SCS ENGINEERS

May 30, 2023 Project No. 01210112.02 Task 11

Marcy Hiratzka Clerk of the Boards, Executive & Administrative Resources Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Subject: Request for Regular Variance Berkeley Landfill City of Berkeley Facility A3590

Dear Ms. Hiratzka,

On behalf on the City of Berkeley (City), which owns and operates Berkeley Landfill (Landfill), SCS Engineers (SCS) is submitting a request for a regular variance due to a need for additional allowable gas collection and control system (GCCS) downtime. The Landfill respectfully requests a regular variance to be allowed downtime for the duration of 2023 beyond what is allowed in the Bay Area Air Quality District Management (BAAQMD or District) regulations. A summary of the GCCS events and proposed course of actions are below.

Background

The Landfill's GCCS collects landfill gas (LFG) from all areas of the landfill and sends it to a flare station where the LFG is combusted within an enclosed flare. The Landfill, which was constructed on reclaimed tidelands of San Francisco Bay, began receiving waste in 1961 and continued operations until 1983. The GCCS for the site was installed and became operational in 1988. In March 2009, the City petitioned for a Less than Continuous (LTC) Operation allowance for the GCCS. The petition was approved on April 30, 2009 and was repeatedly renewed on a 3-year cycle until the installation of a new, smaller flare was competed in May 2019. As the Landfill was operating on a LTC basis historically, there has not been a concern of exceeding the requirements of BAAQMD Regulation 8, Rule 34, Part 113.2, which allows for up to 240 hours of inspection and maintenance downtime of the GCCS. In 2022, a petition for the continued LTC operation status at the Landfill was submitted to the BAAQMD permitting division. Upon multiple information requests from the BAAQMD for additional data and the Landfill providing said additional data, the Landfill decided to withdraw the petition as the BAAQMD permitting division believed massive upgrades were required on the wellfield before they would re-grant the LTC operation status.

In 2015/2016, the City performed extensive below grade LFG vertical extraction well component upgrades (including lateral pipelines, valves, test ports and security access vaults) and replacements at the Landfill. Therefore, the City believes that no wells require additional repairs at this time, as the LFG composition and generation volume is representative of the age of the landfill and waste placed within.

As the 2022 petition for LTC was not granted by the BAAQMD and subsequently withdrawn by the City, going into 2023, the Landfill was required to utilize the downtime hours as allotted by 8-34-113.2 for

Marcy Hiratzka May 30, 2023 Page 2

qualifying events per BAAQMD Compliance Advisory issued in November 2018. As 2023 commenced, there were two issues which caused GCCS downtime to accrue at an unexpected rate, the first being thermocouple failure, and the second being heavy precipitation.

Weather Events & Equipment Issues

In the beginning of 2023, there was an unprecedented amount of liquid infiltrating the GCCS at the Landfill due to heavy precipitation events. The system was simply not designed for the massive quantities of liquids which occurred in early 2023. There had been condensate buildup within the below grade piping systems due to saturated site conditions and the condensate sumps were unable to drain at an appropriate rate because of the heavy rains. Initially, the Landfill planned to have a vacuum truck onsite to remove the liquids, yet the ground was so saturated that it could not safely access the location to extract liquids. Within five days, the heavy liquids naturally drained from the system. As a result of the unprecedented weather conditions and the system being unable to clear the liquids, there were prolonged periods of downtime at the flare, resulting in GCCS downtime. In addition to the unprecedented weather conditions, the thermocouples in the flare were glitching causing shutdowns and prevented remote restarts. This caused prolonged downtimes as the flare then was required to be manually restarted in these events, which required personnel to travel to site for the manual restarts taking much longer than remote restarts.

Replacement Equipment

The issues from the thermocouples first occurred in January 2023, yet it was unknown at that time that they both required full replacements. It was not until later in April 2023 it was identified that the thermocouples were damaged and it was necessary for the equipment in the flare to be replaced. The thermocouples and thermocouple card, which controls the thermocouples, were replaced promptly once it was identified replacements were needed, yet downtime then occurred at the flare to allow for the replacement of the thermocouples.

Excess Emissions

There have been no excess emissions at the Landfill, up to the present as some downtime is allowed up to 240 hours of downtime within a calendar year per the rule and BAAQMD guidance.

As it is not known the amount of downtime which may be required for the remainder of the year, we have conservatively estimated potential emissions based on the results of the 2022 source test at the flare, the historical flow rates and the methane concentrations in 2023. The tons per year were based on a conservative estimate of 240 hours of downtime beyond the original 240 hours of allotted downtime per 8-34-113.2.

	lb/day tons/year		
VOCs	0.87	0.0043	
NMOC	0.89	0.0045	
Total HAPs	0.05	0.0003	

Table 1. Estimated Excess Emissions

Emissions estimates based on proposed operation of 24 hrs/day and 240 hrs/yr.

Marcy Hiratzka May 30, 2023 Page 3

As mentioned above, the amount of downtime for the GCCS for the remainder of 2023 is unknown at this time.

Closing

The GCCS will continue to operate, but it is unknown what event(s) could occur which may trigger additional downtime. As noted above, the depleted LFG available for recovery make it difficult to maintain continuous operation at the flare.

The City would like to pursue a regular variance as additional downtime is anticipated for the remainder of 2023, yet the exact amount needed is unknown at this time.

If you have any questions or concerns regarding this request or the proposed course of action, please contact the undersigned.

Sincerely,

Maria Bowen Project Manager SCS Engineers

- Attachment: Regular Variance Application 2022 Source Test Results Permit To Operate
- Cc: Mary Skramstad, City of Berkeley Stephen Harquail, SCS Engineers

Habrielle of Stephens

Gabrielle Stephens Senior Project Manager SCS Engineers

REGULAR VARIANCE APPLICATION

Variance Application Form Instructions

Requests for variances from Bay Area Air Quality Management District (BAAQMD) air pollution regulations should be submitted to the Hearing Board of the BAAQMD using the attached form.

The Hearing Board is an independent quasi-judicial body created by California State law with the sole authority to grant variances from air quality regulations. After your application has been reviewed by the Hearing Board, you and the Bay Area Air Quality Management District staff will appear in a public hearing before the Hearing Board to present your respective positions.

Proper completion of the Application will help the Hearing Board fully consider your request and will help you prepare for the hearing. <u>Any Application that is not substantially complete</u> <u>shall not be accepted by the Hearing Board Clerk.</u>

FILING STEPS:

- 1. Properly complete the Application form. The form is available on the website at www.baaqmd.gov/publications/forms. You may complete the form on your computer and submit the copy you print on your printer.
- 2. If you need more space and attach additional pages, properly identify the numbered section of the Application form that they support.
- 3. SMALL BUSINESSES: Review the Small Business Considerations section of the Application for Variance (Page 12, Nos. 21 and 22). If you meet the requirements, complete and sign the Small Business Declaration (Page 13).
- Submit the filing fee <u>with</u> the Application (or contact the Clerk to confirm overnight payment) and <u>make check payable to BAAQMD</u>. See District Regulation 3, Schedule A- Hearing Board Fees.
- 5. Mail or otherwise deliver an <u>original and nine copies</u> of the Application and all other papers to:

Marcy Hiratzka Clerk of the Hearing Board Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Clerk of the Hearing Board contact phone # for questions: (415) 749-5073.

APPLICATION FOR VARIANCE FILED for In the Matter of the Application of)) In the Matter of the Application of) Berkeley Landfill)) UN AREA AN OUNTY Internet of the Application of (Applicant: Insert business or organization name above)) DOCKET NO. 3741 For a Variance from Regulation(s):) DOCKET NO. 3741 (Applicant: Insert Regulations in form:)) DOCKET NO. 3741 (Applicant: Insert Regulations in form:))) DOCKET NO. 3741 (Applicant: Insert Regulations in form:))) DOCKET NO. 3741 (Applicant: Insert Regulations in form:))) DOCKET NO. 3741 (Applicant: Insert Regulations in form:))) DOCKET NO. 1000000000000000000000000000000000000	BEFORE THE HE OF T BAY AREA AIR QUALITY M STATE OF C/	HE IANAGEMENT DISTRIC	Т
Berkeley Landfill (Applicant: Insert business or organization name above) For a Variance from Regulation(s): Berkeley Landfill Regulation 8, Rule 34, Section 301.1 & 113.2 DOCKET NO. 3741 (Applicant: Insert Regulations in form: (Assigned by Clerk) Regulation 8, Rule 34, Section 301.1 & 113.2 (Applicant: Insert Regulations in form: FILED (Applicant: Insert Regulations in form: (Assigned by Clerk) For a Variance is the section is the	APPLICATION FO	OR VARIANCE	FILED for regular regular
name above) 3741 For a Variance from Regulation(s): (Assigned by Clerk) Regulation 8, Rule 34, Section 301.1 & 113.2 (Assigned by Clerk) (Applicant: Insert Regulations in form: Regulation ⁸ , Rule ³⁴ , Section ^{301.1813}) file TYPE OF VARIANCE REQUESTED (see Page 3 for further information) file SHORT INTERIM REGULAR VARIANCE PERIOD REQUESTED (see Page 10, No. 20): for 12/31/2023 5/26/2023 To 12/31/2023 To 219))	HEARING BOARD DAY AREA AIR QUALITY MANAGEMENT DISTNICT
For a Variance from Regulation(s): Regulation 8, Rule 34, Section 301.1 & 113.2 (Applicant: Insert Regulations in form: Regulation 8, Rule 34, Section 301.1 & 113.2 (Applicant: Insert Regulations in form: Regulation 8, Rule 34, Section 301.1 & 113.2 (Applicant: Regulations in form: Regulation 8, Rule 34, Section 301.1 & 113.2 (Applicant: Regulations in form: Regulation 8, Rule 34, Section 301.1 & 113.2 (Applicant: Insert Regulations in form: Regulation 8, Rule 34, Section 301.1 & 113.2 (Applicant: Regulation 1 & Section 301.1 & 113.2 SHORT INTERIM REGULAR GROUP PRODUCT (Applicant Called to veguest that an INTERIOD REQUESTED (see Page 10, No. 20): 5/26/2023 To 12/31/2023 From:	• •) DOCKETNO.	1988
$ \begin{array}{c} (Applicant: Insert Regulations in form: Regulation 3, Rule 34, Section 301.16113) \\ \\ (Applicant: Insert Regulations in form: 104 (FILED) JUN 06 2023 HEARING BOARD BAY AREA AIR QUALITY MANAGEMENT DISTRICT TYPE OF VARIANCE REQUESTED (see Page 3 for further information) \begin{array}{c} SHORT \\ \blacksquare INTERIM \\ \blacksquare REGULAR \\ \square GROUP \\ VARIANCE PERIOD REQUESTED (see Page 10, No. 20): \\ \frac{5/26/2023}{12/31/2023} \\ To \underline{12/31/2023} \\ \end{array} $	For a Variance from Regulation(s):)	by olony
(Applicant: insert Regulations in form:) Regulation , Rule 34 , Section) Type of Variance Requested (see Page 3 for further information) Interim (Interim variance) Interim (Interim variance) Short Interim (Interim variance) Interim (Interim variance) Variance period Requested (see Page 10, No. 20): 5/26/2023 To 12/31/2023 From: To 12/31/2023 219 219	Regulation 8, Rule 34, Section 301.1 & 113.2)	
SHORT ■ INTERIM ■ REGULAR □ GROUP □ PRODUCT (Applicant Called VARIANCE PERIOD REQUESTED (see Page 10, No. 20): 5/26/2023 From:	Regulation ⁸ , Rule ³⁴ , Section ^{301,1 & 113})))	JUN 06 2023 Por INTERING BOARD VANANCO BAN AREA ARE CHARTER CHARTER IN CHARTER INC.
VARIANCE PERIOD REQUESTED (see Page 10, No. 20): 5/26/2023 From:		,	
	VARIANCE PERIOD REQUESTED (see Page 10, No. 20):	:	to request that an interim vanance
	TOTAL NUMBER OF (CALENDAR) DAYS IN VARIANCE		_

(Note: Variance relief will not be granted for any period preceding the date of filing of the Application for Variance.)

[ALL DOCUMENTS FILED WITH THE CLERK'S OFFICE BECOME PUBLIC RECORD]

NAME OF APPLICANT: Berkeley Landf			
FACILITY ADDRESS: Cesar Chave	ez Park		
City, State, Zip: Berkeley, Califor	nia, 94704		
PLANT # <u>or </u> G #: <u>3590</u> #(S): <u>1</u>		SOURCE	
CONTACT: Name, title, company (if diff to receive notices regarding this Applicar			ns authorized
Mary Ellen Skramstad, Envir. Com	pliance Specialist	Mary Ellen Skramstad, Envir. Complia	nce Specialist
City of Berkeley, Public Works	Dept.	City of Berkeley, Public Works D	ept.
		1947 Center St. 4th Floor	
Berkeley, California	<i>Zip</i> 94704	Berkeley, California Zij	94704
	Ext.	≊ <u>(</u> 510) 981-6337 <i>E</i> ≯	ct.
Fax_()		Fax_()	
E-mail_mskramstad@cityofberk	eley.info	E-mail	
California Bar #		California Bar #	
BRIEFLY SUMMARIZE EQUIPMENT/AC	CTIVITY SUBJECT	TO THIS VARIANCE REQUEST:	
The continuous operation of the closed landfill not being achieve thermocouples.	•	nd control system (GCCS) at the recipitation and issues at the	

LIST DISTRICT REGULATIONS, RULES AND PERMIT CONDITIONS SUBJECT TO THIS VARIANCE REQUEST:

Regulation 8-34-301.1	
Regulation 8-34-113.2	
Permit to Operate #1826.Pt.3	

SUMMARY OF TOTAL EXCESS EMISSIONS:

Pollutants	Net Emissions After Mitigation (lbs/day or Opacity %)
Volatile Organic Compounds	0.87
Non Methane Organic Compounds	0.89
Hazardous Air Pollutants	0.05

TYPE OF VARIANCE REQUESTED:

NOTE: The date of filing of the Application for Variance is the earliest allowed starting date for a variance. State law [California Health and Safety Code (H&SC)] imposes requirements on the amount of time to be allowed for notification of the public and air quality regulatory agencies before a hearing on a variance request can be held by the Hearing Board. Review the following descriptions of the types of variances, and select that which is most appropriate for your situation:

SHORT: If compliance with the District Rule(s) can be achieved in <u>90 (calendar) days or less</u>, request a short-term variance. [10-day notice required to Bay Area Air Quality Management District's Air Pollution Control Officer (APCO), Applicant, California State Air Resources Board (ARB), Federal Environmental Protection Agency (EPA).]

INTERIM: If Applicant requires immediate relief for the period between the date of filing of variance application and the date of the decision on the matter by the Hearing Board, request an interim variance. An interim variance is recommended if significant excess emissions will occur between the date of filing and the date of the fully noticed hearing by the Hearing Board. If an interim variance is required, a hearing will be scheduled as soon as possible. The period of an interim variance shall not exceed 90 days. If an interim variance is requested, Applicant must also request a short or a regular variance on the same application.

REGULAR (OR LONG-TERM): If compliance with District Rule(s) will take <u>more than 90 (calendar)</u> <u>days</u>, request a regular variance. (30-day published notice required. 30 days notice to APCO, Applicant, ARB.)

GROUP: If non-compliance with District Rule(s) by each individual Applicant comprising a group is based on issues of law and fact common to each Applicant, request a group variance. (Noticing requirements as for Short or Regular variances depending on period of the Group variance.)

PRODUCT: Any person who manufactures a product may petition the Hearing Board for a product variance from a District Rule or Regulation. A product variance shall be granted only when a variance is necessary for the sale, supply, distribution, or use of the product. (*Noticing requirements as for Short or Regular variances depending on period of the product variance.*)

BAAQMD Regulation 1-402: "**Status of Violation Notices During Variance Proceedings:** Where a person has applied for a variance, no notices shall be issued during the period between the date of filing for the variance application and the date of decision by the Hearing Board for violations covered by the variance application. However, during the period between the date of the filing for a variance and the date of decision by the Hearing Board, evidence of additional violations shall be collected and duly recorded. Where the variance is denied, evidence of violations collected between the filing date and decision date shall be reviewed and a notice of violation issued for violations occurring during that period shall be served upon said person. Where the variance is granted, no notice of violation shall be issued for violations occurring during that period except in extraordinary circumstances as determined by the APCO."

NOTE: The Environmental Protection Agency (EPA), a federal agency, does not recognize California's variance process, which is established by state law. The EPA considers facilities operating under a variance to be operating in violation of District regulations. Facilities that are in violation and then obtain a variance are advised that the EPA can independently pursue legal action based on federal law against the facility for continuing to be in violation.

1. Briefly describe the type of business and processes at your facility (Attach a map showing location)

The Landfill, which has been closed since 1983, is currently developed as a City park known as Cesar Chavez Park and is undergoing post-closure monitoring and maintenance through various programs administered by CalRecycle, San Francisco Bay Regional Water Quality Control Board (RWQCB) and the BAAQMD.
See Small Business Considerations on Page 12, No. 21 before answering the following question:
Is Applicant a "Small Business" as defined by Health & Safety Code Section 42352.5(b)(1)? Yes 🔲 No 🔳
Is Applicant a "Major Source" as defined by the applicable provisions of the Federal Clean Air Act, 42 U.S.C. Sec. 7661(2)? Yes No
Is Applicant a "public agency" as defined in Health & Safety Code Section 42352(b)? Yes ■ No □
Describe the equipment/activity for which a Variance is being sought (type of equipment/activity, source

2. Describe the equipment/activity for which a Variance is being sought (type of equipment/activity, source numbers, purpose, why is it essential to your business). Attach a copy of the BAAQMD Permit to Operate or Authority to construct for the subject equipment and/or facility so long as such Permit is less than 50 pages. If the Permit is greater than 50 pages, all portions relevant to the Application shall be provided.

The City maintains BAAQMD Permit to Operate (PTO; Plant #3590) for the Landfill and its gas control and collection system (GCCS). The GCCS collects landfill gas (LFG) from all areas of the landfill and sends it to a flare station where the LFG is combusted within an enclosed flare. The Landfill, which was constructed on reclaimed tidelands of San Francisco Bay, began receiving waste in 1961 and continued operations until 1983. The GCCS for the site was installed and became operational in 1988.

Is there a regular maintenand	e and/or inspection	schedule for this equipment	? Yes		No [
-------------------------------	---------------------	-----------------------------	-------	--	------	--

If Yes, how often?

	What was the date of the la	st maintenance and/or	inspection?	5/22/2023
--	-----------------------------	-----------------------	-------------	-----------

Are maintenance records available? Yes 🔳 No 🗌

Was there any indication of problems? Yes 🗌 No 🔳

APPLICANT'S PETITION FOR REQUIRED FINDINGS

California Health and Safety Code (H&S Code) 42352 requires the Hearing Board to make six findings for a variance to be granted. In this Section, Applicant must provide sufficient information to enable the Hearing Board to make a decision on each of the six findings:

Finding # 1: That the Applicant for a variance is, or will be, in violation of Health and Safety Code Section 41701 or of any rule, regulation or order of the District.

3. List all District Regulations, Rules, and/or Permit Conditions from which Applicant is seeking variance relief. Briefly explain how Applicant is or will be in violation of each rule or condition. If Applicant is requesting relief from Regulation 6, and the excess opacity during the variance period will reach or exceed 40% (Ringelmann 2), Applicant should also request relief from California Health and Safety Code Section 41701.

Regulation, Rules, Permit Conditions	Explanation
Regulation 8-34-301.1	The site has exceeded or will the allotted amount of
Regulation 8-34-113.2	downtime and requires additional downtime for the year.
Permit to Operate #1826,Pt.3	

- **4.** Has the District issued any Notice(s) of Violation (NOVs) to the Applicant concerning the subject of this variance request? Yes I No I If "Yes", please attach copies of the NOVs.
- 5. Has the equipment in question or any other equipment at this facility been under variance protection during the last year? Yes 🗌 No 🔳

Docket #	Variance Period	Nature of Emission	Regulation/Rule/Section

6. List all NOV(s) issued to equipment at the entire facility during the previous 12 months:

Date of Notice	NOV #	Nature of Emission	Regulation/Rule/Section
6/6/2022	A61731	power outage	8-34-301.1

Finding # 2: That, due to conditions beyond the reasonable control of the Applicant, requiring compliance would result in either (A) an arbitrary or unreasonable taking of property, or (B) the practical closing and elimination of a lawful business.

7. Describe, in detail, the event leading to the need for a variance:

In the beginning of 2023, there was an unprecedented amount of liquid infiltrating the GCCS at the Landfill. The system was simply not designed for the massive quantities of liquids which occurred in early 2023due to weather conditions and heavy storms. There had been condensate buildup within the below grade piping systems due to saturated site conditions and condensate sumps unable to drain from all of the heavy rains. Initially, the site planned to have a vacuum truck onsite to remove the liquids, yet the ground was so saturated that one could not safely extract liquids. Within five days, the heavy liquids naturally drained from the system. As a result of the unprecedented weather conditions and the system being unable to clear the liquids, there were prolonged periods of downtime at the flare, resulting in GCCS downtime. In addition to the unprecedented weather conditions, the thermocouples in the flare were glitching causing shutdowns and prevented remote restarts, which caused prolonged downtimes as the flare then was required to be manually restarted in these events, which required personnel to travel to site for this.

8. Has the Applicant received any complaints from the public regarding the operation of the subject equipment or activity within the last year? Yes No

Date of Complaint	Number of Complaints	Nature of Complaint

9. Explain why it is beyond Applicant's reasonable control to comply with the Regulation(s) and/or Permit Condition(s):

The Site is unable to adhere to the Regulations and permit conditions list above as there was more downtime at the beginning of 2023 due to unforeseen circumstances. As these unanticipated events occurred, the site and operations and maintenance (O&M) team took actions to minimize downtime, yet the allowable downtime in accordance with 8-34-113 was exhausted and as 2023 is not at its end, additional downtime for the site will occur that is outside of the City's control.

10. When and how did Applicant first become aware that it was not in compliance with the Rule(s) and/or permit condition(s)?

The site operations and maintenance (O&M) team has been tracking the flare's operations in accordance with permit and District requirements consistently. The elevated precipitation and the associated issues were first noted by the site and O&M team in January through March 2023, yet as the precipitation subsided, the site did not believe there would be prolonged concerns with the impacts on the continuous operation of the GCCS.

The issues from the thermocouple first occurred in January 2023, yet it was not known at the time of the failure that the thermocouple(s) would need to be replaced. It was not until later in April 2023 and it was identified that the thermocouple(s) were damaged and it was necessary for the equipment in the flare to be replaced. The thermocouples were replaced promptly once the equipment was known that they had to be replaced, yet the downtime that resulted from the issues at the thermocouples and the replacements occurred and was significant.

The weather-related downtime compounded with the downtime that resulted from the thermocouples' failure and replacement at the flare has put the site at the top of the use of the 240-allotted hours for downtime of the GCCS. It was recently discovered that the 240-hours would be exceeded and not sufficient for the site in 2023 for downtime.

11. What actions has Applicant taken since that time to achieve compliance with the Regulation(s) or permit condition(s)?

The site has replaced the thermocouples which were creating issues at the flare for operations. Additionally, the heavy precipitation has subsided and not anticipated to reoccur at this time. Along with the unforeseen issues due to weather and equipment, the O&M team is consistently making efforts to keep the flare continuously operating, yet the landfill gas available, both the quantity and quality (methane concentration) are difficult to maintain due to the age of the landfill and waste. The O&M team works to maintain a continuous pull on the wellfield, yet at the lower LFG generation rates do cause the LFG quality (methane concentration) to diminish which makes it difficult to maintain temperature at the flare for continuous operation.

12. What would be the harm to Applicant's business if the variance were not granted?

Economic losses: \$_____0

Number of Employees laid off (if any):_____

Provide detailed information regarding economic losses, if any, (anticipated business closure, breach of contracts, hardship on customers, layoffs and/or similar impacts).

If the variance were not granted, the Landfill would be in a state of non-compliance with District rules and regulations, increasing the likelihood and magnitude of potential enforcement action and fines for the hours above the allotted 240 hours that the flare does not operate. This would result in financial harm from potential penalties as well as additional stigma damages.

Finding # 3: That the closing or taking would be without a corresponding benefit in reducing air contaminants.

13. List the estimated or measured excess emissions or excess opacity, if any, on a daily basis, or over a more appropriate period of time (For example: duration of requested variance period, hourly basis). Also list emissions reductions proposed by Applicant as mitigation. If no excess emissions or opacity are expected during the variance period, go to No. 16.

Pollutant	(A)	(B)	(C)**
	Estimated	Reduction	Net
	Excess	Due to	Emissions
	Emissions (lbs/day)	Mitigation (lbs/day)	After Mitigation (Ibs/day)
Volatile Organic Compounds	0.87	NA	0.87
Non-Methane Organic Compounds	0.89	NA	0.89
Hazardous Air Pollutants	0.05	NA	0.05

**Column A minus Column B = Column C

14. Show the calculations used to determine the excess emissions listed in No. 13. Are the values in No. 13 based on measurements______ or estimates_X____?

Estimated excess emissions in Section 13 are not based on actual emissions, rather estimated emissions based on the historical operation of the flare in 2023 and actual results of the 2022 source test. Emissions were estimated from the actual source test and extrapolated based on estimated downtime for the remainder of the year. It is not anticipated that the system would be down for 24 hours continuously, yet to provide a conservative estimate of emissions, we have assumed non-operation of 24 hours per day. Emissions were estimated by utilizing the TO-15 sample results and EPA 25C, which were used to determine the concentrations of the TACs and non-methane organic compounds (NMOC) in the landfill gas at Berkeley Landfill.

15. Do the additional emissions during the variance period contain any Toxic Air Contaminants (TACs) [pursuant to Health and Safety Code Section 39655] or odorous substances? Yes No

If Yes, list the TACs or odorous substances and approximate amounts:

The TACs were last tested for on July 20, 2022, and the results of the TO-15 and EPA 25C samples are included as an attachment.

16. List measured or estimated annual emissions from entire facility for each pollutant which is the subject of this variance application:

Pollutant	Total Emissions from Entire Facility (tons/year)
Volatile Organic Compounds	0.0043
Non-methane organic compounds	0.0045
Hazardous Air Pollutants	0.0003

Briefly explain the basis for these facility emission values:

Again, the excess emission provided in Section 13 are not based on actual emissions, rather estimated emissions based on the historical operation of the flare in 2023 and actual results of the 2022 source test. Emissions were estimated from the actual source test and extrapolated based on estimated downtime for the remainder of the year. Emissions were taken from the TO-15 sample results and EPA 25C, which were used to determine the concentrations of the TACs and non-methane organic compounds (NMOC) in the landfill gas at Berkeley Landfill. The concentrations were then utilized to estimate the potentials to emit of the system for the remainder of 2023.

Finding # 4: That the Applicant for the variance has given consideration to curtailing operations of the source in lieu of obtaining a variance.

17. Explain why the Applicant cannot curtail or terminate operations in lieu of obtaining a variance:

The Landfill cannot curtail or terminate operations as LFG would be generated regardless. If the site terminated operations the whole landfill gas system would be offline preventing the site from being able to collect and control LFG at any point, as LFG will still be generated from the closed landfill even if the flare ceases operation.

Finding # 5: During the period that the variance is in effect, the Applicant will reduce excess emissions to the maximum extent feasible.

18. Explain how Applicant plans to reduce (mitigate) excess emissions during the variance period to the maximum extent feasible, or why reductions are not feasible (mitigation may include reductions at other sources):

The estimated emissions which could occur during the variance period are conservative estimates as it is assuming the amount of downtime which has occurred in 2023 shall continue, yet the equipment (thermocouples) which were impacting the downtime have been repaired and the weather conditions (excess precipitation) are not anticipated at the rates experienced in early 2023. Mitigation efforts include monitoring the wellfield for surface emissions on a quarterly basis to ensure no excess emissions.

Finding # 6: During the period the variance is in effect, the Applicant will monitor or otherwise guantify emission levels from the source, if requested to do so by the District, and report these emissions levels to the District pursuant to a schedule established by the District.

19. Has the District requested that the Applicant monitor or otherwise quantify emissions during the variance period? Yes No 🖌

If Yes, please describe how Applicant will do so:

The site's O&M team are able to conduct additional surface emissions monitoring (SEM) as needed as additional downtime occurs.

APPLICANT'S PLAN FOR ACHIEVING COMPLIANCE:

20. How does the Applicant intend to achieve compliance with the Rule(s) and/or permit condition(s)? Include a detailed description of any equipment to be installed and/or modifications or process changes to be made, a list of the dates by which the actions will be completed, and an estimate of total costs:

Detailed Description:

The Landfill's O&M personnel will continue to work to keep the flow of LFG going to the flare to maintain operations, yet due to stated above, the quantity and quality (methane concentration) has proven to be difficult to maintain as the landfill's age and age of waste within the closed landfill. The upgrades to the flare needed to help maintain operation have occurred (thermocouples) and at this time it is not anticipated that there were would be an infiltration of liquids in the landfill to saturate the landfill and GCCS, therefore shut down time is not expected at this time for these reasons. However, as there is still a significant amount of 2023, it is not known all causes of potential downtime for the remainder of the year.

Schedule Of Increments Of Progress:

Increment Description	Completion Date

Applicant may propose operating conditions for the variance period which may be considered by the Hearing Board in its evaluation of the variance application.

PROPOSED OPERATING CONDITIONS:

The Landfill proposes variance conditions aimed at continuous operation of the GCCS, but provides allowance for additional downtime beyond the 240 hours alloted under Rule 8-34-113 of the GCCS, as continuous operation cannot be guaranteed or anticipate at this time.

Variance Period Req	5/2 uested: From:	26/2023	то:_12/31/2	023
Total Number of (Ca	lendar) Days in Vari	iance Period:	219	
(Note: Variance relief will	I not be granted for any p	period preceding th	ne date of filing of the Applica	ation for Variance.)
Date of Application: _	5/26/2023			
	_Maria Bowen : Name)		Title:Project N	Manager
The following verific of	cation must be sign	ed by the own	er, manager, director o	r other responsible party
the plant, business,	factory, or agency	requesting the	Variance.	

VERIFICATION

I, the undersigned, hereby declare under the penalty of perjury, under the laws of the State of California, that I have read the foregoing document, including attachments and the items therein set forth, and that I know its contents, are true.

Dated at	May 30th	, on202	23
Signature _	ma.		
Print Name	Mary Ellen Skramstad		

Title _____ Environmental Compliance Specialist - City of Berkeley

SMALL BUSINESS MATTERS

<u>Small Business Assistance</u>: Assistance in completing the Application for Variance and in developing a compliance schedule is available to small businesses. Contact the office of the Hearing Board Clerk at (415) 749-5073 for assistance.

<u>Small Business Considerations in the Granting of Variances by the Hearing Board</u>: California Health & Safety Code Section 42352.5 directs the Hearing Board to consider additional factors when making the required Findings for the granting of a variance to a small business.

21. Definition of Small Business for purposes of special considerations:

Is Applicant a manufacturing or wholesaling business with fewer than 100 employees? Yes No Number of Employees: _____

Is Applican	t a retailing	or service business with annual sales under \$5 million?
Yes 🗌	No 🔳	Annual Sales: \$

AND

Does Applicant emit 10 tons or less p	per year of air contaminants?	Yes 🔳	No 🗌
---------------------------------------	-------------------------------	-------	------

If the Applicant satisfies the above conditions, the Hearing Board will consider the following special factors:

- (A) In determining the extent to which the petitioner took timely actions to comply or seek a variance, the Hearing Board shall make specific inquiries into, and shall take into account, the reasons for any claimed ignorance of the requirement from which a variance is sought.
- (B) In determining the extent to which the petitioner took reasonable actions to comply, the Hearing Board shall make specific inquiries into, and shall take into account, the petitioner's financial and other capabilities to comply.
- (C) In determining whether or not the burden of requiring immediate compliance would be unreasonable, the Hearing Board shall make specific inquiries into, and shall consider, the impact on the petitioner's business and the benefit to the environment which would result if the petitioner is required to immediately comply.

Reduced Filing and Excess Emission Fees for Small Businesses:

Bay Area Air Quality Management District Regulation 3 allows reduced filing fees and excess emission fees to be charged to small businesses. <u>The definition of a small business for the purpose of these reduced fees is different</u> than the definition used by the State of California for the special considerations listed above.

22. Definition of Small Business for purposes of reduced filing and excess emission fees (District Regulation 3, Section 209; Both the number of employees AND gross annual income must apply);

		no more than 10 employees? Number of Employees:		
		a gross annual income of no mo Gross Annual Income: \$		0,000?
Is Applica	nt not affiliat	ed with a non-small business?	Yes 🗌	No 🗌

Declaration Regarding Small Business

- 1. I am an officer, partner or owner of the Applicant herein, or a duly authorized agent of the Applicant authorized to make the representations set forth herein.
- 2. The Applicant is a business that meets the following definitions of Small Business (check those that are applicable):

Small Business for Purposes of Special Consi	derations (I	No. 21)		
Small Business for Purposes of Filing and Exc	cess Emissi	on Fees (No. 22)		
I declare under penalty of perjury that the fore	going is tru	e and correct.		
Executed on	<u>,</u> at			, California
Signature		Print Nam	16	

Position with Company

Revised 4/4/19

POTENTIAL TO EMIT ESTIMATES FOR THE OFFLINE TIME OF GAS COLLECTION AND CONTROL SYSTEM BERKELEY LANDFILL BERKELEY, CALIFORNIA

CAS NUMBER	COMPOUNDS	Molecular Weight (g/Mol)	Ave. Concentration of Compounds Found In LFG (ppmv) ^(b)	Total Pollutant Flow Rate (lbs/hr) ^(c)	Pollutant Emission Rate from Landfill (Pounds for Event - 240 hours)	
Hazardous Air Pollutants (HAPs) ^(a)						
71-55-6	1,1,1-Trichloroethane (methyl chloroform)* ^(h)	133.41	0.003	5.22E-06	1.25E-03	
79-34-5	1,1,2,2-Tetrachloroethane*	167.85	0.003	6.57E-06	1.58E-03	
75-34-3	1,1-Dichloroethane (ethylidene dichloride)*	98.97	0.003	3.88E-06	9.30E-04	
75-35-4	1,1-Dichloroethene (vinylidene chloride)*	96.94	0.003	3.80E-06	9.11E-04	
107-06-2	1,2-Dichloroethane (ethylene dichloride)*	98.96	0.003	3.88E-06	9.30E-04	
78-87-5	1,2-Dichloropropane (propylene dichloride)*	112.99	0.003	4.42E-06	1.06E-03	
67-63-0	2-Propanol (isopropyl alcohol)*	60.11	0.014	9.46E-06	2.27E-03	
67-64-1	Acetone ^{*^(h)}	58.08	0.014	9.14E-06	2.19E-03	
107-13-1	Acrylonitrile*	53.06	0.007	4.16E-06	9.99E-04	
75-25-2	Bromodichloromethane*	163.83	0.041	7.77E-05	1.86E-02	
71-43-2	Benzene*	78.11	0.038	3.44E-05	8.27E-03	
75-15-0	Carbon disulfide*	76.13	0.011	9.36E-06	2.25E-03	
56-23-5	Carbon tetrachloride*	153.84	0.341	6.02E-04	1.45E-01	
46-358-1	Carbonyl sulfide	60.07	0.183	1.26E-04	3.03E-02	
108-90-7	Chlorobenzene*	112.56	0.089	1.15E-04	2.76E-02	
75-00-3	Chloroethane (ethyl chloride)*	64.52	0.034	2.53E-05	6.06E-03	
67-66-3	Chloroform*	119.39	0.034	4.68E-05	1.12E-02	
75-45-6	Chlorodifluoromethane* ^h	86.47	0.173	1.72E-04	4.12E-02	
74-87-3	Chloromethane (methyl chloride)*	50.49	0.034	1.98E-05	4.75E-03	
106-46-7	Dichlorobenzene (1,4-Dichlorobenzene)*	147.00	0.039	6.55E-05	1.57E-02	
75-43-4	Dichlorodifluoromethane* ^(h)	120.91	0.116	1.61E-04	3.87E-02	
75-71-8	Dichlorofluoromethane*	102.92	0.051	6.04E-05	1.45E-02	
75-09-2	Dichloromethane (Methylene Chloride)* ^(h)	84.94	0.068	6.66E-05	1.60E-02	
64-17-5	Ethanol* **	46.08	0.135	7.14E-05	1.71E-02	
100-41-4	Ethylbenzene*	106.16	0.006	7.49E-06	1.80E-03	
106-93-4	Ethylene dibromide (1,2-Dibromoethane)*	187.88	0.003	7.36E-06	1.77E-03	
75-69-4	Fluorotrichloromethane ^(h)	137.40	0.327	5.16E-04	1.24E-01	
110-54-3	Hexane*	86.18	0.329	3.26E-04	7.81E-02	
2148-87-8	Hydrogen Sulfide*	34.08	392.500	1.54E-01	3.69E+01	
7439-97-6	Mercury (total) ^(d)	200.61	0.0003	6.73E-07	1.61E-04	
78-93-3	Methyl ethyl ketone*	72.11	0.007	5.66E-06	1.36E-03	
108-10-1	Methyl isobutyl ketone*	100.16	0.007	7.86E-06	1.89E-03	
127-18-4	Perchloroethylene (tetrachloroethylene)* ^(h)	165.83	0.034	6.49E-05	1.56E-02	
108-88-3	Toluene*	92.13	0.077	8.16E-05	1.96E-02	
79-01-6	Trichloroethylene (trichloroethene)*	131.40	0.003	5.15E-06	1.23E-02	
75-01-4	Vinyl chloride*	62.50	0.009	6.11E-06	1.47E-03	
1330-20-7	Xylenes*	106.16	0.021	2.51E-05	6.02E-03	
Single Highest HAP		100.10	0.021	0.0006	0.14	
Totals: HAPs				0.002	0.50	
Criteria Air Pollutants		l	1	0.002	0.00	
	Total Non-Methane Organics (NMOCs) as Hexane ^(e)	86.18	37.60	0.04	8.93	
	VOCs ^(f)	86.18	37.60	0.04	8.69	
Notes'	VUUS	00.10	57.00	0.04	0.09	

Notes:

(a) List of hazardous air pollutants was from Title III Clean Air Act Amendments, 1990, and include compounds found in landfill gas, as determined

from a list in AP-42 Tables 2.4-1 ("Default Concentrations for Landfill Gas Constituents, 11/98"). Compounds not identified as HAP by AP-42 indicated by "**".

(b) Average concentration of compounds found in LFG based on "Waste Industry Air Coalition Comparison of Recent Landfill Gas Analyses with Historic AP-42 Values" and site-specific values from 2023 LFG composition samples as indicated by "*".

(c) Total pollutant emission rate based on LFG average flow rate prior to event.

(d) Concentration of Mercury based on EPA AP-42 Section 2.4 Table 2.4-1 (11/98).

(e) Concentration of NMOC as hexane from Source Test for Berkeley Landfill, 2023. NMOC peak value as 226 ppmv as methane.

(f) VOCs assumed to equal NMOCs.

(g) Average LFG flow rate to the the flare was based on historical data of flare operations through 2023.

(h) Indicates compound designated as having a negligible contribution to photochemical reactivity by the U.S. Environmental Protection Agency as published in the Federal Register shall be considered a Non-Precursor Organic Compound in accordance with BAAQMD Rule 1-234 and USEPA Section 40 Code of Federal Regulation Section 51.100.

Variables:

MODEL INPUT VARIABLES:		
Methane Concentration (%) ^(b)	29%	
LFG Flow Rate ^(g)	74	SCFM
Duration of Event (Gas Collection and Control System Downtime)	240.00	hours
CONVERSIONS		
lb conversion	453.6 g	
hour conversion	60 min	
mol conversion	24.04 L @ STP	
cf conversion	28.32 L	
mmbtu conversion	1,000,000 btu	

EXAMPLE CALCULATIONS

(HAPS AND VOCS)

Total Pollutant Flow Rate (To Flare)= ((Molecular Weight of Compound[g/mol])*(Concentration of Compound[ppm]/1,000,000)*(Total LFG to Flare [cfm]) *(60min)*(1lb/453.6g)*(1mol/24.04L @ STP)*(28.32L/1cf)

SUMMARY OF POTENTIAL EMISSIONS BERKELEY LANDFILL BERKELEY, CALIFORNIA

		PTE		
Emission Source	Regulated Air Pollutant	lb/day	lbs/event	tpy
Landfill during GCCS Downtime	Volatile Organic Compounds	0.87	8.69	0.0043
	Non-Methane Organic Compounds	0.89	8.93	0.0045
	Total Hazardous Air Pollutants	0.05	0.50	0.0003

2022 Source Test Results

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

375 Beale Street, Suite 600 San Francisco, California 94105 (415) 771-6000

Contractor Source Test Supplemental Form

Site name:

NST number:

Testing company: BEST ENVIRONMETAL

Test purpose:

Routine compliance testing

Compliance test required after previous source test failure

Start-up test

Other, ex: trial testing for permit changes, engineering studies

Please explain:

Revised report with corrections noted

Revision number:

Preliminary test results:

Values within range set by rule or regulation

Values outside of range set by rule or regulation

N/A

Please explain:

Source Test Report

CITY OF BERKELEY MARINA LANDFILL Berkeley, CA

Landfill Gas Fired Flare (A-4) Emission Results & Landfill Gas Characterization Facility #3590, Condition #1826 NST-7518

Test Date: July 15, 2022 Report Date: August 17, 2022

Performed and Reported by:

BEST ENVIRONMENTAL 339 Stealth Court Livermore, CA 94551 Phone: (925) 455-9474 Fax: (925) 455-9479

Prepared For:

SCS Field Services 4730 Enterprise Way Modesto, Ca 95956 Attn: Mr. Stephen Harquail

For Submittal To:

Bay Area Air Quality Management District 375 Beale Street, STE 600 San Francisco, CA 94185

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program. If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please call the Team Leader or Reviewer at (925) 455-9474.

Will

William Johnston Project Manager

Reviewer:

I have reviewed this report for presentation and accuracy of content, and hereby certify that to the best of my knowledge the information is complete and correct.

