAH𝑗 = Fraction of time at home (unitless) for year 𝑗;
• ED𝑗 = Exposure duration (𝑦𝑟) for year 𝑗;
• C𝑖,𝑗 = Annual average concentration ( 𝑔

𝑚3 )of pollutant 𝑖 for year 𝑗;
• ASF𝑗 = Age sensitivity factor (unitless) for year 𝑗; and
• AT = Averaging time (25,550 days, equivalent to 70 year lifespan)

Key Factors

The updated procedures in OEHHA (2015) include the use of age-specific weighting

factors, breathing rates, fraction of time at home, and reduced exposure durations.

Age Sensitivity Factors (ASFs) account for the heightened sensitivity of chil-

dren to carcinogens during fetal development and early childhood. Consistent with

OEHHA (2015), BAAQMD uses ASF values as listed in Table B.1. BAAQMD has

incorporated ASFs in its air permits since 2010.

Daily Breathing Rate (DBR) is the age-specific daily air intake. OEHHA devel-

oped a range of rates for four age groups: last trimester to newborn, newborn to two

years of age, two years to 16 years of age, and older than 16 years of age. CAPCOA

and CARB recently recommended the use of 95th percentile breathing rates for the

most sensitive age group (less than two years of age) and 80th percentile for all other

age groups (ARB/CAPCOA 2015).

Fraction of Time at Home (FAH) refers to the estimated amount of time residents

stay at home. In past HRAs, BAAQMD assumed that residents are home 24 hours

per day, 7 days per week. In (OEHHA 2015), OEHHA recommends less than 100%

of time to be used as a FAH based on population and activity statistics. Consistent

with (OEHHA 2015), this analysis incorporates a FAH of 0.73 for individuals ≥ 16
years old and 1.0 for individuals < 16 years old to address exposures at local schools

in close proximity to emitting facilities (Table B.1).
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Table B.1: Factors used to calculate dose. (OEHHA)

Factor Description Units 3rd
Trimester

0‑2
yrs

2‑16
yrs

16‑30 yrs

DBR Daily breathing rate L/kg-day 361 1090 572 261
ASF Age sensitivity factor — 10 10 3 1
FAH Fraction of time at home — 1 1 1 .73
ED Exposure duration years .25 2 14 14

Exposure Duration (ED) is the length of time an individual is continuous exposed

to air toxics. Previously, BAAQMD used a 70-year lifetime exposure duration for

residents over a 70-year lifespan. Based on updated demographic data, BAAQMD

now follows the OEHHA recommendation of a 30-year exposure duration, consistent

with US EPA, for residents.

The values of these factors are summarized in Table B.1.
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C Response Function

Background

In the literature, we find two distinct functions that yield estimates of the change in

mortality rate, given some change in exposure. Both are nonlinear.

One such delta-response function looks like this:

Δ𝑦 = 𝑦0 (𝑒𝛽 Δ𝑥 − 1) (C.1)

The other looks like this:

Δ𝑦 = 𝑦0 (1 − 𝑒−𝛽 Δ𝑥) (C.2)

Explanation

From a mathematical perspective, the two equations are easy to reconcile. If we

supply Eq (C.1) with a change in exposure, putting a negative sign on that change,

we will obtain a change in mortality that is also negative. The magnitude of that

result will be exactly the same as the magnitude of the result that we get if we plug

in the same change in exposure — but without a negative sign — into Eq (C.2). So,

the two equations do express the same relationship between 𝑥 and 𝑦. The difference

is simply due to a flipping of of sign on Δ𝑥 and Δ𝑦 in Eq (C.2).

From an applied perspective, the key difference is that Eq (C.1) yields a (negative)
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Table C.1: Which equation to use depends on the meaning of the sign on Δ𝑥.

Input Using Interpretation Comment
Δ𝑥 > 0 meaning ”increase” 𝑦0 (𝑒𝛽 Δ𝑥 − 1) Δ𝑦 > 0 is ”harmful” As in TAC HRAs
Δ𝑥 > 0 meaning ”reduction” 𝑦0 (1 − 𝑒−𝛽 Δ𝑥) Δ𝑦 > 0 is ”beneficial” As in BenMAP

Table C.2: Using the wrong equation results in an error.