Am

Basim (Bobby) Asfour Principal/QSTI

Source Test Information

Source Owner:	City of Berkeley/Engineering Division/Public Works 1947 Center St., 4 th Fl Berkeley, CA 94704
Source Location:	Berkeley Marina Landfill Cesar Chaves Park (Berkeley Marina) Berkeley, California 94704
Engineering Firm:	SCS Field Services
Contact:	Stephen Harquail, (530) 867-2369
Source Description:	Site #3590, Landfill Gas Flare A4
PTO Number:	Condition 1826

Test Paramet	ters & Limits:		Average Result
NOx:	0.06 lbs/MMBtu		0.02 lbs/MMBtu
CO:	0.2 lbs/MMBtu		0.05 lbs/MMBtu
NMOC:	30 ppm @ 3% O2 as	s methane	ppm @ 3% O2
CH ₄ :	99% DRE		99.99% DRE
Fuel Sulfur:	300 ppm as H ₂ S		2 ppm as H ₂ S
Source Testin	g Firm:	BEST ENVIR	RONMENTAL
		339 Stealth C	ourt
		Livermore, C.	A 94551
		Phone (925) 4	
		Fax (925) 455	
Contact:		Bobby Asfour	C
Test Date:		July 15, 2022	
NST Number	:	7518	
Analytical La	boratories:	Atmospheric .	Analysis & Consultants (TO 15, M25C)
		Speciated VO	C
			n Avenue, Ste. A
		Ventura, CA	
		Attn: John Yo	
		Phone: (805)	650-1642
		BEST ENVIR	RONMENTAL
		(Fixed gases (CH ₄ , H ₂ S, HHV& F factor)
		339 Stealth C	
		Livermore, C.	A 94551
		· · · · · · · · · · · · · · · · · · ·	

TABLE of CONTENTS

SECTION	1. INTRODUCTION	1
	TEST PURPOSE TEST LOCATION TING WAS CONDUCTED ON THE FLARE LOCATED AT THE CITY OF BERKELEY, CAESAR CHAVEZ PARK, EY MARINA, CA 94704. (FACILITY #3590) TEST DATE TEST DATE TEST PARAMETERS AND METHODS SAMPLING AND OBSERVING PERSONNEL	1 1 1
SECTION	2. SUMMARY OF RESULTS	2
2.1. 2.2. 2.3. 2.4.	EMISSION RESULTS PROCESS DATA ALLOWABLE EMISSIONS COMMENTS: DISCUSSION OF QUALITY ASSURANCE AND ERRORS	2 2 2
SECTION	3. SOURCE OPERATION	3
3.1. 3.2. 3.3. 3.4. 3.5.	PROCESS DESCRIPTION FLOW DIAGRAM PROCESS AND CONTROL OPERATING PARAMETERS NORMAL OPERATING PARAMETERS TESTING OR PROCESS INTERRUPTIONS AND CHANGES	3 3 3
SECTION	4. SAMPLING AND ANALYSIS PROCEDURES	4
4.1. 4.2. 4.3. 4.4.	PORT LOCATION POINT DESCRIPTION/LABELING – PORTS/STACK METHOD DESCRIPTION, EQUIPMENT, SAMPLING, ANALYSIS AND QA/QC ANALYTICAL LABORATORIES	4 4
TABLE 1	TEST RESULTS	7
APPEND	CES	
	 A. Calculations & Nomenclature	B-1 C-1 E-1 F-1 G-1 H-1

SECTION 1. INTRODUCTION

1.1. Test Purpose

Best Environmental (BE) was contracted by SCS Field Services to perform emissions testing on one landfill gas flare (A-4) to comply with Bay Area Air Quality Management District (BAAQMD) Regulation 8 Rule 34 Sections 301.3 & 412 as well as Condition #1826 of the permit. A copy of the Permit is included in the appendices.

1.2. Test Location

The testing was conducted on the flare located at the City of Berkeley, Caesar Chavez Park, Berkeley Marina, CA 94704. (Facility #3590).

1.3. Test Date

Testing was conducted on July 15, 2022.

1.4. Test Parameters and Methods

The following emission parameters were measured:

Parameter	Monitoring & Analytical Protocols
NMOC, THC, NOx, CO & O ₂	EPA Methods 3A, 7E, 10 & 25A
Flowrate (inlet/outlet)	Flowmeter/EPA Method 19
Inlet NMOC & CH ₄	EPA Method 18 & 25C
Fixed Gases, Btu/CF & F Factor	ASTM D-1945 & 3588
LFG organics & TRS	Modified EPA TO-15 & D-6228

1.5. Sampling and Observing Personnel

Sampling was performed by Bobby Asfour and Bill Johnston of BE. The BAAQMD was notified of the test date; however, there was no representative present to witness the test program.

SECTION 2. SUMMARY OF RESULTS

2.1. Emission Results

Table 2.1 summarizes the flare outlet average test results. Triplicate 30-minute runs were performed according to BAAQMD and EPA test methods. Individual run results are presented in Table 1 on page 7. Landfill Gas Characterization (TO 15) results are in Appendix B.

Parameter	Average Results	Limits
NOx, lbs/MMBtu	0.0205	0.06
CO, lbs/MMBtu	0.0529	0.20
NMOC, ppm @ 3% O ₂	6.47	30
CH ₄ Destruction Efficiency	99.99	≥ 99

Table	2.1:	Flare	Outlet	(A-4)
-------	------	-------	--------	-------

2.2. Process Data

Table 2.2 presents the Flare Operational Parameters as recorded by the flares data acquisition system. Process data and fuel meter calibration can be found in Appendix E.

	-	
Parameter	Fuel Flow Meter, SCFM	Flare Temp., °F
Run # 1	65.56	1,550
Run # 2	65.59	1,555
Run # 3	65.57	1,554

Table 2.2: Operational Parameters

2.3. Allowable Emissions

See Table 2.1 above. The test results show that the flare is operating within the PTO gaseous emission limits and is therefore in compliance.

2.4. Comments: Discussion of Quality Assurance and Errors

Quality assurance procedures listed in the above referenced test methods and referenced in the Source Test Plan were performed and documented. The QA/QC procedures are described in Section 4.3 of the report. Documentation of the QA/QC is provided in Appendix A, B & D.

SECTION 3. SOURCE OPERATION

3.1. Process Description

The landfill gas fired flare is a control device for the treatment of landfill gas (mainly methane, carbon dioxide and nitrogen) that is generated from the decomposition of waste. The gas is collected in a network of interconnected pipes from several landfill gas extraction wells that draw a vacuum on the vapors in the landfill. The vapors are treated to remove condensate and particulate material, and then they are incinerated in the flare.

3.2. Flow Diagram

A digital image of the flare stack is contained in Appendix F.

3.3. Process and Control Operating Parameters

The flare was operated at 1,553 $^{\circ}$ F at a fuel rate of 66 SCFM according to the flare's monitoring devices. Flare monitoring data was provided by the facility and can be found in Appendix E.

3.4. Normal Operating Parameters

The flare was operating normally during the test periods.

3.5. Testing or Process Interruptions and Changes

There were no testing or process interruptions during the test series.

SECTION 4. SAMPLING AND ANALYSIS PROCEDURES

4.1. Port Location

Emissions from the flare were sampled via a circular stack with two ports 90° apart located approximately 5 stack diameters downstream of the burners and 1 stack diameter upstream from the exit. Access to the sampling ports was provided using a 40-foot boom-lift.

The dimensional cross-sections of the stack are 56-inches (Area SQFT = 17.104). The fuel line to the flare is a 6-inch stainless steel pipe. A single port/tap was located on the flame arrestor, 2-feet upstream from the flare wall.

4.2. Point Description/Labeling – Ports/Stack

The stack ports were not labeled but were designated as facing south and east.

4.3. Method Description, Equipment, Sampling, Analysis and QA/QC

Sampling and analytical procedures of the methods were followed as published in the EPA "Quality Assurance Handbook for Air Pollution Measurement Systems" Volume III, US EPA 600/4-77-027b.

Parameter	Location	Method(s)	Duration	Runs
THC, CH4, NMOC, NO _x , CO & O ₂	Exhaust	EPA Methods 3A, 7E, 10, 18 & 25A	30 mins	3
Flow Rate	Exhaust	EPA 19	30 mins	3
LFG organics & TRS compounds	Inlet	TO-15	30 mins	3
TRS	Inlet	ASTM D-6228	30 mins	3
C1-C6, O ₂ , N ₂ , BTU-Fixed Gases	Inlet	ASTM D-1945/3588	30 mins	3
Flow Rate & Flare Temp.	Inlet	Flare Metering System	Concurrent	3
NMOC & CH ₄	Inlet	EPA Method 18 & 25C	30 mins	3

The following is an overview of the Testing Performed

EPA Method 7E, 10 & 3A are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample and analyzing the flue gas using continuous monitoring gas analyzers in a CEM test van. The sampling system consists of a stainless-steel sample probe, Teflon sample line, glass-fiber particulate filter, glass moisture-knockout condensers in ice, Teflon sample transfer tubing, diaphragm pump and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program. The BE sampling and analytical system bias at the beginning of the test day. System bias is determined by pulling calibration gas through the entire sampling system. Individual test run calibrations use the calibration gas, which most closely matches the stack gas effluent. The calibration gases are selected to fall approximately within the following instrument ranges; 80 to 95 ^{[Vzena-w2k/users/reports/bill/2022/scs, berkeley flare/report berkeley.doc}

percent for the high calibration, 40 to 60 percent for the mid-range and zero. Zero, calibration and bias drift values are determined for each test.

EPA 25A (THC as methane by FID) is an accepted method for the determination of Total Hydrocarbons (THC). A flame ionization detector (FID) total hydrocarbon continuous monitor is used for the sampling. The sampling and calibrations are performed through an all heated sample line connected directly to the THC analyzer. The FID in the analyzer is heated to 190 °C. The calibration gases are selected to fall within the following instrument ranges; 80 to 90 percent for the high calibration, 45 to 55 percent for the mid-range calibration, 25 to 35 percent for the low range calibration and zero. Zero and mid external calibration drift values are determined for each test run.

All BE calibration gases are EPA Protocol # 1. The analyzer data recording system consists of BE's Computer Data Acquisition System (DAS). The NO₂ converter is checked and confirmed to be > 90% efficient.

EPA Methods 7E, 10 & 3A met the following QA/QC method requirements:

System (Criteria			
Ir	nstrument Linearity	\leq 2% Calibration Span or \pm 0.5diff.		
Ir	nstrument Bias	≤5% Calibrat	tion Span or ± 0.5 diff.	
N	IO ₂ Converter Efficiency	≥90%		
S	ystem Response Time	≤2 minutes		
Test Cri	teria			
Ir	nstrument Zero Drift	≤3% Calibrat	tion Span or ± 0.5 diff.	
Ir	nstrument Span Drift	≤3% Calibrat	ion Span or ± 0.5 diff.	
EPA Method 25	5A met the following QA/	QC method re	quirements:	
System (Criteria			
Ir	nstrument Linearity	≤5% Calibrat	ion Gas Conc.	
Test Cri	teria			
Ir	nstrument Zero Drift	≤3% Span Ra	ange	
Ir	nstrument Span Drift	≤3% Span Ra	ange	
The following	continuous monitoring ai	nalyzers were u	ised:	
Paramete	er <u>Make</u>	Model	Principle	
NO _x	CAI	600CLD	Chemiluminescence	
CO	TECO	48i	GFC IR analyzer	
O ₂	CAI	110P	Paramagnetic	

EPA Method TO-15 & ASTM D-6228 analysis is used to determine emissions of Organic and inorganic compounds including sulfurs. Inlet gases are filled into tedlar bags corresponding to the test program. The bags are labeled respectively then sent to a laboratory and analyzed for GC/MS (gas chromatography/mass spectrometer) within 72 hours and GC/FPD (gas chromatography/flame photometric detector) within 24 hours for sulfur. For more information on the lab analysis, refer to Appendix B for method description and QA/QC.

FID

600

EPA Method 18 is used to determine carbon speciated hydrocarbons (C_1 , C_2 & C_3 +) emissions by gas chromatograph / Flame Ionization Detection (GC/FID). Gaseous emissions are drawn through a Teflon sample line to a tedlar bag located in a rigid leak proof bag container.

CAI

THC

Sample is drawn into the bag by evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow between 20 to 60 minutes. The bag samples are taken to a laboratory and analyzed within 72 hours. The results are reported as methane with a detection limit of 0.5 ppm for non-methane non-ethane organic compounds (C_3 +).

EPA Method 19 is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes generated from heat input. The heating value of the fuel in Btu per cubic foot is determined from the analysis of fuel gas samples using gas chromatography (GC). Dedicated fuel meters monitor total fuel consumption for the source. The total cubic feet per hour of fuel multiplied times the Btu/CF provides million Btu per hour (MMBTU) heat input. The heat input in MMBTU/hr is multiplied by the F-factor (DSCF/MMBTU) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. This procedure is proposed for pollutants whose compliance standards are based on emission rates (lb/day) or emission factors (lb/MMBtu).

EPA Method 25C is used to determine the emissions of NMOC and can also be used to identify and quantify fixed gases (O₂, CO₂, N₂& CH₄) in conjunction with **EPA Method 3C**. Gaseous emissions are drawn through Teflon sample line to a tedlar bag. Positive pressure is adjusted to maintain an integrated sample flow between 30 to 60 minutes. The bag samples are taken to a laboratory and analyzed for Non-Methane Organic Compound (NMOC) referenced to methane and fixed gases using GC/FID (gas chromatography/flame ionization detector-total combustion analysis and thermal conductivity detector (TCD) within 72 hours.

ASTM D-1945 & D-3588 analysis is used to determine the composition of fuel gas (e.g. Methane, fixed gases & BTU Content). Inlet gases are filled into a tedlar bag, the bag is labeled respectively then sent to a Laboratory and analyzed for fixed gases, methane and C_1 - C_6 using GC/FID (gas chromatography/flame ionization detector). Each compound has calorific values that are used to calculate the gas higher heating values.

4.4. Analytical Laboratories

Three summa canisters were sent to AAC Lab. for EPA Method 25C, TO-15 (NMOC, organic compound analyses). Three inlet and three outlet tedlar bag samples were brought to the BE Lab for ASTM D-1945/3588/6228 & EPA Method 18 (heat input, H₂S & C₁, C₂, C₃+). For more information on the analysis procedure and QA/QC refer to Appendix B.

TABLE #1 Test Results City of Berkeley Flare

TEST	1	2	3	AVERAGE	LIMIT
Test Date	7/15/22	7/15/22	7/15/22		
Test Time	926-1001	1014-1047	1101-1135		
Standard Temp., °F	70	70	70		
	Process Data	1			
Flare Temp., °F	1,550	1,555	1,554	1,553	
Fuel F-Factor, DSCF/MMBtu @ 70°F	10,553	10,686	10,438	10,559	
Inlet Methane (CH_4) Content, $\sqrt[6]{}$	25.70	24.50	26.30	25.50	
Inlet Fuel Flow Rate, DSCFM	65.56	65.59	65.57	65.57	
Heat Input, MMBtu/hr	1.02	0.98	1.05	1.02	
Heat Input, MMBtu/day	24.55	23.42	25.21	24.39	
Outlet Flow Rate, DSCFM (M19)	506	491	523	507	
0	utlet Emissio	ns			
O ₂ , %	13.47	13.51	13.60	13.53	
CO, ppm	16.50	20.63	36.04	24.39	
CO, lbs/hr	0.0047	0.0059	0.0103	0.0069	
CO, lbs/MMBtu	0.0355	0.0452	0.0781	0.0529	0.20
NO _x , ppm	9.50	9.53	9.26	9.43	
NO_x , lbs/hr	0.0027	0.0027	0.0026	0.0027	
NO _x , lbs/MMBtu	0.0205	0.0209	0.0201	0.0205	0.06
A/					
THC, ppm as methane (25A)	5.27	7.29	6.16	6.24	
CH ₄ , ppm (M18)	3.45	3.48	3.79	3.57	
CH ₄ , lbs/hr	0.0043	0.0042	0.0049	0.0045	
NMOC, ppm (M25A)	1.82	3.81	2.37	2.67	
NMOC, ppm @ 3% O ₂ as CH ₄	4.39	9.23	5.80	6.47	30
VOC, lbs/hr as methane	0.0023	0.0047	0.0031	0.0039	
	Inlet	•			
Inlet CH ₄ , ppm (M18)	257,000	245,000	263,000	255,000	
Inlet CH ₄ , lbs/hr	41.8	39.9	42.8	41.5	
Inlet VOC, ppm as methane (M25C)	226	187	185	199	
Inlet VOC, lbs/hr as methane	0.037	0.030	0.030	0.032	
Landfill Gas Sulfur Content					
Inlet Total Sulfur as H ₂ S, gr/100dscf	0.89	0.85	0.87	0.87	
Inlet Total Sulfur as H_2S , ppm	1.52	2.58	1.05	1.72	300
	ruction Effic		•	•	
CH ₄ , Destruction Efficiency %	99.99%	99.99%	99.99%	99.99%	≥99%
NMOC, Destruction Efficiency %	93.78%	84.73%	89.80%	89.43%	≥98%

WHERE:

MW = Molecular WeightVOC ppnDSCFM = Dry Standard Cubic Feet Per Minutelbs/hr = pppm = Parts Per Million Concentrationppm @ 3'lbs/hr = Pound Per Hour Emission Ratelbs/MMBlbs/MMBtu = Pounds per million BTURemoval 1CO = Carbon Monoxide (MW = 28)NOx = Oxides of Nitrogen as NO2 (MW = 46)THC = Total Hydrocarbons as Methane (MW = 16)

VOC = Total Non-Methane Hydrocarbons as Methane-C1 (MW = 16) CH₄

CALCULATIONS:

 $\begin{array}{l} VOC \ ppm = THC \ ppm \ - \ CH_4 \ ppm \\ lbs/hr = \ ppm \ * \ DSCFM \ * \ MW \ * 60 \ / \ 379 \ x \ 10^6 \ (@60^\circ F) \\ ppm \ @ \ 3\% \ O_2 = \ ppm \ * \ 17.9 \ / \ (20.9\ - stack \ O_2) \\ lbs/MMBtu = Fd \ * \ M.W. \ * \ ppm \ * \ 2.59E\ - 9 \ * \ (20.9\ / \ 20.9\ - \ \%O_2)) \\ Removal \ Efficiency = \ (inlet \ lbs\ / hr\ - outlet \ lbs\ / hr \ / \ Inlet \ lbs\ / hr \end{array}$

APPENDICES

APPENDIX A – CALCULATIONS & NOMENCLATURE APPENDIX B - LABORATORY REPORTS APPENDIX C - FIELD DATA SHEETS APPENDIX D – CALIBRATION GAS CERTIFICATES APPENDIX E - PROCESS DATA APPENDIX F - STACK DIAGRAMS APPENDIX G – SAMPLING SYSTEM DIAGRAMS APPENDIX H – SOURCE TEST PLAN APPENDIX I – PERMIT TO OPERATE

APPENDIX A CALCULATIONS

Standard Abbreviations for Reports				
Unit	Abbreviation	Unit	Abbreviation	
		microgram	ug	
Brake horsepower	bhp	milligram	mg	
Brake horsepower hour	bhp-hr	milliliter	ml	
British Thermal Unit	Btu	million	MM	
capture efficiency	CE	minute	min	
destruction efficiency	DE	Molecular Weight	М	
Dry Standard Cubic Feet	DSCF	nanogram	ng	
Dry Standard Cubic Feet per Minute	DSCFM	Parts per Billion	ppb	
Dry Standard Cubic Meter	DSCM	Parts per Million	ррт	
grains per dry standard cubic foot	gr/DSCF	pound	1b	
gram	g	pounds per hour	lbs/hr	
grams per Brake horsepower hour	g/bhp-hr	pounds per million Btu	lbs/MMBtu	
kilowatt	kW	second	sec	
liter	1	Specific Volume, ft ³ /lb-mole	SV	
Megawatts	MW	Thousand	K	

Common Conversions / Calculations / Constants

1 gram = 15.432 grains

1 pound = 7000 grains

grams per pound = 453.6

bhp = 1.411 * Engine kW, (where Engine kW = Generator kW output / 0.95) @ 95% efficiency

g/bhp-hr = 453*ppm*(MW / (385E6))* 0.00848 * f-factor * (20.9 / (20.9-O₂)); CARB

g/bhp-hr = lbs/hr * 453.6 / bhp

2.59E-9 = Conversion factor for ppm to lbs/scf; EPA 40CFR60.45 @ 68°F

Correction Multiplier for Standard Temperature = $(460 + T_{std}. ^{\circ}F) / 528$

F factor: dscf / MMBTU @ $60^{\circ}F = 8579$, @ $68^{\circ}F = 8710$. @ $70^{\circ}F = 8743$ for natural gas

Btu/ft3: 1040

lb/hr Part. Emission Rate = 0.00857 * gr/dscf * dscfm; EPA Method 5

lbs/hr = ppm * dscfm * MW * 0.00008223 / (Std Temp + 460)

Correction to 12% CO₂ = gr/dscf * 12% / stack CO₂%; EPA Method 5

Correction to $3\% O_2 = ppm * 17.9 / (20.9 - stack O_2 \%)$; CARB Method 100

Correction to $15\% O_2 = ppm * 5.9 / (20.9 - stack O_2 \%)$; CARB Method 100

dscfm = Gas Fd * MMBtu/min * 20.9 / (20.9 - stack O₂ %); EPA Method 19

Lb/MMBtu @ $60^{\circ}F = Fd * M * ppm * 2.64E-9 * 20.9 / (20.9 - stack O_2 %);$

(a) 68°F = Fd * M * ppm * 2.59E-9 * 20.9 /(20.9 - stack O₂ %);

 $@70F = Fd * M * ppm * 2.58-9 * 20.9 / (20.9 - stack O_2 %)$

Standard Temperatures by District				
EPA	68 ºF	NSAPCD - Northern Sonoma	68 °F	
CARB	68 °F	PCAPCD - Placer	68 °F	
BAAQMD - Bay Area	70 ºF	SLOCAPCD - San Luis Obispo	60 °F	•
SJVUAPCD - San Joaquin	60 °F	SMAQMD - Sacramento	68°F de facto	
SCAQMD - South Coast	60 ºF	SCAQMD - Shasta County	68 °F	
MBUAPCD - Monterey Bay	68 °F	YSAPCD - Yolo-Solano	68 °F	
FRAQMD - Feather River	68 °F	AADBAPC – Amador County	68 °F	A-

CEM BIAS SYSTEM TEST SUMMARY FIELD DATA SHEET (EPA)

Facility:	City of Berkeley		Date:	7/15/2022	Personnel:	BA / BJ
Location:	Flare			·····		
	O ₂	NO _x	СО	THC		Comments
Analyzer	CAI 110	600	481	600		
Range	20.98	95.3	89.4	100		
Zero Value (N ₂)	0.00	0.00	0.00	0.00		
Cal Value (low)				26.88		
Cyl. #				DT27824		
Cyl. Exp. Date		· · · · ·		05/27/29		
Cal Value (mid)	11.59	45.30	54.50	43.50		
Cyl. #	CC50881	DT37052	CC707372	DT42922		
Cyl. Exp. Date	10/01/27	11/18/23	02/15/27	06/21/30		
Cal Value (Hi)	20.98	95.30	89.40	92.10		
Cyl. #	CC306150	CC308849	CC306150	CC506583		
Cyl. Exp. Date	11/22/29	10/02/27	11/22/29	03/10/29		

		CALIBRATIO	N ERROR CHE	<u>CK</u>	
Zero cal (int)	-0.10	0.00	0.03	-0.69	
Abs. Difference	0.10	 0.00	0.03	0.69	= or < 0.5 ppm
% Linearity	-0.5	0.0	0.0	-0.7	= or < 2%
low cal (int)				26.41	
Abs. Difference				0.47	= or < 0.5 ppm
% Linearity				-1.7	= 0r < 2%
mid cal (int)	11.52	45.56	54.51	44.39	
Abs. Difference	0.07	 0.26	0.01	0.89	= or < 0.5 ppm
% Linearity	-0.3	 0.3	0.0	2.0	= or < 2%
high cal (int)	20.98	 95.14	89.60	93.96	
Abs. Difference	0.00	0.16	0.20	1.86	= or < 0.5 ppm
% Linearity	0.0	-0.2	0.2	2.0	= or < 2%

OUT IND ATION EDDOD CITECIZ

INITIAL SYSTEM BIAS CHECK

Zero (int)	-0.10	0.00	0.03	-0.69	
Zero (ext)	-0.08	0.00	-0.74	0.73	
Abs. Difference	0.02	0.00	0.77	1.42	
bias, % High Cal	-0.1	0.0	0.9	-1.4	Limit (±5%)

Cal (int)	11.52	45.56	54.51	44.39	
Cal (ext)	11.56	45.27	54.09	44.07	
Abs. Difference	0.04	0.29	0.42	0.31	
bias, % High Cal	-0.2	0.3	0.5	0.3	Limit (±5%)

System response time =

Zero to Cal	Cal to Zero
60.0	60.0

The time required (in seconds) to achieve a 95% difference between ext zero to ext span or ext span to ext zero.

System Bias (Limit ± 5%) = 100 * <u>External cal - Internal cal</u> High Cal Gas Value

% Linearity (Limit ± 2%) = 100 * Span Value - Internal cal

High Cal Gas Value

% Converter Efficiency (Limit =/>90%) = 100 * Internal Cal / NO₂ Cal Gas Value

NO₂ Converter Test

NO ₂ Cal Gas	NO ₂ Value	% of Efficiency	Cyl. #	Cyl. Exp. Date
5.98	5.39	90.07%	CC503193	01/06/24

EPA Method 25A (THC) QC Cal. Error = <5% cal. Value 100 * (Cal Value - Cal Response) / Cal Value System Drift = <3% of Scale 100 * (final cal - initial cal) / Range

CEM BIAS SYSTEM TEST SUMMARY SHEET

Facility:	City of Berkel	ey		Date:	7/15/2022	Personnel:	BA / BJ
Location:	Flare						
	02	1	Nox	СО	THC	T	Comments
Analyzer	CAI 110		600	481	600		
Range	20.98		95,3	89.4	100		
Cal Value (low)	20.98		75.5	09.1	26.88		M25A only
Cyl. #					DT27824	-	M25A QC limits-below
Cyl. # Cal Value (mid)	11.59		45.3	54.5	43.5		
Cyl. #	CC50881		DT37052	CC707372	DT42922		
č	20.98		95.30	89.40	92.1		Calibration Span
Cal Value (Hi) Cyl. #	CC306150		CC308849	CC306150	CC506583		
Суі, #	1 CC300130	<u> </u>	000000				
zero cal (int)	-0.10	1	0.00	0.03	-0.69		
% Linearity	-0.48	1	0.00	0.03	-0.69		<2% or +/-0.5diff.
low cal (int)					26.41		
% Linearity					-1.7		<2% or +/-0.5diff.
mid cal (int)	11.52		45.56	54.51	44.39		
% Linearity	-0.3		0.3	0.0	2.0		<2% or +/-0.5diff.
high cal (int)	20.98	1	95.14	89.60	93.96		
% Linearity	0.0	1	-0.2	0.2	2.0		<2% or +/-0.5diff.
(<u>_</u>				d hereiter and a second se			
	0.10	<u> </u>	0.00	0.03	-0.69		
Zero (int)	-0.10	·	0.00				
Zero (ext)(i)	-0.08	1	0.00	-0.74	0.73		I imit (159/) or ±/ 0 5 diff
% Bias	0.1		0.0	-0.9	1.4		Limit (±5%) or +/-0.5diff.
Cal (int)	11.52		45.56	54.51	44.39		
Cal (ext) 1(i)	11.56		45.27 -0.3	54.09 -0.5	44.07 -0.3		Limit (±5%) or +/-0.5diff.
% Bias	0.2	<u></u>			-0.74		926-1001
Zero (ext) 1(f)	-0.17	-	0.01	-0.85	·····		920-1001 Run 1
Cal (ext) 1(f)	11.54		45.02	53.62	42.46		
Zero % Drift	-0.4		0.0	-0.1	-1.5		Limit (±3%) or +/-0.5diff.
Cal % Drift	-0.1		-0.3	-0.5	-1.6		Limit (±3%) or +/-0.5diff.
Zero % Bias	-0.3		0.0	-1.0	-0.1		Limit (±5%) or +/-0.5diff. Limit (±5%) or +/-0.5diff.
Cal % Bias	0.1		-0.6	-1.0	-1.9		Linit (±3 %) or +/-0.3uii.
Average	13.44	+	9.47	15.75	5.23		
Corr. Average	13.47	<u></u>	9.50	16.50	5.27	+	1014 1047
Zero (ext) 2(f)	-0.17		0.00	-0.97	1.24		1014-1047
Cal (ext) 2(f)	11.56		44.96	53.29	42.55	+	Run 2
Zero % Drift	0.0		0.0	-0.1	2.0		Limit (±3%) or +/-0.5diff.
Cal % Drift	0.1	+	-0.1	-0.4	0.1		Limit (±3%) or +/-0.5diff.
Zero % Bias	-0.3	+	0.0	-1.1	1.9		Limit (±5%) or +/-0.5diff.
Cal % Bias	0.2		-0.6	-1.4	-1.8		Limit (±5%) or +/-0.5diff.
Average	13.48		9.47	19.67	7.33		
Corr. Average	13.51		9.53	20.63	7.29		1101 1125
Zero (ext) 3(f)	-0.18		0.00	-1.01	0.83		1101-1135
Cal (ext) 3(f)	11.56		45.05	53.08	43.24		Run 3
Zero % Drift	-0.1		0.0	0.0	-0.4		Limit (±3%) or +/-0.5diff.
Cal % Drift	0.0		0.1	-0.2	0.7		Limit (±3%) or +/-0.5diff.
Zero % Bias	-0.4		0.0	-1.2	1.5		Limit (±5%) or +/-0.5diff.
Cal % Bias	0.2	<u> </u>	-0.5	-1.6	-1.1		Limit (±5%) or +/-0.5diff.
Average	13.59		9.20	34.84	6.96		
Corr. Average	13.60	L	9.26	36.04	6.16		

System Drift (Limit ± 3%) = 100 * External final cal - External Initial cal Cal Value (Hi)

System Bias (Limit ± 5%) = 100 * <u>External cal - Internal cal</u> Cal Value (Hi)

EPA Method 25A (THC) QC Cal. Error = <5% cal. Value 100 * (Cal Value - Cal Response) / Cal Value System Drift = <3% of Scale 100 * (final cal - Initial cal) / Range

% Linearity (Limit ± 2%) = 100 * Span Value - Internal cal

Cal Value (Hi)

 $Corrected \ Average = [Test \ Avg. - ((Zi+Zf) \ / \ 2)] * \ Span \ Gas \ Value \ / \ [((Si+Sf) \ / \ 2)-((Zi+Zf) \ / \ 2)]$

STACK GAS FLOW RATE DETERMINATION -- FUEL USAGE EPA Method 19

Facility: Unit: Condition: Date: Personell: Time:	City of Berkeley Flare Normal 7/15/2022 BA / BJ	926- Ru		1014-1047 Run 2	1101-1135 Run3	
Gross Calo	rific Value	26	i0	248	267	Btu / ft³
Stack Oxyg	gen	13.	47	13.51	13.60	%
Gas Fd-Fac	ctor @ 70°F	10,	553	10,686	10,438	DSCF/MMBtu
Standard T	emperature (°F)	70)	70	70	°F
					-	
Corrected I	Fuel Rate (SCFM)	65.	56	65.59	65.57	SCFM
Fuel Flowr	ate (SCFH)	3,9	34	3,935	3,934	SCFH
Million Btı	1 per minute	0.0	17	0.016	0.018	MMBtu/min
Heat Input	(MMBtu/hour)	. 1.0	02	0.98	1.05	MMBtu/Hr

Stack Gas Flow Rate	506	491	523	DSCFM
			· · · · ·	•

WHERE:

Gas Fd-Factor = Fuel conversion factor (ratio of combustion gas volumes to heat inputs) MMBtu = Milion Btu

CALCULATIONS:

SCFM = CFM * 528 * (gas line PSIA) / 14.7 / (gas °F + 460) MMBtu/min = (SCFM * Btu/ft³) / 1,000,000 DSCFM = Gas Fd-Factor * MMBtu/min * 20.9/ (20.9 - stack oxygen%) SCFH = SCFM * 60 Heat Input = MMBtu/min * 60

APPENDIX B LAB REPORTS

BEST ENVIRONMENTAL

339 Stealth Court Livermore, California 94551 (925) 455-9474 FAX (925) 455-9479 <u>bestair@best-enviro.com</u>

August 8, 2022

Subject: On July 15, 2021 Best Environmental collected three inlet and three outlet samples from the Berkeley Marina Landfill Source Test.

CLIENT:SCS Field ServicesPROJECT NAME:Berkeley Marina Source TestBE PROJECT NO:312ANALYSIS DATE:7/16/22

Sample ID	Lab Sample Number
Run 1 Inlet	9030
Run 2 Inlet	9031
Run 3 Inlet	9032
Run 1 Outlet	9049
Run 2 Outlet	9050
Run 3 Outlet	9051

The samples were analyzed in accordance with EPA Method 18 (CH₄) & ASTM D-1945/3588/6228 (fuel composition analysis, High heat value calculations and Fuel Sulfur).

The following pages present the inlet and outlet VOC and LFG gas composition analytical results with calculated HHV. A chain of custody can also be found in this report. This Lab report contains a total of 1@pages.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples.

If you have any questions concerning these results, or if Best Environmental can be of any further assistance, please contact me at (925) 455-9474 x 103.

Submitted by,

Bobby Asfour Lab Director

EPA Methods 3C, 18, 25C & ASTM D-1945/3588/6228

Facility: City of Berkeley Marina Landfill

Date: 7/15/00

Source: LFG Flare

Lab Personnel: BA

Project #: 312

Test Date: 7/15/22

Analysis Date: 7/16/22

CH4 Analysis (M18)

M-18 Duplicate Inlet % R1/Inlet Limit ppm CH4 Lab ID Time Run # CH4 C2 as CH4 C2 as CH4 9030 926 Run 1 25.7 18.5 25.20 17.89 24.5 17.7 2.04 3.46 15% 1014 Run 2 9031 9032 1101 Run 3 26.3 16.5

		Outlet	ppm	ppm	
		Run #	CH4	C2 as CH4	
9049	926	Run 1	3.45	ND	
9050	1014	Run 2	3.48	ND	
9051	1101	Run 3	3.79	ND	

Inlet	
H2S	ppmv
R1	1.52
R2	2.58
R3	1.05

DL	outlet	Inlet	
CH4	<1	<0.2	ppm/%
C2	<1	<1	ppm
C3+ as methane	<1	<1	ppm

GC/FID/FPD/TCD: SRI 8610C

Column: 3 foot Haysep D, 60M capillary, 12' 13x Packed column Chromatic integration: Peak444 Peaksimple by SRI Gas Standards: Propane in air/C1-C6 n-alkane in N2 H2S in N2

Natural gas standard in Methane

Fuel Analysis-R1 inlet

Helium	0.04	%
Hydrogen	0.11	%
Nitrogen	45.28	%
Oxygen	5.67	%
Carbon Mo	0.00	
Carbon Dio	22.75	%
Methane	25.73	%
Ethane	0.00	%
Propane	0.00	%
Isobutane	0.00	%
n-Butane	0.00	%
Isopentane	0.00	%
n-Pentane	0.00	%
Hexanes	0.00	%

Fd-Factor	10,553
нн∨	260

Fuel Analysis-R2 Inlet 0.01 % Helium 0.15 % Hydrogen 45.63 % Nitrogen 5.99 % Oxygen Carbon Mo 0.00 % Carbon Dio 22.42 % Methane 24.52 % %

weulane	27.02	
Ethane	0.00	
Propane	0.00	
Isobutane	0.00	%
n-Butane	0.00	%
Isopentane	0.00	%
n-Pentane	0.00	
Hexanes	0.00	%

Fd-Factor	10,686
HHV	248

Fuel Analysis-R3 Inlet				
Helium	0.02	%		
Hydrogen	0.38	%		
Nitrogen	45.15	%		
Oxygen	5.83	%		
СО	0.00	%		
CO2	22.17	%		
Methane	26.35	%		
Ethane	0.00	%		
Propane	0.00	%		
Isobutane	0.00	%		
n-Butane	0.00			
Isopentane	0.00	%		
n-Pentane	0.00	%		
Hexanes	0.00	%		

Fd-Factor	10,438	dscf/MMBtu @
HHV	267	BTU/cf

M18)

Gas Chromotography QA/QC Results

Facility:	City of Berkeley Marina Landfill	
-----------	----------------------------------	--

Source: LFG Flare

Test Date:

7/15/22

Lab Personnel: BA

Analysis Date: 7/16/22

Cal Curve Date: 7/1/22

	Daily Blank & R.T.			limit
	C1/CH4	C2/ethane	C3+/NMNEHC	DL
He Gas	ND	ND	ND	
C1-C6 gas	2.96	4.46	5.73	

* C1-C6 gas used to determine retention times

	initial cal	nethane		
conc.	92.1	255.1	8970	
area ct.	20.8	58.64	2015.5	

	3 point Cal-3 injections each (area ct)			limit	
	20.8	20.8 58.5 2015.5			
	20.9	59	2016		
	20.99				
average	20.90	58.73	2015.17		
Deviation	0.10	0.25	1.04		
% diff	0.45	0.43	0.05	<5	

H2S Caibration Check		area ct		
Cal value	171			
Response	172		3231	
% Diff.	-0.58		<15	

		post cal		limit
	92.1	255.1	8322	
	91.1	244.2	8215	
% diff	1.09	4.27	1.29	<15%

EPA Method 3C/ASTM D-1945 Daily Calibrations						
Method Required	Actual	Results	% Diff.			
Values	Value					
N2	2	2.1	5.00			
02	1	1.006	0.60			
со	0.1	0.0995	-0.50			
CO2	44	46	4.55			
CH4	52	51	-1.92			

UOM: ppm

Analyzed By

an Test Assay:

Me

Jose Vasquez

172

ppm

DocNumber: 444964

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 **PGVP ID: F22022**

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS Fill Date: 12/09/2021 Certificate Issuance Date: 01/06/2022 Customer & Order Information Lot Number: 70086134305 Linde Order Number: 59001704 BEST ENVIRONMENTAL SERVICES CGA 330 Cylinder Style & Outlet: AS Part Number: EV NIHS170ME-AS 339 STEALTH CT LIVERMORE CA 94551 140 ft3 Customer PO Number: 32 Cylinder Pressure and Volume: 2000 psig **ProSpec EZ Cert Certified** Concentration **NIST Traceable** Expiration Date: 01/05/2025 Expanded Uncertainty Cylinder Number: SA4842 ± 2 ppm 171 ppm Hydrogen sulfide Balance Nitrogen Term: 36 Months Expiration Date: 01/05/2025 **Certification Information:** Certification Date: 01/05/2022 This cylindar was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard If Pressure is less than 100 PSIG. (R=Reference Standard, Z=Zero Ges, C=Gas Candidate) Analytical Data: Type / Cylinder #: GMIS / DT0009254 Component: Hydrogen sulfide Reference Standard: Concentration / Uncertainty: 251 ppm ±2 ppm Requested Concentration: 170 ppm Expiration Date: 07/17/2024 Certified Concentration: 171 ppm SRM # / Sample # / Cylinder #: PRM / C2103401 / D587474 Ametek Series 9900 S/N ZW-9900-S1330-1 Traceable to: Instrument Used: SRM Concentration / Uncertainty: 400.4 ppm / ±3.2 ppm UV Spectrometry Analytical Method: SRM Expiration Date: 05/20/2024 Last Multipoint Calibration: 12/30/2021 First Analysis Data: Date 12/29/2021 Second Analysis Data: Date 01/05/2022 171 0 R: 251 172 Conc: 172 Z: Ó R: 251 C: 171 Conc: Z: C: 171 Z: 0 C: 171 Conc: 171 R: 251 Z: 0 c: 171 Conc: R: 251 ß 251 171 173 171 Conc: 173 R: Conc: 0 C; R: Z: 0 C: Z:

UOM: ppm

Amalia Real

Certified By

Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any put The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arisin of the use of the information contained herein exceed the fee established for providing such information.

171

ppm

Mean Test Assay:

Making our world more productive

Customer & Order Information:

Linde Order Number: 71954931

Customer PO Number: 79956654

LGEPKG FREMONT CA HP

41446 CHRISTY STREET,

FREMONT, CA 94538-5105

Linde Gas & Equipment Inc. ISO 9001 Registered 37256 Highway 30 Gelsmar, LA 70734 Tel: 225-677-7700 Fax: 225-673-3531

Certificate Issuance Date: 1/27/2022

Certification Date: 1/27/2022 Lot Number: 70340 2026 6J Part Number: HE BU100X2C-A3 DocNumber: 482274 Expiration Date: 1/26/2024

CERTIFICATE OF ANALYSIS Certified Standard

Ethane $2 \circ 100 \text{ ppm}$ 95.5 ppm $1 \pm 2\%$ n-Hexane 86.18100 ppm 91.9 ppm $1 \pm 2\%$ Methane $16 100 \text{ ppm}$ 99.4 ppm $1 \pm 2\%$ n-Pentane 72.5100 ppm 93.7 ppm $1 \pm 2\%$ Propane $\sqrt{4}100 \text{ ppm}$ 97.6 ppm $1 \pm 2\%$	
Ethane 2 \circ 100 ppm 95.5 ppm 1 \pm 2 % n-Hexane \Im 6. [§ 100 ppm 91.9 ppm 1 \pm 2 % Methane 1 6 100 ppm 99.4 ppm 1 \pm 2 % n-Pentane 1 6 100 ppm 93.7 ppm 1 \pm 2 % Propane 71.15 100 ppm 97.6 ppm 1 \pm 2 % Helium 99.94 % 99.94259 % 2 N/A Cylinder Style: A3 Fill Date: 1/26/2022 Filling Method: Gravimetric Analysis Date: 1/26/2022 Filling Method: Gravimetric	
Ethane $2 \circ 100 \text{ ppm}$ 95.5 ppm $1 \pm 2\%$ n-Hexane 36.18100 ppm 91.9 ppm $1 \pm 2\%$ Methane 16.100 ppm 99.4 ppm $1 \pm 2\%$ n-Pentane 16.100 ppm 99.4 ppm $1 \pm 2\%$ Propane 16.100 ppm 93.7 ppm $1 \pm 2\%$ Helium 99.94% 99.94259% 2 N/A Cylinder Style: A3Fill Date: $1/26/2022$ Filling Method: GravimetricCylinder Pressure @ 70 F: 1200 psig Cylinder Volume: 16.5 ft3Fill Date: $1/26/2022$ Filling Method: Gravimetric	
Methane $1 \\ 6 \\ 100 ppm$ $99.4 ppm$ $1 \\ \pm 2\%$ n-Pentane $1 \\ 72 \\ 5 \\ 100 ppm$ $93.7 ppm$ $1 \\ \pm 2\%$ Propane $1 \\ 4 \\ 100 ppm$ $97.6 ppm$ $1 \\ \pm 2\%$ Helium 99.94% 99.94259% $2 \\ N/A$ Cylinder Style: A3Fill Date: $1/26/2022$ Filling Method: GravimetricCylinder Pressure @ 70 F: 1200 psig Cylinder Volume: 16.5 ft3Fill Date: $1/26/2022$ Filling Method: Gravimetric	
n-Pentane 72.5 100 ppm93.7 ppm1 $\pm 2\%$ Propane 72.5 100 ppm97.6 ppm1 $\pm 2\%$ Helium99.94 %99.94259 %2N/ACylinder Style: A3Fill Date: 1/26/2022Filling Method: GravimetricCylinder Pressure @ 70 F: 1200 psig Cylinder Volume: 16.5 ft3Fill Date: 1/26/2022Filling Method: Gravimetric	
Propane72.13 to ppm97.6 ppm1± 2 %Helium99.94 %99.94259 %2N/ACylinder Style: A3Cylinder Style: A3Fill Date: 1/26/2022Filling Method: GravimetricCylinder Pressure @ 70 F: 1200 psig Cylinder Volume: 16.5 ft3Analysis Date: 1/26/2022Filling Method: Gravimetric	
Propane 1 ± 2 % Helium 99,94 % 99,94259 % 2 N/A Cylinder Style: A3 Fill Date: 1/26/2022 Filling Method: Gravimetric Cylinder Pressure @ 70 F: 1200 psig Analysis Date: 1/26/2022 Filling Method: Gravimetric Cylinder Volume: 16.5 ft3 16.5 ft3 100 ppm 97.6 ppm 1 ± 2 %	
Helium99<94 %99.94259 %2N/ACylinder Style: A3Fill Date: 1/26/2022Filling Method: GravimetricCylinder Pressure @ 70 F: 1200 psig Cylinder Volume: 16.5 ft3Analysis Date: 1/26/2022Filling Method: Gravimetric	
Cylinder Style: A3 Cylinder Pressure @ 70 F: 1200 psig Cylinder Volume: 16.5 ft3 Fill Date: 1/26/2022 Filling Method: Gravimetric Filling Method: Gravimetric Filling Method: Gravimetric	
Cylinder Number(s): EX0013583	
Analyst: Craig Billigt QA Reviewer: Kristen Hanna	
Key to Analytical Techniques:	
Reference Analytical Instrument - Analytical Principle	
1 Agilent 7890B - Gas Chromatography with FID 2 N/A - By Difference of Other Components	
1	
ţ:	
The gas calibration cylinder standard prepared by Unde Gas & Equipment inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure tachniques calibration standard provided is certified against. Unde Gas & Equipment inc. Reference Materials which are traceable to the international System of Units (SI) through either weights tr National institute of Standards and Technology (NIST) or Measurement Cenada, or through NIST Standard Reference Meterials or equivalent where available.	s. The raceable to the
Note: All expressions for concentration (e.g., % or ppm) ere for gas phese, by mole unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.	
IMPORTANT The information contained herein has been prepared at your request by personnel within Linde Ges & Equipment Inc. While we believe the information is accurate within the limits of the methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any par The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shell liability of Linde Gas & Equipment Inc. aris	
use of the information conteined whit the understanding that any use of the mornation is at the sole discretion and task of the user. In no event shell liebility of Linde Gas & Equipment Inc, and	nicular purpose.
	nicular purpose.