Intent Using Result
Δ𝑥 > 0 meaning ”increase” 𝑦0 (1 − 𝑒−𝛽 Δ𝑥) Error
Δ𝑥 > 0 meaning ”reduction” 𝑦0 (𝑒𝛽 Δ𝑥 − 1) Error

estimated decrease in mortality from a (negative) hypothetical decrease in exposure,

as would be obtained by abating an existing source. Thus, in the world of Eq (C.1),

a negative Δ𝑦 is beneficial. This is also interpretable as the existing mortality at-

tributable to an existing source (which would not exist if the source did not exist).

If we supply Eq (C.1) instead with a (positive) hypothetical increase in exposure,

we obtain an estimated increase in mortality. This is interpretable as the increase in

mortality that would be due to the introduction of a source that does not yet exist.

For Eq (C.2), on the other hand, “reductions” have a positive sign. Eq (C.2) yields a

(positive) estimated reduction in mortality from a (positive) hypothetical reduction

in exposure, as would be obtained by abating an existing source. This is how we

frame “benefit” in the world of Eq (C.2).

Practical Concerns

An inexperienced or hurried user might make one of the errors listed in Table C.2.

This is not so much a problem in a linear framework, because of the ease of detection

and repair. If a user of the linear equation Δ𝑦 = 𝛽 Δ𝑥 obtains but was not expecting

a negative Δ𝑦, they can reasonably just “flip the sign” on Δ𝑦 and it will be exactly

as if they had flipped the sign on Δ𝑥 when providing Δ𝑥 as input.
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In our nonlinear framework, this does not yield a correct Δ𝑦. It is true that, for small

values of 𝛽 and small values of Δ𝑥, the result of simply flipping the sign on Δ𝑦 will

be approximately correct. However, to obtain a correct result, one must follow Table

C.1 and not Table C.2.

We illustrate this, providing a rough idea of the magnitude of potential errors, with

figures and exact calculations below.

Illustration

To make things more concrete, assume 𝑅𝑅 (the multiplicative risk ratio) for a “unit

increment” (Δ𝑥) equal to +10 µg/m3 PM2.5 to be 1.07; then 𝛽 = 𝑙𝑛(1.07) ≈ 0.0677.

Assume a population at risk (Pop) of 1 million (1 × 106) persons, and assume a

baseline mortality rate (𝑦0) of 1% per year.

Figure C.1 illustrates the different results we obtain by employing Eq (C.1) or Eq

(C.2). Two domains are shown. The 0-3 µg/m3 domain (inset) represents a “plausi-

ble” domain of potential changes. The 0-30 µg/m3 domain (main figure) highlights

the divergence. Because this is a practical example, we are scaling the y-axis by Pop,

thereby converting from a change in the annual mortality rate to a change in annual

mortality.

Looking at the curve for Eq (C.1), when Δ𝑥 is 3 µg/m3, Δ𝑦 is 205 death/yr. The

correct interpretation here is that an increase of 3 µg/m3, starting from baseline

conditions, will induce an estimated 205 death/yr.

Looking at the curve for Eq (C.2), when Δ𝑥 is 3 µg/m3, Δ𝑦 is 201 death/yr. In this

case, the correct interpretation is that a reduction of 3 µg/m3, starting from baseline

conditions, will avert an estimated 201 death/yr.

If we expand the domain of Δ𝑥 to include negative values (Figure C.2), we can see

that the two curves are symmetric. This makes it clear that they are identical if we
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β = ln(1.07) ≈ 0.068

β = ln(1.07) ≈ 0.068
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Figure C.1: Comparison of two delta-response functions.

∆y = −y0

∆y = y0

−15,000

−10,000

−5,000

0

5,000

10,000

15,000

−150 −100 −50 0 50 100 150

∆PM2.5 (µg m3)

∆y
×

P
op

 (
de

at
h/

yr
)

Eq1

Eq2

Figure C.2: Expansion to include negative values and asymptotes, demonstrating
symmetry.
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substitute −Δ𝑥 for Δ𝑥 and −Δ𝑦 for Δ𝑦 in one or the other.

A useful double-check is to inspect the limits as Δ𝑥 approaches infinity. We could

never avert more deaths than are already occurring in the population. This should

hold true — and it does — for both Eq (C.1) and Eq (C.2).

The R code we used to implement these two equations, and generate the figures above,

is available at https://github.com/BAAQMD/PM25-HIA-methodology/.