PRAXAIR

Making our planet more productive

DocNumber: 405533

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS Certificate Issuance Date: 03/11/2021 Fill Date: 02/25/2021 Customer & Order Information Lot Number: 70086105605 Praxair Order Number: 36989506 BEST ENVIRONMENTAL SERVICES CGA 590 Part Number, EV AIPR30ME-AS Cylinder Style & Outlet: AS 339 STEALTH CT LIVERMORE CA 94551 Cylinder Pressure and Volume: 2000 psig 140 ft3 Customar PO Number: 6 ProSpec EZ Cert **Certified Concentration** NIST Traceable Expiration Date: 03/10/2029 Expanded Uncertainty Cylinder Number: CC506583 ± 0,1 ppm 30.7 ppm Propane Balance Air Expiration Date: 03/10/2029 Certification Date: 03/10/2021 Term: 96 Months Certification Information: This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG. (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data: Type / Cylinder #: GMIS / CC302220 **Reference Standard:** 1. Component: Propane Concentration / Uncertainty: 50,68 ppm ±0.13 ppm Requested Concentration: 30 ppm Expiration Date: 07/06/2023 Certified Concentration: 30,7 ppm SRM # / Sample # / Cylinder #: SRM 1667b / 83-J-17 / CAL017783 Horiba FIA-510, 851135122 Traceable to: instrument Lised: SRM Concentration (enter with units) / 48.83 ppm / ±0.11 ppm Analytical Method: FID Total Hydrocarbon Analyzer SRM Expiration Dete: 08/17/2017 Last Multipoint Calibration: 03/05/2021 Date 03/10/2021 Date Second Analysis Data First Analysis Data: Conc: 0 30.7 R: C: 0 0 Z: 0 R: 136.8 C: 82.9 Conc: z: 0 Conc: 0 0 C: 82.8 Conc: 30.7 R: 0 Z: 0 C: 0 R: 136.8 Z: 0 Conc: 0 30.7 Z; 0 C: 0 R: 136.9 Conc: Z: 0 C: 82.8 R: Mean Test Assay: ppm 30.7 UOM: ppm Mean Test Assav: ppm UOM: ppm Certified By Analyzed By Jose Vasquez

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the an your methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

Making our planet more productive

DocNumber: 315881

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22020

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

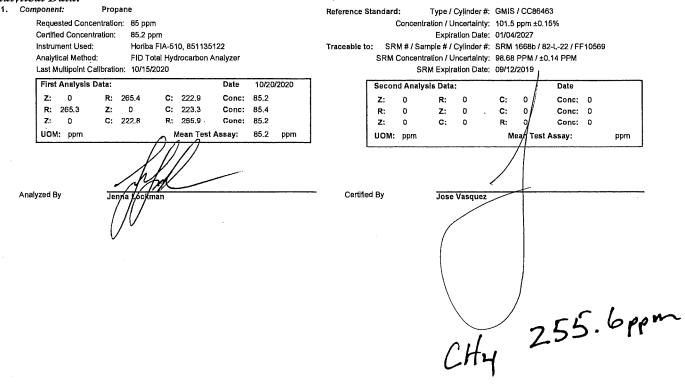
Customer & Order Information

BEST ENVIRONMENTAL SERVICES 339 STEALTH CT LIVERMORE CA 94551 Certificate Issuance Date: 10/20/2020 Praxair Order Number: 25533164 Part Number: EV AIPR85ME-AS Customer PO Number: 9096 Fill Date: 10/14/2020 Lot Number: 70086028806 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 tt3

Certified ConcentrationProSpec EZ CertExpiration Date:10/20/2028NIST TraceableCylinder Number:SA8052Expanded Uncertainty85.2 ppmPropane± 0.5 %BalanceAir

Certification Information:

Certification Date: 10/20/2020

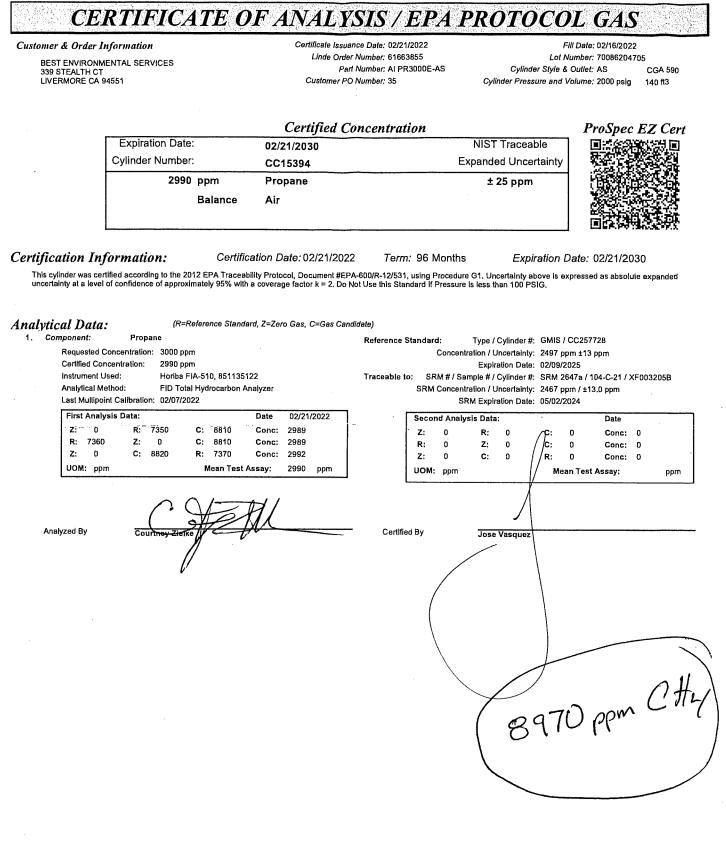

Term: 96 Months

Expiration Date: 10/20/2028

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as relative expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data:

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)



DocNumber: 448691

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022

CALIBRATO GAS MXTR

GAS COMPOSITION

apponents. Concentrations IN ^{Hoogen} 1.00% hygen 1.00% Carbon Monoxide Carbon Dioxide Metrane

^{V lanber, F1035VMLF} A Line (1030 Vinc.) A Lilers @ SUU Port And the Certified Stance

/#12555

11 0038

@ 18078555 ! SI N.

ALI

Bai R MESA Specially Gases & ES TEL (666) 470-MESA (6378) e-mail: mail@mesaglis call WMW.mesagas.com

Date Notarib

Bes	Best Environmental	tental						Ph (925) 455-9474; Fx (925) 455-9479	925) 455-9479
	Project ID: Analvical Lab	:	City of Berkeley RF	SAMPLE	SAMPLE CHAIN OF CUSTODY	CUSTO	DY BE PROJECT MANAGER:	NAGER:	•
#	DATE	TIME	SAMPLE ID Run#/Method/Fraction/Source	CONTAINER size / type	NER Volume	Storage e Temp ^o F	E SAMPLE DESCRIPTION F	ANALYSIS	TAT
1	7/15/22	926	$\mathcal{A}_{\beta}^{\ \beta}\mathcal{A}_{\beta}^{\ O}$ Run 1/inlet				LFG	M18 + Comp Fuel	Norm.
2		1014	071	10L/Tedlar	dlar	Amb.	LFG	M18 + Comp Fuel	Norm.
3		1101	2	10L/Tedlar	dlar	Amb.	LFG	M18 + Comp Fuel	Norm.
4									
5		926	M_{0} 4 M Run 1/outlet	10L/Tedlar	dlar	Amb.	Exhuast Gas	M18	Norm.
6		1014	20.50 Run 2/outlet	10L/Tedlar	dlar	Amb.	Exhuast Gas	M18	Norm.
7	•	1101	1	10L/Tedlar	dlar 🔶	Amb.	Exhuast Gas	M18	Norm.
8			-						
6									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
SPI	ECIAL INS	TRUCTIO	SPECIAL INSTRUCTIONS: Record & Report all liquid sample volumes.	sample volumes.					
) ^				<u>, , , , , , , , , , , , , , , , , , , </u>
					C A				
Sul	Submit Results to: Attn:	s to: Attn:	Bobby Asfour		BE	ST ENVIR	BEST ENVIRONMENTAL 339 STEALTH COURT LIVERMORE CA. 94551	ERMORE CA. 94551	
	Relinquished by:	d by:		Received by:	alle in the		Date:	Time:	
	Relinquished by:	d by:		Received by:				Time:	

f:VormsVield\coc.xls - 6/4/99

Ginquished by: MPLE CONDITION AS RECEIVED: OK <u>or</u> not OK

Time:

_Date:___

Received by:__

CLIENT	: Best Environmental
PROJECT NAME	: City Berkeley Flare
AAC PROJECT NO.	: 221529
REPORT DATE	: 08/10/2022

On July 20th, 2022, Atmospheric Analysis & Consulting, Inc. received three (3) Six-Liter Summa Canisters for TNMOC analysis by EPA 25C. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.	Return Pressure (mmHg)
LFG R1	221529-33751	777.5
LFG R2	221529-33752	749.0
LFG R3	221529-33753	743.0

This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data.

If you have any questions or require further explanation of data results, please contact the undersigned.

echnical

This report consists of 4 pages.

www.aaclab.com

Laboratory Analysis Report

Client : Best Environmental Project No. : 221529 Matrix : AIR Units : ppmC Sampling Date : 07/15/2022 Receiving Date : 07/20/2022 Analysis Date : 08/10/2022 Report Date : 08/10/2022

EPA 25C

Reporting Lim	it: 3.0 ppmC	Canister	Analysis	TNMOC*	SRL
Client Sample ID	AACID	Dilution Factor	Dilution Factor		(RL x DF's)
LFG R1	221529-33751	1.3	1.0	226	3.9
LFG R2	221529-33752	1.4	1.0	187	4.1
LFG R3	221529-33753	1.4	1.0	. 185	4.1

Sample Reporting Limit (SRL) is equal to Reporting Limit x Analysis Dil. Fac x Canister Dil. Fac.

*Total Non-Methane Organic Carbon

(805) 650-1642

www.aaclab.com

Quality Control/Quality Assurance Report

Analysis Date	: 08/10/2022
Analyst	: MR
Units	: ppmv

Instrument ID: : Calibration Date: :

: GCTCA#2-FII : 7/18/2022

I - Opening Calib	oration Verific:	ation Standar	d - Method 25C
 Analyte	xRF	DRF	%RPD*
 Propage	119363	126680	5.9

II - TNMOC Response Factor - Method 25C

Analyte	xRF	CV RF	CV dp RF	CV tp RF	Average RF	% RPD***
Propane	119363	126680	125233	125159	125691	5.2

III - Method Blank - Method 25C

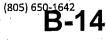
AAC ID	Analyte	Sample Result		
MB	TNMOC	0.00		

IV - Laboratory Control Spike & Duplicate - Method 25C

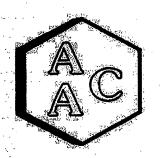
AAC ID Analyte	Spike Added	LCS	LLOU	LCS		% RPD***
LCS/LCSD Propane	51.0	52.30	52.27	102.6	102.6	0.1

V - Closing Calibration Verification Standard - Method 25C

Analyte	xCF	dCF	%RPD*
Propane	119363	122523	2.6


xCF - Average Calibration Factor from Initial Calibration Curve

dCF - Daily Calibration Factor


* Must be <15%

** Must be 90-110 %

*** Must be <20%

Project ID: City Ber Analyical Lab: AMC DATE TIME 7-JC: 77 930 14
930
[]]al
1105
-
Ţ
rd & Report all liquid sample volumes.
Relinquished by:

CLIENT PROJECT NAME AAC PROJECT NO. REPORT DATE Best Environmental
City Berkeley Flare
221529
08/03/2022

On July 20, 2022, Atmospheric Analysis & Consulting, Inc. received three (3) Six-Liter Summa Canisters for Volatile Organic Compounds analysis by EPA Method TO-15. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab ID	Return Pressure (mmHga)
LFG R1	221529-33751	777.5
LFG R2	221529-33752	749.0
LFG R3	221529-33753	743.0

This analysis is accredited under the laboratory's ISO/IEC 17025:2017 accreditation issued by the ANSI National Accreditation Board. Refer to certificate and scope of accreditation AT-1908. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

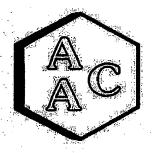
I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples.

The Technical Director or his designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha Parmar, Ph4D

Technical Director


This report consists of 10 pages.

Page 1

2225 Sperry Ave., Ventura, CA 93003

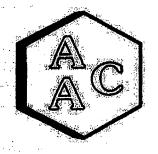
www.aaclab.com • (805) 650-1642

Laboratory Analysis Report

CLIENT : Best Environmental PROJECT NO : 221529 MATRIX : AIR UNITS : PPB (v/v)

DATE RECEIVED : 07/20/2022 DATE REPORTED : 08/03/2022 ANALYST : MB/DL ÷Č

- 515 - 515 - 1 - 1


VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	T	LFG RI	/			LFG R2			
AAC ID	+	221529-337	/51	Sample		221529-337	52	Sample	Method
Date Sampled		07/15/202		Reporting		07/15/202		Reporting	Reporting
Date Analyzed	1	07/20/202		Limit		07/20/202		Limit	
Can Dilution Factor	1	1.31	<u> </u>	(SRL)		1,35		(SRL)	Limit
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)
Chlorodifluoromethane	173	·	5	3.27	142	· · · · · · · · · · · · · · · · · · ·	5	3.38	0.50
Propene	247		5	6.55	189		· 5	6,75	1.00
Dichlorodifluoromethane	116		5	3.27	93,9		5	3,38	0.50
Chloromethane	<srl< td=""><td>ប</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	ប	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
Dichlorotetrafluoroethane	76.7		5	3.27	66.1		5	3.38	0.50
Vinyl Chloride	8.51		5	3.27	7.70	-	5	3.38	0,50
Methanol	8.32	J	5	32.7	8.64	J	5	33.8	5,00
1,3-Butadiene	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>- 5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>- 5</td><td>3,38</td><td>0.50</td></srl<>	U	- 5	3,38	0.50
Bromomethane	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U .</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U .</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U .	5	3.38	0.50
Chloroethane	<srl< td=""><td>U</td><td>· 5</td><td>3.27</td><td><srl< td=""><td>U · ·</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	· 5	3.27	<srl< td=""><td>U · ·</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	U · ·	5	3,38	0.50
Dichlorofluoromethane	5.11		5	3.27	4.52		5	3.38	0.50
Ethanol	<srl< td=""><td>U</td><td>5</td><td>13.1</td><td><srl< td=""><td>U</td><td>5</td><td>13.5</td><td>2.00</td></srl<></td></srl<>	U	5	13.1	<srl< td=""><td>U</td><td>5</td><td>13.5</td><td>2.00</td></srl<>	U	5	13.5	2.00
Vinvl Bromide	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>· 5</td><td>3.38</td><td>0,50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>· 5</td><td>3.38</td><td>0,50</td></srl<>	U	· 5	3.38	0,50
Acetone	<srl< td=""><td>U</td><td>5</td><td>13.1</td><td><srl< td=""><td>U</td><td>5</td><td>13.5</td><td>2:00</td></srl<></td></srl<>	U	5	13.1	<srl< td=""><td>U</td><td>5</td><td>13.5</td><td>2:00</td></srl<>	U	5	13.5	2:00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>5</td><td>3,27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3,27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
2-Propanol (IPA)	<srl< td=""><td>U</td><td>5</td><td>13.1</td><td><srl< td=""><td>· · U</td><td>5</td><td>13,5</td><td>2.00</td></srl<></td></srl<>	U	5	13.1	<srl< td=""><td>· · U</td><td>5</td><td>13,5</td><td>2.00</td></srl<>	· · U	5	13,5	2.00
Acrylonitrile	<srl< td=""><td>U</td><td>5</td><td>6.55</td><td><srl< td=""><td>Ū</td><td>5</td><td>6.75</td><td>1.00</td></srl<></td></srl<>	U	5	6.55	<srl< td=""><td>Ū</td><td>5</td><td>6.75</td><td>1.00</td></srl<>	Ū	5	6.75	1.00
1.1-Dichloroethene	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5 ·</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5 ·</td><td>3.38</td><td>0.50</td></srl<>	U	5 ·	3.38	0.50
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>. 5</td><td>6.55</td><td><srl< td=""><td>U</td><td>. 5</td><td>6.75</td><td>1.00</td></srl<></td></srl<>	U	. 5	6.55	<srl< td=""><td>U</td><td>. 5</td><td>6.75</td><td>1.00</td></srl<>	U	. 5	6.75	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>.5</td><td>6.55</td><td><srl< td=""><td>U</td><td>5</td><td>6.75</td><td>1.00</td></srl<></td></srl<>	U	.5	6.55	<srl< td=""><td>U</td><td>5</td><td>6.75</td><td>1.00</td></srl<>	U	5	6.75	1.00
Carbon Disulfide	8.19		5	6.55	<srl< td=""><td>U</td><td>5</td><td>6.75</td><td>1.00</td></srl<>	U	5	6.75	1.00
Trichlorotrifluoroethane	<srl< td=""><td>·U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	·U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	U	5	3,38	0.50
trans-1.2-Dichloroethene	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
1.1-Dichloroethane	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>5</td><td>3,27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3,27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
Vinyl Acetate	<srl< td=""><td>U</td><td>5</td><td>6.55</td><td>108</td><td></td><td>5</td><td>6.75</td><td>1.00</td></srl<>	U	5	6.55	108		5	6.75	1.00
2-Butanone (MEK)	<srl< td=""><td>U</td><td>5</td><td>6,55</td><td><srl< td=""><td>U</td><td>5</td><td>6.75</td><td>1.00</td></srl<></td></srl<>	U	5	6,55	<srl< td=""><td>U</td><td>5</td><td>6.75</td><td>1.00</td></srl<>	U	5	6.75	1.00
cis-1,2-Dichloroethene	3.80		5	3.27	3.78		5	3,38	0.50
Hexane	329		5	3.27	259		5	3.38	0.50
Chloroform	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
Ethyl Acetate	<srl< td=""><td>U</td><td>5 ·</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5 ·	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
Tetrahydrofuran	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0,50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0,50</td></srl<>	U	5	3,38	0,50
1.2-Dichloroethane	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>·U</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>·U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	·U	5	3,38	0.50
1,1,1-Trichloroethane	<srl< td=""><td>Û</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	Û	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	U	5	3,38	0.50
Benzene	38.4		5	3.27	32.1		- 5	3.38	0.50

Page 2

-

 $\textcircled{\blue}{\blue}$

Laboratory Analysis Report

CLIENT : Best Environmental PROJECT NO : 221529 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 07/20/2022 DATE REPORTED : 08/03/2022 ANALYST : MB/DL

VI, Ž

2.6

4

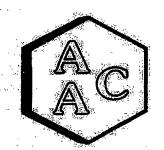
8

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

	TEC DI		T .		LFG R2			
		E1	Sample					Method
			Reporting				Reporting	Reporting
<u> </u>							Limit	Limit
		4					(SRL)	
				D 14	1	Amalunia DE		(MRL)
			1					0.60
	<u> </u>				0			0.50
					<u> </u>			0.50
								0.50
								1.00
	U							0,50
					ļ			0.50
105								0.50
<srl< td=""><td>U</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.50</td></srl<>	U							0.50
<srl< td=""><td>U . U</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td>0.50</td></srl<>	U . U	5						0.50
<srl< td=""><td>U</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td>0,50</td></srl<>	U	5						0,50
<srl< td=""><td>U.</td><td>5</td><td>3,27</td><td></td><td>U</td><td></td><td></td><td>0.50</td></srl<>	U.	5	3,27		U			0.50
7.73		5	3.27					0.50
<srl< td=""><td>U</td><td>5</td><td>6.55</td><td></td><td></td><td></td><td></td><td>1.00</td></srl<>	U	5	6.55					1.00
<srl< td=""><td>U</td><td>5</td><td>3.27</td><td></td><td></td><td></td><td></td><td>0.50</td></srl<>	U	5	3.27					0.50
<srl< td=""><td>U</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td>0,50</td></srl<>	U	5						0,50
<srl< td=""><td>U</td><td>5</td><td>3,27</td><td></td><td>U</td><td></td><td></td><td>0,50</td></srl<>	U	5	3,27		U			0,50
80.6		5	3.27	84.1				0.50
4.19		5	3.27	6.14				0,50
8.12		5	6,55					1,00
<srl< td=""><td>U</td><td>. 5 .</td><td>3,27</td><td></td><td></td><td></td><td></td><td>0.50</td></srl<>	U	. 5 .	3,27					0.50
<srl< td=""><td>U ·</td><td>5</td><td>3.27</td><td><srl< td=""><td></td><td></td><td></td><td>0.50</td></srl<></td></srl<>	U ·	5	3.27	<srl< td=""><td></td><td></td><td></td><td>0.50</td></srl<>				0.50
	Ū	5.	3.27	<srl< td=""><td>U</td><td></td><td></td><td>0.50</td></srl<>	U			0.50
		5	3,27	9,59		5		0,50
	U	5	3,27	<srl< td=""><td>U</td><td>5.</td><td>3.38</td><td>0.50</td></srl<>	U	5.	3.38	0.50
		5	3.27	<srl< td=""><td>Ŭ</td><td>5</td><td></td><td>0.50</td></srl<>	Ŭ	5		0.50
	1	5	3.27	5,40		5.		0,50
	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
		5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
	<u>├ŏ</u>			39,0		5	3.38	0.50
		5		4.59		5	3.38	0.50
	<u> </u>				U	5	6.75	1.00
		5			Ŭ	5	3.38	0.50
+	95%	<u>† – – – – – – – – – – – – – – – – – – –</u>			97%			70-130%
	<srl< p=""> <srl< p=""> <srl< p=""> SRL 7.73 <srl< p=""> <srl< p=""> <srl< p=""> <srl< p=""> <srl< p=""> 80.6 4.19 8.12</srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<>	07/15/202 07/20/202 1.31 Result Qualifier <srl< td=""> U <srl< td=""> U <srl< td=""> U <srl< td=""> U <srl< td=""> U <srl< td=""> U <srl< td=""> U <srl< td=""> U <srl< td=""> U <srl< td=""> U <srl< td=""> U <srl< td=""> U</srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

U - Compound was not detected at or above the SRL.

· · · ·


Page 3

÷

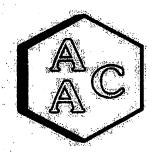
Β

2225 Sperry Ave., Ventura, CA 93003

Laboratory Analysis Report

CLIENT : Best Environmental PROJECT NO : 221529 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 07/20/2022 DATE REPORTED : 08/03/2022 ANALYST : MB/DL . .

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15


Client ID		LFG R3		Sec. 1	
AAC ID		221529-337		Sample	Method
Date Sampled		07/15/202		Reporting	Reporting
Date Analyzed		07/20/202		Limit	Limit
Can Dilution Factor		1.37		(SRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)
Chlorodifluoromethane	142	[5	3.41	0,50
Propene	202		5	6,83	1,00
Dichlorodifluoromethane	98,2	•	5	3,41	0.50
Chloromethane	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50
Dichlorotetrafluoroethane	67.0		5	3,41	0.50
Vinyl Chloride	7.37		5	3.41	0.50
Methanol	8.74	J	5	34.1	5.00
1.3-Butadiene	<srl< td=""><td>Ū</td><td>5</td><td>3,41</td><td>0,50</td></srl<>	Ū	5	3,41	0,50
Bromomethane	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0,50</td></srl<>	U	5	3.41	0,50
Chloroethane	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50
Dichlorofluoromethane	4,51		5	3.41	0,50
Ethanol	<srl< td=""><td>U[.]</td><td>5</td><td>13.7</td><td>2.00</td></srl<>	U [.]	5	13.7	2.00
Vinyl Bromide	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0:50</td></srl<>	U	5	3.41	0:50
Acetone	<srl< td=""><td>U</td><td>5</td><td>13.7</td><td>2.00</td></srl<>	U	5	13.7	2.00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50
2-Propanol (IPA)	· <srl< td=""><td>·U</td><td>5</td><td>13.7</td><td>2.00</td></srl<>	·U	5	13.7	2.00
Acrylonitrile	<srl< td=""><td>U</td><td>5</td><td>6.83 ·</td><td>1.00</td></srl<>	U	5	6.83 ·	1.00
1,1-Dichloroethene	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0,50</td></srl<>	U	5	3.41	0,50
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>5</td><td>6.83</td><td>1.00</td></srl<>	U	5	6.83	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>5</td><td>6.83</td><td>1.00</td></srl<>	U	5	6.83	1.00
Carbon Disulfide	10.7		5	6.83	1.00
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50
1.1-Dichloroethane	<srl< td=""><td>U</td><td>5.</td><td>3.41</td><td>0.50</td></srl<>	U	5.	3.41	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50
Vinyl Acetate	<srl< td=""><td>U</td><td>5</td><td>6.83</td><td>1.00</td></srl<>	U	5	6.83	1.00
2-Butanone (MEK)	<srl< td=""><td>U</td><td>5</td><td>6.83</td><td>1.00</td></srl<>	U	5	6.83	1.00
cis-1,2-Dichloroethene	3,89		5	3.41	0.50
Hexane	261		5	3.41	0.50
Chloroform	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0,50</td></srl<>	U	5	3.41	0,50
Ethyl Acetate	<srl< td=""><td>Ū</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	Ū	5	3.41	0.50
Tetrahydrofuran	<srl< td=""><td>Ŭ</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	Ŭ	5	3.41	0.50
1.2-Dichloroethane	<srl< td=""><td>Ū</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	Ū	5	3.41	0.50
1.1.1-Trichloroethane	<srl< td=""><td>Ŭ</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	Ŭ	5	3.41	0.50
Benzene	32.5		5	3.41	0.50

Page 4

ې د مېرونه مېر د و د کې

ď.

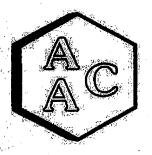
 $\textcircled{\black}$

Laboratory Analysis Report

CLIENT : Best Environmental PROJECT NO: 221529 MATRIX : AIR UNITS : PPB (v/v)

DATE RECEIVED : 07/20/2022 DATE REPORTED : 08/03/2022 ANALYST : MB/DL

<u>њ</u>а;


÷

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

	LFG R3	Sample		
	221529-337			Method
				Reporting
		2		Limit
	1.37			(MRL)
Result	Qualifier	Analysis DF	(MRLxDF's)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50
	•			0.50
				0.50
<srl< td=""><td></td><td></td><td></td><td>0.50</td></srl<>				0.50
<srl< td=""><td></td><td></td><td></td><td>1.00</td></srl<>				1.00
<srl< td=""><td>Ū</td><td></td><td></td><td>0.50</td></srl<>	Ū			0.50
13.9				0,50
99.8		5		0.50
<srl< td=""><td>U</td><td></td><td>3.41</td><td>0.50</td></srl<>	U		3.41	0.50
<srl< td=""><td>U</td><td>5</td><td></td><td>0,50</td></srl<>	U	5		0,50
<srl< td=""><td>U</td><td>5</td><td>3,41</td><td>0.50</td></srl<>	U	5	3,41	0.50
<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50
7.71		5	3,41	0,50
	U	5	6.83	1.00
<srl< td=""><td>Ŭ</td><td>5</td><td>3.41</td><td>0,50</td></srl<>	Ŭ	5	3.41	0,50
<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50
	Ū	5	3.41	0.50
		5	3,41	0.50
		5	3.41	0.50
		5	6.83	1.00
	U	5	3.41	0.50
				0.50
				0,50
			3.41	0.50
	U			0,50
				0.50
	t			0.50
	U		3.41	0,50
				0,50
	<u> ÿ</u>			0.50
				0.50
	11			1.00
		5		0.50
- <u></u>		i i i i i i i i i i i i i i i i i i i	**************************************	70-130%
	<srl< td=""> 42.4 <srl< td=""> <srl< td=""> <srl< td=""> SRL SRL</srl<></srl<></srl<></srl<>	$\begin{tabular}{ c c c c c } \hline & 07/15/202 \\ \hline & 07/20/202 \\ \hline & 1.37 \\ \hline Result & Qualifier \\ \hline & <$RL & U \\ \hline & $$SRL & U$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

В

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 07/20/2022 MATRIX : High Purity N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : MS1-070822-02 ANALYST : MB/DL

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Continuing Calibration Verification of the 07/11/2022 Calibration

Analyte Compounds	Source	CCV2	% Recovery 3	Analyte Compounds (Continued)	Source	CCV ²	% Recover
4-BFB (surrogate standard)	10.00	9.39	94	1,2-Dichloropropane	10.50	10.76	- 102
Chlorodifluoromethane	10.50	11.29	108	Bromodichloromethane	10.40	10.45	100
Propene	10.60	11.58	109	1,4-Dioxane	10.40	10.34	99
Dichlorodifluoromethane	10,40	11.15	107	Trichloroethene (TCE)	10.40	10.34	99
Dimethyl Ether	10,80	10.21	95	2,2,4-Trimethylpentane	10,40	10.27	99
Chloromethane	10,40	10.23	98	Methyl Methacrylate	11.00	11.11	101
Dichlorotetrafluoroethane	10.30	10,75	104	Heptane	10.50	10.47	100
Vinyl Chloride	10,50	10.37	99	cis-1,3-Dichloropropene	10.40	10.36	100
Acetaldehyde	22,50	25.87	115	4-Methyl-2-pentanone (MiBK)	10.40	10.48	101
Methanol	· 20,10	16.73	83	trans-1,3-Dichloropropene	10.50	10.45	100
1.3-Butadiene	10,60	10.21	96	1,1,2-Trichloroethane	10.50	10,49	100
Bromomethane	10,40	10.37	100	Toluene	10.60	10.15	96
Chloroethane	10.30	9.77	95	2-Hexanone (MBK)	10.50	11.19	107
Dichlorofluoromethane	10,50	10,15	. 97	Dibromochloromethane	10.30	10,25	100
Ethanol	11.20	10.31	92	1,2-Dibromoethane	10,60	10,71	101
Vinyl Bromide	10.50	9.76	93	Tetrachloroethene (PCE)	10,40	9.83	95
Acrolein	11.10	10.31	93	Chlorobenzene	10.60	10.44	98
Acetone	10.60	10.58	100	Ethylbenzene	10.50	10.76	102
Trichlorofluoromethane	10.50	10.71	102	m & p-Xylene	21.00	21.87	104
2-Propanol (IPA)	11.00	11.33	103	Bromoform	10.50	10.63	101
Acrylonitrile	11.40	10.90	96	Styrene	10,50	10.82	103
1.1-Dichloroethene	10.40	10.27	99	1,1,2,2-Tetrachloroethane	10.50	11.69	111
Methylene Chloride (DCM)	10,50	10,15	97	o-Xylene	10.50	10.82	103
TertButanol (TBA)	11.30	10.56	93	1,2,3-Trichloropropane	10.40	10,71	103
Alivi Chloride	10,40	10.80	104	Isopropylbenzene (Cumene)	10.40	10,81	104
Carbon Disulfide	10.50	10.26	98	α-Pinene	11.40	9.97	87
Trichlorotrifluoroethane	10.40	10.07	97	2-Chlorotoluene	10.40	10.22	98
trans-1,2-Dichloroethene	10.60	10.98	104	n-Propylbenzene	10.50	10.70	102
1.1-Dichloroethane	10,50	11.60	110	4-Ethyltoluene	10.30	11.22	109
Methyl Tert Butyl Ether (MTBE)	10.50	10.55	100	1,3,5-Trimethylbenzene	10,30	11.08	108
Vinyl Acetate	11.00	12.34	112	β-Pinene	11.30	8,28	73
2-Butanone (MEK)	10.60	11.02	104	1,2,4-Trimethylbenzene	10.30	11.08	108
cis-1,2-Dichloroethene	10,50	10.86	103	Benzyl Chloride (a-Chlorotoluene)	10.40	11.78	113
Hexane	10.70	11.29	106	1,3-Dichlorobenzene	10.40	11.53	111
Chloroform	10.60	10.86	102	1,4-Dichlorobenzene	10.30	11.26	109
Ethyl Acetate	10,60	11.52	109	Sec-ButylBenzene	10.40	11.03	106
Tetrahydrofuran	10.20	10.24	100	1,2-Dichlorobenzene	10.60	11.51	109
1.2-Dichloroethane	10,50	10.81	103	n-ButylBenzene	10.40	11.11	107
1,1,1-Trichloroethane	10.40	10.57	102	1,2-Dibromo-3-Chloropropane	10.40	11.00	106
Benzene	10.60	10.23	97	1,2,4-Trichlorobenzene	11.00	11.42	104
Carbon Tetrachloride	10.00	9,72	95	Naphthalene	11,50	10.46	91
Cyclohexane	10.50	10.04	96	Hexachlorobutadiene	11.00	11.06	101

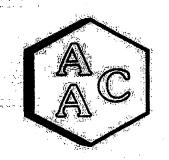
¹ Concentration of analyte compound in certified source standard.

² Measured result from daily Continuing Calibration Verification (CCV).

³ The acceptable range for analyte recovery is $100\pm30\%$.

2225 Sperry Ave., Ventura, CA 93003

B


www.aaclab.com • (805) 650-1642

Page 6

B-2

17

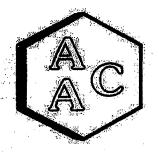
H . Z .

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 07/20/2022 MATRIX : High Purity N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : MS1-070822-02 ANALYST : MB/DL

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Laboratory Control Spike Analysis


	Sample	Spike	LCS ¹	LCSD ¹		LCSD ¹	-
System Monitoring Compounds	Concentration	Added	Recovery	Recovery	% Recovery ²	% Recovery ²	. RPD ³
4-BFB (surrogate standard)	0.0	9.80	9.39	9.47	95.8	96.6	0.8
1,1-Dichloroethene	0.0	10.40	10.27	10.07	99.	97	2.0
Methylene Chloride (DCM)	0.0	10.50	10.15	10.21	97	97	0.6
Benzene	0.0	10.60	10.23	10.65	97	100	4.0
Trichloroethene (TCE)	0.0	10.40	10.34	10.37	99	100	0.3
Toluene	0.0	10.60	10.15	10.09	96	: 95	0.6
Tetrachloroethene (PCE)	0.0	10.40	9.83	10.11	95	97	2.8
Chlorobenzene	0.0	10.60	10.44	10.28	98	. 97	1.5
Ethylbenzene	. 0.0	10.50	10.76	10.84	102	103	0.7
m & p-Xylene	0.0	21.00	21.87	21.96	104	105	0.4
o-Xylene	0.0	10.50	10.82	10.89	103	104	0.6

¹ Laboratory Control Spike (LCS) / Laboratory Control Spike Duplicate (LCSD)

² The acceptable range for analyte recovery is $100\pm30\%$.

³ Relative Percent Difference (RPD) between LCS recovery and LCSD recovery (acceptable range is <25%).

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 07/20/2022 MATRIX : High Purity He or N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 ANALYST : MB/DL

Reporting

Limit (RL)

0.5

0,5

1.0 0.5

0.5

0,5

Ó.5

0.5

0.5

0.5

0,5

0.5

1.0

0.5

0.5

0.5

0.5

0.5

1.0

0.5

0.5

0,5

0.5

0,5

0.5

0.5

0.5

0.5

0.5

0.5

0,5

0,5

0.5

0.5

0.5

0,5

0,5

0.5

0.5

1.0

1.0

0,5

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15 Method Blank Analysis

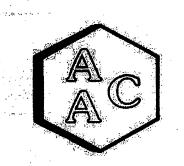
Analyte Compounds	MB 072022	Reporting Limit (RL)	Analyte Compounds (Continued)	мв
4-BFB (surrogate standard)	83%	100±30%	1,2-Dichloropropane	
Chlorodifluoromethane	<rl< td=""><td>0.5</td><td>Bromodichloromethane</td><td></td></rl<>	0.5	Bromodichloromethane	
Propene	<rl .<="" td=""><td>1.0</td><td>1,4-Dioxane</td><td></td></rl>	1.0	1,4-Dioxane	
Dichlorodifluoromethane	<rl< td=""><td>0.5</td><td>Trichloroethene (TCE)</td><td></td></rl<>	0.5	Trichloroethene (TCE)	
Dimethyl Ether	<rl< td=""><td>0.5</td><td>2,2,4-Trimethylpentane</td><td></td></rl<>	0.5	2,2,4-Trimethylpentane	
Chloromethane	<rl< td=""><td>0.5</td><td>Methyl Methacrylate</td><td></td></rl<>	0.5	Methyl Methacrylate	
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td><td>Heptane</td><td></td></rl<>	0.5	Heptane	
Vinyl Chloride	<rl< td=""><td>0.5</td><td>cis-1,3-Dichloropropene</td><td></td></rl<>	0.5	cis-1,3-Dichloropropene	
Acetaldehyde	<rl< td=""><td>5.0</td><td>4-Methyl-2-pentanone (MiBK)</td><td></td></rl<>	5.0	4-Methyl-2-pentanone (MiBK)	
Methanol	<rl< td=""><td>5.0</td><td>trans-1,3-Dichloropropene</td><td></td></rl<>	5.0	trans-1,3-Dichloropropene	
1,3-Butadiene	<rl< td=""><td>0.5</td><td>1,1,2-Trichloroethane</td><td></td></rl<>	0.5	1,1,2-Trichloroethane	
Bromomethane	<rl< td=""><td>0.5</td><td>Toluene</td><td></td></rl<>	0.5	Toluene	
Chloroethane	<rl .<="" td=""><td>0.5</td><td>2-Hexanone (MBK)</td><td></td></rl>	0.5	2-Hexanone (MBK)	
Dichlorofluoromethane	<rl< td=""><td>0.5</td><td>Dibromochloromethane</td><td></td></rl<>	0.5	Dibromochloromethane	
Ethanol	<rl< td=""><td>2.0</td><td>1,2-Dibromoethane</td><td></td></rl<>	2.0	1,2-Dibromoethane	
Vinyl Bromide	<rl< td=""><td>0.5</td><td>Tetrachloroethene (PCE)</td><td></td></rl<>	0.5	Tetrachloroethene (PCE)	
Acrolein	<rl< td=""><td>1,0</td><td>Chlorobenzene</td><td></td></rl<>	1,0	Chlorobenzene	
Acetone	<rl< td=""><td>2.0</td><td>Ethylbenzene</td><td></td></rl<>	2.0	Ethylbenzene	
Trichlorofluoromethane	<rl< td=""><td>0.5</td><td>m & p-Xylene</td><td></td></rl<>	0.5	m & p-Xylene	
2-Propanol (IPA)	<rl< td=""><td>2.0</td><td>Bromoform</td><td></td></rl<>	2.0	Bromoform	
Acrylonitrile	<rl< td=""><td>1.0</td><td>Styrene</td><td></td></rl<>	1.0	Styrene	
1,1-Dichloroethene	<rl< td=""><td>0.5</td><td>1,1,2,2-Tetrachloroethane</td><td></td></rl<>	0.5	1,1,2,2-Tetrachloroethane	
Methylene Chloride (DCM)	<rl< td=""><td>1.0</td><td>o-Xylene</td><td></td></rl<>	1.0	o-Xylene	
TertButanol (TBA)	<rl< td=""><td>0.5</td><td>1,2,3-Trichloropropane</td><td></td></rl<>	0.5	1,2,3-Trichloropropane	
Allyl Chloride	<rl< td=""><td>1.0</td><td>Isopropylbenzene (Cumene)</td><td>•</td></rl<>	1.0	Isopropylbenzene (Cumene)	•
Carbon Disulfide	<rl< td=""><td>1.0</td><td>α-Pinene</td><td></td></rl<>	1.0	α-Pinene	
Trichlorotrifluoroethane	<rl< td=""><td>0.5</td><td>2-Chlorotoluene</td><td></td></rl<>	0.5	2-Chlorotoluene	
trans-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>n-Propylbenzene</td><td></td></rl<>	0.5	n-Propylbenzene	
1,1-Dichloroethane	<rl< td=""><td>0.5</td><td>4-Ethyltoluene</td><td></td></rl<>	0.5	4-Ethyltoluene	
Methyl Tert Butyl Ether (MTBE)	<rl< td=""><td>0.5</td><td>1,3,5-Trimethylbenzene</td><td></td></rl<>	0.5	1,3,5-Trimethylbenzene	
Vinyl Acetate	<rl< td=""><td>1.0</td><td>β-Pinene</td><td></td></rl<>	1.0	β-Pinene	
2-Butanone (MEK)	<rl< td=""><td>1.0</td><td>1,2,4-Trimethylbenzene</td><td></td></rl<>	1.0	1,2,4-Trimethylbenzene	
cis-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td></td></rl<>	0.5	Benzyl Chloride (a-Chlorotoluene)	
Hexane	<rl< td=""><td>0.5</td><td>1,3-Dichlorobenzene</td><td></td></rl<>	0.5	1,3-Dichlorobenzene	
Chloroform	<rl< td=""><td>0.5</td><td>1,4-Dichlorobenzene</td><td></td></rl<>	0.5	1,4-Dichlorobenzene	
Ethyl Acetate	<rl< td=""><td>0.5</td><td>Sec-ButylBenzene</td><td></td></rl<>	0.5	Sec-ButylBenzene	
Tetrahydrofuran	<rl< td=""><td>0,5</td><td>1,2-Dichlorobenzene</td><td></td></rl<>	0,5	1,2-Dichlorobenzene	
1,2-Dichloroethane	<rl< td=""><td>0,5</td><td>n-ButylBenzene</td><td></td></rl<>	0,5	n-ButylBenzene	
1,1,1-Trichloroethane	<rl< td=""><td>0.5</td><td>1,2-Dibromo-3-Chloropropane</td><td></td></rl<>	0.5	1,2-Dibromo-3-Chloropropane	
Benzene	<rl< td=""><td>0,5</td><td>1,2,4-Trichlorobenzene</td><td></td></rl<>	0,5	1,2,4-Trichlorobenzene	
Carbon Tetrachloride	<rl< td=""><td>0.5</td><td>Naphthalene</td><td></td></rl<>	0.5	Naphthalene	
Cyclohexane	<rl< td=""><td>0.5</td><td>Hexachlorobutadiene</td><td></td></rl<>	0.5	Hexachlorobutadiene	

2225 Sperry Ave., Ventura, CA 93003

Page 8

2) - 2) 2) - 2 22 - 2

1.


. . .

93 -

•••

هور: وي

3

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 07/20/2022 MATRIX : Air UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 ANALYST : MB/DL DILUTION FACTOR¹ : x1.95

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Duplicate Analysis of AAC Sample ID: 221499-33593

Analyte Compounds	Sample	Duplicate	RPD ³	Analyte Compounds (Continued)	Sample	Duplicate	RPD ²
4-BFB (surrogate standard)	8.50	8,75	2.9	1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chlorodifluoromethane	<srl< td=""><td>- SRL</td><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	- SRL	NA	Bromodichloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Propene	<srl< td=""><td><\$RL</td><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	<\$RL	NA	1,4-Dioxane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorodifluoromethane	<srl< td=""><td><\$RL</td><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	<\$RL	NA	Trichloroethene (TCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dimethyl Ether	<srl< td=""><td><srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Methyl Methacrylate	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorotetrafluoroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Heptane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Chloride	<srl< td=""><td><srl< td=""><td>NA .</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA .</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA .	cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetaldehyde	42.1	39.4	6.6	4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methanol	12.2	11.9	2,1	trans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1.3-Butadiene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td>· <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td>· <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2-Trichloroethane	· <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Bromomethane		<srl< td=""><td>NA</td><td>Toluene</td><td>1.46</td><td>1.17</td><td>22.2</td></srl<>	NA	Toluene	1.46	1.17	22.2
Chloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><\$RL</td><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><\$RL</td><td><srl< td=""><td>NA</td></srl<></td></srl<>	NA	Dibromochloromethane	<\$RL	<srl< td=""><td>NA</td></srl<>	NA
Bthanol	6,32	6.11	3,5	1,2-Dibromoethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Bromide	<srl< td=""><td><srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrolein	<srl< td=""><td><srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Chlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetone	9.11	8.84	3.0	Ethylbenzene	<srl< td=""><td><\$RL</td><td>NA</td></srl<>	<\$RL	NA
Trichlorofluoromethane	<srl< td=""><td><\$RL</td><td>NA</td><td>m & p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	<\$RL	NA	m & p-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
2-Propanol (IPA)	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromoform	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrylonitrile	<srl< td=""><td><srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Styrene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1.1-Dichloroethene	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><\$RL</td><td>NA</td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><\$RL</td><td>NA</td></srl<></td></srl<>	NA	1,1,2,2-Tetrachloroethane	<srl< td=""><td><\$RL</td><td>NA</td></srl<>	<\$RL	NA
Methylene Chloride (DCM)	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><\$RL</td><td>NA</td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><\$RL</td><td>NA</td></srl<></td></srl<>	NA	o-Xylene	<srl< td=""><td><\$RL</td><td>NA</td></srl<>	<\$RL	NA
	10.3	10.2	0.6	1,2,3-Trichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
TertButanol (TBA)		10.2 <srl< td=""><td>NA</td><td>Isopropylbenzene (Cumene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Isopropylbenzene (Cumene)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Allyl Chloride	<srl< td=""><td>4.14</td><td>1.4</td><td>a-Pinene</td><td><srl< td=""><td><\$RL</td><td>NA</td></srl<></td></srl<>	4.14	1.4	a-Pinene	<srl< td=""><td><\$RL</td><td>NA</td></srl<>	<\$RL	NA
Caldon Distantido	7.20	4.14 <srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Chlorotoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Trichlorotrifluoroethane	< <u>SRL</u>		NA	n-Propylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
trans-1,2-Dichloroethene	<srl SRL</srl 	<srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Ethyltoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1,1-Dichloroethane	<srl (SRL</srl 	<srl< td=""><td>NA</td><td>1.3.5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1.3.5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methyl Tert Butyl Ether (MTBE)	<srl CRV</srl 	<srl (OD)</srl 	NA	B-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Acetate	<srl< td=""><td><srl (SRL</srl </td><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl SRL</srl </td><td> ⊲SRL</td><td>NA</td></srl<>	<srl (SRL</srl 	NA	1,2,4-Trimethylbenzene	<srl SRL</srl 	 ⊲SRL	NA
2-Butanone (MEK)	<srl< td=""><td><srl< td=""><td>NA NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></td></srl<>	<srl< td=""><td>NA NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>	NA NA	Benzyl Chloride (a-Chlorotoluene)	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
cis-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA NA</td><td>1,3-Dichlorobenzene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></td></srl<>	<srl< td=""><td>NA NA</td><td>1,3-Dichlorobenzene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>	NA NA	1,3-Dichlorobenzene	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
Hexane	<srl< td=""><td><srl< td=""><td>NA NA</td><td>1,3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA NA</td><td>1,3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA NA	1,3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloroform	<srl< td=""><td><srl< td=""><td></td><td>Sec-ButylBenzene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></td></srl<>	<srl< td=""><td></td><td>Sec-ButylBenzene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>		Sec-ButylBenzene	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
Ethyl Acetate	<srl< td=""><td><srl< td=""><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<>	NA	1.2-Dichlorobenzene	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td></srl<></srl 	NA
Tetrahydrofuran	<srl< td=""><td><srl< td=""><td>NA</td><td></td><td><srl <srl< td=""><td><pre> <srl <srl< pre=""></srl<></srl </pre></td><td>NA</td></srl<></srl </td></srl<></td></srl<>	<srl< td=""><td>NA</td><td></td><td><srl <srl< td=""><td><pre> <srl <srl< pre=""></srl<></srl </pre></td><td>NA</td></srl<></srl </td></srl<>	NA		<srl <srl< td=""><td><pre> <srl <srl< pre=""></srl<></srl </pre></td><td>NA</td></srl<></srl 	<pre> <srl <srl< pre=""></srl<></srl </pre>	NA
1,2-Dichloroethane		<srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><<u>SRL</u></td><td><<u>srl</u></td><td>NA</td></srl<>	NA	n-ButylBenzene	< <u>SRL</u>	< <u>srl</u>	NA
1,1,1-Trichloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2-Dibromo-3-Chloropropane</td><td></td><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2-Dibromo-3-Chloropropane</td><td></td><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<>	NA	1,2-Dibromo-3-Chloropropane		<srl <srl< td=""><td>NA</td></srl<></srl 	NA
Benzene	1.01	<srl< td=""><td>NA</td><td>1,2,4-Trichlorobenzene</td><td><srl< td=""><td></td><td>NA</td></srl<></td></srl<>	NA	1,2,4-Trichlorobenzene	<srl< td=""><td></td><td>NA</td></srl<>		NA
Carbon Tetrachloride	<srl< td=""><td><srl< td=""><td>NA</td><td>Naphthalene</td><td><srl< td=""><td><srl (SRL</srl </td><td>NA</td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Naphthalene</td><td><srl< td=""><td><srl (SRL</srl </td><td>NA</td></srl<></td></srl<>	NA	Naphthalene	<srl< td=""><td><srl (SRL</srl </td><td>NA</td></srl<>	<srl (SRL</srl 	NA
Cyclohexane	<srl< td=""><td><srl< td=""><td>NA</td><td>Hexachlorobutadiene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Hexachlorobutadiene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<>	NA	Hexachlorobutadiene	<srl< td=""><td><srl< td=""><td></td></srl<></td></srl<>	<srl< td=""><td></td></srl<>	

¹ Dilution factor is the product of the Canister Dilution Factor and the Analysis Dilution Factor.

² Relative Percent Difference (RPD) between Sample analysis and Duplicate analysis (acceptable range is <25%).

SRL - Sample Reporting Limit (minimum)

Page 9

.

de la

 (\mathbf{R})

ttiorms/lield/cec.xis - 6/4/80		Relinquished by: r Date: Date: Date: The Received by: Date: The Da	Relinquished by: Date: _	sults to: Attn: BEST ENVIRONMENTAL 339 STEALTH COURT, LIVERMORE	rd & Report all liquid sample volumes.	21	20	9	18	17	16	15	14	13	<u>α</u>	10	 8	6		- .	7-15-22 930 LFG 121	LE: Run#/Me	Analyical Lab: Avic	Z . L. Elave and a minimum of manon
	(STEALTH COURT, LIVERMORE CA. 94551															Atleans 30"-0"	2	10/5 1 10/5 10/5			THE DECT MANAGED. W. 1- Lingto In

B-25

APPENDIX C FIELD DATA SHEETS

Facility: Berkeley Landfill	l	Run #:	CEC	Date:	07/15/22
Location: Flare		Barometric:	29.90	Leak ✓ :	ОК
Observers:		Personnel:	BA	Strat.♥ :	ОК
Expected Run Time = 30 m	in	Std. Temp:	60		
Cylinder #s:					

Analyte	02	NOx	CO	THC		
Analyzer	CAI 110P	CAI 600	TECO 48	CAI 300		
Range	20.98	95.30	89.40	100.00		
Span Value	11.59	45.30	54.50	43.50		
	Time					Comments:
8:2	6 -0.08	0.00	0.17			
8:2	7 -0.09	0.00	0.03			Unit #
8:2		0.00	0.03			
8:2		0.00	50.28			
8:3			87.46			Operating Conditions
8:3		1	89.51			
8:3			89.60			
8:3			37.81			Fuel
8:3		0.00	-0.59			
8:3		0.00	-0.65			
8:3			21.34			
8:3			54.66			
8:3			54.55			
8:3			54.51		·····	
8:4		69.98				
8:4 8:4			-0.31			
8:4			-0.31			
8:4		55.01	-0.31			
8:4			-0.23			
8:4						
8:4						
8:4		13.32	-0.32			
8:4						
8:5						-
8:5						NOx Converter
8:5				0.59		· · ·
8:5				-0.31		
8:5	4			-0.69		
8:5	5			45.50		
8:5	6			94.74		
8:5				93.60		
8:5				93.87		
8:5				93.96		
9:0				57.96		
9:0				46.37		
9:0			<u></u>	44.11		· · · · · · · · · · · · · · · · · · ·
9:0		L	ļ	44.39		
9:0			ļ	27.38		
9:0				27.00		
9:0				26.65		·
9:0	//	<u> </u>		26.41		

Facility: Berkeley Landfill	Run #:	1	Date:	07/15/22
Location: Flare	Barometric:	29.90	Leak ✓ :	ОК
Observers:	Personnel:	BA	Strat.♥ :	ОК
Expected Run Time = 30 min	Std. Temp:	60		
Cylinder #s:				

NOx CO THC 02 Analyte CAI 110P CAI 600 TECO 48 CAI 300H Analyzer 95.30 89.40 100 20.98 Range 43.50 11.59 45.30 54.50 Span Value **Comments:** Time 7.40 9.89 5.15 9:26 13.23 7.04 9.81 12.58 9:27 13.23 Unit # 9:28 13.37 9.63 12.24 6.74 15.99 9.65 6.53 9:29 13.36 11.90 6.29 Operating Conditions 9:30 13.26 9.77 6.17 9.49 15.18 9:31 13.45 13.79 5.97 9:32 13.23 9.80 25.68 9:33 13.34 9.64 5.80 Fuel 5.74 9:34 13.63 9.25 25.77 5.56 9:35 13.52 9.43 21.36 9.22 14.14 5.50 9:36 13.64 13.22 9:37 9.82 12.84 5.27 5.22 9:38 13.47 9.48 12.65 9:39 13.28 9.66 10.51 5.15 9.60 9.07 5.09 Port Change 13.38 9:40 8.60 23.29 6.13 9:46 13.96 9.37 25.66 5.31 9:47 13.39 9.49 16.68 4.90 9:48 13.37 4.70 9:49 13.36 9.49 11.70 9:50 9.24 11.30 4.63 13.58 15.51 4.53 9:51 13.44 9.44 9:52 9.24 15.00 4.41 13.61 20,44 4.33 9.53 13.41 9.40 9.25 9:54 7.64 4.32 13.63 9:55 13.40 9.49 6.05 4.20 4.06 9:56 13.33 9.61 15.23 9.49 24.44 4.04 9:57 13.43 3.97 9.51 23.49 9:58 13,40 9:59 13.61 9.29 14.33 4.00 9.03 22.91 4.03 10:0013.77 ZEROT 9:11 -0.08 0.00 -0.740.73 45.27 54.09 44.07 SPAN I 9:16 11.5613.44 9.47 15.75 5.23 Average -0.74 -0.85 ZERO f 10:05-0.17 0.01 SPAN f 10:1011.5445.02 53.62 42.46 -1.5% -0.1% Zero Drift % -0.4% 0.0% Span Drift % -0.1% -0.3% -0.5% -1.6% Corr. Avg. 9.50 16.50 5.27 13.47

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]

Zero Drift % = 100 * (Zf - Zi)/Intrument Range

Span Drift % = 100 * (Sf - Si)/Instrument Range

Facility: Berkeley Landfill	Run #:	2	Date:	07/15/22
Location: Flare	Barometric:	29.90	Leak 🖌 :	ОК
Observers:	Personnel:	BA	Strat.♥ :	ОК
Expected Run Time = 30 min	Std. Temp:	60		
Cylinder #s:				

Analyte		02	NOx	CO	THC	
Analyzer		CAI 110P	CAI 600	TECO 48i	CAI 300H	
Range		20.98	95.30	89.40	100	
Span Value		11.59	45.30	54.50	43.50	
	Time					 Comments:
10):14	13.68	9.27	19.00	9.22	
10):15	13.66	9.25	31.24	8.73	Unit #
10):16	13.80	9.08	23.16	8.39	
10):17	13.62	9.31	18.39	8.06	
10):18	13.41	9.56	14.48	7.80	Operating Conditions
10):19	13.39	9.63	13.74	7.58	
10):20	13.64	9.34	18.01	7.48	
10):21	13.41	9.66		7.30	Fuel
10):22	13.51	9.56		7.28	
10):23	13.58	9.42		7.09	
10):24	13.62	9.26		7.05	
10):25	13.70	9.15	1	7.02	
10):26	13.58	9.32		6.91	
10):27	13.36	9.61		6.89	
10):28	13.38	9.58		6.85	Port Change
10):32	13.35	9.62		8.16	
· 10):33	13.44	9.53		7.65	
· 10);34	13.36	9.59		7.42	
):35	13.38	9.58		7.28	
):36	13.39	9.57		7.17	
):37	13.46	9.51		7.08	
):38	13.50	9.46		7.02	
):39	13.39	9.59		6.91	
):40	13.44	9.52		6.88	
):41	13.42	9.52	-	6.85	
):42	13.37	9.59	1		
):43	13.33	9.62			
):44	13.42	9.55		6.75	
):45	13.44	9.49		6.72	
):46	13.49	9.38		6.74	
):05	-0.17	0.01		-0.74	
):10	11.54	45.02			
Average		13.48	9.47		1	
):52	-0.17	0.00		1.24	
):57	11.56	44.96		42.55	· · · · · · · · · · · · · · · · · · ·
Zero Drift %	-	0.0%	0.0%			
Span Drift %		0.1%	-0.1%		0.1%	
Corr. Av	′g.	13.51	9.53	20.63	7.29	

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]

Zero Drift % = 100 * (Zf - Zi)/Intrument Range

Span Drift % = 100 * (Sf - Si)/Instrument Range

Facility: Berkeley Landfill	Run #:	3	Date:	07/15/22
Location: Flare	Barometric:	29.90	Leak 🖌 :	OK
Observers:	Personnel:	BA	Strat. :	OK
Expected Run Time = 30 min	Std. Temp:	60		
Cylinder #s:				

Analyte		02	NOx	CO	THC		
Analyzer		CAI 110P	CAI 600	TECO 48	CAI 300H		
Range		20.98	95.30	89.40	100		
Span Value		11.59	45.30	54.50	43.50		
	Time						Comments:
	11:01	13.35	9.51	18.32	8.57		
	11:02	13.55	9.28	31.24	8.18		Unit #
	11:03	13.50	9.36	25.61	7.88		
	11:04	13.48	9.36	39.97	7.66		
	11:05	13.48	9.35	34.70	7.46		Operating Conditions
	11:06	13.46	9.41	33.43	7.28	·····	
	11:07	13.79	9.00	28.11	7.24		
	11:08	13.61	9.11	36.40	7.15		Fuel
	11:09	13.76	9.03	31.23	7.08	******	
	11:10	13.35	9.50	16.56	6.93		
	11:11	13.47	9.41	19.70	6.87		
	11:12	13.66	9.13	21.08	6.87		
	11:13	13.61	9.12	38.54	6.84		
	11:14	13.48	9.33	42.32	6.80		· · ·
	11:15	13.67	9.13	31.92	6.79		Port Change
	11:20	13.78	8.94	38.33	6.84		
	11:21	13.62	9.12	34.06	6.76		
	11:22	13.73	9.00	47.28	6.82		
	11:23	13.55	9.21	37.95	6.69		
	11:24	13.60	9.19	33.99	6.63		
	11:25	13.66	9.06	44.51	6.68		
	11:26	13.74	8.93	54.70	6.69		
	11:27	13.80	8.92	47.37	6.65		
	11:28	13.66	9.06	41.13	6.62		· · · · ·
	11:29	13.64	9.15	41.21	6.57		
	11:30	13.56	9.26	30.02	6.52		
	11:31	13.54	9.29	32.82	6.46		
-	11:32	13.56	9.23	46.69	6.46		
	11:33	13.55	9.29	39.72	6.37		
	11:34	13.55	9.34	26.28	6.36		
ZERO I	10:52	-0.17	0.00	-0.97	1.24		
SPAN I	10:57	11.56	44.96		42.55		
	rage	13.59	9.20	34.84	6.96		
ZERO f	11:40	-0.18	0.00	-1.01	0.83		
SPAN f	11:46	11.56	45.05	53.08	43.24		
Zero Drift		-0.1%	0.0%	0.0%	-0.4%		
Span Drift		0.0%	0.1%	-0.2%	0.7%		
Corr.		13.60	9.26 an Gas Value / [((Si+	36.04	6.16		

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]

Zero Drift % = 100 * (Zf - Zi)/Intrument Range

Span Drift % = 100 * (Sf - Si)/Instrument Range

·、

CEMS CALIBRATION SHEET

Berkley Facility: CTV

7-15-20 Date:

Personnel: BS4BA

Location: F

29.9 **Barometric Pressure:**

	O ₂	NOx	СО ,	THC		Comments
Analyzer	CATIND	CAI 600	Tec > 48.	CAI 300		
Range	20,98	95,3	89.4	100		
Cal Value (low)				26.88		
Cyl. #				DT 27824		
Expiration				5-27-29		
Cal Value (mid)	11.59	45,3	54.5	43.5		
Cyl. #	CC 50881	5737052	CC707372	0542922		
Expiration	10-1-27	11-18-23	2-15-27			NO2
Cal Value (Hi)	20,98	95.3	89.4	92.1		5.979
Cyl #	cc 306150	CC 308849	ec306150	CL506583		cc 505193
Expiration	11-22-29	 10-2-27	11-22-29	3-16-29		5-6-24
			Hall Theme	Temp	Countb	

Run 1 Run 2

Run 3

926 1001 1047 1014 1135 1101

Start

Stop

·····

HOW HERE	「田本で	Can 19	
66	(55)	504	Traverse
47	1554	24	(
66	1558	153	V

	ng gi ti shutika kan na na sa sa sa sa	

Leak Check: 0

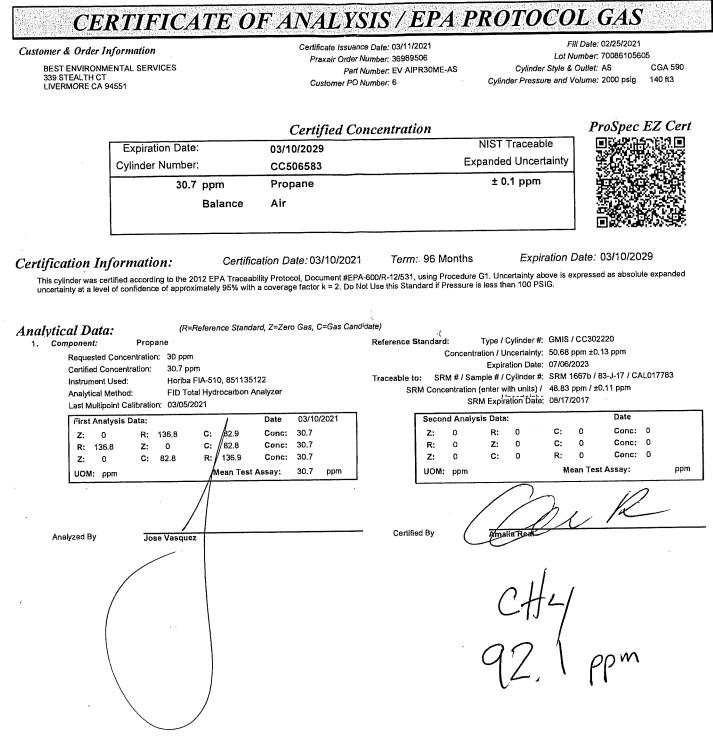
Heated Line Temp (F): ~ 250

Calculations

% Linearity (Limit ± 2%) = 100 * Span Value - Internal cal Span Range

Zero and Calibration Drift = 100 x (Cfb - Cib) / rangeCbcal = (Cib + Cfb) / 2 for cal gas

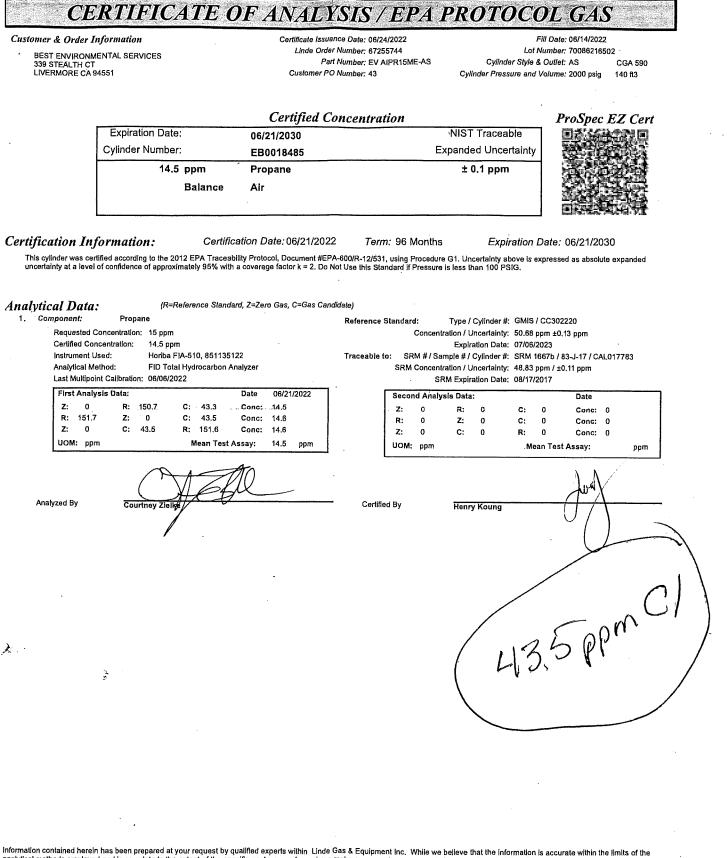
APPENDIX D CALIBRATION GAS CERTIFICATES


PRAXAIR

Making our planet more productive

DocNumber: 405533

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021



DocNumber: 477448

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022

analytical methods employed and is complete to the extent of the specific analyses performed, we make no warrantly or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising out of the use of the information contained herein exceed the fee established for providing such information. **PRAXAIR**

Making our planet more productive

DocNumber: 411093

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

TESLA INC 47700 KATO RD FREMONT CA 94538 Certificate Issuance Date: 05/27/2021 Praxair Order Number: 42827444 Part Number: AI PR9ME-AS Customer PO Number: 4900225193

Fill Date: 05/20/2021 Lot Number: 70086114010 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 ft3

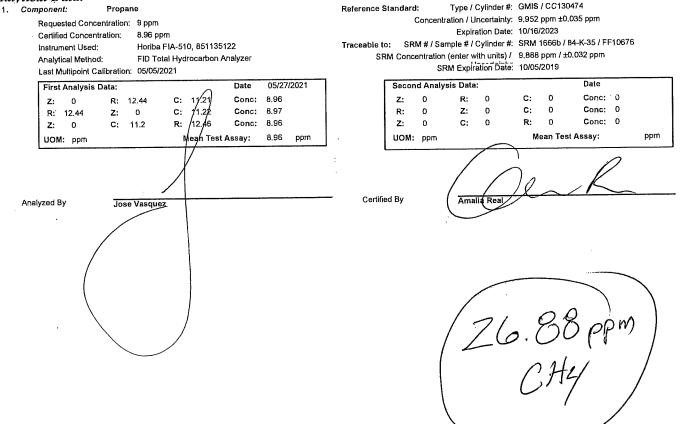
ProSpec EZ Cert

Certified Concentration

Expiration Date:05/27/2029NIST TraceableCylinder Number:DT0027824Expanded Uncertainty8.96 ppmPropane± 0.04 ppmBalanceAir

Certification Information:

Certification Date: 05/27/2021


Term: 96 Months

Expiration Date: 05/27/2029

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data:

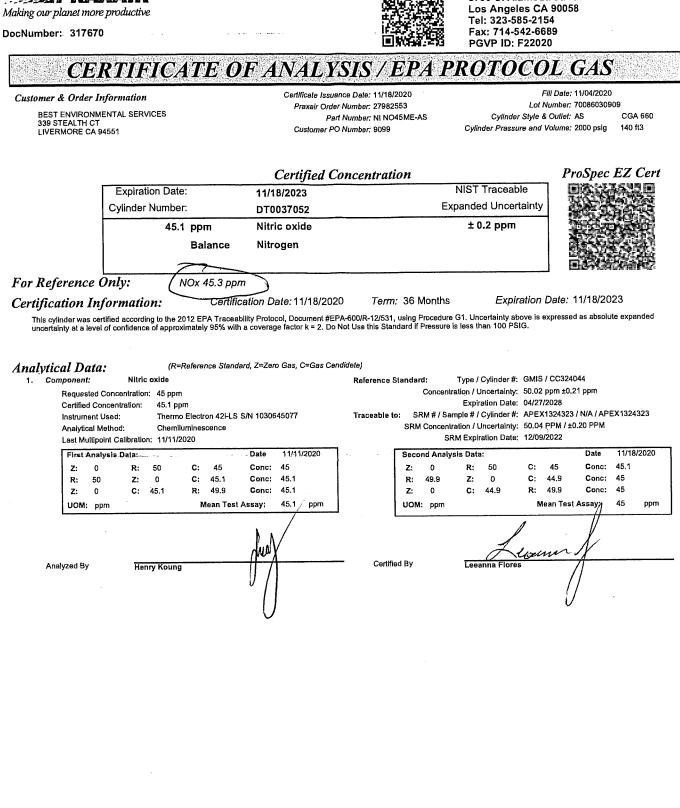
(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

PRAXAIR

Making our planet more productive

DocNumber: 270077

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22019



Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, inc. While we beliave that the information is accurate within the limits of the analytical methods employed and is complete to the steint of the specific analyses performed, we make no werranty or representation as to the suitability of the use of the information for any purpose. The information is different within the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxeir Distribution, inc., ansing out of the use. of the information is accurate within the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxeir Distribution, inc., ansing out of the use.

IPRAXAIR

Praxair Distribution, Inc. 5700 S, Alameda Street

Airgas Specialty Gases Airgas USA, LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02NI99E15WC004 CC503193 124 - Los Angeles (SAP) - CA B32021 NO2, BALN

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

48-401989410-1 144.0 CF 2015 PSIG 660 Jan 06, 2021

Expiration Date: Jan 06, 2024

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

			ANALYTIC	AL RESUI	LTS			
Compor	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Rela Uncertain		Assay Dates	
NITROGEN DIOXIDE		6.000 PPM Balance	5.979 PPM	G1	+/- 2.1% NIST Traceable		12/28/2020, 01/06/202	
			CALIBRATIO	N STAND	ARDS			
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	Expiration Date	
GMIS PRM	401206803104 12386 PRM or RGM noted	D685025	9.690 PPM NITRO 9.91 PPM NITROG e to the GMIS used in the as	SEN DIOXIDE/A	IR	+/- 2.1% +/- 2.0%	May 02, 2022 Feb 20, 2020	
			ANALYTICA	LEOIIIPN	TENT			
Instrum	ent/Make/Mode	el	Analytical Princip			Multipoint Calib	ration	
MKS ETI	R NO2 01833582	1	FTIR		Jan 0	6, 2021		

Triad Data Available Upon Request

Approved for Release

DocNumber: 442525

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 **PGVP ID: F22021**

Customer & Order Information

BEST ENVIRONMENTAL SERVICES 339 STEALTH CT LIVERMORE CA 94551

Certificate Issuanco Date: 11/22/2021 Linde Order Number: 56224584 Part Number: NI CD19CO10E-AS Customer PO Number: 27

Fill Date: 11/01/2021 Lot Number: 70086130505 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 156 ft3

ProSpec EZ Cert **Certified** Concentration NIST Traceable Expiration Date: 11/22/2029 Expanded Uncertainty Cylinder Number: CC306150 ± 0.06 % Carbon dioxide 18.98 % ± 0.4 ppm Carbon monoxide 89.4 ppm ± 0.03 % 20.98 % Oxygen Nitrogen Balance

Certification Information:

Certification Date: 11/22/2021

Term: 96 Months

Expiration Date: 11/22/2029

This cy incor was contified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncortainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

CO2 responses have been corrected for Oxygen IR Broadening effect. O2 responses have been corracted for CO2 interforence. CO responses have been corrected for CO2 interference.

.(R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data: Type / Cylinder #: NTRM / CC726055 Carbon dioxide Reference Standard: 1. Component: Concentration / Uncertainty: 19.34 % ±0.03 % Requested Concontration: 19 % Expiration Date: 01/12/2027 18.98 % Certified Concentration: Traccable to: SRM # / Sampla # / Cylinder #: NTRM / 190701 / CC725973 Horlbs VIA-510 S/N 20C194WK Instrument Used: SRM Concentration / Uncertainty: 19.34% / ±0.031% Analytical Method: NDIR SRM Expiration Date: 01/12/2027 Last Multipoint Calibration: 11/19/2021 Second Analysis Data: 11/22/2021 Date-Date i irst Analysis Data: Conc: 0 18.98 7: ٥ R٠ D C: D C: 18.98 Conc: Z: D R: 19.34 Z: 0 C: 0 Conc: 0 C: 18.99 Conc: 18.99 R: 0 0 38: 19.34 Z: 0 R: 0 Conc: 0 C: 18.99 R: 19.35 Conc: 18.99 Z: 0 1: D C: % Mean Test Assay: 18.98 % UOM: % UOM: 4 Mean Test Assav: Type / Cylinder #: GMIS / DT0019705 2. Compresent: Carbon monoxide Reference Standard: Concentration / Uncertainty: 98.1 ppm ±0.4 ppm Requested Concentration: 90 ppm Expiration Date: 01/23/2028 89.4 ppm Cartfied Concontration: SRM # / Sample # / Cylinder #: SRM 1679c / 3-I-45 / FF28593 Traceable to: Horiba VIA-510 S/N 576876015 Instrument Used: SRM Concentration / Uncertainty: 98,40 ppm / ±0,40 ppm Analytical Method: NDIR SRM Expiration Date: 01/28/2020 Last Multipoint Calibration: 10/22/2021 Date Date 11/22/2021 Second Analysis Data: Lust Analysis Data Conc: 0 Conc: 89.4 R: D C: 7: 0 R: 98.1 C: 89.4 Z: 0 0 Conc: 89.5 89.5 0 7: 0 C: 0 D C: Conc: R: R. 98.1 Z: 0 98,2 Conc: 89.5 z: 0 C: 0 R: ۵ Conc: 89.5 0 C: R: ррт Mean Test Assav: Mean Test Assav: 89.4 ppm UOM: DDU CIM: DOM Type / Cylinder #: GMIS / ND29287 Reference Standard: 3. Comparent: Oxygen Concentration / Uncertainty: 20.90 % ±0.02 % Requested Concontration: 21 % Expiration Date: 09/01/2028 Corliand Concentration: 20.98 % SRM # / Sample # / Cylindar #: SRM 2659a / 71-E-19 / FF22331 Traceable to: Siemans Oxymat 6E S/N 7MB20211AA000CA1 Instrument Used: SRM Concentration / Uncertainty: 20.863% / ±0.021% Analytica, Method: Paramagnetic SRM Expiration Date: 08/23/2021 Las: Vultipoint Calibration: 11/12/2021 Second Analysis Data: Date 11/22/2021 Date 1 ...: Analysis Data: R: 0 C: D Cons: 0 Conc: 20.98 z: 0 C: С R: 20.9 20 Conc: 0 Z: C: 0 20.99 0 20.9 Z: 0 C: 20 Conc: R: 0 Conc: D 0 20 Conc: 20,99 Z: 0 C: 0 R: C; 20.99 R: 0 Mean Test Assay: % Test Assay: 20.98 LIOM: % บอด: % Me % Helson Ms Certified By Nelson Mi Analyzendy Jose Vasouez

Information compared harein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information we derive a complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information we derive a complete to the extent of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising or of the use of the information complete complete to be described for providing such information.

Making our planet more productive

DocNumber: 270196

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22019

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS Fill Date: 09/26/2019 Certificate Issuance Date: 10/01/2019 Customer & Order Information Lot Number: 70086927001 Praxair Order Number: 86601158 BEST ENVIRONMENTAL SERVICES CGA 590 Part Number: NI CD6.2505E-AS Cylinder Style & Outlet: AS 339 STEALTH CT LIVERMORE CA 94551 Cylinder Pressure and Volume: 2000 psig 140 ft3 Customer PO Number: 9017 ProSpec EZ Cert **Certified** Concentration NIST Traceable Expiration Date: 10/01/2027 Expanded Uncertainty Cylinder Number: CC50881 6.23 % Carbon dioxide ± 0.3 % 11.59 % Oxygen ±0.2% Balance Nitrogen **Certification Information:** Certification Date: 10/01/2019 Term: 96 Months Expiration Date: 10/01/2027 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. CO2 responses have been corrected for Oxygen IR Broadening effect. O2 responses have been corrected for CO2 interference. (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data: Carbon dioxide Type / Cylinder #: GMIS / CC243646 1. Component: Reference Standard: Concentration / Uncertainty: 6.91 % ±0.208% Requested Concentration: 6.25 % Expiration Date: 06/07/2026 Certified Concentration: 6.23 % Traceable to: SRM # / Sample # / Cylinder #: SRM 1674b / 7-H-07 / FF10631 Horiba VIA-510 S/N 20C194WK instrument Used: SRM Concentration / Uncertainty: 6.944% / ±0.013% Analytical Method: NDIR Last Multipoint Calibration: 09/18/2019 SRM Expiration Date: 06/17/2019 First Analysis Data: Date 10/01/2019 Date Second Analysis Data: 6.23 Z: 0 R: 6,91 C: 6.23 Conc: Z: 0 R: 0 C: 0 Conc: 0 C: 6.23 6.23 D C ٦D 0 R! 6.91 Z: 0 Conc: R: n 7: Conc: Z: 0 C: 6.23 R: 6.91 Conc: 6.23 Z; 0 C: 0 R: 0 Conc: 0 UOM: % Mean Test Assav: 6.23 % UOM: % Mean Test Assay: % 2. Component: Oxygen Type / Cylinder #: GMIS / SGAL2761 **Reference Standard:** Concentration / Uncertainty: 14.98 % ±0.119% Requested Concentration: 11.5 % Expiration Date: 07/19/2026 Certified Concentration: 11.59 % Traceable to: SRM # / Sample # / Cylinder #: 2659a / 71-E-19 / FF22331 Instrument Used: OXYMAT 5E SRM Concentration / Uncertainty: 20.863% / ±0.021% Paramagnetic Analytical Method: SRM Expiration Date: 08/23/2021 Last Multipoint Calibration: 09/18/2019 Date 10/01/2019 Second Analysis Data: Date First Analysis Data: Z: 0 14.98 C: 11.6 Conc: 11.59 R: 0 0 Conc: 0 R: Z: D 15 0 C: 11.6 Conc: 11.59 z: 0 D Conc: 0 R: Z: R: 0 C: 11.58 14.98 11.57 0 Conc: 0 Z: 0 R: Conc: **Z**: 0 C: 0 11.59 % % LIOM: % Mean Test Assav: UOM: % ean Test Assav: Certified By Analyzed By Jose Vasque Jenna Leckma

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analyti methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the of the information.

APPENDIX E PROCESS DATA

City of Berkely Flare Process Data

1550

	Flow	F	lare Temp			
	Min	Max	Min	Max		
926	65.20	65.67	1303	1311	Run 1	
927	65.30	65.83	1486	1490		
928	65.33	65.83	1564	1565		
929	65.20	65.77	1591	1591		
930	65.27	65.93	1576	1577		
931	65.33	65.90	1567	1567		
932	65.23	65.80	1571	1571		
933	65.37	65.93	1578	1578		
934	65.27	65.80	1565	1566		
935	65.23	65.77	1554	1554		
936	65.17	65.87	1554	1554		
937	65.20	65.83	1556	1557		
938	65.30	65.93	1555	1555		
939	65.37	65.87	1557	1557		
940	65.37	65.80	1561	1561		
941	65.37	65.77	1565	1565		
942	65.27	65.70	1562	1563		
943	65.33	65.77	1558	1558		
944	65.47	65.93	1553	1553		
945	65.03	65.77	1553	1553		
946	65.33	66.07	1552	1552		
947	65.30	65.83	1553	1553		
948	65.43	65.87	1556	1556		
949	65.30	65.87	1561	1561		
950	65.17	65.80	1560	1560		
951	65.30	65.80	1554	1554		
952	65.27	65.97	1553	1554		
953	65.10	65.67	1553	1553		
954	65.30	65.83	1553	1553		
955	65.30	65.93	1550	1550		
956	65.30	65.83	1553	1553		
957	65.40	65.93	1553	1553		
958	65.23	65.80	1553	1553		
959	65.23	65.87	1552	1552		
1000	65.33	65.80	1556	1556	Stop	
1001	65.37	65.83	1559	1560	Avg	65.56
1002	65.50	66.10	1557	1557		
1003	65.37	65.80	1556	1556		
1004	65.43	65.83	1556	1556		
1005	65.37	65.80	1558	1558		
1006	65.30	65.90	1555	1556		
1007	65.43	65.87	1555	1555		
1008	65.23	65.97	1555	1555		
1009	65.40	65.87	1554	1554		
1010	65.43	65.90	1553	1553		
1011	65.27	65.93	1547	1547		
1012	65.40	65.80	1554	1554		
1013	65.30	65.77	1554	1555		
1014	65.20	65.93	1553	1553	Run 2	
1015	65.20	65.73	1550	1551		
1016	65.33	65.87	1548	1548		
1017	65.17	65.77	1558	1558		
1018	65.43	66.10	1564	1564		
1019	65.40	65.90	1560	1561		
1020	65.30	65.87	1557	1557		
1021	65.37	66.00	1558	1558		

City of Berkely Flare Process Data

1555

	Flow	F	iare Temp)		
	Min	Max	Min	Max		
1022	65.50	66.10	1557	1558		
1023	65.43	65.87	1560	1560		
1024	65.37	65.97	1557	1557		
1025	65.67	65.90	1551	1551		
1026	65.43	65.93	1551	1551		
1027	65.17	65.87	1555	1555		
1028	65.40	65.80	1558	1558		
1029	65.43	65.83	1559	1559		
1030	65.23	65.87	1551	1551		
1031	65.33	65.77	1548	1548		
1032	65.37	66.03	1552	1553		
1033	65.37	65.83	1556	1557		
1034	65.23	65.90	1558	1558		
1035	65.30	65.77	1557	1557		
1036	65.17	65.77	1559	1560		
1037	65.23	65.77	1555	1555		
1038	65.13	65.60	1542	1543		
1039	65.43	65.83	1549	1549		
1040	65.40	65.83	1554	1554		
1041	65.30	66.03	1556	1557		
1042	65.33	65.80	1557	1557		
1043	65.17	65.70	1552	1553		
1044	65.43	65.90	1559	1559		
1045	65.37	65.73	1560	1560		
1046	65.17	65.73	1556	1556	Stop	
1047	65.27	65.93	1554	1555	Avg	65.59
1048	65.17	65.73	1544	1544		
1049	65.27	65.87	1549	1549		
1050	65.43	65.87	1547	1548		
1051	65.27	65.87	1549	1549		
1052	65.13	65.73	1554	1554		
1053	65.33	65.93	1557	1557		
1054	65.30	65.87	1559	1559		
1055	65.27	65.83	1559	1559		
1056	65.27	65.70	1550	1550		
1057	65.37	65.90	1556	1556		
1058	65.37	65.77	1558	1558		
1059	65.33	65.93	1555	1556		
1100	65.37	65.80	1558	1558		
1101	65.30	65.83	1553	1553	Run 3	
1102	65.30	65.70	1555	1555		
1103	65.30	65.70	1555	1555		
1104	65.33	65.97	1550	1550		
1105	65.20	65.70	1549	1550		
1106	65.17	65.87	1558	1559		
1107	65.17	65.77	1563	1564		
1108	65.37	66.03	1554	1554		
1109	65.17	65.77	1548	1548		
1110	65.27	65.90	1546	1547		
1111	65.43	65.87	1555	1555		
1112	65.23	65.93	1562	1562		
1113	65.27	65.67	1556	1556		
1114	65.47	65.97	1552	1552		
1115	65.40	65.93	1558	1559		
1116	65.37	65.80	1554	1555		
1117	65.50	65.93	1557	1557		

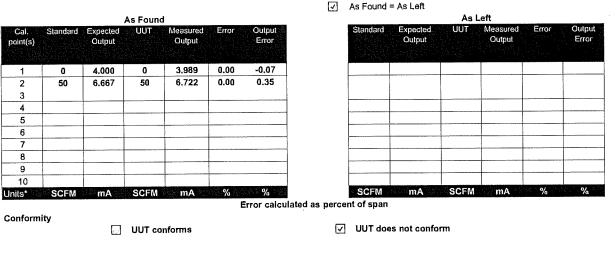
City of Berkely Flare Process Data

	Flow	F	lare Tem	р	
	Min	Max	Min	Max	
1118	65.23	65.83	1554	1555	
1119	65.17	65.77	1549	1550	
1120	65.43	65.77	1544	1545	
1121	65.23	65.60	1558	1559	
1122	65.53	65.93	1557	1558	
1123	65.43	66.03	1554	1554	
1124	65.17	65.77	1557	1557	
1125	65.27	65.60	1559	1560	
1126	65.27	65.83	1548	1549	
1127	65.27	65.63	1550	1550	
1128	65.33	65.83	1554	1554	
1129	65.20	65.87	1558	1558	
1130	65.27	65.87	1561	1562	
1131	65.40	65.83	1538	1539	
1132	65.40	65.97	1544	1545	
1133	65.43	65.90	1555	1556	
1134	65.30	65.83	1565	1565	Stop
					Avg

65.57 1554

Calibration Certificate

TELSTAR X


Teistar Instruments Inc 1717 Solano Way, Suite #34, Concord Ca Tel 925-671-2888 - Fax 925-671-9507

	Calibration date Next calibration due						
Customer information	Location of calibration						
Company name SCS Field Services	Company name						
Address 1100 Spinnaker Way Berkley	Address	1100 Spinnaker Way, Berkley					
Contact Mike Flanagan							
Instrument information	Received	In Tolerance					
Manufacturer Kurz	Returned	In Tolerance					
Model 454FTB-12-HT							
Serial FD35746A							
Тад	Calibrated range	0	to	300	SCFM		
Description Flare flow	User Specified Toler	rance		3.00	%		
	Instrument Output	4	to	20	mA		

International System of Units (SI) Duo dat

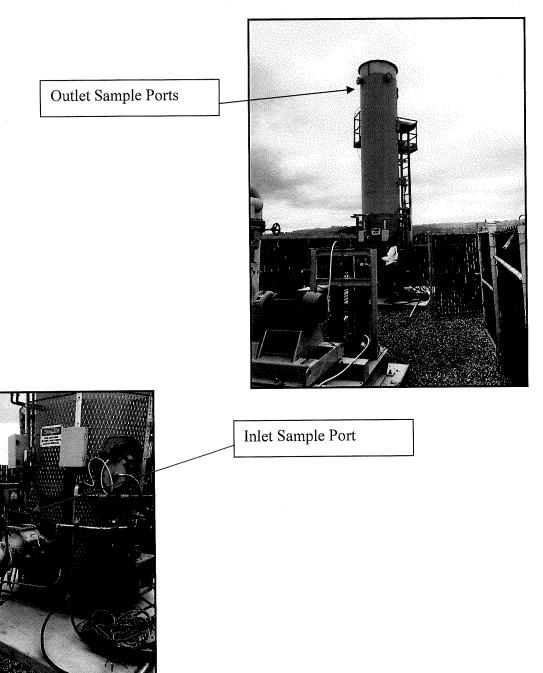
CAL210	Fluke 725	1608092	185084	11/4/2022

Procedure Used

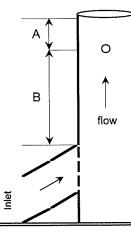
Remarks

INSTRUMENT RETURNED TO SERVICE (EXPLAIN IN REMARKS IF NOT)

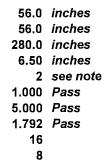
Verified zero. Removed, cleaned and inspected. Sensor should be returned to OEM for factory wind tunnel calibration. Verified output corresponds to flow rate.