Direct Calculations (PM2.5 → Mortality)

This section demonstrates direct calculations with 𝑥 and 𝑦, instead of with Δ𝑥 and

Δ𝑦. In this log-linear framework, the exposure 𝑥 is related to the mortality rate 𝑦
like so:

ln(𝑦) = 𝛽𝑥 + 𝐶

𝑦 = exp(𝛽𝑥 + 𝐶)

As above, let 𝛽 = 𝑙𝑛(𝑅𝑅) = 𝑙𝑛(1.060) ≈ 0.058269, and 𝑦0 = 0.01 × 106 (deaths per

million persons per year).

Assume the baseline PM2.5 is 9 µg/m3, comparable to the West Oakland estimate

provided in Section 2.2. The unit increment for 𝑥 is 10 µg/m3, so the baseline 𝑥 is

then 0.9. Call this 𝑥0. Now we can work out 𝐶:

ln(𝑦0) = 𝛽𝑥0 + 𝐶

𝐶 = ln(𝑦0) − 𝛽𝑥0

𝐶 ≈ ln(0.01) − (0.058269 × 0.9)

𝐶 ≈ −4.6576

Substituting 𝑥 = PM2.5
10 , 𝛽 ≈ 0.058269, 𝐶 ≈ −4.6576, and Pop = 106 into Mort =
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𝑦 × Pop, we have:

Mort = exp(𝛽𝑥 + 𝐶) × Pop

Mort ≈ exp [(0.058269 × PM2.5
10 ) − 4.6576] × 106

Now we can explore both specific calculations, and the general form of the response

function, in a more visual way:
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As we can see from this figure:

• When the exposure is 9 µg/m3, we have 10,000 death/yr. These are baseline

conditions.

• When the exposure is 14 µg/m3, we have 10,296 death/yr. This is an additive

change of +5 µg/m3 (vs baseline). It results in a multiplicative change in the

response: 1 * 1.0296 = 102.96% as many deaths. Or, on an additive scale, 296

more deaths.

• When the exposure is 4 µg/m3, we have 9,713 death/yr. This is an additive
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change of -5 µg/m3 (vs baseline). It results in a multiplicative change in the

response: 1 / 1.0296 = 97.13% as many deaths. Or, on an additive scale, 287

fewer deaths. Note that this is less than 296.

Because the relationship between 𝑥 and 𝑦 is supralinear, in this framework, when we

start from the same baseline conditions, the increased mortality due to an increase

of PM2.5 will always be larger in magnitude than the decrease in mortality due to a

reduction of the same magnitude.

The potential error (in using the wrong equation) would be most salient in a risk-

assessment framework whose chief metric(s) were based on maximum impacts, as

opposed to means or totals. Our model-based case studies suggest that maximum

impacts could be on the order of +1 µg/m3 or more for certain sources at short

distances. The error would then be on the order of 1%—not large, but enough to be

noticeable if the results were reported to two or more significant digits.
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AGENDA:     6. 

BAY AREA AIR QUALITY MANAGEMENT DISTRICT
      Memorandum

To: Chairpersons Linda Rudolph and Gina Solomon, and Members
of the Advisory Council 

From: Jack P. Broadbent
Executive Officer/APCO 

Date: February 14, 2022 

Re: 2022 Advisory Council Work Plan Discussion

RECOMMENDED ACTION

None; receive and file. 

BACKGROUND

In 2021, the Advisory Council received presentations and information on a variety of subjects 
and in December 2021 the Councilmembers discussed which topics the Council might research 
further. 

DISCUSSION

Advisory Councilmembers will receive an overview of the 2022 Advisory Council work plan for 
discussion.

The workplan proposed to focus on four key elements:

 Working with Air District staff and other external experts to develop a standard 
methodology to assess the impacts of fine particulate matter (PM2.5) exposure.

 Developing a strategy to address combustion sources culminating in a report to the Board 
of Directors by the end of the year.

 Addressing questions raised by the Community Advisory Council about air pollution and 
health.

 Reviewing and commenting on other Air District staff work developed to support key 
decisions by the Board of Directors.

Staff will present an initial plan based on these elements for discussion with the Advisory 
Council including expected agenda items for the next few meetings.
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2

BUDGET CONSIDERATION/FINANCIAL IMPACT

None. 

Respectfully submitted,

Jack P. Broadbent
Executive Officer/APCO

Prepared by: Sonam Shah-Paul
Reviewed by: Greg Nudd

ATTACHMENTS:

None.
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