This calibration certificate should not be published or reproduced other than in full Date 5/16/2022 Service Engineer Ben Marston Ben Marston Signature

APPENDIX F STACK DIAGRAMS

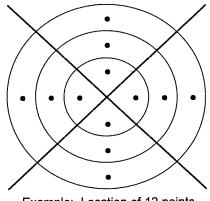

BEST ENVIRONMENTAL

City of Berkeley Berkeley, CA


LFG Flare (A-4)

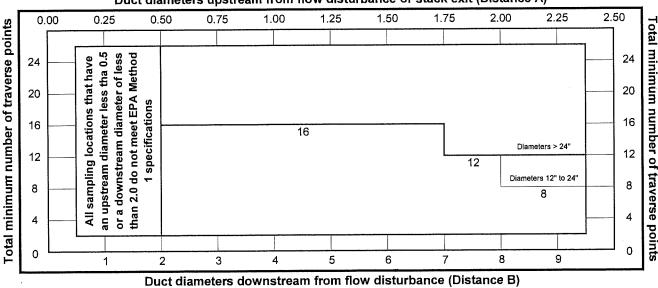
City Of Berkeley Landfill, Flare TRAVERSE POINT LAYOUT (NON-PARTICULATE) <u>CIRCULAR STACKS OVER 24 INCHES</u>

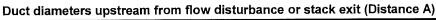
Typical vertical exhaust stack


Stack diameter:	5
Upstream diameter (A):	5
Downstream diameter (B):	28
Port length:	e
Number of ports being used:	
Equivalent upstream diameter (A):	1.
Equivalent downstream diameter (B):	5.
All points at least 1.0" from stack wall:	1.

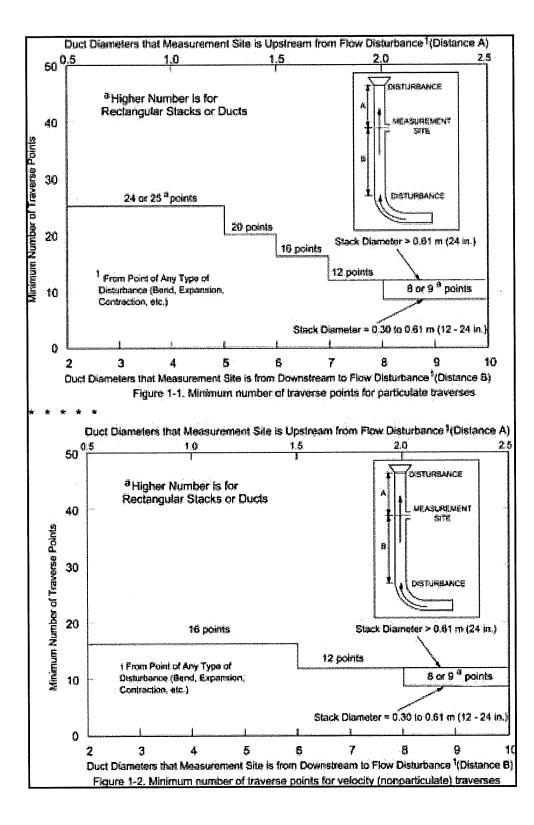
Point	% Diameter	Inside wall Distance (in)	Outside port Distance (in)
1	3.2	1.8	8.3
2	10.5	5.9	12.4
3	19.4	10.9	17.4
4	32.3	18.1	24.6
5	67.7	37.9	44.4
6	80.6	45.1	51.6
7	89.5	50.1	56.6
8	96.8	54.2	60.7
N/A	#N/A	#N/A	#N/A
N/A	#N/A	#N/A	#N/A
N/A	#N/A	#N/A	#N/A
N/A	#N/A	#N/A	#N/A

Total points:


Points per port:



Example: Location of 12 points


Note: No traverse point shall be within 1.0" of the stack walls (see Sections 11.3.1)

F-3

APPENDIX G SAMPLING SYSTEM DIAGRAMS

EPA METHOD 1

EPA METHOD 1

TABLE 1-1 CROSS-SECTION LAYOUT FOR RECTANGULAR STACKS

Number of tranverse points layout	Matrix
9	3×3
12	4×3
16	4×4
20	5×4
25	5×5
30	6×5
36	6×6
42	7×6
49	7×7

TABLE 1-2-LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

[Percent of stack diameter from inside wall to traverse point]

Traverse point			N	lumbe	r of tra	verse j	ooints	on a di	amete	r		
number on a												
diameter	2	4	6	8	10	12	14	16	18	20	22	24
1	14.6	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3		75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4		93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5			85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6			95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7				89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.1
8				96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9					91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.0
10					97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.2
11						93.3	85.4	78.0	70.4	61.2	39.3	32.3
12						97.9	90.1	83.1	76.4	69.4	60.7	39.8
· 13							94.3	87.5	81.2	75.0	68.5	60.2
14							98.2	91.5	85.4	79.6	73.8	67.7
15								95.1	89.1	83.5	78.2	72.8
16								98.4	92.5	87.1	82.0	77.0
17									95.6	90.3	85.4	80.6
18									98.6	93.3	88.4	83.9
19										96.1	91.3	86.8
20										98.7	94.0	89.5
21											96.5	92.1
22											98.9	94.5
23												96.8
24												98.9

Traverse % of disancter Point Distance 1 4.4 2 14.7 3 29.5 4 70.5 5 85.3 6 95.6 4

EPA METHOD 1

Figure 1-3. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

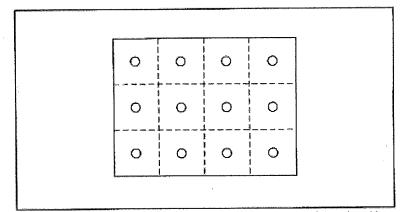
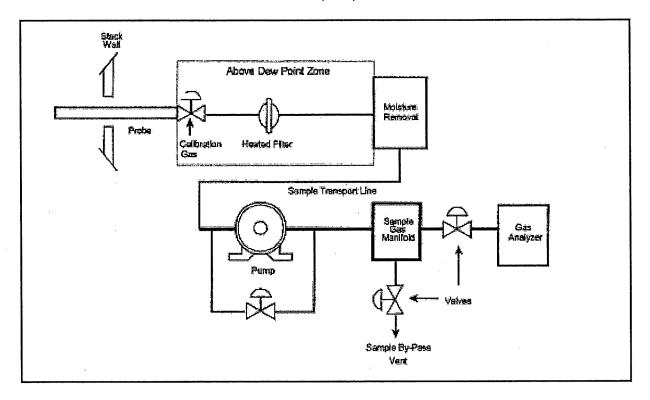
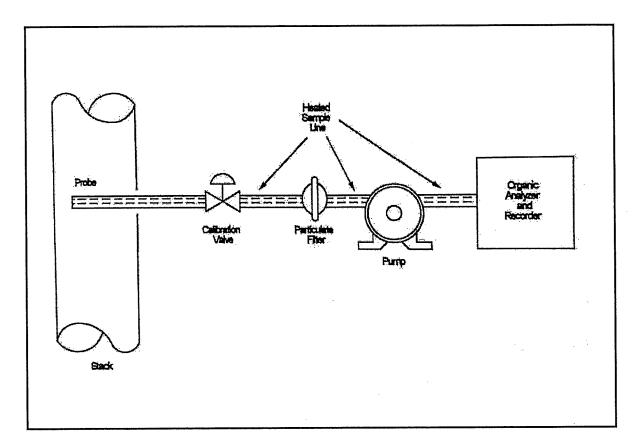



Figure 1-4. Example showing rectangular stack cross section divided into 12 equal areas, with traverse points at centroid of each area.



EPA Methods 3A, 6C, 7E & 10

CEM Sampling Train

BEST ENVIRONMENTAL

EPA Method 25A

Organic Concentration Measurement System

G-6

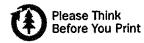
APPENDIX H SOURCE TEST PLAN

Bobby Asfour

From:	Gloria Espena <gespena@baaqmd.gov></gespena@baaqmd.gov>
Sent:	Thursday, June 30, 2022 11:14 AM
To:	Bobby Asfour; Marco Hernandez
Cc:	Harquail, Stephen
Subject:	NST-7518: NST Request-City of Berkeley Marina Landfill
Attachments:	Contractor ST Supplemental Form.docx
Follow Up Flag:	Follow up
Flag Status:	Flagged

NST-7518 has been assigned the pending 7/15/2022 work referenced below.

Also, we've introduced a new, supplemental form to be included when reports are submitted. It's just a sheet intended to help us with processing reports and prioritizing report review. The intention of the email is not to request additional testing. Please complete and submit the attached "Contractor ST Supplemental Form" with the final test report.


NST number(s) that are assigned for each source test notifications are for inner-office tracking purposes only, not an approval of the test plan. (For source testing methodologies please review permit conditions, BAAQMD Regulations and CFR, accordingly). Future notifications and report submittals should be made to **GEspena@baaqmd.gov** and **cc:** <u>MHernandez@baaqmd.gov</u>.

If you have other questions, please contact Marco Hernandez at mhernandez@baaqmd.gov.

Thank you,

Gloria M. Espena

Meteorology & Measurements Source Test Section & Performance Evaluation Group The Bay Area Air Quality Management District 375 Beale Street, Ste. 600 | San Francisco, CA 94105 Ofc (415) 749-4725 | Fax (510) 758-3087 gespena@baagmd.gov | www.baagmd.gov

From: Bobby Asfour <bobby@best-enviro.com>
Sent: Wednesday, June 29, 2022 2:55 PM
To: Gloria Espena <GEspena@baaqmd.gov>; Marco Hernandez <MHernandez@baaqmd.gov>
Cc: Harquail, Stephen <sharquail@scsengineers.com>
Subject: NST Request-City of Berkeley Marina Landfill

CAUTION: This email originated from outside of the BAAQMD network. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Gloria,

Please accept this email as notification of source test for the above referenced facility.

Site Number: 3590 Plant Name: City of Berkeley-Marina Landfill, Cesar Chavez Park, 11 Spinnaker Way, Berkeley, CA 94710 Plant Contact: Stephen Harquail, SCS Field Services Plant Contact Phone: (503) 867-2369, <u>sharquail@scsengineers.com</u> Testing Company: Best Environmental Testing Company Contact: Bobby Asfour Testing Company Contact Phone: 925-455-9474 x 103, <u>bobby@best-enviro.com</u> Purpose of Testing: Condition #1826 Annual Compliance Source: A-4 Description: LFG Flare

Test Parameters & Methods: Flare: Condition 1826 Outlet: NOx, CO, O2, CH4, NMOC, Flow Inlet: Gas BTU, N2, O2, CO2, Total Reduced Sulfur, LFG speciation section 16/Flow Rate NMOC & CH4 DRE, Combustion zone Temperature, LFG Flow Methods to be Used: Triplicate 30-minute runs for all samples/parameters:

Outlet: EPA 3A, 7E, 10, 18 , 19 & 25A

- stratification traverses
- Onsite NOx converter check

Inlet: ASTM D-1945/3588 & 6228, EPA Methods 18, 25C & TO-15

- Triplicate samples will be collected concurrently with outlet sampling.
- Appropriate sampling media containers will be used. (Multiple samples sample will be collected into various sampling media containers during each run to meet analytical/method/turnaround requirements)
- AAC lab will perform TO-15 and EPA Method 25C, BE will perform all other sample analysis.

Reporting units:

- Heat input. SCFM, Lbs/MMBtu (include fuel meter calibrations)
- Avg. combustion zone temperature (recorded data or strip chart will be included in final report)
- Pollutant mass emissions; ppm, lbs/hr. & lbs./MMBtu.
- Methane destruction efficiency by weight.

Test Dates: July 15, 2022

APPENDIX I PERMIT TO OPERATE OR AUTHORITY TO CONSTRUCT

1-1

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

City of Berkeley/Engr Div/Public Works 1947 Center St, 4th fl Berkeley, CA 94704

Attention: Lorin Jensen, P E

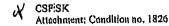
ALAMEDA COUNTY Pauline Russo Cutter Scott Haggerty Rebecca Kaplen Nate Miley

CONTRA COSTA COUNTY John Giola Dáyid E. Hudson (Cháir) Karen Mitchoff Mark Ross

> MARIN COUNTY Katle Rice (Vice Chair)

NAPA COUNTY Brad Wagenknecht

SAN FRANCISCO COUNTY Hillary Ronen Jeff Sheehy


SAN MATEO COUNTY David J. Canepa Carole Groom Doug Kim

SAN'İA CLARA COUNTY Margaret Abe-Koga Cindy Chavez Liz Kniss Rod G. Şinkş (Saoretary)

> BOLANO COUNTY Pete Sanchez James Spering

SONOMA COUNTY Teresa Barrell Shirlee Zane

Jack P. Broadbent EXECUTIVE OFFICER/APCO

Application No.: 26799 Plant No. 3590 Equipment Location: Cesar Chavez Prk Barkeley, CA 94704

Dear Applicant:

SUBJECT:

PERMIT TO OPERATE ABATEMENT EQUIPMENT

This letter is to advise you that your Permit to Operate the following is approved:

A-4 Landfill Gas Flare Flare

Operation of this equipment is subject to condition no. 1826

We have made the necessary changes to our records so that your annual permit renewal billing will reflect the presence of this equipment. You are advised that all applicable existing permit conditions which apply to source(s) abated by this abatement device are still in effect and enforceable.

Please include you application number with any correspondence with the District. The District's regulations may be viewed online at <u>www.baaqmd.gov</u> If you have any questions on this matter, please call Catherine S Fortney, Senfor Air Quality Engineer at (415) 749-4671.

ł Very truly yours, Air Quality Engineering Manager Acting Director of Engineering

March 1, 2018

Plant Name: City of Berkeley/Engr Div/Public Works A-4 Landfill Gas Flare

Condition No. 1826 Plant No. 3590

Application No. 26799

For: S-1 Landfill with Gas Collection System and A-3/A-4 Landfill Gas Flare

 All collected landfill gas from the S-1 Landfill with Gas Collection System shall be abated by the properly maintained and properly operated A-3 or A-4 Landfill Gas Flare. Raw or untreated landfill gas shall hot be vented to the atmosphere, except for unavoidable landfill gas emissions that occur during collection system installation, maintenance, or repair (which is performed in compliance with Regulation 8, Rule 34, Sections 113; 117, and/or, 118) and inadvertent component or surface leaks that do not exceed the limits specified in 8-34-301.2 or 8-34-303.

Until the completion of the installation and start-up of A-4 Landfill Gas Flare, all collected landfill gas from the S-1 Landfill with Gas Collection System shall be continue to be abated by A-3 Landfill Gas Flare.

(Basis: Regulation 8-34-301)

- The Heat Input to the A-3 Landfill Gas Flare shall not 2. exceed 63.9 million BTU per day and shall not exceed 23,330 million BTU per year. The Heat Input to the A-4 Landfill Gas Flare shall not exceed 57.6 million BTU per day and shall not exceed 21,024 million BTU per year. In order to demonstrate compliance with this part, the Permit Holder shall calculate and record, on a monthly basis, the maximum daily and total monthly heat input to the flare based on: (a) the landfill gas flow rate recorded pursuant to Regulation 8-34-508 and 8-34-501.10, (b) the average methane concentration in the landfill gas measured in most recent source test, and (c) a high heating value for methane of 1013 BTU per cubic foot at 60 degrees F. (Basis: Regulation 2-1-301)
- 3. Until the completion of the installation and start-up of A-4 Landfill Gas Flare, operation of A-3 Landfill Gas Flare shall be operated for a minimum of 312 hours in every month. Operation of the landfill gas collection system and flare may be discontinued if the methane concentration in the collected landfill gas is less than 20% methane by volume, or if the landfill gas flare flow rate falls below 250 cfm measured at the blower discharge. Landfill gas wells or collectors shall not be disconnected or removed and isolation valves shall not be shut completely off, without prior written authorization from the District, unless the Permit Holder complies with all applicable provisions of Regulation 8, Rule 34, Sections 113, 117, and 118.

· I-3

CONTRACTOR OF A	
The second second	

Plant Name: City of Berkeley/Engr Div/Public Works A-4 Landfill Gas Flare Condition No. 1826 Plant No. 3590 A

Application No. 26799

Upon issuance of the Permit to Operate for A-4 Landfill Gas Flare, the gas collection and control system shall be operated continuously in accordance with Regulation 8-34-301.1.

(Basis: Regulations 8-34-301.1, 8-34-404).

4. The Permit Holder has been issued a Permit to Operate for the landfill gas collection system components listed below. Well and collector locations, depths, and lengths are as described in detail in Permit Applications #1507, #1665, and #2351. The Permit Holder shall apply for and receive an Authority to Construct before modifying the landfill gas collection system described in this part. Increasing or decreasing the number of wells or collectors, changing the length of collectors, or significantly changing the locations of wells or collectors are all considered to be modifications that are subject to the Authority to Construct requirement. (Basis: Regulations 8-34-301.1, 8-34-303, and 8-34-304)

Type of Component	Number of Components
Vertical Wells	42.
Horizontal Collectors	2
Trench Collectors	14

- 5. A temperature monitor with a readout display and continuous recorder (recording thermocouple) shall be installed and maintained on the flare. One or more thermocouples shall be placed in the primary combustion zone of the flare and shall accurately indicate combustion zone temperature at all times. Temperature charts shall be retained for at least five years and made available at all times for District inspection. The temperature monitor and recorder are subject to the requirements of Regulation 1-523. (Basis: Regulations 1-523, 8-34-501.3, 8-34-501.12, and 8-34-507)
- 6. The combustion zone temperature of the flare shall be maintained at a minimum of 1400 degrees F, averaged over any 3-hour period. If a source test demonstrates compliance with all applicable requirements at a different temperature, the APCO may revise this temperature limit, based on the following criteria. The minimum combustion zone temperature for A-4 shall be equal to the average combustion zone temperature determined during the most recent complying source test minus 50 degrees F, provided that the minimum combustion zone temperature is not less than 1400 degrees F. (Basis: Regulations 2, Rule 5, 8-34-301.3)

	Plant Name: City of Berkeley/Engr Div/Public Works A-4 Landfill Gas Flare				
	Condition No. 1826 Plant No. 3590 Application No. 26799				
•	7. Nitrogen oxide (NOx) emissions from the A-4 Landfill Gas Flare shall not exceed 0.06 lb/MM BTU. (Basis: Cumulative Increase)				
	8. Carbon monoxide (CO) emissions from the A-4 Landfill Gas Flare shall not exceed 0.2 lb/MM BTU. (Basis: Cumulative Increase)				
	9. Non methane organic compound (NMOC) emissions from the A-4 Landfill Gas Flare shall not exceed 30 ppmv as methane at 3% oxygen, dry. (Basis: Cumulative Increase)				
	10. Operation of A-4 Landfill Gas Flare shall be conducted so as to ensure that methane (CH4) emissions are abated by at least 99% by weight. (Basis: CCR, Title 17, Subchapter 10, Section 95464(b)(2)(A))	· .			
	11. Total reduced sulfur compounds in the collected landfill gas shall be monitored as a surrogate for monitoring sulfur dioxide in the landfill gas flare's exhaust. The concentration of total reduced sulfur compounds in the collected landfill gas shall not exceed 300 ppmv (dry) expressed as hydrogen sulfide. (Basis: Regulation 9-1-302)				
	12. The A-4 Landfill Gas Flare shall be equipped with both local and remote alarm systems. (Basis: Regulation 8-34-301)				
	 13. In order to demonstrate compliance with Regulation 2-1- 301, Regulation 8, Rule 34, Sections 301.3 and 412, and the CARB MSW Methane Mitigation Regulation, the permit holder shall conduct an initial District-approved source test on Landfill Gas Flare A-4. At a minimum, the initial source test shall determine the following: a. landfill gas flow rate to the flare (dry basis); b. concentrations (dry basis) of carbon dioxide (CO2), nitrogen (N2), oxygen (O2), methane (CH4), and total non-methane organic compounds (NMOC) in the landfill gas; c. concentrations (dry basis) of sulfur compounds in the landfill gas flow rate from the flare (dry basis); e. concentrations (dry basis) of sulfur compounds in the landfill gas flow rate from the flare (dry basis); e. concentrations (dry basis) of NOX, CO, CH4, NMOC, and O2 in the flare stack gas; f. concentration (dry basis) of SO2 in the flare stack gas, if laboratory analysis for sulfur compounds in landfill gas is not performed; g. the CH4, and NMOC destruction efficiencies achieved by the flare; and 				

Plant Name: City of Berkeley/Engr Div/Public Works A-4 Landfill Gas Flare Condition No. 1826 Plant No. 3590 Application No. 26799

h. the average combustion temperature in the flare during the test period.

The initial source test shall be conducted no later than 120 days after start-up of Landfill Gas Flare A-4. The permit holder shall obtain approval from the District's Source Test Section for all source testing procedures at least 14 days in advance of the source test. The Source Test Section shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days of test completion, a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition. (Basis: Cumulative Increase, Regulations 2-5, 2-1-301, 8-34-301.3 and 8-34-412, CCR Title 17, Subchapter 10, Sections 95464(b)(2)(A) and 95464(b)(4))

- 14. In order to demonstrate compliance with the CARB Regulation to Reduce Methane Emissions from Municipal Solid Waste Landfills, the permit holder shall conduct an annual District-approved source test on Landfill Gas Flare A-4. At a minimum, the annual source test shall determine the following:
 - a. landfill gas flow rate to the flare (dry basis);
 - concentration (dry basis) of methane (CH4), and total non-methane organic compounds (NMOC) in the landfill gas; and
 - c. the CH4, and NMOC destruction efficiencies achieved by the flare.

The annual source test shall be conducted no later than 45 days after the anniversary date of the initial source test performed under Part 13 above. The permit holder shall obtain approval from the District's Source Test Section for all source testing procedures at least 14 days in advance of the source test. The Source Test Section shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days of test completion, a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition.

Upon completion of three consecutive annual source tests demonstrating compliance with Parts 7 - 11 above, the permit holder may petition the BAAQMD to conduct this source test once every three years rather than annually. If a subsequent source test fails to demonstrate Compliance with Parts 7 - 11 above, the source test frequency will return to annual.

(Basis: Cumulative Increase, CCR Title 17, Subchapter 10, Sections 95464(b)(2)(A) and 95464(b)(4))

Plant Name: City of Borkeley/Engr Div/Public Works A-4 Landfill Gas Flare Condition No. 1826 Plant No. 3590

Application No. 26799

15. The permit holder shall conduct a characterization of the landfill gas concurrent with the initial source test and annual source tests required by parts 13 and 14 above. The landfill gas sample shall be drawn from the main landfill gas header. The permit holder shall ensure that the landfill gas is analyzed for the following compounds:

1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,4-Dichlorobenzene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane Acrylonitrile Benzene Carbon Tetrachloride Chlorobenzene Chlorodifluoromethane Chloroethane Chloroform Dichlorodifluoromethane Dichloromethane Ethylene Dibromide Ethylene Dichloride Ethylbenzene Fluorotrichloromethane Hexane Isopropyl Alcohol Methyl Ethyl Ketone Methyl Isobutyl Ketone Perchloroethylene Toluene Trichloroethylene Vinyl Chloride Xylenes

All concentrations shall be reported on a dry basis. The District shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days of test completion a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition.

(Basis: Regulations 2-5, 8-34-412)

- 16. In order to demonstrate compliance with the above conditions, the owner/operator shall maintain the following records in a District-approved logbook:
 - a. Record the operating times and the landfill gas flow rate to the A-3/A-4 Landfill Gas Flare on a daily basis.
 Summarize these records on a monthly basis.
 Calculate and record the heat input to A-3/A-4
 - pursuant to part 2 above. b. Maintain continuous records of the combustion zone temperature for the A-3/A-4 Landfill Gas Flare during all hours of operation.
 - c. Maintain records of all test dates and test results performed to maintain compliance with parts 7 - 11 above, or to maintain compliance with any applicable rule or regulation.

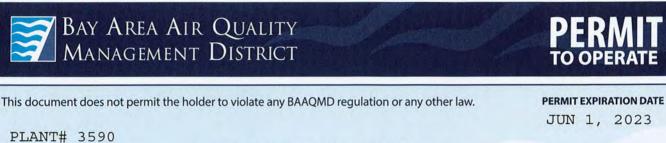
All records shall be maintained on site or shall be made readily available to District staff upon request for a period of at least two years from the date of entry, These recordkeeping requirements do not replace any

CHARGE STREET

Plant Name: City of Berkeley/Engr Div/Public Works A-4 Landfill Gas Flare Condition No. 1826 Plant No. 3590 Ap

Application No. 26799

recordkeeping requirements contained in any other applicable rule or regulation. (Basis; Cumulative Increase, Regulations 2-1-301, 2-5-501, 8-34-301, and 8-34-501)


End of Conditions

Permit to Operate

05/18/22	A3590	Page 1
Bay Area A Managemen	ir Quality nt District	PERMIT TO OPERATE
This document does not permit the	e holder to violate any BAAQMD regulation or any other law.	PERMIT EXPIRATION DATE JUN 1, 2023
PLANT# 3590		UUN 1, 2023
City of Berkeley 1947 Center St, Berkeley, CA 94		
	Location: Cesar Chavez Prk Berkeley, CA 947	04
S# DESCRIPTION		[Schedule] PAID
Landfill with Ga Abated by:	with gas collection system, Mult as Collection System (42 Vert.& 2 Hor A4 Flare at: P4 Stack	
A4 Industrial Fla Landfill Gas F	are - Other (not refinery), 240K B lare	TU/hr max 0 [exempt]
	ource, 1 Exempt Source	
*** See attach	ed Permit Conditions ***	
set forth in the attached condition	above are based on information supplied by permit holde as of the Permit to Operate. The limits of operation in mits is considered a violation of District regulations	the permit conditions are not
		967 A
375 Beal	e Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAQMD	0.GOV

05/18/22	A3590	Page 2
Bay Ar Manag	ea Air Quality Gement District	PERMIT TO OPERATE
	ermit the holder to violate any BAAQMD regulation or any other law.	PERMIT EXPIRATION DATE JUN 1, 2023
PLANT# 3590 ========	*** PERMIT CONDITIONS ***	
Source#	Subject to Condition Numbers	Constant Constant
1	1826	
The operating parameters de set forth in the attached c be exceeded Exceeding the	escribed above are based on information supplied by permit hold conditions of the Permit to Operate. The limits of operation i use limits is considered a violation of District regulations su	er and may differ from the limits n the permit conditions are not to bject to enforcement action
		Solar Press
	375 Beale Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAQMI	D.GOV

05/	1	8	1	2	2
-----	---	---	---	---	---

*** PERMIT CONDITIONS ***

COND# 1826 applies to S#'s 1, A4

For: S-1 Landfill with Gas Collection System and A-4 Landfill Gas Flare

1. All collected landfill gas from the S-1 Landfill with Gas Collection System shall be abated by the properly maintained and properly operated A-4 Landfill Gas Flare. Raw or untreated landfill gas shall not be vented to the atmosphere, except for unavoidable landfill gas emissions that occur during collection system installation, maintenance, or repair (which is performed in compliance with Regulation 8, Rule 34, Sections 113, 117, and/or, 118) and inadvertent component or surface leaks that do not exceed the limits specified in 8-34-301.2 or 8-34-303. (Basis: Regulation 8-34-301)

The Heat Input to the A-4 Landfill Gas Flare shall not 2. exceed 57.6 million BTU per day and shall not exceed 21,024 million BTU per year. In order to demonstrate compliance with this part, the Permit Holder shall calculate and record, on a monthly basis, the maximum daily and total monthly heat input to the flare based on: (a) the landfill gas flow rate recorded pursuant to Regulation 8-34-508 and 8-34-501.10, (b) the average methane concentration in the landfill gas measured in most recent source test, and (c) a high heating value for methane of 1013 BTU per cubic foot at 60 degrees F. (Basis: Regulation 2-1-301)

3. The gas collection and control system shall be operated continuously in accordance with Regulation 8-34-301.1.

(Basis: Regulations 8-34-301.1, 8-34-404).

The Permit Holder has been issued a Permit to Operate 4. for the landfill gas collection system components listed below. Well and collector locations, depths, and lengths are as described in detail in Permit Applications #1507, #1665, and #2351. The Permit Holder shall apply for and receive an Authority to Construct before modifying the landfill gas collection system described in this part. Increasing or decreasing the number of wells or

375 Beale Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAOMD.GOV

Page 3

BAY AREA AIR QUALITY Management District

Page

4

This document does not permit the holder to violate any BAAQMD regulation or any other law.

JUN 1, 2023

PLANT# 3590

*** PERMIT CONDITIONS ***

collectors, changing the length of collectors, or significantly changing the locations of wells or collectors are all considered to be modifications that are subject to the Authority to Construct requirement. (Basis: Regulations 8-34-301.1, 8-34-303, and 8-34-304)

Type of Component	Number of Components
Vertical Wells	42
Horizontal Collectors	2
Trench Collectors	14

5. A temperature monitor with a readout display and continuous recorder (recording thermocouple) shall be installed and maintained on the flare. One or more thermocouples shall be placed in the primary combustion zone of the flare and shall accurately indicate combustion zone temperature at all times. Temperature charts shall be retained for at least five years and made available at all times for District inspection. The temperature monitor and recorder are subject to the requirements of Regulation 1-523.

(Basis: Regulations 1-523, 8-34-501.3, 8-34-501.12, and 8-34

507)

- 6. The combustion zone temperature of the flare shall be maintained at a minimum of 1400 degrees F, averaged over any 3-hour period. If a source test demonstrates compliance with all applicable requirements at a different temperature, the APCO may revise this temperature limit, based on the following criteria. The minimum combustion zone temperature for A-4 shall be equal to the average combustion zone temperature determined during the most recent complying source test minus 50 degrees F, provided that the minimum combustion zone temperature is not less than 1400 degrees F. (Basis: Regulations 2, Rule 5, 8-34-301.3)
- 7. Nitrogen oxide (NOx) emissions from the A-4 Landfill Gas Flare shall not exceed 0.06 lb/MM BTU. (Basis: Cumulative Increase)
- 8. Carbon monoxide (CO) emissions from the A-4 Landfill Gas Flare shall not exceed 0.2 lb/MM BTU. (Basis:

375 Beale Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAQMD.GOV

A3590

05/	18	3/2	22
001		- / -	

Page

5

This document does not permit the holder to violate any BAAQMD regulation or any other law.

JUN 1, 2023

PLANT# 3590

*** PERMIT CONDITIONS ***

A3590

Cumulative Increase)

9. Non methane organic compound (NMOC) emissions from the A

4 Landfill Gas Flare shall not exceed 30 ppmv as methane at 3% oxygen, dry.

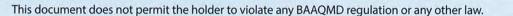
(Basis: Cumulative Increase)

- 10. Operation of A-4 Landfill Gas Flare shall be conducted so as to ensure that methane (CH4) emissions are abated by at least 99% by weight. (Basis: CCR, Title 17, Subchapter 10, Section 95464(b)(2)(A))
- 11. Total reduced sulfur compounds in the collected landfill gas shall be monitored as a surrogate for monitoring sulfur dioxide in the landfill gas flare's exhaust. The concentration of total reduced sulfur compounds in the collected landfill gas shall not exceed 300 ppmv (dry) expressed as hydrogen sulfide.
 (Paging: Pogulation 9 1 202)

(Basis: Regulation 9-1-302)

12. The A-4 Landfill Gas Flare shall be equipped with both local and remote alarm systems. (Basis: Regulation 8-34-301)

13. Deleted Application 31264


14. In order to demonstrate compliance with the CARB Regulation to Reduce Methane Emissions from Municipal Solid Waste Landfills, the permit holder shall conduct a District-approved source test on Landfill Gas Flare A-4 every three years within 45 days of the anniversary date of the initial source test. At a minimum, the annual source test shall determine the following:

a. landfill gas flow rate to the flare (dry basis);

b. concentration (dry basis) of methane (CH4), and total non-methane organic compounds (NMOC) in the landfill gas; and

c. the CH4, and NMOC destruction efficiencies achieved by the flare.

The permit holder shall obtain approval from the District's Source Test Section for all source testing procedures at least 14 days in advance of the source test. The Source Test Section shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days BAY AREA AIR QUALITY Management District

JUN 1, 2023

PLANT# 3590

*** PERMIT CONDITIONS ***

of test completion, a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition.

If a source test fails to demonstrate Compliance with Parts 7 - 11 above, the source test frequency will return to annual.

(Basis: Cumulative Increase, CCR Title 17, Subchapter 10, Sections 95464(b)(2)(A) and 95464(b)(4))

15. The permit holder shall conduct a characterization of the landfill gas concurrent with the source tests required by part 14 above. The landfill gas sample shall be drawn from the main landfill gas header. The permit holder shall ensure that the landfill gas is analyzed for the following compounds:

1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,4-Dichlorobenzene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane Acrylonitrile Benzene Carbon Tetrachloride Chlorobenzene Chlorodifluoromethane Chloroethane Chloroform Dichlorodifluoromethane Dichloromethane Ethylene Dibromide Ethylene Dichloride Ethylbenzene Fluorotrichloromethane Hexane Isopropyl Alcohol Methyl Ethyl Ketone Methyl Isobutyl Ketone Perchloroethylene Toluene Trichloroethylene Vinyl Chloride Xylenes

All concentrations shall be reported on a dry basis. The District shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days of test completion a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition. (Basis: Regulations 2-1-403, 2-5)

16. In order to demonstrate compliance with the above conditions, the owner/operator shall maintain the following records in a District-approved logbook:

375 Beale Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAQMD.GOV

Page 6

A3590

7

Page

This document does not permit the holder to violate any BAAQMD regulation or any other law.

JUN 1, 2023

PLANT# 3590

*** PERMIT CONDITIONS ***

A3590

a. Record the operating times and the landfill gas flow rate to the A-4 Landfill Gas Flare on a daily basis.Summarize these records on a monthly basis. Calculate and record the heat input to A-4 pursuant to part 2 above.b. Maintain continuous records of the combustion zone temperature for the A-4 Landfill Gas Flare during all hours of operation.

c. Maintain records of all test dates and test results performed to demonstrate compliance with parts 7 - 11 above, and with any applicable rule or regulation.
d. Records required by the CARB Regulation "Methane Emissions from Municipal Solid Waste Landfills."

All records shall be maintained on site or shall be made readily available to District staff upon request for a period of at least five years from the date of entry. These recordkeeping requirements do not replace any recordkeeping requirements contained in any other applicable rule or regulation.

(Basis; Cumulative Increase, Regulations 2-1-301, 8-34-301, 8-34-501, CCR Title 17, Subchapter 10, Section 95470)

END OF CONDITIONS

	rea Air Quality ement District	**	SOURCE	EMISSIONS	5 **				LANT # ay 18,	
S# 	Source Description				PAF 		nual A ORG 	verage NOx	lbs/da SO2 	ay CO
1	Landfill with Gas Collec	ctic	on Syste	em (42 Ve		_	1.89	.03	-	-
	ΤΟΤΑΙS				.2	26	2.12	.09	.72	.1

** PLANT TOTALS FOR EACH EMITTED TOXIC POLLUTANT **

Pollutant Name	Emissions lbs/day
Toluene Hydrogen Sulfide (H2S)	.02

•

POTENTIAL TO EMIT ESTIMATES FOR THE OFFLINE TIME OF GAS COLLECTION AND CONTROL SYSTEM BERKELEY LANDFILL BERKELEY, CALIFORNIA

CAS NUMBER	COMPOUNDS	Molecular Weight (g/Mol)	Ave. Concentration of Compounds Found In LFG (ppmv) ^(b)	Total Pollutant Flow Rate (lbs/hr) ^(c)	Pollutant Emission Rate from Landfill (Pounds for Event - 240 hours)
Hazardous Air Pollutar	nts (HAPs) ^(a)			•	
71-55-6	1,1,1-Trichloroethane (methyl chloroform)* ^(h)	133.41	0.003	5.22E-06	1.25E-03
79-34-5	1,1,2,2-Tetrachloroethane*	167.85	0.003	6.57E-06	1.58E-03
75-34-3	1,1-Dichloroethane (ethylidene dichloride)*	98.97	0.003	3.88E-06	9.30E-04
75-35-4	1,1-Dichloroethene (vinylidene chloride)*	96.94	0.003	3.80E-06	9.11E-04
107-06-2	1,2-Dichloroethane (ethylene dichloride)*	98.96	0.003	3.88E-06	9.30E-04
78-87-5	1,2-Dichloropropane (propylene dichloride)*	112.99	0.003	4.42E-06	1.06E-03
67-63-0	2-Propanol (isopropyl alcohol)*	60.11	0.014	9.46E-06	2.27E-03
67-64-1	Acetone ^{*^(h)}	58.08	0.014	9.14E-06	2.19E-03
107-13-1	Acrylonitrile*	53.06	0.007	4.16E-06	9.99E-04
75-25-2	Bromodichloromethane*	163.83	0.041	7.77E-05	1.86E-02
71-43-2	Benzene*	78.11	0.038	3.44E-05	8.27E-03
75-15-0	Carbon disulfide*	76.13	0.011	9.36E-06	2.25E-03
56-23-5	Carbon tetrachloride*	153.84	0.341	6.02E-04	1.45E-01
46-358-1	Carbonyl sulfide	60.07	0.183	1.26E-04	3.03E-02
108-90-7	Chlorobenzene*	112.56	0.089	1.15E-04	2.76E-02
75-00-3	Chloroethane (ethyl chloride)*	64.52	0.034	2.53E-05	6.06E-03
67-66-3	Chloroform*	119.39	0.034	4.68E-05	1.12E-02
75-45-6	Chlorodifluoromethane* ^h	86.47	0.173	1.72E-04	4.12E-02
74-87-3	Chloromethane (methyl chloride)*	50.49	0.034	1.98E-05	4.75E-03
106-46-7	Dichlorobenzene (1,4-Dichlorobenzene)*	147.00	0.039	6.55E-05	1.57E-02
75-43-4	Dichlorodifluoromethane* ^(h)	120.91	0.116	1.61E-04	3.87E-02
75-71-8	Dichlorofluoromethane*	102.92	0.051	6.04E-05	1.45E-02
75-09-2	Dichloromethane (Methylene Chloride)* ^(h)	84.94	0.068	6.66E-05	1.60E-02
64-17-5	Ethanol* **	46.08	0.135	7.14E-05	1.71E-02
100-41-4	Ethylbenzene*	106.16	0.006	7.49E-06	1.80E-03
106-93-4	Ethylene dibromide (1,2-Dibromoethane)*	187.88	0.003	7.36E-06	1.77E-03
75-69-4	Fluorotrichloromethane ^(h)	137.40	0.327	5.16E-04	1.24E-01
110-54-3	Hexane*	86.18	0.329	3.26E-04	7.81E-02
2148-87-8	Hydrogen Sulfide*	34.08	392.500	1.54E-01	3.69E+01
7439-97-6	Mercury (total) ^(d)	200.61	0.0003	6.73E-07	1.61E-04
78-93-3	Methyl ethyl ketone*	72.11	0.007	5.66E-06	1.36E-03
108-10-1	Methyl isobutyl ketone*	100.16	0.007	7.86E-06	1.89E-03
127-18-4	Perchloroethylene (tetrachloroethylene)* ^(h)	165.83	0.034	6.49E-05	1.56E-02
108-88-3	Toluene*	92.13	0.077	8.16E-05	1.96E-02
79-01-6	Trichloroethylene (trichloroethene)*	131.40	0.003	5.15E-06	1.23E-02
75-01-4	Vinyl chloride*	62.50	0.009	6.11E-06	1.47E-03
1330-20-7	Xylenes*	106.16	0.021	2.51E-05	6.02E-03
Single Highest HAP		100.10	0.021	0.0006	0.14
Totals: HAPs				0.002	0.50
Criteria Air Pollutants		l	1	0.002	0.00
	Total Non-Methane Organics (NMOCs) as Hexane ^(e)	86.18	37.60	0.04	8.93
	VOCs ^(f)	86.18	37.60	0.04	8.69
Notes'	VUUS	00.10	57.00	0.04	0.09

Notes:

(a) List of hazardous air pollutants was from Title III Clean Air Act Amendments, 1990, and include compounds found in landfill gas, as determined

from a list in AP-42 Tables 2.4-1 ("Default Concentrations for Landfill Gas Constituents, 11/98"). Compounds not identified as HAP by AP-42 indicated by "**".

(b) Average concentration of compounds found in LFG based on "Waste Industry Air Coalition Comparison of Recent Landfill Gas Analyses with Historic AP-42 Values" and site-specific values from 2023 LFG composition samples as indicated by "*".

(c) Total pollutant emission rate based on LFG average flow rate prior to event.

(d) Concentration of Mercury based on EPA AP-42 Section 2.4 Table 2.4-1 (11/98).

(e) Concentration of NMOC as hexane from Source Test for Berkeley Landfill, 2023. NMOC peak value as 226 ppmv as methane.

(f) VOCs assumed to equal NMOCs.

(g) Average LFG flow rate to the the flare was based on historical data of flare operations through 2023.

(h) Indicates compound designated as having a negligible contribution to photochemical reactivity by the U.S. Environmental Protection Agency as published in the Federal Register

shall be considered a Non-Precursor Organic Compound in accordance with BAAQMD Rule 1-234 and USEPA Section 40 Code of Federal Regulation Section 51.100.

Variables:

MODEL INPUT VARIABLES:				
Methane Concentration (%) ^(b)	29	9%		
LFG Flow Rate ^(g)	7	'4	SCFM	
Duration of Event (Gas Collection and Control System Downtime)	240	0.00	hours	
CONVERSIONS				
lb conversion	453.6 g			

	453.0 g
hour conversion	60 min
mol conversion	24.04 L @ STP
cf conversion	28.32 L
mmbtu conversion	1,000,000 btu

EXAMPLE CALCULATIONS

(HAPS AND VOCS)

Total Pollutant Flow Rate (To Flare)= ((Molecular Weight of Compound[g/mol])*(Concentration of Compound[ppm]/1,000,000)*(Total LFG to Flare [cfm]) *(60min)*(1lb/453.6g)*(1mol/24.04L @ STP)*(28.32L/1cf)

SUMMARY OF POTENTIAL EMISSIONS BERKELEY LANDFILL BERKELEY, CALIFORNIA

		PTE		
Emission Source	Regulated Air Pollutant	lb/day	lbs/event	tpy
Landfill during GCCS Downtime	Volatile Organic Compounds	0.87	8.69	0.0043
	Non-Methane Organic Compounds	0.89	8.93	0.0045
	Total Hazardous Air Pollutants	0.05	0.50	0.0003

2022 Source Test Results

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

375 Beale Street, Suite 600 San Francisco, California 94105 (415) 771-6000

Contractor Source Test Supplemental Form

Site name:

NST number:

Testing company: BEST ENVIRONMETAL

Test purpose:

Routine compliance testing

Compliance test required after previous source test failure

Start-up test

Other, ex: trial testing for permit changes, engineering studies

Please explain:

Revised report with corrections noted

Revision number:

Preliminary test results:

Values within range set by rule or regulation

Values outside of range set by rule or regulation

N/A

Please explain:

Source Test Report

CITY OF BERKELEY MARINA LANDFILL Berkeley, CA

Landfill Gas Fired Flare (A-4) Emission Results & Landfill Gas Characterization Facility #3590, Condition #1826 NST-7518

Test Date: July 15, 2022 Report Date: August 17, 2022

Performed and Reported by:

BEST ENVIRONMENTAL 339 Stealth Court Livermore, CA 94551 Phone: (925) 455-9474 Fax: (925) 455-9479

Prepared For:

SCS Field Services 4730 Enterprise Way Modesto, Ca 95956 Attn: Mr. Stephen Harquail

For Submittal To:

Bay Area Air Quality Management District 375 Beale Street, STE 600 San Francisco, CA 94185

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program. If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please call the Team Leader or Reviewer at (925) 455-9474.

Will

William Johnston Project Manager

Reviewer:

I have reviewed this report for presentation and accuracy of content, and hereby certify that to the best of my knowledge the information is complete and correct.

lohn

Basim (Bobby) Asfour Principal/QSTI

Source Test Information

Source Owner:	City of Berkeley/Engineering Division/Public Works 1947 Center St., 4 th Fl Berkeley, CA 94704
Source Location:	Berkeley Marina Landfill Cesar Chaves Park (Berkeley Marina) Berkeley, California 94704
Engineering Firm:	SCS Field Services
Contact:	Stephen Harquail, (530) 867-2369
Source Description:	Site #3590, Landfill Gas Flare A4
PTO Number:	Condition 1826

<u>Test Paramet</u>	ters & Limits:		Average Result		
NOx:	0.06 lbs/MMBtu		0.02 lbs/MMBtu		
CO:	0.2 lbs/MMBtu		0.05 lbs/MMBtu		
NMOC:	30 ppm @ 3% O2 as	s methane	ppm @ 3% O2		
CH 4:	99% DRE		99.99% DRE		
Fuel Sulfur:	300 ppm as H ₂ S		2 ppm as H ₂ S		
Source Testin	g Firm:	BEST ENVIR	RONMENTAL		
		339 Stealth C	ourt		
		Livermore, C.	A 94551		
		Phone (925) 4			
		Fax (925) 455-9479			
Contact:		Bobby Asfour	r		
Test Date:		July 15, 2022			
NST Number:	:	7518			
Analytical La	boratories:	Atmospheric	Analysis & Consultants (TO 15, M25C)		
		Speciated VO	C		
			n Avenue, Ste. A		
		Ventura, CA			
		Attn: John Yo	•		
		Phone: (805)	650-1642		
		BEST ENVIR	RONMENTAL		
		(Fixed gases (CH ₄ , H ₂ S, HHV& F factor)		
		339 Stealth C	ourt		
		Livermore, C.	A 94551		

TABLE of CONTENTS

SECTION	N 1.	INTRODUCTION	1
1.1.		Г Purpose	
1.2.		Г LOCATION	1
		WAS CONDUCTED ON THE FLARE LOCATED AT THE CITY OF BERKELEY, CAESAR CHAVEZ PARK,	
		(ARINA, CA 94704. (FACILITY #3590)	
1.3.		г Дате	
1.4. 1.5.		r Parameters and Methods ipling and Observing Personnel	
SECTION		SUMMARY OF RESULTS	
2.1.		SSION RESULTS	
2.2. 2.3.		cess Data owable Emissions	
2.3.		IMENTS: DISCUSSION OF QUALITY ASSURANCE AND ERRORS	
		-	
SECTION	N 3.	SOURCE OPERATION	3
3.1.	Pro	CESS DESCRIPTION	3
3.2.		W DIAGRAM	
3.3.		CESS AND CONTROL OPERATING PARAMETERS	
3.4.		MAL OPERATING PARAMETERS	
3.5.	TEST	TING OR PROCESS INTERRUPTIONS AND CHANGES	3
SECTION	N 4.	SAMPLING AND ANALYSIS PROCEDURES	4
4.1.	Por	T LOCATION	4
4.2.		VT DESCRIPTION/LABELING – PORTS/STACK	
4.3.		THOD DESCRIPTION, EQUIPMENT, SAMPLING, ANALYSIS AND QA/QC	
4.4.	ANA	LYTICAL LABORATORIES	6
TABLE 1	-TES	T RESULTS	7
APPEND	ICES		
	A.	Calculations & Nomenclature	A-1
	B.	Laboratory Reports	
	C.	Field Data Sheets	
	D.	Calibration Gas Certificates	
	E.	Process Data	
	F.	Stack Diagrams	
	G.	Sampling System Diagrams	
	H.	Source Test Plan	
	I.	Permit To Operate	1-1

SECTION 1. INTRODUCTION

1.1. Test Purpose

Best Environmental (BE) was contracted by SCS Field Services to perform emissions testing on one landfill gas flare (A-4) to comply with Bay Area Air Quality Management District (BAAQMD) Regulation 8 Rule 34 Sections 301.3 & 412 as well as Condition #1826 of the permit. A copy of the Permit is included in the appendices.

1.2. Test Location

The testing was conducted on the flare located at the City of Berkeley, Caesar Chavez Park, Berkeley Marina, CA 94704. (Facility #3590).

1.3. Test Date

Testing was conducted on July 15, 2022.

1.4. Test Parameters and Methods

The following emission parameters were measured:

Parameter	Monitoring & Analytical Protocols
NMOC, THC, NOx, CO & O ₂	EPA Methods 3A, 7E, 10 & 25A
Flowrate (inlet/outlet)	Flowmeter/EPA Method 19
Inlet NMOC & CH ₄	EPA Method 18 & 25C
Fixed Gases, Btu/CF & F Factor	ASTM D-1945 & 3588
LFG organics & TRS	Modified EPA TO-15 & D-6228

1.5. Sampling and Observing Personnel

Sampling was performed by Bobby Asfour and Bill Johnston of BE. The BAAQMD was notified of the test date; however, there was no representative present to witness the test program.

SECTION 2. SUMMARY OF RESULTS

2.1. Emission Results

Table 2.1 summarizes the flare outlet average test results. Triplicate 30-minute runs were performed according to BAAQMD and EPA test methods. Individual run results are presented in Table 1 on page 7. Landfill Gas Characterization (TO 15) results are in Appendix B.

Parameter	Average Results	Limits
NOx, lbs/MMBtu	0.0205	0.06
CO, lbs/MMBtu	0.0529	0.20
NMOC, ppm @ 3% O ₂	6.47	30
CH ₄ Destruction Efficiency	99.99	≥ 99

Table	2.1:	Flare	Outlet	(A-4)
-------	------	-------	--------	-------

2.2. Process Data

Table 2.2 presents the Flare Operational Parameters as recorded by the flares data acquisition system. Process data and fuel meter calibration can be found in Appendix E.

	-	
Parameter	Fuel Flow Meter, SCFM	Flare Temp., ºF
Run # 1	65.56	1,550
Run # 2	65.59	1,555
Run # 3	65.57	1,554

Table 2.2: Operational Parameters

2.3. Allowable Emissions

See Table 2.1 above. The test results show that the flare is operating within the PTO gaseous emission limits and is therefore in compliance.

2.4. Comments: Discussion of Quality Assurance and Errors

Quality assurance procedures listed in the above referenced test methods and referenced in the Source Test Plan were performed and documented. The QA/QC procedures are described in Section 4.3 of the report. Documentation of the QA/QC is provided in Appendix A, B & D.

SECTION 3. SOURCE OPERATION

3.1. Process Description

The landfill gas fired flare is a control device for the treatment of landfill gas (mainly methane, carbon dioxide and nitrogen) that is generated from the decomposition of waste. The gas is collected in a network of interconnected pipes from several landfill gas extraction wells that draw a vacuum on the vapors in the landfill. The vapors are treated to remove condensate and particulate material, and then they are incinerated in the flare.

3.2. Flow Diagram

A digital image of the flare stack is contained in Appendix F.

3.3. Process and Control Operating Parameters

The flare was operated at 1,553 $^{\circ}$ F at a fuel rate of 66 SCFM according to the flare's monitoring devices. Flare monitoring data was provided by the facility and can be found in Appendix E.

3.4. Normal Operating Parameters

The flare was operating normally during the test periods.

3.5. Testing or Process Interruptions and Changes

There were no testing or process interruptions during the test series.

SECTION 4. SAMPLING AND ANALYSIS PROCEDURES

4.1. Port Location

Emissions from the flare were sampled via a circular stack with two ports 90° apart located approximately 5 stack diameters downstream of the burners and 1 stack diameter upstream from the exit. Access to the sampling ports was provided using a 40-foot boom-lift.

The dimensional cross-sections of the stack are 56-inches (Area SQFT = 17.104). The fuel line to the flare is a 6-inch stainless steel pipe. A single port/tap was located on the flame arrestor, 2-feet upstream from the flare wall.

4.2. Point Description/Labeling – Ports/Stack

The stack ports were not labeled but were designated as facing south and east.

4.3. Method Description, Equipment, Sampling, Analysis and QA/QC

Sampling and analytical procedures of the methods were followed as published in the EPA "Quality Assurance Handbook for Air Pollution Measurement Systems" Volume III, US EPA 600/4-77-027b.

Parameter	Location	Method(s)	Duration	Runs
THC, CH ₄ , NMOC, NO _x , CO & O ₂	Exhaust	EPA Methods 3A, 7E, 10, 18 & 25A	30 mins	3
Flow Rate	Exhaust	EPA 19	30 mins	3
LFG organics & TRS compounds	Inlet	TO-15	30 mins	3
TRS	Inlet	ASTM D-6228	30 mins	3
C1-C6, O ₂ , N ₂ , BTU-Fixed Gases	Inlet	ASTM D-1945/3588	30 mins	3
Flow Rate & Flare Temp.	Inlet	Flare Metering System	Concurrent	3
NMOC & CH ₄	Inlet	EPA Method 18 & 25C	30 mins	3

The following is an overview of the Testing Performed

EPA Method 7E, 10 & 3A are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample and analyzing the flue gas using continuous monitoring gas analyzers in a CEM test van. The sampling system consists of a stainless-steel sample probe, Teflon sample line, glass-fiber particulate filter, glass moisture-knockout condensers in ice, Teflon sample transfer tubing, diaphragm pump and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program. The BE sampling and analytical system bias at the beginning of the test day. System bias is determined by pulling calibration gas through the entire sampling system. Individual test run calibrations use the calibration gas, which most closely matches the stack gas effluent. The calibration gases are selected to fall approximately within the following instrument ranges; 80 to 95 \\zera-w2k\users\reports\bill\2022\scs. berkeley flare\report berkeley.doc percent for the high calibration, 40 to 60 percent for the mid-range and zero. Zero, calibration and bias drift values are determined for each test.

EPA 25A (THC as methane by FID) is an accepted method for the determination of Total Hydrocarbons (THC). A flame ionization detector (FID) total hydrocarbon continuous monitor is used for the sampling. The sampling and calibrations are performed through an all heated sample line connected directly to the THC analyzer. The FID in the analyzer is heated to 190 °C. The calibration gases are selected to fall within the following instrument ranges; 80 to 90 percent for the high calibration, 45 to 55 percent for the mid-range calibration, 25 to 35 percent for the low range calibration and zero. Zero and mid external calibration drift values are determined for each test run.

All BE calibration gases are EPA Protocol # 1. The analyzer data recording system consists of BE's Computer Data Acquisition System (DAS). The NO₂ converter is checked and confirmed to be > 90% efficient.

EPA Methods 7E, 10 & 3A met the following QA/QC method requirements:

System C	riteria					
Ins	trument Linearity	$\leq 2\%$ Calibration Span or ± 0.5 diff.				
Ins	trument Bias	≤5% Calibrat	ion Span or ± 0.5 diff.			
NO	D ₂ Converter Efficiency	≥90%				
Sy	stem Response Time	≤2 minutes				
Test Crite	eria					
Ins	trument Zero Drift	≤3% Calibrat	ion Span or ± 0.5 diff.			
Ins	trument Span Drift	\leq 3% Calibration Span or \pm 0.5 diff.				
EPA Method 25A met the following QA/QC method requirements:						
System C	riteria					
Ins	trument Linearity	\leq 5% Calibration Gas Conc.				
Test Crite	eria					
Ins	trument Zero Drift	≤3% Span Range				
Ins	trument Span Drift	≤3% Span Ra	nge			
The following c	ontinuous monitoring ar	nalyzers were u	ised:			
Parameter	Make	<u>Model</u>	Principle			
NO _x	CAI	600CLD	Chemiluminescence			
CO	TECO	48i	GFC IR analyzer			

EPA Method TO-15 & ASTM D-6228 analysis is used to determine emissions of Organic and inorganic compounds including sulfurs. Inlet gases are filled into tedlar bags corresponding to the test program. The bags are labeled respectively then sent to a laboratory and analyzed for GC/MS (gas chromatography/mass spectrometer) within 72 hours and GC/FPD (gas chromatography/flame photometric detector) within 24 hours for sulfur. For more information on the lab analysis, refer to Appendix B for method description and QA/QC.

110P

600

Paramagnetic

FID

EPA Method 18 is used to determine carbon speciated hydrocarbons (C_1 , C_2 & C_3 +) emissions by gas chromatograph / Flame Ionization Detection (GC/FID). Gaseous emissions are drawn through a Teflon sample line to a tedlar bag located in a rigid leak proof bag container.

CAI

CAI

 O_2

THC

Sample is drawn into the bag by evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow between 20 to 60 minutes. The bag samples are taken to a laboratory and analyzed within 72 hours. The results are reported as methane with a detection limit of 0.5 ppm for non-methane non-ethane organic compounds (C_{3+}).

EPA Method 19 is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes generated from heat input. The heating value of the fuel in Btu per cubic foot is determined from the analysis of fuel gas samples using gas chromatography (GC). Dedicated fuel meters monitor total fuel consumption for the source. The total cubic feet per hour of fuel multiplied times the Btu/CF provides million Btu per hour (MMBTU) heat input. The heat input in MMBTU/hr is multiplied by the F-factor (DSCF/MMBTU) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. This procedure is proposed for pollutants whose compliance standards are based on emission rates (lb/day) or emission factors (lb/MMBtu).

EPA Method 25C is used to determine the emissions of NMOC and can also be used to identify and quantify fixed gases (O₂, CO₂, N₂& CH₄) in conjunction with **EPA Method 3C**. Gaseous emissions are drawn through Teflon sample line to a tedlar bag. Positive pressure is adjusted to maintain an integrated sample flow between 30 to 60 minutes. The bag samples are taken to a laboratory and analyzed for Non-Methane Organic Compound (NMOC) referenced to methane and fixed gases using GC/FID (gas chromatography/flame ionization detector-total combustion analysis and thermal conductivity detector (TCD) within 72 hours.

ASTM D-1945 & D-3588 analysis is used to determine the composition of fuel gas (e.g. Methane, fixed gases & BTU Content). Inlet gases are filled into a tedlar bag, the bag is labeled respectively then sent to a Laboratory and analyzed for fixed gases, methane and C_1 - C_6 using GC/FID (gas chromatography/flame ionization detector). Each compound has calorific values that are used to calculate the gas higher heating values.

4.4. Analytical Laboratories

Three summa canisters were sent to AAC Lab. for EPA Method 25C, TO-15 (NMOC, organic compound analyses). Three inlet and three outlet tedlar bag samples were brought to the BE Lab for ASTM D-1945/3588/6228 & EPA Method 18 (heat input, H₂S & C₁, C₂, C₃+). For more information on the analysis procedure and QA/QC refer to Appendix B.

TABLE #1 Test Results City of Berkeley Flare

TEST	1	2	3	AVERAGE	LIMIT
Test Date	7/15/22	7/15/22	7/15/22		
Test Time	926-1001	1014-1047	1101-1135		
Standard Temp., °F	70	70	70		
	Process Data	ì			
Flare Temp., [°] F	1,550	1,555	1,554	1,553	
Fuel F-Factor, DSCF/MMBtu @ 70°F	10,553	10,686	10,438	10,559	
Inlet Methane (CH ₄) Content, %	25.70	24.50	26.30	25.50	
Inlet Fuel Flow Rate, DSCFM	65.56	65.59	65.57	65.57	
Heat Input, MMBtu/hr	1.02	0.98	1.05	1.02	
Heat Input, MMBtu/day	24.55	23.42	25.21	24.39	
Outlet Flow Rate, DSCFM (M19)	506	491	523	507	
O	utlet Emissio	ons			
O ₂ , %	13.47	13.51	13.60	13.53	
CO, ppm	16.50	20.63	36.04	24.39	
CO, lbs/hr	0.0047	0.0059	0.0103	0.0069	
CO, lbs/MMBtu	0.0355	0.0452	0.0781	0.0529	0.20
NO _x , ppm	9.50	9.53	9.26	9.43	
NO _x , lbs/hr	0.0027	0.0027	0.0026	0.0027	
NO _x , lbs/MMBtu	0.0205	0.0209	0.0201	0.0205	0.06
THC, ppm as methane (25A)	5.27	7.29	6.16	6.24	
CH ₄ , ppm (M18)	3.45	3.48	3.79	3.57	
CH ₄ , lbs/hr	0.0043	0.0042	0.0049	0.0045	
NMOC, ppm (M25A)	1.82	3.81	2.37	2.67	
NMOC, ppm @ 3% O ₂ as CH ₄	4.39	9.23	5.80	6.47	30
VOC, lbs/hr as methane	0.0023	0.0047	0.0031	0.0039	
	Inlet				
Inlet CH ₄ , ppm (M18)	257,000	245,000	263,000	255,000	
Inlet CH ₄ , lbs/hr	41.8	39.9	42.8	41.5	
Inlet VOC, ppm as methane (M25C)	226	187	185	199	
Inlet VOC, lbs/hr as methane	0.037	0.030	0.030	0.032	
Landfill Gas Sulfur Content					
Inlet Total Sulfur as H ₂ S, gr/100dscf	0.89	0.85	0.87	0.87	
Inlet Total Sulfur as H ₂ S, ppm	1.52	2.58	1.05	1.72	300
	uction Effic				
CH ₄ , Destruction Efficiency %	99.99%	99.99%	99.99%	99.99%	≥99%
NMOC, Destruction Efficiency %	93.78%	84.73%	89.80%	89.43%	≥98%

WHERE:

MW = Molecular WeightVOC ppm = THCDSCFM = Dry Standard Cubic Feet Per Minutelbs/hr = ppm * DSppm = Parts Per Million Concentrationppm @ 3% O₂ = plbs/hr = Pound Per Hour Emission Ratelbs/MMBtu = Fd *lbs/MMBtu = Pounds per million BTURemoval EfficienceCO = Carbon Monoxide (MW = 28)NOx = Oxides of Nitrogen as NO₂ (MW = 46)THC = Total Hydrocarbons as Methane (MW = 16)THC

VOC = Total Non-Methane Hydrocarbons as Methane-C1 (MW = 16) CH_4

CALCULATIONS: VOC ppm = THC ppm - CH₄ ppm

 $lbs/hr = ppm * DSCFM * MW *60 / 379 x 10^{6} (@60^{\circ}F) \\ ppm @ 3\% O_2 = ppm * 17.9 / (20.9-stack O_2) \\ lbs/MMBtu = Fd * M.W.* ppm * 2.59E-9 * (20.9/(20.9-%O_2)) \\ Removal Efficiency = (inlet lbs/hr-outlet lbs/hr) / Inlet lbs/hr$

APPENDICES

APPENDIX A – CALCULATIONS & NOMENCLATURE APPENDIX B - LABORATORY REPORTS APPENDIX C - FIELD DATA SHEETS APPENDIX D – CALIBRATION GAS CERTIFICATES APPENDIX E - PROCESS DATA APPENDIX F - STACK DIAGRAMS APPENDIX G – SAMPLING SYSTEM DIAGRAMS APPENDIX H – SOURCE TEST PLAN APPENDIX I – PERMIT TO OPERATE

APPENDIX A CALCULATIONS

Standard Abbreviations for Reports						
Unit	Abbreviation	Unit	Abbreviation			
		microgram	ug			
Brake horsepower	bhp	milligram	mg			
Brake horsepower hour	bhp-hr	milliliter	ml			
British Thermal Unit	Btu	million	MM			
capture efficiency	CE	minute	min			
destruction efficiency	DE	Molecular Weight	М			
Dry Standard Cubic Feet	DSCF	nanogram	ng			
Dry Standard Cubic Feet per Minute	DSCFM	Parts per Billion	ppb			
Dry Standard Cubic Meter	DSCM	Parts per Million	ppm			
grains per dry standard cubic foot	gr/DSCF	pound	lb			
gram	g	pounds per hour	lbs/hr			
grams per Brake horsepower hour	g/bhp-hr	pounds per million Btu	lbs/MMBtu			
kilowatt	kW	second	sec			
liter	1	Specific Volume, ft ³ /lb-mole	SV			
Megawatts	MW	Thousand	K			

Common Conversions / Calculations / Constants

1 gram = 15.432 grains

1 pound = 7000 grains

grams per pound = 453.6

bhp = 1.411 * Engine kW, (where Engine kW = Generator kW output / 0.95) @ 95% efficiency

g/bhp-hr = 453*ppm*(MW / (385E6))* 0.00848 * f-factor * (20.9 / (20.9-O₂)); CARB

g/bhp-hr = lbs/hr * 453.6 / bhp

2.59E-9 = Conversion factor for ppm to lbs/scf; EPA 40CFR60.45 @ 68°F

Correction Multiplier for Standard Temperature = $(460 + T_{std}. \circ F) / 528$

F factor: dscf / MMBTU @ $60^{\circ}F = 8579$, @ $68^{\circ}F = 8710$. @ $70^{\circ}F = 8743$ for natural gas

Btu/ft³: 1040

lb/hr Part. Emission Rate = 0.00857 * gr/dscf * dscfm; EPA Method 5

lbs/hr = ppm * dscfm * MW * 0.00008223 / (Std Temp + 460)

Correction to 12% CO₂ = gr/dscf * 12% / stack CO₂%; EPA Method 5

Correction to 3% O₂ = ppm * 17.9 / (20.9 - stack O₂ %); CARB Method 100

Correction to $15\% O_2 = ppm * 5.9 / (20.9 - stack O_2 \%)$; CARB Method 100

dscfm = Gas Fd * MMBtu/min * 20.9 / (20.9 - stack O₂ %); EPA Method 19

Lb/MMBtu @ 60°F = Fd * M * ppm * 2.64E-9 * 20.9 / (20.9 - stack O₂ %);

(a) $68^{\circ}F = Fd * M * ppm * 2.59E-9 * 20.9 /(20.9 - stack O_2 %);$

 $(270F = Fd * M * ppm * 2.58-9 * 20.9 / (20.9 - stack O_2 \%)$

	Standa	d Temperatures by Distric	t	
EPA	68 ºF	NSAPCD - Northern Sonoma	68 °F	
CARB	68 °F	PCAPCD - Placer	68 °F	
BAAQMD - Bay Area	70 ºF	SLOCAPCD - San Luis Obispo	60 °F	
SJVUAPCD - San Joaquin	60 ºF	SMAQMD - Sacramento	68°F de facto	
SCAQMD - South Coast	60 °F	SCAQMD - Shasta County	68 °F	
MBUAPCD - Monterey Bay	68.ºF	YSAPCD - Yolo-Solano	68 °F	
FRAQMD – Feather River	68 °F	AADBAPC – Amador County	68 °F	A-2

CEM BIAS SYSTEM TEST SUMMARY FIELD DATA SHEET (EPA)

Facility:	City of Berkeley		Date:	7/15/2022	Personnel:	BA / BJ
Location:	Flare		·····			
	O ₂	NO _x	CO	THC		Comments
Analyzer	CAI 110	600	481	600		
Range	20.98	95.3	89.4	100		
Zero Value (N ₂)	0.00	0.00	0.00	0.00		
Cal Value (low)				26.88		
Cyl. #				DT27824		
Cyl. Exp. Date				05/27/29		
Cal Value (mid)	11.59	45.30	54.50	43.50		
Cyl. #	CC50881	DT37052	CC707372	DT42922		
Cyl. Exp. Date	10/01/27	11/18/23	02/15/27	06/21/30		
Cal Value (Hi)	20.98	95.30	89.40	92.10		
Cyl. #	CC306150	CC308849	CC306150	CC506583		
Cyl. Exp. Date	11/22/29	10/02/27	11/22/29	03/10/29		

CALIBRATION ERROR CHECK							
Zero cal (int)	-0.10		0.00	0.03	-0.69		
Abs. Difference	0.10		0.00	0.03	0.69	= or < 0.5 ppm	
% Linearity	-0.5		0.0	0.0	-0.7	= or < 2%	
low cal (int)				i pro colorado	26.41		
Abs. Difference					0.47	= or < 0.5 ppm	
% Linearity					-1.7	= 0r < 2%	
mid cal (int)	11.52		45.56	54.51	44.39		
Abs. Difference	0.07		0.26	0.01	0.89	= or < 0.5 ppm	
% Linearity	-0.3		0.3	0.0	2.0	= 0r < 2%	
high cal (int)	20.98		95.14	89.60	93.96		
Abs. Difference	0.00		0.16	0.20	1.86	= or < 0.5 ppm	
% Linearity	0.0		-0.2	0.2	2.0	= or < 2%	

INITIAL SYSTEM BIAS CHECK

Zero (int)	-0.10	0.00	0.03	-0.69	
Zero (ext)	-0.08	0.00	-0.74	0.73	
Abs. Difference	0.02	0.00	0.77	1.42	
bias, % High Cal	-0.1	0.0	0.9	-1.4	Limit (±5%)

Cal (int)	11.52	45.56	54.51	44.39	
Cal (ext)	11.56	45.27	54.09	44.07	
Abs. Difference	0.04	0.29	0.42	0.31	
bias, % High Cal	-0.2	0.3	0.5	0.3	Limit (±5%)

			Zero to
System	response	time =	60.0

o to Cal	Cal to Zero
60.0	60.0

The time required (in seconds) to achieve a 95% difference between ext zero to ext span or ext span to ext zero.

System Bias (Limit ± 5%) = 100 * <u>External cal - Internal cal</u> High Cal Gas Value

m

% Linearity (Limit ± 2%) = 100 * <u>Span Value - Internal cal</u>

High Cal Gas Value

% Converter Efficiency (Limit =/ >90%) = 100 * Internal Cal / NO₂ Cal Gas Value

NO₂ Converter Test

NO ₂ Cal Gas	NO ₂ Value	% of Efficiency	Cyl. #	Cyl. Exp. Date
5.98	5.39	90.07%	CC503193	01/06/24

EPA Method 25A (THC) QC Cai, Error = <5% cai. Value 100 * (Cal Value - Cal Response) / Cal Value System Drift = <3% of Scale 100 * (final cai - initial cai) / Range

CEM BIAS SYSTEM TEST SUMMARY SHEET

Facility:	City of Berkel	ey		Date:	7/15/2022	Personnel:	BA / BJ
Location:	Flare						
	02		Nox	CO	THC		Comments
Analyzer	CAI 110		600	48I	600		
Range	20.98		95.3	89.4	100		
Cal Value (low)	10.90		70.5		26.88		M25A only
Cyl. #	and the second second				DT27824		M25A QC limits-below
Cal Value (mid)	11.59		45.3	54.5	43.5		
Cyl. #	CC50881		DT37052	CC707372	DT42922		
Cal Value (Hi)	20.98		95.30	89.40	92,1		Calibration Span
Cyl. #	CC306150		CC308849	CC306150	CC506583		
	J						
					Y		
zero cal (int)	-0.10		0.00	0.03	-0.69		
% Linearity	-0.48		0.00	0.03	-0.69		<2% or +/-0.5diff.
low cal (int)					26.41		
% Linearity					-1.7	<u> </u>	<2% or +/-0.5diff.
mid cal (int)	11.52		45.56	54.51	44.39		
% Linearity	-0.3		0.3	0.0	2.0	_ <u></u>	<2% or +/-0.5diff.
high cal (int)	20.98		95.14	89.60	93.96		
% Linearity	0.0	l	-0.2	0.2	2.0		<2% or +/-0.5diff.
Zero (int)	-0.10		0.00	0.03	-0.69		
Zero (ext)(i)	-0.08		0.00	-0.74	0.73		
% Bias	0.1		0.0	-0.9	1.4		Limit (±5%) or +/-0.5diff.
Cal (int)	11.52		45.56	54.51	44.39		
Cal (ext) 1(i)	11.56		45.27	54.09	44.07		
% Bias	0.2		-0.3	-0.5	-0.3		Limit (±5%) or +/-0.5diff.
Zero (ext) 1(f)	-0.17	1	0.01	-0.85	-0.74		926-1001
Cal (ext) 1(f)	11.54		45.02	53.62	42.46		Run 1
Zero % Drift	-0.4		0.0	-0.1	-1.5		Limit (±3%) or +/-0.5diff.
Cal % Drift	-0.1	T	-0.3	-0.5	-1.6		Limit (±3%) or +/-0.5diff.
Zero % Bias	-0.3		0.0	-1.0	-0.1		Limit (±5%) or +/-0.5diff.
Cal % Bias	0.1		-0.6	-1.0	-1.9		Limit (±5%) or +/-0.5diff.
Average	13.44		9.47	15.75	5.23		
Corr. Average	13.47		9.50	16.50	5.27		
Zero (ext) 2(f)	-0.17		0.00	-0.97	1.24		1014-1047
Cal (ext) 2(f)	11.56		44.96	53.29	42.55		Run 2
Zero % Drift	0.0		0.0	-0.1	2.0		Limit (±3%) or +/-0.5diff.
Cal % Drift	0.1		-0.1	-0.4	0.1		Limit (±3%) or +/-0.5diff.
Zero % Bias	-0.3		0.0	-1.1	1.9		Limit (±5%) or +/-0.5diff.
Cal % [·] Bias	0.2		-0.6	-1.4	-1.8		Limit (±5%) or +/-0.5diff.
Average	13.48		9.47	19.67	7.33		
Corr. Average	13.51		9.53	20.63	7.29		
Zero (ext) 3(f)	-0.18		0.00	-1.01	0.83		1101-1135
Cal (ext) 3(f)	11.56		45.05	53.08	43.24		Run 3
Zero % Drift	-0.1		0.0	0.0	-0.4		Limit (±3%) or +/-0.5diff.
Cal % Drift	0.0		0.1	-0.2	0.7		Limit (±3%) or +/-0.5diff.
Zero % Bias	-0.4		0.0	-1.2	1.5		Limit (±5%) or +/-0.5diff.
Cal % Bias	0.2		-0.5	-1.6	-1.1		Limit (±5%) or +/-0.5diff.
Average	13.59		9.20	34.84	6.96		
Corr. Average	13.60		9.26	36.04	6.16		

System Drift (Limit ± 3%) = 100 * External final cal - External Initial cal Cal Value (Hi)

Cal Value (Hi)

System Bias (Limit ± 5%) = 100 * <u>External cal - Internal cal</u> Cal Value (Hi) % Linearity (Limit ± 2%) = 100 * Span Value - Internal cal

EPA Method 25A (THC) QC Cal. Error = <5% cal. Value 100 * (Cal Value - Cal Response) / Cal Value System Drift = <3% of Scale 100 * (final cal - initial cal) / Range

STACK GAS FLOW RATE DETERMINATION -- FUEL USAGE EPA Method 19

Facility: Unit: Condition: Date: Personell: Time:	City of Berkeley Flare Normal 7/15/2022 BA / BJ	926-1001 Run 1	1014-1047 Run 2	1101-1135 Run3	
Gross Calo	rific Value	260	248	267	Btu / ft³
Stack Oxyg	gen	13.47	13.51	13.60	%
Gas Fd-Fac	ctor @ 70°F	10,553	10,686	10,438	DSCF/MMBtu
Standard T	emperature (°F)	70	70	70	°F
			·•···		-
Corrected I	Fuel Rate (SCFM)	65.56	65.59	65.57	SCFM
Fuel Flowr	ate (SCFH)	3,934	3,935	3,934	SCFH
Million Btı	ı per minute	0.017	0.016	0.018	MMBtu/min
Heat Input	(MMBtu/hour)	1.02	0.98	1.05	MMBtu/Hr

Stack Gas Flow Rate	506	491	523	DSCFM

WHERE:

Gas Fd-Factor = Fuel conversion factor (ratio of combustion gas volumes to heat inputs) MMBtu = Milion Btu

CALCULATIONS:

SCFM = CFM * 528 * (gas line PSIA) / 14.7 / (gas °F + 460) MMBtu/min = (SCFM * Btu/ft³) / 1,000,000 DSCFM = Gas Fd-Factor * MMBtu/min * 20.9/ (20.9 - stack oxygen%) SCFH = SCFM * 60 Heat Input = MMBtu/min * 60

APPENDIX B LAB REPORTS

BEST ENVIRONMENTAL

339 Stealth Court Livermore, California 94551 (925) 455-9474 FAX (925) 455-9479 bestair@best-enviro.com

August 8, 2022

Subject: On July 15, 2021 Best Environmental collected three inlet and three outlet samples from the Berkeley Marina Landfill Source Test.

CLIENT:SCS Field ServicesPROJECT NAME:Berkeley Marina Source TestBE PROJECT NO:312ANALYSIS DATE:7/16/22

Sample ID	Lab Sample Number
Run 1 Inlet	9030
Run 2 Inlet	9031
Run 3 Inlet	9032
Run 1 Outlet	9049
Run 2 Outlet	9050
Run 3 Outlet	9051

The samples were analyzed in accordance with EPA Method 18 (CH₄) & ASTM D-1945/3588/6228 (fuel composition analysis, High heat value calculations and Fuel Sulfur).

The following pages present the inlet and outlet VOC and LFG gas composition analytical results with calculated HHV. A chain of custody can also be found in this report. This Lab report contains a total of 1@pages.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples.

If you have any questions concerning these results, or if Best Environmental can be of any further assistance, please contact me at (925) 455-9474 x 103.

Submitted by,

Bobby Asfour Lab Director

EPA Methods 3C, 18, 25C & ASTM D-1945/3588/6228

Facility: City of Berkeley Marina Landfill

Test Date: 7/15/22

Analysis Date: 7/16/22

CH4 Analysis (M18)

M-18 Duplicate R1/Inlet Limit Inlet % ppm CH4 C2 as CH4 Lab ID Time Run # CH4 C2 as CH4 25.20 17.89 9030 926 Run 1 25.7 18.5 15% 1014 Run 2 24.5 17.7 2.04 3.46 9031 9032 1101 Run 3 26.3 16.5

		Outlet	ppm	ppm	
		Run #	CH4	C2 as CH4	
9049	926	Run 1	3.45	ND	
9050	1014	Run 2	3.48	ND	
9051	1101	Run 3	3.79	ND	

DL	outlet	Inlet	
CH4	<1	<0.2	ppm/%
C2	<1	<1	ppm
C3+ as methane	<1	<1	ppm

Inlet	
H2S	ppmv
R1	1.52
R2	2.58
R3	1.05

Source: LFG Flare

Lab Personnel: BA

Project #: 312

GC/FID	/FPD	/TCD:	SRI	8610C
--------	------	-------	-----	-------

Column: 3 foot Haysep D, 60M capillary, 12' 13x Packed column Chromatic integration: Peak444 Peaksimple by SRI Gas Standards: Propane in air/C1-C6 n-alkane in N2 H2S in N2

Natural gas standard in Methane

Fuel Analysis-R1 inlet

Helium	0.04	%
Hydrogen	0.11	%
Nitrogen	45.28	%
Oxygen	5.67	%
Carbon Mo		
Carbon Dio	22.75	%
Methane	25.73	%
Ethane	0.00	%
Propane	0.00	%
Isobutane	0.00	%
n-Butane	0.00	%
Isopentane	0.00	%
n-Pentane	0.00	%
Hexanes	0.00	%

Fd-Factor	10,553
HHV	260

Fuel Analysis-R2 Inlet Helium 0.01 Hydrogen 0.15 Nitrogen 45.63 Oxygen 5.99 Carbon Mo 0.00 Carbon Dio 22.42 Mathema 24.52

Oxygen	0.99	70
Carbon Mo	0.00	%
Carbon Dio	22.42	%
Methane	24.52	%
Ethane	0.00	%
Propane	0.00	%
Isobutane	0.00	%
n-Butane	0.00	%
Isopentane	0.00	%
n-Pentane	0.00	%
Hexanes	0.00	%

Fd-Factor	10,686
HHV	248

Fuel Analysis-R3 Inlet				
Helium	0.02	%		
Hydrogen	0.38			
Nitrogen	45.15	%		
Oxygen	5.83	%		
со	0.00	%		
CO2	22.17	%		
Methane	26.35	%		
Ethane	0.00	%		
Propane	0.00	%		
Isobutane	0.00	%		
n-Butane	0.00	%		
Isopentane	0.00			
n-Pentane	0.00	%		
Hexanes	0.00	%		

Fd-Factor	10,438	dscf/MMBtu 🤅
HHV	267	BTU/cf

BEST ENVIRONMENTAL

Livermore, CA 925 455-9474

Gas Chromotography QA/QC Results

Facility:	City of Berkeley Marina Landfill	
-----------	----------------------------------	--

Source: LFG Flare

Test Date:

7/15/22

Lab Personnel: BA

Analysis Date: 7/16/22 Cal Curve Date: 7/1/22

	Daily Blank & R.T.			limit
	C1/CH4	C2/ethane	C3+/NMNEHC	DL
He Gas	ND	ND	ND	
C1-C6 gas	2.96	4.46	5.73	

* C1-C6 gas used to determine retention times

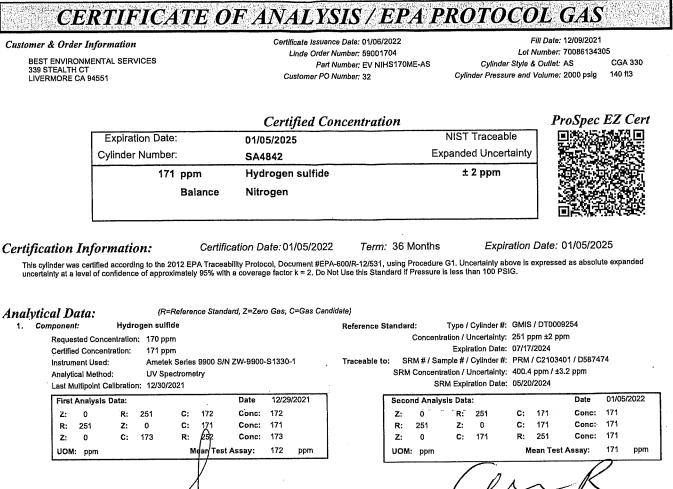
	initial cal propane as methane			
conc.	92.1	255.1	8970	
area ct.	20.8	58.64	2015.5	

% diff	0.45	0.43	0.05	<5
Deviation	0.10	0.25	1.04	
average	20.90	58.73	2015.17	
	20.99	58.7	2014	
	20.9	59	2016	
	20.8	58.5	2015.5	
	3 point Cal-3 injections each (area ct)			limit

H2S Caibration Check	area	ct
Cal value	171	
Response	172	3231
% Diff.	-0.58	<15

	post cal		limit	
	92.1	255.1	8322	
	91.1	244.2	8215	
% diff	1.09	4.27	1.29	<15%

EPA Method 3C/ASTM D-1945 Daily Calibrations				
Method Required	Actual	Results	% Diff.	
Values	Value			
N2	2	2.1	5.00	
02	1	1.006	0.60	
со	0.1	0.0995	-0.50	
CO2	44	46	4.55	
CH4	52	51	-1.92	


Analyzed By

Jose Vasquez

DocNumber: 444964

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022

Certified By

Amalia Real

Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising of the use of the information contained herein exceed the fee established for providing such information.

Making our world more productive

Customer & Order Information:

Linde Order Number: **71954931** Customer PO Number: **79956654**

LGEPKG FREMONT CA HP

41446 CHRISTY STREET,

FREMONT, CA 94538-5105

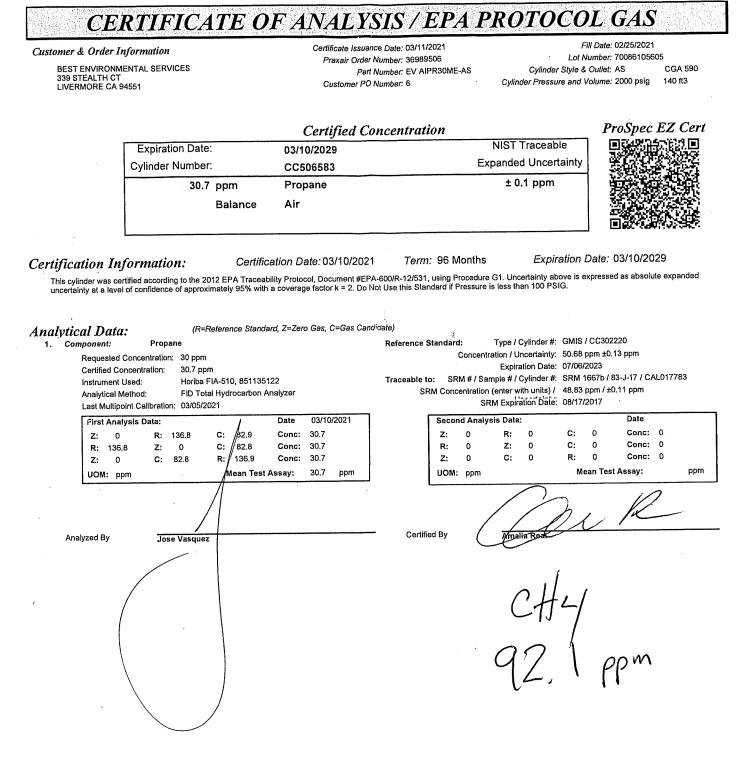
Linde Gas & Equipment Inc. ISO 9001 Registered 37256 Highway 30 Geismar, LA 70734 Tel: 225-677-7700 Fax: 225-673-3531

Certificate Issuance Date: 1/27/2022

Certification Date: 1/27/2022 Lot Number: 70340 2026 6J Part Number: HE BU100X2C-A3 DocNumber: 482274 Expiration Date: 1/26/2024

CERTIFICATE OF ANALYSIS Certified Standard

	Corun	oujounduru			
Component		Requested Concentration (Molar)	Certified Concentration (Molar)	Analytical Reference	Analytical Uncertainty
Butane	18.12	100 ppm	96.0 ppm	1	± 2 %
Ethane	20	100 ppm	95.5 ppm	1	±2%
n-Hexane	96.18	100 ppm	91.9 ppm	1	±2%
Methane	0-10	100 ppm	99.4 ppm	1	±2%
n-Pentane		100 ppm	93.7 ppm	1	±2%
Propane	76.13	100 ppm	97.6 ppm	1	±2%
Helium	٩ `	99,94 %	99.94259 %	2	N/A
Cylinder Style: A3 Cylinder Pressure @ 70 F: 1200 psig Cylinder Volume: 16.5 ft3 Valve Outlet Connection: CGA 350 Cylinder Number(s): EX0013583		Date: 1/26/2022 Date: 1/26/2022	U U	/lethod: Gra	vimetric
Analyst: Craig Billiot		QA I	Reviewer: Kriste	enHamna	\sim
Key to Analytical Techniques:					
Reference Analytical Instrument - Analytical Princi					
1 Agilent 7890B - Gas Chromatography with 2 N/A - By Difference of Other Components	FID				
					· · · · · · · · · · · · · · · · · · ·
		I			
		2			
		ļ:			
					•
The gas calibration cylinder standard prepared by Unde Gas & Equipment I calibration standard provided is certified against Linde Gas & Equipment In National Institute of Standards and Technology (NIST) or Measurement Car	c. Reference Mate	rials which are traceable	to the international System	of Units (SI) throug	essure lechniques. The sh ellher weights traceable to the
Note: All expressions for concentration (e.g., % or ppm) are for gas phase, i	by mole unless olf	nerwise noted. Analytical u	incertanity is expressed as	a Relative % unless	s olherwise noted.
IMPORTANT					
The information contained herein has been prepared at your request by per- methods employed and is complete to the extent of the specific analyses per The information is offered with the understanding that any use of the inform use of the information contained herein exceed the fee estabilished for provi	arformed, we make ation is at the sole	no warranty or represent discretion and risk of the	ation as to the suitability of	the use of the inform	nation for any narticular numose.
		1			


PRAXAIR

Making our planet more productive

DocNumber: 405533

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the an upper at methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

Making our planet more productive

DocNumber: 315881

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 **PGVP ID: F22020**

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

BEST ENVIRONMENTAL SERVICES 339 STEALTH CT LIVERMORE CA 94551

Certificate Issuance Date: 10/20/2020 Praxair Order Number: 25533164 Part Number: EV AIPR85ME-AS Customer PO Number: 9096

Fill Date: 10/14/2020 Lot Number: 70086028806 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 ft3

រលាក

Certified Concentration ProSpec EZ Cert Expiration Date: **NIST Traceable** 10/20/2028 同時為沿 Cylinder Number: Expanded Uncertainty SA8052 ± 0.5 % 85.2 ppm Propane Balance Air

Certification Information:

Certification Date: 10/20/2020

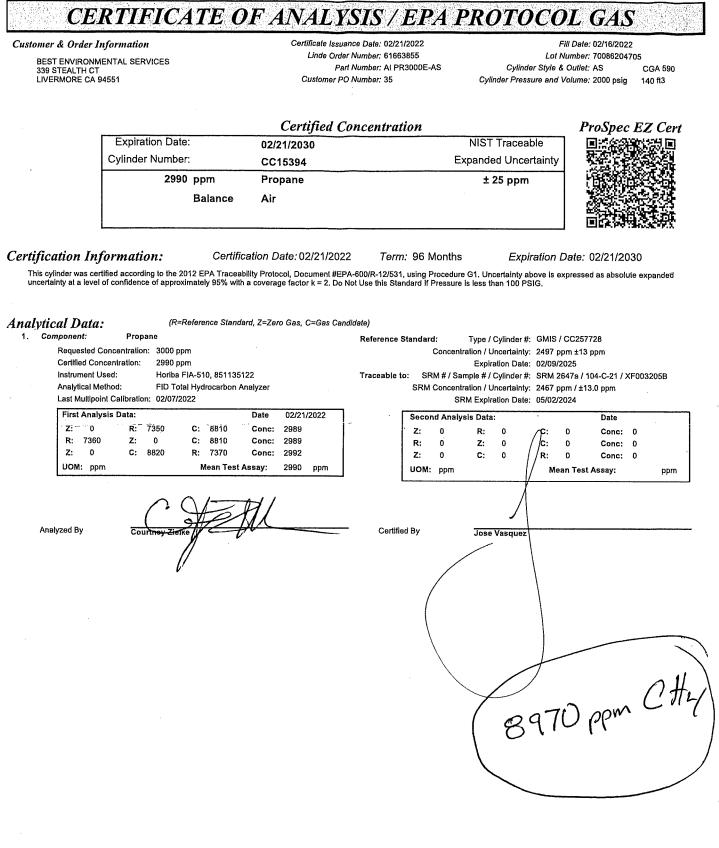
Term: 96 Months

Expiration Date: 10/20/2028

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as relative expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data.

(R=Reference Standard, Z=Zero Gas, C=Gas, Candidate)


	Component:	Propane		u, 1 10/0 0	10, 0 000 00			-			01000	0000.000			
••	, Requested Conce	ntration: 85 pp				Reference Sta			Type / Cyl tion / Unce	ertainty:	101.5 p	pm ±0.159			
	Certified Concentra Instrument Used:		pm a FIA-510, 85113512	22		Traceable to:	SR	Vi#/Sam	Expiratio ple # / Cyl				L-22 / FF	10569	
	Analytical Method:	FID T	otal Hydrocarbon An					Concentra	tion / Unce	ertainty:	98.68 P	PM / ±0.1			
	Last Multipoint Cal		/2020						/i Expiratio	on Date:	09/12/2				
	First Analysis D				0/20/2020			d Analysi				l l	Date		
	Z: 0 R: 265.3	R: 265.4 Z: 0	C: 222.9 C: 223.3	Conc: 85 Conc: 85			Z; R:	0 0	R: (Z: (C: C:		Conc: Conc:		
	Z: 0	C: 222.8	R: 265.9	Conc: 85			Z:	0	C: (R:		Conc:		
	UOM: ppm		Mean Test A	ssay: 85	.2 ppm	I'	UOM:	ppm			Mea	f Test As	ssay:	ppn	ר
		/				L					/	1			
		Å	¥//									[
		- 14	TAC				_			~	/				
	Analyzed By	Jenna Kocki	man			Certified	Ву		Jose Va	squez					
		N							/						
		V													
											/				
													(- 1	
									```			2	$\Gamma $	. 0	pp ····
									$\wedge$	, [		4		-	•
										Hч	1				ppm
											)				



#### DocNumber: 448691



Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022



Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the Data analytical methods employed and is complete to the extent of the specific analytes performed, we make no warrantly or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

## CALIBRATION GAS MIXTURE

1507866 181 Mag

110038 150/800

## GAS COMPOSITION

l'omponents ^{Hydrogen} 1.00% ^{0,ygen} 1.00% Wiggen 2.00%

Winber: F1035VMLF And the second s Certified Standard Channended Shelf Life: 3 Years MESA

APES

Lot #: 1-305-1 Date: November 01.30 Ref. #: 130813

Concentrations (MOL

44.00%

Balance

Carbon Monoxide 0.100

Carbon Dioxide

MESA Specially Gases & Equipment TEL: (866) 470-MESA (6372) or (7 e-mail: mail@mesagas.com www.mesagas.com

Methane

Doct	Pavironn	antal							Ph (925) 455-9474; Fx (925) 455-9479	25) 455-9479
	Project ID:	ICIILAI	City of Berkeley		SAMPLE CHAIN OF CUSTODY	N OF CI	USTODY	BE PROJECT MANAGER:	VAGER:	
4	Analyical Lab:	Lab:	BE				:	4		
#	DATE	TIME		SAMPLE ID Run#/Method/Fraction/Source	CONTAINER size / type	Volume	Storage Temp °F	SAMPLE DESCRIPTION	ANALYSIS	'TAT
-	7/15/22	926	04240	Run 1/inlet	10L/Tedlar	7.0	Amb.	LFG	M18 + Comp Fuel	Norm.
1		1014	1600	Run 2/Inlet	10L/Tedlar		Amb.	LFG	M18 + Comp Fuel	Norm.
~~		1101	1206	Run 3/Inlet	10L/Tedlar		Amb.	LFG	M18 + Comp Fuel	Norm.
4										
ŝ		926	A049	Run 1/outlet	10L/Tedlar		Amb.	Exhuast Gas	M18	Norm.
<del>د</del> ا		1014	60,20	Run 2/outlet	10L/Tedlar		Amb.	Exhuast Gas	M18	Norm.
~	•	1101	as r 1	Run 3/outlet	10L/Tedlar	•	Amb.	Exhuast Gas	M18	Norm.
~~~			10.1							
<u> </u>										
- 1										
- 11										
12										
13										
4										
15										
16										
17										
18										-
-61										
20										
21										
				, , , , , , , , , , , , , , , , , , , ,						
SPE	CIAL INS	STRUCTIO	NS: Record & R	SPECIAL INSTRUCTIONS: Record & Report all liquid sample volumes.						
					5	5				
Subi	mit Result	Submit Results to: Attn:	Bobby Asfour			BEST	ENVIRON	BEST ENVIRONMENTAL 339 STEALTH COURT LIVERMORE CA. 94551	ERMORE CA. 94551	
<u> </u>	Relinguished hv	d hv [.]		Received b	by:	and the second second		Date: T	Time:	
	Relinquished by:	d by:			by:				Time:	
Ľ	Talinquished by:	d by:		Received b	by:				Time:	
• ر	SAMPLE CO	ONDITION A	FAMPLE CONDITION AS RECEIVED: OK or not OK							

f:VormsVield\coc.xls - 6/4/99



CLIENT	: Best Environmental
PROJECT NAME	: City Berkeley Flare
AAC PROJECT NO.	: 221529
REPORT DATE	: 08/10/2022

On July 20th, 2022, Atmospheric Analysis & Consulting, Inc. received three (3) Six-Liter Summa Canisters for TNMOC analysis by EPA 25C. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.	Return Pressure (mmHg)
LFG R1	221529-33751	777.5
LFG R2	221529-33752	749.0
LFG R3	221529-33753	743.0 .

This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data.

If you have any questions or require further explanation of data results, please contact the undersigned.

echnical

This report consists of 4 pages.

www.aaclab.com



## Laboratory Analysis Report

Client : Best Environmental Project No. : 221529 Matrix : AIR Units : ppmC Sampling Date : 07/15/2022 Receiving Date : 07/20/2022 Analysis Date : 08/10/2022 Report Date : 08/10/2022

#### EPA 25C

Reporting Lim	it: 3.0 ppmC	Canister	Analysis	TNMOC*	SRL
Client Sample ID	AACID	Dilution Factor	Dilution Factor		(RL x DF's)
LFG R1	221529-33751	1.3	1.0	226	3.9
LFG R2	221529-33752	1.4	1.0	187	4.1
LFG R3	221529-33753	1.4	1.0	185	4.1

Sample Reporting Limit (SRL) is equal to Reporting Limit x Analysis Dil. Fac x Canister Dil. Fac.

*Total Non-Methane Organic Carbon

Page 2

(805) 650-1642 **B-13** 



#### Quality Control/Quality Assurance Report

Analysis Date	: 08/10/2022
Analyst	: MR
Units	: ppmv

Instrument ID: Calibration Date:

: GCTCA#2-FII : 7/18/2022

	I - Opening Calib	oration Verific	ation Standar	d - Method 25C
And a	Analyte	xRF	ÐRF	%RPD*
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ргорапе	119363	126680	5.9

#### II - TNMOC Response Factor - Method 25C

Analyte	xRF	CV RF	CV dp RF	CV tp RF	Average RF	% RPD***
Propane	119363	126680	125233	125159	125691	5.2

#### III - Method Blank - Method 25C

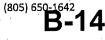
AAC ID	Analyte	Sample Result
MB	TNMOC	0.00

#### IV - Laboratory Control Spike & Duplicate - Method 25C

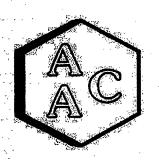
	Opike	LCS	LCSD	LCS	LCSD	% RPD***
LCS/LCSD Propane	51.0	52.30	52.27	102.6	102.6	0.1

#### V - Closing Calibration Verification Standard - Method 25C

Analyte	xCF	dCF	%RPD*
Propane	119363	122523	2.6


xCF - Average Calibration Factor from Initial Calibration Curve

dCF - Daily Calibration Factor


* Must be <15%

** Must be 90-110 %

*** Must be <20%



Y Ear Leskey     Flore     SAMPLE CHAIN OF CUSTODY       Institution/fine/fine/fine/fine/fine/fine/fine/fin	kelinquished by:	sults to: Attn:		rd & Report a	21	20	19	18	17	16	15	14	13	2	II	10		. 8	7	6	Ű	4	₹ 2	1 7-15.22	# DATE		
WEAR     SAMPLE CHAIN OF CUSTODY     DE PROJECT MANAGER:     Y       Marthum     Survey     Nature     Survey     Nature       22     337171     U     TO     TO     TO       22     337171     U     TO     TO     TO     N       22     337171     U     TO     TO     TO     N       22     337171     U     TO     TO     TO     N       23     J     U     TO     TO     TO     N       23     J     U     TO     TO     N     N       23     J     U     N     TO     N     N       23     J     U     N     TO     N     N       24     U     N     TO     N     N     N       25     37.713     U     N     N     N     N       24     U     N     N     N     N     N       25     J     N     N     N     N     N       26     N     N     N     N     N     N       27     N     N     N     N     N     N       28     N     N     N     N	d by:			ll liquid sam													,					1100		930	TIME		
SAMPLE CHAIN OF CUSTODY BE PROJECT MANAGER: CONTARTA aritype value represented by Date: The Date: The Date: The Contact of the Date: The Contact of the C	Lei A			ple volumes.					-					-	•						- -		<u> </u>		SAMPLE ID Run#/Method/Fraction/	per keley	
BE PROJECT MANAGER: F TO 15 TO 15 TO 15 Mathad M TO 15 TO 15																					·		2375	3751	Sóurce		
BE PROJECT MANAGER: F TO 15 TO 15 TO 15 TO 15 Att conj Att conj Att conj Date: The/12 Date: The/12 Time:	_Keceived by: _Received by: _Received by:	BES				•							-										<u>×</u>	Can	CONTAINER slze/type	AMPLE CHAI	
BE PROJECT MANAGER: Methad N TO 15 TO 15 TO 15 TO 15 TO 15 A A A A A A A A A A A A A		<b>I ENVIRON</b>																				•				N OF CUS	
	X											-									·. ·				itornge emp off	ΤΟDΥ	
		339 STEALTH COUL						•																	Method	HA TH	
	Date: 	UT, LIVERMORE (	· · ·								:			• •			-				H/			L L		OJECT MAN,	•
Ph (925) 455.9       ANALYSIS       ANALYSIS       Jo (ANS ⁺ Jo (7) 7																					1 cans		4	1		1	
	(ime:				- - -							-									1				ANALYSIS		Ph (925) 455-9
			•																, ,							B-1	\$5-9479



CLIENT PROJECT NAME AAC PROJECT NO. REPORT DATE Best Environmental
City Berkeley Flare
221529
08/03/2022

On July 20, 2022, Atmospheric Analysis & Consulting, Inc. received three (3) Six-Liter Summa Canisters for Volatile Organic Compounds analysis by EPA Method TO-15. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab ID	Return Pressure (mmHga)
LFG R1	221529-33751	777.5
LFG R2	221529-33752	749.0
LFG R3	221529-33753	743.0

This analysis is accredited under the laboratory's ISO/IEC 17025:2017 accreditation issued by the ANSI National Accreditation Board. Refer to certificate and scope of accreditation AT-1908. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

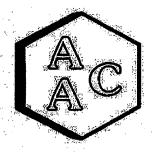
I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples.

The Technical Director or his designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha Parmar, Ph/D

Technical Director


This report consists of 10 pages.

Page 1

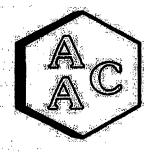
2225 Sperry Ave., Ventura, CA 93003



www.aaclab.com • (805) 650-1642



Laboratory Analysis Report


CLIENT : Best Environmental PROJECT NO : 221529 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 07/20/2022 DATE REPORTED : 08/03/2022 ANALYST : MB/DL 1.515 1.515 1.51

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID AAC ID	· · · · · · · · · · · · · · · · · · ·	LFG R1 221529-337	751	Sample		LFG R2 221529-337		Sample	Method
Date Sampled		07/15/202		Reporting		07/15/202		Reporting	Reporting
Date Analyzed		07/20/202	2	Limit		07/20/202	2	Limit	Limit
Can Dilution Factor		1.31		(SRL)		1.35		(SRL)	(MRL)
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)
Chlorodifluoromethane	173		5	3.27	142	i	5	3.38	0.50
Propene	247		5	6.55	189	1.1	5	6,75	1.00
Dichlorodifluoromethane	116		5	3.27	93.9		5	3,38	0.50
Chloromethane	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
Dichlorotetrafluoroethane	76.7		5	3.27	66,1		5	3.38	0,50
Vinyl Chloride	8,51		5	3,27	7.70	-	5	3.38	0,50
Methanol	8.32	J .	5	32.7	8.64	J	5	33,8	5.00
1,3-Butadiene	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>. 5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>. 5</td><td>3,38</td><td>0.50</td></srl<>	U	. 5	3,38	0.50
Bromomethane	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U.</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U.</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U.	5	3.38	0.50
Chloroethane	· <srl< td=""><td>U</td><td>• 5</td><td>3.27</td><td><srl< td=""><td>U · .</td><td>5</td><td>3,38</td><td>0,50</td></srl<></td></srl<>	U	• 5	3.27	<srl< td=""><td>U · .</td><td>5</td><td>3,38</td><td>0,50</td></srl<>	U · .	5	3,38	0,50
Dichlorofluoromethane	5.11		5	3.27	4,52	· ·	5	3.38	0.50
Ethanol	<srl< td=""><td>U</td><td>5</td><td>13.1</td><td><srl< td=""><td>U .</td><td>. 5 .</td><td>13,5</td><td>2,00</td></srl<></td></srl<>	U	5	13.1	<srl< td=""><td>U .</td><td>. 5 .</td><td>13,5</td><td>2,00</td></srl<>	U .	. 5 .	13,5	2,00
Vinvl Bromide	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0,50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0,50</td></srl<>	U	5	3.38	0,50
Acetone	<srl td="" ·<=""><td>U</td><td>5</td><td>13.1</td><td><srl< td=""><td>U</td><td>. 5</td><td>13.5</td><td>2.00</td></srl<></td></srl>	U	5	13.1	<srl< td=""><td>U</td><td>. 5</td><td>13.5</td><td>2.00</td></srl<>	U	. 5	13.5	2.00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>5</td><td>3,27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3,27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
2-Propanol (IPA)	<srl< td=""><td>U</td><td>5</td><td>13.1</td><td><srl< td=""><td>U</td><td>5</td><td>13,5</td><td>2.00</td></srl<></td></srl<>	U	5	13.1	<srl< td=""><td>U</td><td>5</td><td>13,5</td><td>2.00</td></srl<>	U	5	13,5	2.00
Acrylonitrile	<srl< td=""><td>U</td><td>5</td><td>6.55</td><td><srl< td=""><td>Ŭ</td><td>5</td><td>6.75</td><td>1.00</td></srl<></td></srl<>	U	5	6.55	<srl< td=""><td>Ŭ</td><td>5</td><td>6.75</td><td>1.00</td></srl<>	Ŭ	5	6.75	1.00
1.1-Dichloroethene	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5 ·</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5 ·</td><td>3.38</td><td>0.50</td></srl<>	U	5 ·	3.38	0.50
Methylene Chloride (DCM)	<srl< td=""><td>Ū</td><td>. 5</td><td>6,55</td><td><srl< td=""><td>U</td><td>. 5</td><td>6.75</td><td>1.00</td></srl<></td></srl<>	Ū	. 5	6,55	<srl< td=""><td>U</td><td>. 5</td><td>6.75</td><td>1.00</td></srl<>	U	. 5	6.75	1.00
Allyl Chloride	<srl< td=""><td>Ŭ</td><td>5</td><td>6.55</td><td><srl< td=""><td>Ŭ</td><td>5</td><td>6.75</td><td>· 1.00</td></srl<></td></srl<>	Ŭ	5	6.55	<srl< td=""><td>Ŭ</td><td>5</td><td>6.75</td><td>· 1.00</td></srl<>	Ŭ	5	6.75	· 1.00
Carbon Disulfide	8.19		5	6.55	<srl< td=""><td>Ŭ</td><td>5</td><td>6.75</td><td>1.00</td></srl<>	Ŭ	5	6.75	1.00
Trichlorotrifluoroethane	<pre>SRL</pre>	·U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	U	5	3,38	0.50
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
1,1-Dichloroethane	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>5</td><td>3,27</td><td><srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5	3,27	<srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	U	5	3,38	0.50
Vinyl Acetate	<srl< td=""><td>U</td><td>5</td><td>6.55</td><td>108</td><td></td><td>5</td><td>6.75</td><td>1.00</td></srl<>	U	5	6.55	108		5	6.75	1.00
2-Butanone (MEK)	<srl< td=""><td>U</td><td>5</td><td>6,55</td><td><srl< td=""><td>U</td><td>5</td><td>6.75</td><td>1.00</td></srl<></td></srl<>	U	5	6,55	<srl< td=""><td>U</td><td>5</td><td>6.75</td><td>1.00</td></srl<>	U	5	6.75	1.00
cis-1.2-Dichloroethene	3.80		5	3.27	3.78		5	3,38	0.50
Hexane	329		5	3.27	259		5	3,38	0.50
Chloroform	<srl< td=""><td>ប</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	ប	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50
Ethyl Acetate	<srl< td=""><td>U</td><td>5 ·</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5 ·	3.27	<srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	U	5	3,38	0.50
Tetrahydrofuran	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	U	5	3,38	0.50
1,2-Dichloroethane	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>·U</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>·U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	·U	5	3,38	0.50
1,1,1-Trichloroethane	<srl< td=""><td>Ū</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	Ū	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	U	5	3,38	0.50
Benzene	38,4		5	3.27	32.1		- 5	3.38	0.50

-

 $\textcircled{\blue}{\blue}$ 



Laboratory Analysis Report

CLIENT : Best Environmental PROJECT NO : 221529 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 07/20/2022 DATE REPORTED : 08/03/2022 ANALYST : MB/DL

. .

ŝ

24

÷.

8

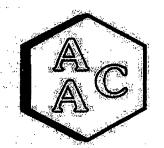
#### VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	T	LFG RI		ΓΤ		LFG R2	Gamel			
AAC ID		221529-337	51	Sample		221529-337		Sample	Method	
Date Sampled		07/15/202		Reporting		07/15/202		Reporting	Reporting	
Date Sampled Date Analyzed		07/20/202		Limit		07/20/202		Limit	Limit	
Can Dilution Factor		1.31	~	(SRL)		1.35	(SRL)	(MRL)		
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result Qualifier		Analysis DF	(MRLxDF's)	(WIRL)	
Carbon Tetrachloride	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50	
Cyclohexane	43.6	<u> </u>	5	3.27	42.7	1	5	3,38	0.50	
1.2-Dichloropropane	<\$RL	U	5 .	3.27	<srl< td=""><td>U</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	U	5	3,38	0.50	
Bromodichloromethane	<srl< td=""><td>U U</td><td>5</td><td>3.27</td><td><srl< td=""><td>Ŭ</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U U	5	3.27	<srl< td=""><td>Ŭ</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	Ŭ	5	3,38	0.50	
	<srl< td=""><td>U U</td><td>5</td><td>6.55</td><td><srl.< td=""><td>Ŭ</td><td>5</td><td>6.75</td><td>1.00</td></srl.<></td></srl<>	U U	5	6.55	<srl.< td=""><td>Ŭ</td><td>5</td><td>6.75</td><td>1.00</td></srl.<>	Ŭ	5	6.75	1.00	
1,4-Dioxane	<srl< td=""><td></td><td>5</td><td>3.27</td><td><srl< td=""><td>Ŭ</td><td>5</td><td>3.38</td><td>0,50</td></srl<></td></srl<>		5	3.27	<srl< td=""><td>Ŭ</td><td>5</td><td>3.38</td><td>0,50</td></srl<>	Ŭ	5	3.38	0,50	
Trichloroethene (TCE)	17.0	<u>├                                    </u>	5	3.27	13.8		5	3.38	0.50	
2,2,4-Trimethylpentane	105		5	3.27	98.9		5	3.38	0.50	
Heptane		77	5	3,27	<\$RL	U	5	3.38	0.50	
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td></td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td></td><td>5</td><td>3.38</td><td>0.50</td></srl<>		5	3.38	0.50	
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><u> </u></td><td>5</td><td>3.27</td><td><srl< td=""><td>Ū</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	<u> </u>	5	3.27	<srl< td=""><td>Ū</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	Ū	5	3.38	0.50	
trans-1,3-Dichloropropene	<srl< td=""><td>U</td><td></td><td>3.27</td><td><srl< td=""><td>U U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U		3.27	<srl< td=""><td>U U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U U	5	3.38	0.50	
1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>5</td><td></td><td>8,58</td><td><u> </u></td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5		8,58	<u> </u>	5	3.38	0.50	
Toluene	7.73		5	3.27		77	5	6.75	1.00	
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>5</td><td>6.55</td><td><srl< td=""><td>U U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5	6.55	<srl< td=""><td>U U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U U	5	3.38	0.50	
Dibromochloromethane	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl.< td=""><td></td><td>5</td><td>3.38</td><td>0.50</td></srl.<></td></srl<>	U	5	3.27	<srl.< td=""><td></td><td>5</td><td>3.38</td><td>0.50</td></srl.<>		5	3.38	0.50	
1,2-Dibromoethane	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td></td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td></td><td>3,38</td><td>0.50</td></srl<>	U		3,38	0.50	
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>5</td><td>3,27</td><td><srl< td=""><td>Ŭ</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5	3,27	<srl< td=""><td>Ŭ</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	Ŭ	5	3,38	0.50	
Chlorobenzene	80.6		5	3.27	84.1			3.38	0.50	
Ethylbenzene	4.19		5	3.27	6.14		5		1.00	
m & p-Xylene	8.12		5	6,55	11.0	l	5	6.75	0.50	
Bromoform	<srl< td=""><td>U</td><td>. 5</td><td>3.27</td><td>&lt;<u>SRL</u></td><td>U</td><td>5</td><td>3.38</td><td></td></srl<>	U	. 5	3.27	< <u>SRL</u>	U	5	3.38		
Styrene	<srl< td=""><td>U .</td><td>5</td><td>3.27</td><td><srl< td=""><td><u>U</u>.</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U .	5	3.27	<srl< td=""><td><u>U</u>.</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	<u>U</u> .	5	3.38	0.50	
1.1.2.2-Tetrachloroethane	<srl< td=""><td>U</td><td>5.</td><td>3.27</td><td><srl< td=""><td>U</td><td>5.</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U	5.	3.27	<srl< td=""><td>U</td><td>5.</td><td>3.38</td><td>0.50</td></srl<>	U	5.	3.38	0.50	
o-Xylene	8.25		5	3.27	9,59		5	3.38	0.50	
4-Ethyltoluene	<srl< td=""><td>U U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5.</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	U U	5	3.27	<srl< td=""><td>U</td><td>5.</td><td>3.38</td><td>0.50</td></srl<>	U	5.	3.38	0.50	
1.3.5-Trimethylbenzene	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>Ŭ</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>Ŭ</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	Ŭ	5	3,38	0.50	
1.2.4-Trimethylbenzene	4.32		5	3.27	5,40		5.	3.38	0,50	
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0,50</td></srl<></td></srl<>	U	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0,50</td></srl<>	U	5	3.38	0,50	
1.3-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>5</td><td>3.27</td><td><srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<></td></srl<>	Ŭ	5	3.27	<srl< td=""><td>U</td><td>5</td><td>3.38</td><td>0.50</td></srl<>	U	5	3.38	0.50	
1.4-Dichlorobenzene	36.9		5	3.27	39.0		5	3.38	0,50	
1.2-Dichlorobenzene	4.26	1	5	3,27	4.59		5	3.38	0.50	
1.2.4-Trichlorobenzene	<srl< td=""><td>U</td><td>5</td><td>6.55</td><td><srl< td=""><td>U</td><td>5</td><td>6.75</td><td>1.00</td></srl<></td></srl<>	U	5	6.55	<srl< td=""><td>U</td><td>5</td><td>6.75</td><td>1.00</td></srl<>	U	5	6.75	1.00	
Hexachlorobutadiene	<srl< td=""><td>Ū</td><td>5</td><td>3.27</td><td><srl< td=""><td>Ū</td><td>5</td><td>3,38</td><td>0.50</td></srl<></td></srl<>	Ū	5	3.27	<srl< td=""><td>Ū</td><td>5</td><td>3,38</td><td>0.50</td></srl<>	Ū	5	3,38	0.50	
BFB-Surrogate Std. % Recovery	<u></u>	95%				97%	1		70-130%	

U - Compound was not detected at or above the SRL.

ς.

.


Page 3

÷

B

2225 Sperry Ave., Ventura, CA 93003

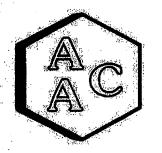




Laboratory Analysis Report

CLIENT : Best Environmental PROJECT NO : 221529 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 07/20/2022 DATE REPORTED : 08/03/2022 ANALYST : MB/DL

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15


$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Method
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Reporting
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Limit
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(MRL)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.50
Bthanol <srl< th="">         U         5         13.7           Vinyl Bromide         <srl< td="">         U         5         3.41           Acetone         <srl< td="">         U         5         13.7           Trichlorofluoromethane         <srl< td="">         U         5         13.7           2.Propanol (IPA)         <srl< td="">         U         5         13.7           Acrylonitrile         <srl< td="">         U         5         13.7           1.1-Dichloroethene         <srl< td="">         U         5         6.83</srl<></srl<></srl<></srl<></srl<></srl<></srl<>	0.50
Bthanol <srl< th="">         U         5         13.7           Vinyl Bromide         <srl< td="">         U         5         3.41           Acetone         <srl< td="">         U         5         13.7           Trichlorofluoromethane         <srl< td="">         U         5         3.41           2-Propanol (IPA)         <srl< td="">         U         5         13.7           Acrylonitrile         <srl< td="">         U         5         6.83           1,1-Dichloroethene         <srl< td="">         U         5         6.83</srl<></srl<></srl<></srl<></srl<></srl<></srl<>	0.50
Vinyl Bromide <srl< th="">         U         5         3.41           Acetone         <srl< td="">         U         5         13.7           Trichlorofluoromethane         <srl< td="">         U         5         3.41           2-Propanol (IPA)         <srl< td="">         U         5         13.7           Acrylonitrile         <srl< td="">         U         5         13.7           JDichloroethene         <srl< td="">         U         5         6.83</srl<></srl<></srl<></srl<></srl<></srl<>	2.00
Acetone <srl< th="">         U         5         13.7           Trichlorofluoromethane         <srl< td="">         U         5         3.41           2-Propanol (IPA)         <srl< td="">         U         5         13.7           Acrylonitrile         <srl< td="">         U         5         6.83           1,1-Dichloroethene         <srl< td="">         U         5         3.41</srl<></srl<></srl<></srl<></srl<>	0:50
Trichlorofluoromethane <srl< th="">         U         5         3.41           2-Propanol (IPA)         <srl< td="">         U         5         13.7           Acrylonitrile         <srl< td="">         U         5         6.83           1.1-Dichloroethene         <srl< td="">         U         5         3.41</srl<></srl<></srl<></srl<>	2.00
2-Propanol (IPA) <srl< th="">         U         5         13.7           Acrylonitrile         <srl< td="">         U         5         6.83           1,1-Dichloroethene         <srl< td="">         U         5         3.41</srl<></srl<></srl<>	0.50
Acrylonitrile <srl< th="">         U         5         6.83           1,1-Dichloroethene         <srl< td="">         U         5         3.41</srl<></srl<>	2.00
1,1-Dichloroethene <srl 3,41<="" 5="" td="" u=""><td>1,00</td></srl>	1,00
	0.50
Methylene Chloride (DCM) <srl 5="" 6.83<="" td="" u=""><td>1.00</td></srl>	1.00
Allyl Chloride <srl 5="" 6.83<="" td="" u=""><td>1.00</td></srl>	1.00
Carbon Disulfide 10.7 5 6.83	1.00
Trichlorotrifluoroethane <srl 3.41<="" 5="" td="" u=""><td>0.50</td></srl>	0.50
trans-1.2-Dichloroethene <srl 3.41<="" 5="" td="" u=""><td>0.50</td></srl>	0.50
	0.50
Methyl Tert Butyl Ether (MTBE) <srl 3.41<="" 5="" td="" u=""><td>0.50</td></srl>	0.50
Vinvi Acetate      SRL     U     5     6.83	1.00
2-Butanone (MEK) <srl 5="" 6.83<="" td="" u=""><td>1.00</td></srl>	1.00
cis-1,2-Dichloroethene 3.89 5 3.41	0.50
Hexane 261 5 3.41	0.50
Chloroform <srl 3.41<="" 5="" td="" u=""><td>0.50</td></srl>	0.50
Ethyl Acetate <srl 3.41<="" 5="" td="" u=""><td>0.50</td></srl>	0.50
Tetrahydrofuran <srl 3.41<="" 5="" td="" u=""><td>0.50</td></srl>	0.50
1.2-Dichloroethane <srl 3.41<="" 5="" td="" u=""><td>0.50</td></srl>	0.50
1.1.1-Trichloroethane <srl 3.41<="" 5="" td="" u=""><td>0.50</td></srl>	0.50
Benzene 32.5 5 3.41	0.50

Page 4

الم المرادية مريخ المريخ المريخ

ď.

 $\textcircled{\blue}{\blue}$ 



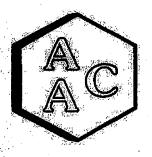
Laboratory Analysis Report

**CLIENT : Best Environmental** PROJECT NO: 221529 MATRIX : AIR UNITS : PPB (v/v)

DATE RECEIVED : 07/20/2022 DATE REPORTED : 08/03/2022 ANALYST : MB/DL

i,x

1.2.1


#### **VOLATILE ORGANIC COMPOUNDS BY EPA TO-15**

Client ID		LFG R3		Sample		
AAC ID		221529-337			Method	
Date Sampled		07/15/202	2	Reporting	Reporting	
Date Analyzed	•	07/20/202	2	Limit	Limit	
Can Dilution Factor		1.37		(SRL)	(MRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	(11112)	
Carbon Tetrachloride	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50	
Cyclohexane	42.4	•	5	3,41	0.50	
1.2-Dichloropropane	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50	
Bromodichloromethane	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50	
1,4-Dioxane	<srl< td=""><td>U</td><td>5</td><td>6.83</td><td>1.00</td></srl<>	U	5	6.83	1.00	
Irichloroethene (TCE)	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50	
2,2,4-Trimethylpentane	13.9		5	3,41	0,50	
Heptane	99.8		5	3,41	0.50	
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50	
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50	
trans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>5</td><td>3,41</td><td>0.50</td></srl<>	U	5	3,41	0.50	
1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50	
Гојцепе	7,71	· · · ·	5	3,41	0,50	
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>5</td><td>6.83</td><td>1.00</td></srl<>	U	5	6.83	1.00	
Dibromochloromethane	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0,50</td></srl<>	U	5	3.41	0,50	
1,2-Dibromoethane	<srl< td=""><td>·υ</td><td>5</td><td>3,41</td><td>0.50</td></srl<>	·υ	5	3,41	0.50	
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50	
Chlorobenzene	81.9		5	3,41	0.50	
Ethylbenzene	4.57	- 14 -	5	3.41	0.50	
m & p-Xylene	8.60		5	6,83	1,00	
Bromoform	<srl< td=""><td>U</td><td>5</td><td>3,41</td><td>0.50</td></srl<>	U	5	3,41	0.50	
Styrene	<srl< td=""><td>U</td><td>5</td><td>3,41</td><td>0,50</td></srl<>	U	5	3,41	0,50	
1,1,2,2-Tetrachloroethane	<srl< td=""><td>Ŭ</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	Ŭ	5	3.41	0.50	
o-Xylene	8.74		5	3.41	0.50	
4-Ethyltoluene	<srl< td=""><td>U</td><td> 5</td><td>3.41</td><td>0.50</td></srl<>	U	5	3.41	0.50	
1,3,5-Trimethylbenzene	<srl< td=""><td>Ū</td><td>5</td><td>3,41</td><td>0.50</td></srl<>	Ū	5	3,41	0.50	
1.2.4-Trimethylbenzene	4.51		5	3.41	0.50	
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>5</td><td>3,41</td><td>0,50</td></srl<>	U	5	3,41	0,50	
.3-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>5</td><td>3.41</td><td>0,50</td></srl<>	Ŭ	5	3.41	0,50	
4-Dichlorobenzene	38.8		5	3.41	0.50	
1,2-Dichlorobenzene	4.51	·	5	3.41	0.50	
1,2,4-Trichlorobenzene	<srl< td=""><td>U</td><td>5</td><td>6,83</td><td>1.00</td></srl<>	U	5	6,83	1.00	
Hexachlorobutadiene	<srl< td=""><td>Ŭ</td><td>5</td><td>3.41</td><td>0.50</td></srl<>	Ŭ	5	3.41	0.50	
BFB-Surrogate Std. % Recovery	1	97%	1		70-130%	

Page 5

Β





#### **QUALITY CONTROL / QUALITY ASSURANCE REPORT**

#### ANALYSIS DATE : 07/20/2022 MATRIX : High Purity N₂ UNITS : PPB (v/v)

#### INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : MS1-070822-02 ANALYST : MB/DL

### VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

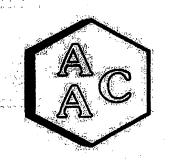
Continuing Calibration Verification of the 07/11/2022 Calibration

Analyte Compounds	Source	CCV2	% Recovery 3	Analyte Compounds (Continued)	Source	CCV ²	% Recovery
4-BFB (surrogate standard)	10.00	9.39	94	1,2-Dichloropropane	10.50	10.76	102
Chlorodifluoromethane	10.50	11.29	108	Bromodichloromethane	10.40	10.45	100
Propene	10.60	11.58	109	1,4-Dioxane	10.40	10.34	99
Dichlorodifluoromethane	10.40	11,15	107	Trichloroethene (TCE)	10.40	10,34	99
Dimethyl Ether	10.80	10.21	95	2,2,4-Trimethylpentane	10.40	10.27	99
Chloromethane	10.40	10.23	98	Methyl Methacrylate	11.00	11,11	101
Dichlorotetrafluoroethane	10.30	10.75	104	Heptane	10.50	10.47	100
Vinyl Chloride	10,50	10.37	99	cis-1,3-Dichloropropene	10.40	10,36	100
Acetaldehyde	22.50	25.87	115	4-Methyl-2-pentanone (MiBK)	10.40	10.48	101
Methanol	· 20,10	16.73	83	trans-1,3-Dichloropropene	10.50	10.45	100
1,3-Butadiene	10.60	10.21	96	1,1,2-Trichloroethane	10,50	10,49	100
Bromomethane	10.40	10.37	100	Toluene	10.60	10.15	96
Chloroethane	10.30	9.77	95	2-Hexanone (MBK)	10,50	11.19	107
Dichlorofluoromethane	10,50	10,15	97	Dibromochloromethane	10.30	10.25	100
Ethanol	11.20	10.31	92	1,2-Dibromoethane	10.60	10.71	101
Vinyl Bromide	10.50	9.76	93	Tetrachloroethene (PCE)	10,40	9.83	95
Acrolein	11.10	10.31	93	Chlorobenzens	10.60	10.44	98
Acetone	10,60	10.58	100	Ethylbenzene	10,50	10.76	102
Trichlorofluoromethane	10.50	10.71	102	m & p-Xylene	21.00	21.87	104
2-Propanol (IPA)	11.00	11.33	103	Bromoform	10.50	10.63	101
Acrylonitrile	11.40	10,90	96	Styrene	10.50	10.82	103
1,1-Dichloroethene	10.40	10.27	99	1,1,2,2-Tetrachloroethane	10.50	11.69	111
Methylene Chloride (DCM)	10.50	10.15	97	o-Xylene	10.50	10.82	103
TertButanol (TBA)	11.30	10,56	93	1,2,3-Trichloropropane	10.40	10.71	103
Allyl Chloride	10.40	10,80	104	Isopropylbenzene (Cumene)	10.40	10.81	104
Carbon Disulfide	10.50	10.26	98	a-Pinene	11.40	9.97	87
Trichlorotrifluoroethane	10.40	10.07	97	2-Chlorotoluene	10,40	10.22	98
trans-1,2-Dichloroethene	10.60	10.98	104	n-Propylbenzene	10,50	10.70	102
1,1-Dichloroethane	10.50	11.60	110	4-Ethyltoluene	10.30	11.22	109
Methyl Tert Butyl Ether (MTBE)	10.50	10.55	100	1,3,5-Trimethylbenzene	10,30	11.08	108
Vinyl Acetate	11.00	12,34	112	β-Pinene	11.30	8.28	73
2-Butanone (MEK)	10.60	11.02	104	1,2,4-Trimethylbenzene	10.30	11.08	108
cis-1,2-Dichloroethene	10,50	10.86	103	Benzyl Chloride (a-Chlorotoluene)	10.40	11.78	113
Hexane	10.70	11.29	106	1,3-Dichlorobenzene	10.40	11.53	111
Chloroform	10.60	10,86	102	1,4-Dichlorobenzene	10.30	11.26	109
Ethyl Acetate	10.60	11.52	109	Sec-ButylBenzene	10.40	11.03	106
Tetrahydrofuran	10.20	10.24	100	1,2-Dichlorobenzene	10.60	11.51	109
1.2-Dichloroethane	10.50	10.81	103	n-ButylBenzene	10.40	11.11	107
1.1.1-Trichloroethane	10.40	10.57	102	1,2-Dibromo-3-Chloropropane	10.40	11.00	106
Benzene	10.60	10.23	97	1,2,4-Trichlorobenzene	11.00	11.42	104
Carbon Tetrachloride	10.20	9.72	95	Naphthalene	11,50	10.46	91
Cyclohexane	10.50	10.04	96	Hexachlorobutadiene	11.00	11.06	101

¹ Concentration of analyte compound in certified source standard.

² Measured result from daily Continuing Calibration Verification (CCV).

³ The acceptable range for analyte recovery is  $100\pm30\%$ .


2225 Sperry Ave., Ventura, CA 93003

www.aaclab.com • (805) 650-1642

Page 6

1.4

n.7.



#### QUALITY CONTROL / QUALITY ASSURANCE REPORT

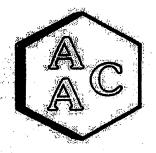
ANALYSIS DATE : 07/20/2022 MATRIX : High Purity N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : MS1-070822-02 ANALYST : MB/DL

#### **VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15**

Laboratory Control Spike Analysis

	Sample	Spike	LCS ¹	LCSD ¹		LCSD ¹	RPD ³	
System Monitoring Compounds	Concentration	Added	Recovery	Recovery	% Recovery ²	% Recovery ²		
4-BFB (surrogate standard)	0.0	9.80	9.39	9.47	95.8	96.6	0.8	
1,1-Dichloroethene	0.0	10.40	10.27	10.07	99	97	2.0	
Methylene Chloride (DCM)	0.0	10.50	10.15	10.21	97	97	0.6	
Benzene	0.0	10.60	10.23	10.65	97	100	4.0	
Trichloroethene (TCE)	0.0	10.40	10.34	10.37	99	100	0.3	
Toluene	0.0	10.60	10.15	10.09	96	: 95 .	0.6	
Tetrachloroethene (PCE)	0.0	10.40	9.83	10.11	. 95	97	2.8	
Chiorobenzene	0.0	10.60	10.44	10.28	98	. 97	1.5	
Ethylbenzene	. 0.0	10.50	10.76	10.84	102	103	• 0.7	
m & p-Xylene	0.0	21.00	21.87	21.96	104	105	0.4	
o-Xylene	0.0	10.50	10.82	10.89	103	104	0.6	

¹ Laboratory Control Spike (LCS) / Laboratory Control Spike Duplicate (LCSD)


² The acceptable range for analyte recovery is  $100\pm30\%$ .

³ Relative Percent Difference (RPD) between LCS recovery and LCSD recovery (acceptable range is <25%).

www.aaclab.com • (805) 650-1642

Page 7





.....

# Atmospheric Analysis & Consulting, Inc.

#### QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 07/20/2022 MATRIX : High Purity He or N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 ANALYST : MB/DL

Reporting

Limit (RL) 0.5

0.5

0.5

0.5

0,5

0.5

0,5

0.5

0.5

0.5

0.5

0.5

0,5

0,5 0,5

1.0

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0,5

0.5

0.5

0.5

0.5

0.5

0.5

0,5

1.0

0.5

#### VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15 Method Blank Analysis

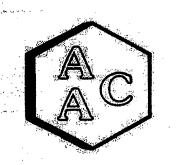
Analyte Compounds	MB 072022	Reporting Limit (RL)	Analyte Compounds (Continued)	MB 07
4-BFB (surrogate standard)	83%	100±30%	1,2-Dichloropropane	<r< td=""></r<>
Chlorodifluoromethane	<rl< td=""><td>0.5</td><td>Bromodichloromethane</td><td><r< td=""></r<></td></rl<>	0.5	Bromodichloromethane	<r< td=""></r<>
Propene	<rl< td=""><td>1.0</td><td>1,4-Dioxane</td><td><r< td=""></r<></td></rl<>	1.0	1,4-Dioxane	<r< td=""></r<>
Dichlorodifluoromethane	<rl< td=""><td>0.5</td><td>Trichloroethene (TCE)</td><td><r< td=""></r<></td></rl<>	0.5	Trichloroethene (TCE)	<r< td=""></r<>
Dimethyl Ether	<rl< td=""><td>0.5</td><td>2,2,4-Trimethylpentane</td><td><r.< td=""></r.<></td></rl<>	0.5	2,2,4-Trimethylpentane	<r.< td=""></r.<>
Chloromethane	<rl< td=""><td>0,5</td><td>Methyl Methacrylate</td><td><r< td=""></r<></td></rl<>	0,5	Methyl Methacrylate	<r< td=""></r<>
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td><td>Heptane</td><td><r< td=""></r<></td></rl<>	0.5	Heptane	<r< td=""></r<>
Vinyl Chloride	<rl< td=""><td>0.5</td><td>cis-1,3-Dichloropropene</td><td><r< td=""></r<></td></rl<>	0.5	cis-1,3-Dichloropropene	<r< td=""></r<>
Acetaldehyde	<rl< td=""><td>5.0</td><td>4-Methyl-2-pentanone (MiBK)</td><td><r.< td=""></r.<></td></rl<>	5.0	4-Methyl-2-pentanone (MiBK)	<r.< td=""></r.<>
Methanol	<rl< td=""><td>5,0</td><td>trans-1,3-Dichloropropene</td><td><r.< td=""></r.<></td></rl<>	5,0	trans-1,3-Dichloropropene	<r.< td=""></r.<>
1,3-Butadiene	<rl< td=""><td>0,5</td><td>1,1,2-Trichloroethane</td><td><r< td=""></r<></td></rl<>	0,5	1,1,2-Trichloroethane	<r< td=""></r<>
Bromomethane	<rl< td=""><td>0.5</td><td>Toluene</td><td><r.< td=""></r.<></td></rl<>	0.5	Toluene	<r.< td=""></r.<>
Chloroethane	<rl .<="" td=""><td>0,5</td><td>2-Hexanone (MBK)</td><td><r< td=""></r<></td></rl>	0,5	2-Hexanone (MBK)	<r< td=""></r<>
Dichlorofluoromethane	<rl< td=""><td>0.5</td><td>Dibromochloromethane</td><td><r< td=""></r<></td></rl<>	0.5	Dibromochloromethane	<r< td=""></r<>
Ethanol	<rl< td=""><td>2.0</td><td>1,2-Dibromoethane</td><td><r< td=""></r<></td></rl<>	2.0	1,2-Dibromoethane	<r< td=""></r<>
Vinyl Bromide	<rl< td=""><td>0.5</td><td>Tetrachloroethene (PCE)</td><td><r< td=""></r<></td></rl<>	0.5	Tetrachloroethene (PCE)	<r< td=""></r<>
Acrolein	<rl< td=""><td>1,0</td><td>Chlorobenzene</td><td><r< td=""></r<></td></rl<>	1,0	Chlorobenzene	<r< td=""></r<>
Acetone	<rl< td=""><td>2.0</td><td>Ethylbenzene</td><td><r< td=""></r<></td></rl<>	2.0	Ethylbenzene	<r< td=""></r<>
Trichlorofluoromethane	<rl< td=""><td>0.5</td><td>m &amp; p-Xylene</td><td><r< td=""></r<></td></rl<>	0.5	m & p-Xylene	<r< td=""></r<>
2-Propanol (IPA)	<rl< td=""><td>2.0</td><td>Bromoform</td><td><r< td=""></r<></td></rl<>	2.0	Bromoform	<r< td=""></r<>
Acrylonitrile	<rl< td=""><td>1.0</td><td>Styrene</td><td><r)< td=""></r)<></td></rl<>	1.0	Styrene	<r)< td=""></r)<>
1.1-Dichloroethene	<rl< td=""><td>0.5</td><td>1,1,2,2-Tetrachloroethane</td><td><r< td=""></r<></td></rl<>	0.5	1,1,2,2-Tetrachloroethane	<r< td=""></r<>
Methylene Chloride (DCM)	<rl< td=""><td>1.0</td><td>o-Xylene</td><td><r< td=""></r<></td></rl<>	1.0	o-Xylene	<r< td=""></r<>
TertButanol (TBA)	<rl< td=""><td>0.5</td><td>1,2,3-Trichloropropane</td><td><r< td=""></r<></td></rl<>	0.5	1,2,3-Trichloropropane	<r< td=""></r<>
Allyl Chloride	<rl< td=""><td>1.0</td><td>Isopropylbenzene (Cumene)</td><td>· <r< td=""></r<></td></rl<>	1.0	Isopropylbenzene (Cumene)	· <r< td=""></r<>
Carbon Disulfide	<rl< td=""><td>1.0</td><td>a-Pinene</td><td><r< td=""></r<></td></rl<>	1.0	a-Pinene	<r< td=""></r<>
Trichlorotrifluoroethane	<rl< td=""><td>0.5</td><td>2-Chlorotoluene</td><td><r< td=""></r<></td></rl<>	0.5	2-Chlorotoluene	<r< td=""></r<>
trans-1,2-Dichloroethene	<rl< td=""><td>0,5</td><td>n-Propylbenzene</td><td><r)< td=""></r)<></td></rl<>	0,5	n-Propylbenzene	<r)< td=""></r)<>
1,1-Dichloroethane	<rl< td=""><td>0.5</td><td>4-Ethyltoluene</td><td><r< td=""></r<></td></rl<>	0.5	4-Ethyltoluene	<r< td=""></r<>
Methyl Tert Butyl Ether (MTBE)	<rl< td=""><td>0.5</td><td>1,3,5-Trimethylbenzene</td><td><r< td=""></r<></td></rl<>	0.5	1,3,5-Trimethylbenzene	<r< td=""></r<>
Vinyl Acetate	<rl< td=""><td>1.0</td><td>β-Pinene</td><td><r< td=""></r<></td></rl<>	1.0	β-Pinene	<r< td=""></r<>
2-Butanone (MEK)	<rl< td=""><td>1.0</td><td>1,2,4-Trimethylbenzene</td><td><r.< td=""></r.<></td></rl<>	1.0	1,2,4-Trimethylbenzene	<r.< td=""></r.<>
cis-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><r< td=""></r<></td></rl<>	0.5	Benzyl Chloride (a-Chlorotoluene)	<r< td=""></r<>
Hexane	<rl< td=""><td>0.5</td><td>1,3-Dichlorobenzene</td><td>&lt; &lt; R</td></rl<>	0.5	1,3-Dichlorobenzene	< < R
Chloroform	<rl< td=""><td>0.5</td><td>1,4-Dichlorobenzene</td><td><r< td=""></r<></td></rl<>	0.5	1,4-Dichlorobenzene	<r< td=""></r<>
Ethyl Acetate	<rl< td=""><td>0.5</td><td>Sec-ButylBenzene</td><td><r< td=""></r<></td></rl<>	0.5	Sec-ButylBenzene	<r< td=""></r<>
Tetrahydrofuran	<rl< td=""><td>0,5</td><td>1,2-Dichlorobenzene</td><td><r< td=""></r<></td></rl<>	0,5	1,2-Dichlorobenzene	<r< td=""></r<>
1,2-Dichloroethane	<rl< td=""><td>0.5</td><td>n-ButylBenzene</td><td><r< td=""></r<></td></rl<>	0.5	n-ButylBenzene	<r< td=""></r<>
1,1,1-Trichloroethane	<rl< td=""><td>0.5</td><td>1,2-Dibromo-3-Chloropropane</td><td><r< td=""></r<></td></rl<>	0.5	1,2-Dibromo-3-Chloropropane	<r< td=""></r<>
Benzene	<rl< td=""><td>0,5</td><td>1,2,4-Trichlorobenzene</td><td><r< td=""></r<></td></rl<>	0,5	1,2,4-Trichlorobenzene	<r< td=""></r<>
Carbon Tetrachloride	<rl< td=""><td>0.5</td><td>Naphthalene</td><td><r.< td=""></r.<></td></rl<>	0.5	Naphthalene	<r.< td=""></r.<>
Cyclohexane	<rl< td=""><td>0.5</td><td>Hexachlorobutadiene</td><td><r.< td=""></r.<></td></rl<>	0.5	Hexachlorobutadiene	<r.< td=""></r.<>

2225 Sperry Ave., Ventura, CA 93003



www.aaclab.com • (805) 650-1642

Page 8


1

25 e

• • •

3

ng pil Xi la A Abiat



#### QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 07/20/2022 MATRIX : Air UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 ANALYST : MB/DL DILUTION FACTOR¹ : x1.95

### VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Duplicate Analysis of AAC Sample ID: 221499-33593

Analyte Compounds	Sample	Duplicate	RPD ³	Analyte Compounds (Continued)	Sample	Duplicate	RPD ²
4-BFB (surrogate standard)	8.50	8,75	2.9	1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chlorodifluoromethane	<srl< td=""><td>SRL</td><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	SRL	NA	Bromodichloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Ргореле	<srl< td=""><td><srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,4-Dioxane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorodifluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Trichloroethene (TCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dimethyl Ether	<srl< td=""><td><srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Methyl Methacrylate	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorotetrafluoroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Heptane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Chloride	<srl< td=""><td><srl< td=""><td>NA .</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA .</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA .	cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetaldshyde	42.1	39.4	6.6	4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methanol	12.2	11.9	2,1	trans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1.3-Butadiene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td>· <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td>· <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2-Trichloroethane	· <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Bromomethane		<srl< td=""><td>NA</td><td>Toluene</td><td>1.46</td><td>1.17</td><td>22.2</td></srl<>	NA	Toluene	1.46	1.17	22.2
Chloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Dibromochloromethane</td><td>· <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Dibromochloromethane</td><td>· <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Dibromochloromethane	· <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Bthanol	6.32	6,11	3.5	1,2-Dibromoethane	<srl< td=""><td>&lt;\$RL</td><td>NA</td></srl<>	<\$RL	NA
Vinyl Bromide	<srl< td=""><td><srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrolein	<srl< td=""><td><srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Chlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetone	9,11	8.84	3.0	Ethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Trichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>m &amp; p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>m &amp; p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	m & p-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
2-Propanol (IPA)	<sreen sreen="" statement="" statement<="" td=""><td><srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></sreen>	<srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromoform	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrylonitrile	<srl< td=""><td><srl< td=""><td>NÄ</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NÄ</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NÄ	Styrene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1.1-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2,2-Tetrachloroethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methylene Chloride (DCM)	<srl< td=""><td><srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	o-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
TertButanol (TBA)	10.3	10,2	0.6	1.2.3-Trichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
	<pre> 10.3 <srl< pre=""></srl<></pre>	<pre> 10.2         </pre>	NA	Isopropylbenzene (Cumene)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Allyl Chloride Carbon Disulfide		4,14	1.4	a-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Trichlorotrifluoroethane	4.20 <srl< td=""><td>4.14 <srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	4.14 <srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Chlorotoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	n-Propylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
trans-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Ethyltoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1,1-Dichloroethane	<srl< td=""><td><srl <srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl </td></srl<>	<srl <srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl 	NA	1,3,5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methyl Tert Butyl Ether (MTBE)		<srl <srl< td=""><td>NA</td><td>B-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl 	NA	B-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Acetate	<srl< td=""><td><srl <srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl </td></srl<>	<srl <srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl 	NA	1,2,4-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
2-Butanone (MEK)	<srl< td=""><td></td><td>NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>		NA	Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
cis-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Hexane	<srl< td=""><td><srl< td=""><td>NA</td><td>1,4-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,4-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,4-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloroform	<srl< td=""><td><srl 10DI</srl </td><td>NA</td><td>Sec-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	<srl 10DI</srl 	NA	Sec-ButylBenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Ethyl Acetate	<srl INTERIO</srl 	<srl< td=""><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1.2-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Tetrahydrofuran	<srl< td=""><td><srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	n-ButylBenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1,2-Dichloroethane	< <u>SRL</u>	<srl< td=""><td>NA</td><td>1,2-Dibromo-3-Chloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2-Dibromo-3-Chloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1,1,1-Trichloroethane	<srl< td=""><td><srl< td=""><td>NA NA</td><td>1,2.4-Trichlorobenzene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></td></srl<>	<srl< td=""><td>NA NA</td><td>1,2.4-Trichlorobenzene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>	NA NA	1,2.4-Trichlorobenzene	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
Benzene	1.01	<srl< td=""><td></td><td></td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<>			<srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td></srl<></srl 	NA
Carbon Tetrachloride	<srl< td=""><td><srl <srl< td=""><td>NA NA</td><td>Naphthalene Hexachlorobutadiene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></srl </td></srl<>	<srl <srl< td=""><td>NA NA</td><td>Naphthalene Hexachlorobutadiene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></srl 	NA NA	Naphthalene Hexachlorobutadiene	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td></srl<></srl 	NA

¹ Dilution factor is the product of the Canister Dilution Factor and the Analysis Dilution Factor.

² Relative Percent Difference (RPD) between Sample analysis and Duplicate analysis (acceptable range is <25%).

SRL - Sample Reporting Limit (minimum)

in i

2225 Sperry Ave., Ventura, CA 93003

 $(\mathbf{k})$ 

www.aaclab.com • (805) 650-1642

C Alorms Meldicec.xts - 8/4/799	SAMPLE CONDITION AS RECEIVED: OK or not OK	Relinquished by: r	Relinquished by:	sults to: Attn:	•	rd & Report all liquid sample volumes.	21	20	19	18	17	16	15	14	13	21	10		7		E21 Jall &	1017	1 7-15.22 930 LFG 121 3375	# DATE TIME SAMPLE ID Run#/Method/Fraction/Source	Analyical Lab: Art C		
	E U	Received by:	Received by:	BEST ENVIRO								-								-	v 153 V	ŀ	Can	CONTAINER size / type Volume	IAIN OF C		22
can's ((2 void)		R		BEST ENVIRONMENTAL 339 STEALTH COURT,																			7015	Storage Method Temp ^o F			H7 C17
		Date: Time: Time: $1/1 a/2.0$ Time: $0979$	Date: Time:	COURT, LIVERMORE CA. 94551																All 100 "05" 100			TO IS	ANALYSIS	BE PROJECT MANAGER: Y LOWNSTON	4	Ph (925) 455-9474; Fx (925) 455-9479

**B-25** 

## APPENDIX C FIELD DATA SHEETS

Facility: Berkeley Landfill	Run #:	CEC	Date:	07/15/22
Location: Flare	Barometric:	29.90	Leak ✓ :	OK
Observers:	Personnel:	BA	Strat.♥ :	ОК
Expected Run Time = 30 min	Std. Temp:	60	······································	
Cylinder #s:				

Analyte	02	NOx	CO	THC		
Analyzer	CAI 110P	CAI 600	TECO 48			
Range	20.98	95.30	89.40	100.00		
Span Value	11.59	45.30	54.50	43.50		
Tim	e					Comments:
8:26	-0.08	0.00	0.17	:		
8:27	-0.09	0.00	0.03			Unit #
8:28	-0.10	0.00	0.03			
8:29	18.24	0.00				
8:30	20.98	0.00				Operating Conditions
8:31	20.98	0.00				
8:32	20.98	0.00				
8:33	12.66	0.00				Fuel
8:34	11.53	0.00				
8:35	11.52	0.00				
8:36	3.86	0.08	1			
8:37	-0.13	0.00				
8:38	-0.14	0.00				
8:39	-0.14	0.00				
8:40	-0.12	69.98				
8:41	-0.15	94.88				
8:42	-0.15	95.10				
8:43	-0.15	95.14				
8:44	-0.11	55.01				
8:45	-0.15	45.59				
8:46	-0.16	45.59				
8:47	-0.16	45.56 13.32				
8:48	-0.01	5.42				
8:49 8:50	-0.05	5.40				
8:50	-0.06	5.39				NOx Converter
8:52	-0.00		-0.55	0.59		
8:53				-0.31		
8:55				-0.69		
8:55				45.50		
8:56				94.74		
8:57				93.60		
8:58				93.87		
8:59				93.96		
9:00				57.96		
9:01			1	46.37		
9:02				44.11		
9:03			1	44.39		
9:04				27.38		· · · · · · · · · · · · · · · · · · ·
9:05			1	27.00		
9:06				26.65		
9:07				26.41		

Facility: Berkeley Landfill	Run #:	1	Date:	07/15/22
Location: Flare	Barometric:	29.90	Leak 🗸 :	ОК
Observers:	Personnel:	BA	Strat.♥ :	OK
Expected Run Time = 30 min	Std. Temp:	60		
Cylinder #s:				

Analyte	02	NOx	CO	THC	
Analyzer	CAI 110P	CAI 600	TECO 48	CAI 300H	-
Range	20.98	95.30	89.40	100	
Span Value	11.59	45.30	54.50	43.50	
Time					Comments:
9:26	13.23	9.89	5.15	7.40	
9:27	13.23	9.81	12.58	7.04	
9:28	13.37	9.63	12.24	6.74	
9:29	13.36	9.65	15.99	6.53	
9:30	13.26	9.77	11.90	6.29	
9:31	13.45	9.49	15.18	6.17	
9:32	13.23	9.80	13.79	5.97	
9:33	13.34	9.64	25.68	5.80	
9:34	13.63	9.25	25.77	5.74	
9:35	13.52	9.43	21.36	5.56	
9:36	13.64	9.22	14.14	5.50	
9:37	13.22	9.82	12.84	5.27	
9:38	13.47	9.48	12.65	5.22	
9:39	13.28	9.66	10.51	5.15	
9:40	13.38	9.60	9.07	5.09	
9:46	13.96	8.60	23.29	6.13	
9:47	13.39	9.37	25.66	5.31	
9:48	13.37	9.49	16.68	4.90	
9:49	13.36	9.49	11.70	4.70	
9:50	13.58	9.24	11.30	4.63	
9:51	13.44	9.44	15.51	4.53	
9:52	13.61	9.24	15.00	4.41	
9:53	13.41	9.40	20.44	4.33	
9:54	13.63	9.25	7.64	4.32	
9:55	13.40	9.49	6.05	4.20	
9:56	13.33	9.61	15.23	4.06	
9:57	13.43	9.49	24.44	4.04	
9:58	13.40	9.51	23.49	3.97	
9:59	13.61	9.29	14.33	4.00	
10:00	13.77	9.03	22.91	4.03	
<b>ZERO I</b> 9:11	-0.08	0.00	-0.74	0.73	
<b>SPAN I</b> 9:16	11.56	45.27	54.09		
Average	13.44	9.47	15.75	5.23	
<b>ZERO f</b> 10:05	-0.17	0.01	-0.85	-0.74	
<b>SPAN f</b> 10:10	11.54	45.02	53.62	42.46	
Zero Drift %	-0.4%	0.0%	-0.1%	-1.5%	
Span Drift %	-0.1%	-0.3%	-0.5%	-1.6%	
Corr. Avg.	13.47	9.50	16.50	L	

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]

Zero Drift % = 100 * (Zf - Zi)/Intrument Range

Span Drift % = 100 * (Sf - Si)/Instrument Range

Facility: Berkeley Landfill	Run #: 2		Date:	07/15/22
Location: Flare	Barometric:	29.90	Leak 🖌 :	ОК
Observers:	Personnel:	BA	Strat.♥ :	ОК
Expected Run Time = 30 min	Std. Temp:	60		
Cylinder #s:				

Analyte		02	NOx	CO	THC	
Analyzer		CAI 110P	CAI 600	TECO 48	CAI 300H	
Range		20.98	95.30	89.40	100	
Span Value		11.59	45.30	54.50	43.50	
	Time					Comments:
I.	10:14	13.68	9.27	19.00	9.22	
	10:15	13.66	9.25	31.24	8.73	Unit #
	10:16	13.80	9.08	23.16	8.39	
	10:17	13.62	9.31	18.39	8.06	
	10:18	13.41	9.56	14.48	7.80	 Operating Conditions
	10:19	13.39	9.63	13.74	7.58	
	10:20	13.64	9.34	18.01	7.48	
	10:21	13.41	9.66	15.18	7.30	Fuel
	10:22	13.51	9.56	11.57	7.28	
	10:23	13.58	9.42	19.79	7.09	
	10:24	13.62	9.26	33.40	7.05	
	10:25	13.70	9.15	50.84	7.02	
	10:26	13.58	9.32	41.03	6.91	
	10:27	13.36	9.61	19.33	6.89	
	10:28	13.38	9.58	9.61	6.85	Port Change
	10:32	13.35	9.62	9.58	8.16	
•	10:33	13.44	9.53	11.12	7.65	
	10:34	13.36	9.59	14.55	7.42	
	10:35	13.38	9.58	11.23	7.28	
	10:36	13.39	9.57	12.47	7.17	
	10:37	13.46	9.51	15.01	7.08	
	10:38	13.50	9.46	17.82	7.02	
	10:39	13.39	9.59	16.93	6.91	
,	10:40	13.44	9.52	17.92	6.88	
	10:41	13.42	9.52	20.13	6.85	
	10:42	13.37	9.59	14.58		
	10:43	13.33	9.62	16.12	6.79	
	10:44	13.42	9.55	18.22	6.75	
	10:45	13.44	9.49			
	10:46	13.49	9.38	32.62	6.74	
	10:05	-0.17	0.01	-0.85	-0.74	
SPAN I	10:10	11.54	45.02	1		
Avera	-	13.48	9.47		1	
	10:52	-0.17	0.00	1	1.24	
	10:57	11.56	44.96		42.55	
Zero Drift %		0.0%	0.0%	-0.1%	2.0%	
Span Drift %	0	0.1%	-0.1%		0.1%	
Corr. A	Avg.	13.51	9.53	20.63	7.29	

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]

Zero Drift % = 100 * (Zf - Zi)/Intrument Range

Span Drift % = 100 * (Sf - Si)/Instrument Range

<b>Facility:</b>	Berkeley Landfill	Run #:	3	Date:	07/15/22
Location:	Flare	<b>Barometric:</b>	29.90	Leak 🖌 :	ОК
<b>Observers:</b>		Personnel:	BA	Strat.♥ :	ОК
Expected R	un Time = 30 min	Std. Temp:	60		
Cylinder #s	•			·····	

Analyte		02	NOx	CO	THC	
Analyzer		CAI 110P	CAI 600	TECO 48i		
Range		20.98	95.30	89.40	100	······
Span Value		11.59	45.30	54.50	43.50	
	Time					Comments:
	11:01	13.35	9.51	18.32	8.57	
	11:02	13.55	9.28	31.24	8.18	Unit #
	11:03	13.50	9.36	25.61	7.88	
	11:04	13.48	9.36	39.97	7.66	
	11:05	13.48	9.35	34.70	7.46	Operating Conditions
	11:06	13.46	9.41	33.43	7.28	
	11:07	13.79	9.00	28.11	7.24	
	11:08	13.61	9.11	36.40	7.15	Fuel
	11:09	13.76	9.03	31.23	7.08	
	11:10	13.35	9.50	16.56	6.93	
	11:11	13.47	9.41	19.70	6.87	
	11:12	13.66	9.13	21.08	6.87	
	11:13	13.61	9.12	38.54	6.84	
	11:14	13.48	9.33	42.32	6.80	
	11:15	13.67	9.13	31.92	6.79	Port Change
	11:20	13.78	8.94	38.33	6.84	
	11:21	13.62	9.12	34.06	6.76	
	11:22	13.73	9.00	47.28	6.82	
	11:23	13.55	9.21	37.95	6.69	
	11:24	13.60	9.19	33.99	6.63	
	11:25	13.66	9.06	44.51	6.68	
	11:26	13.74	8.93	54.70	6.69	· · ·
	11:27	13.80	8.92	47.37	6.65	
	11:28	13.66	9.06	41.13	6.62	
	11:29	13.64	9.15	41.21	6.57	
	11:30	13.56	9.26	30.02	6.52	
	11:31	13.54	9.29	32.82	6.46	
-	11:32	13.56	9.23	46.69	6.46	
	11:33	13.55	9.29	39.72	6.37	
	11:34	13.55	9.34	26.28	6.36	
	10:52	-0.17	0.00	-0.97	1.24	
	10:57	11.56	44.96		42.55	
Avera	-	13.59	9.20	34.84	6.96	
	11:40	-0.18	0.00	-1.01	0.83	
	11:46	11.56	45.05	53.08	43.24	
Zero Drift %		-0.1%	0.0%	0.0%	-0.4%	
Span Drift %		0.0%	0.1%	-0.2%	0.7%	
Corr. A		13.60	9.26 * Span Gas Value / [((Si+	36.04	6.16	

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]

Zero Drift % = 100 * (Zf - Zi)/Intrument Range

Span Drift % = 100 * (Sf - Si)/Instrument Range

•.

### **CEMS CALIBRATION SHEET**

Facility: City Berkley Location: Flave

7-15-20 Date:

Personnel: BS4BA

29.9 **Barometric Pressure:** 

O ₂ .		NOx	CO ,	THC		Comments
CAL IND		CAI 600	Jec 3 48.	CAI 300		
20.98		95,3	89.4	100		
	an orași de la casa de			26.88		
				DT 27824		
				5-27-29		
11.59		45,3	54.5	43.5		
CC 50881		ÞT37052	CC707372	0542922		
10-1-27		11-18-23	2-15-27	6-21-30		NO2
20,98		95.3	89.4	92.1		5.979
CC 306150		CC 308849	ec306150	CL506583		ec 503193
11-22-29				3-16-29		5-6-24
	CATI IID ZO.982 11.59 CC 50881 Ib-1-Z7 20.98 CC 306150	CAI IID ZO.98 II.59 CC 50881 Ib-1.27 20.98 CC 306150	CAI III       CAI 601         Z0.98       95,3         II.59       45,3         CC 50881       5737052         Ib-1-27       11-18-23         20,98       95,3         CC 306150       CC 306849	CAT IND       CAT 600       Jeco 48.         Z0.98       95,3       89.4         11.59       45.3       54.5         CC 50881       5737052       CC707372         16-1-27       11-18-23       2-15-27         20,98       95.3       89.4         CC 306150       CC 306849       89.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Run 1 Run 2

Run 3

926 1001 1047 1014 1135 1101

Stop

Start

HOW HERE	い日本	Can 19	
66	(55)	504	Traverse
67	1554	24	1
66	1558	153	V

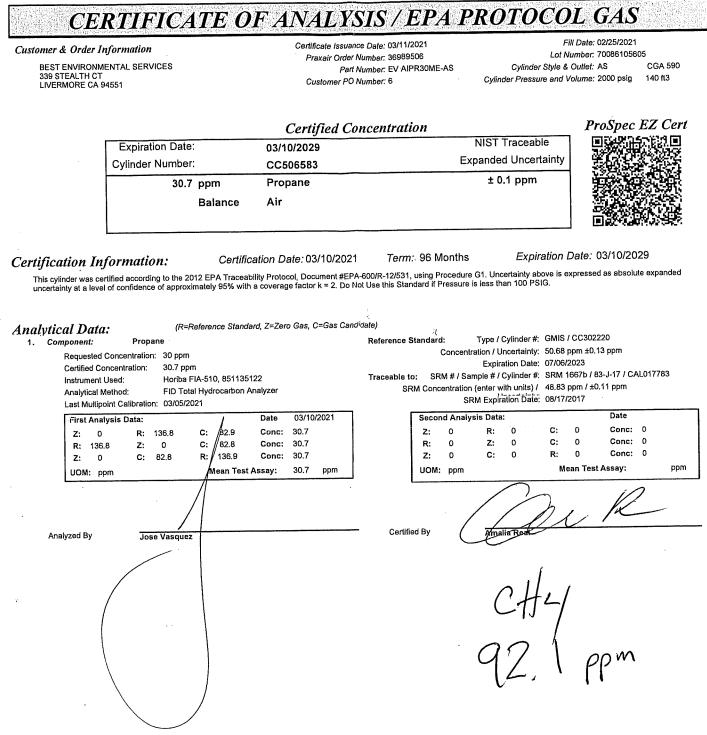

Leak Check: 0 Heated Line Temp (F): ~ 250

#### Calculations

% Linearity (Limit ± 2%) = 100 * Span Value - Internal cal Span Range

Zero and Calibration Drift = 100 x (Cfb - Cib) / rangeCbcal = (Cib + Cfb) / 2 for cal gas

## APPENDIX D CALIBRATION GAS CERTIFICATES


**PRAXAIR** 

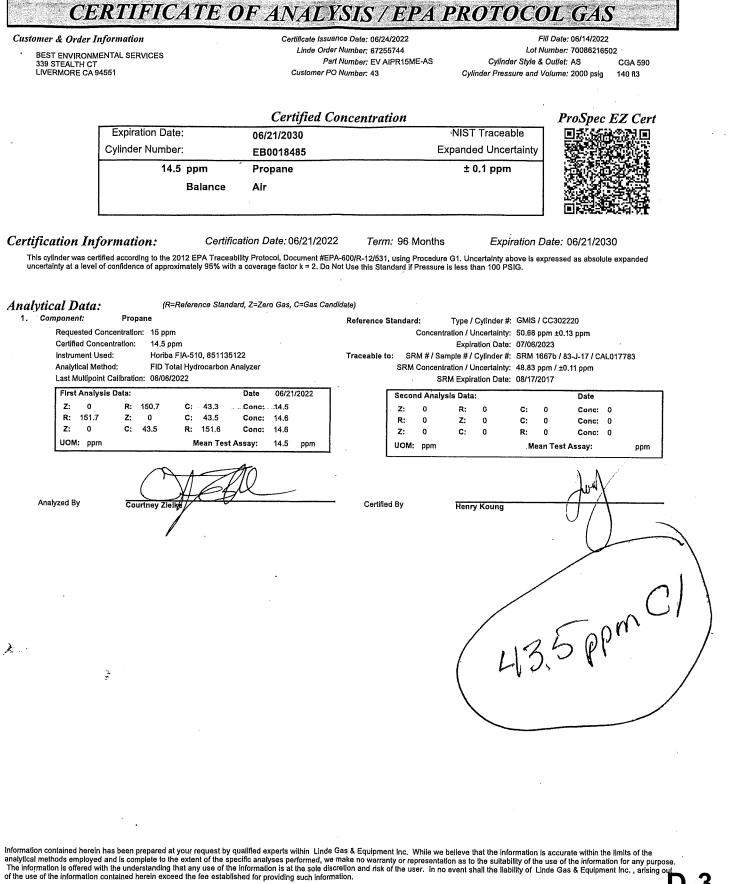
Making our planet more productive

DocNumber: 405533



Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021




Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we balieve that the information is accurate within the limits of the analysis and the second of the se



DocNumber: 477448



Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 **PGVP ID: F22022** 





Making our planet more productive

DocNumber: 411093



Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021

## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

TESLA INC 47700 KATO RD FREMONT CA 94538 Certificate Issuance Date: 05/27/2021 Praxair Order Number: 42827444 Part Number: AI PR9ME-AS Customer PO Number: 4900225193

#### Fill Date: 05/20/2021 Lot Number: 70086114010 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 ft3

**ProSpec EZ Cert** 

**Certified** Concentration

 Expiration Date:
 05/27/2029
 NIST Traceable

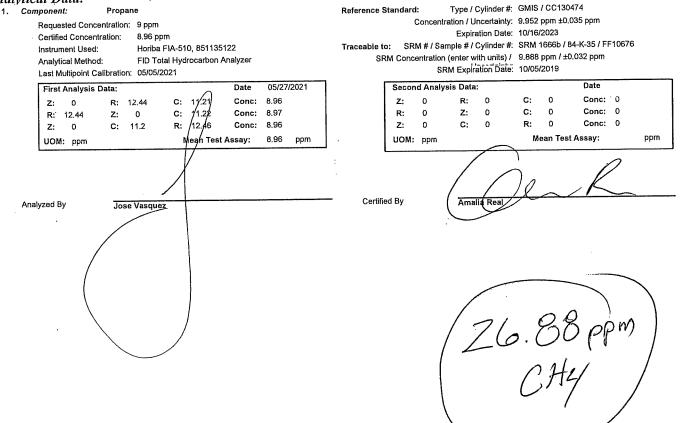
 Cylinder Number:
 DT0027824
 Expanded Uncertainty

 8.96 ppm
 Propane
 ± 0.04 ppm

 Balance
 Air
 Image: Company of the second se

#### Certification Information:

Certification Date: 05/27/2021


Term: 96 Months

Expiration Date: 05/27/2029

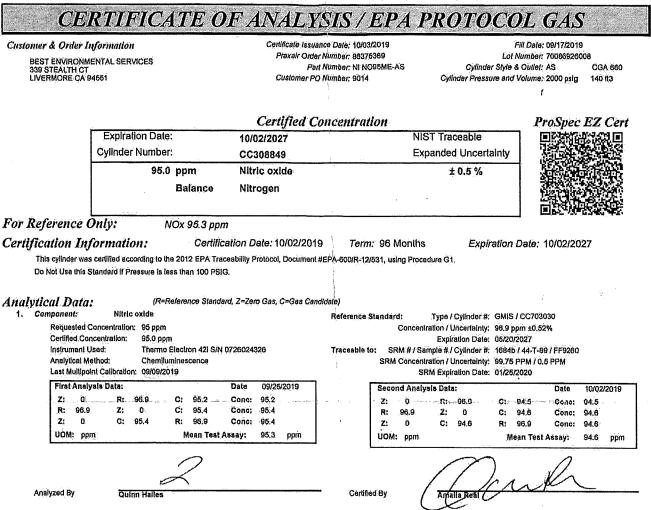
This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

#### Analytical Data:

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)



information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analysis methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information.


**PRAXAIR** 

#### Making our planet more productive

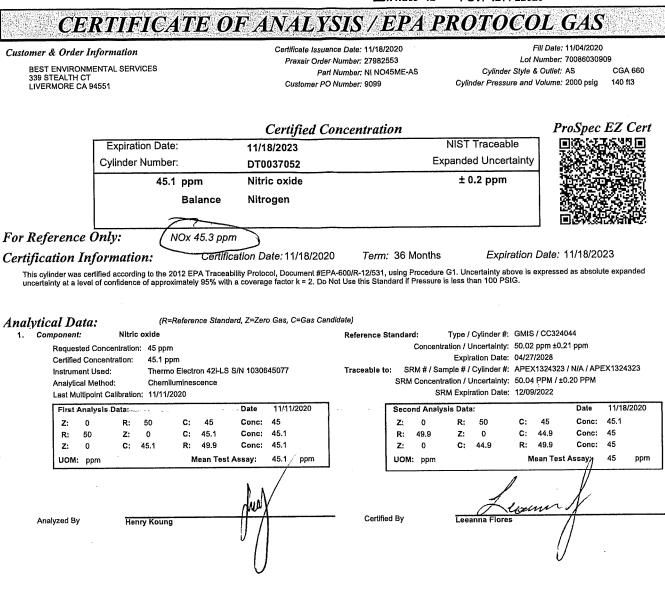
DocNumber: 270077



Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22019



Information contained herein has been prepared at your request by qualified expents within Praxair Distribution, inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the substitution to the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is different within the understanding that any use of the information is at the sole discretion and nek of the user. In no event shell the liability of Praxet Distribution, inc., adding out of the use of the information is accurate within the user.


**PRAXAIR** 

Making our planet more productive

DocNumber: 317670



Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22020



.....

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the set of the information contained herein exceed the fee established for providing such information.



**Airgas Specialty Gases** Airgas USA, LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

## **CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol**

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02NI99E15WC004 CC503193 124 - Los Angeles (SAP) - CA B32021 NO2, BALN

Reference Number: 48-401989410-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

144.0 CF 2015 PSIG 660 Jan 06, 2021

Expiration Date: Jan 06, 2024

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

. ..... ممام

			ANALYTIC	AL RESUI	LTS		
Co NITROGEN DIOXIDE 6.0		Requested Concentration	Actual Concentration	Protocol Method	Total Rela Uncertain		Assay Dates
		6.000 PPM Balance	5.979 PPM	G1	+/- 2.1% NI	ST Traceable	12/28/2020, 01/06/2021
			CALIBRATIO	N STAND	ARDS		
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	Expiration Date
GMIS	401206803104	CC511311	9.690 PPM NITRO	GEN DIOXIDE/I	NITROGEN	+/- 2.1%	May 02, 2022
PRM	12386	D685025	9.91 PPM NITROG			+/- 2.0%	Feb 20, 2020
The SRM,	PRM or RGM noted	above is only in reference	e to the GMIS used in the as	say and not part o	of the analysis.		
			ANALYTICA	L EQUIPM	IENT		
Instrum	ent/Make/Mode		Analytical Princip	-		<b>Multipoint Calib</b>	ration
	R NO2 01833582'	1	FTIR		Jan 0	6, 2021	

**Triad Data Available Upon Request** 



Approved for Release



DocNumber: 442525



Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22021

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information BEST INVIRONMENTAL SERVICES 339 STEALTH CT LIVERMORE CA 94551 Cerlificale Issuanco Dale: 11/22/2021 Lindo Order Number: 56224584 Part Number: NI CD19CO10E-AS Customer PO Number: 27 Fill Date: 11/01/2021 Lot Number: 70086130505 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 156 ft3

		Certified Concentration		ProSpec EZ Cert
Expiration Date:		11/22/2029	NIST Traceable	
Cylinder Number:	• •	CC306150	Expanded Uncertainty	
18.98	%	Carbon dioxide	± 0.06 %	
89.4	opm	Carbon monoxide	± 0.4 ppm	
20.98	Ж.	Oxygen	± 0.03 %	
I	Balance	Nitrogen		

Certification Information:

/

Certification Date: 11/22/2021

Term: 96 Months

Expiration Date: 11/22/2029

This cyincer was contified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainly above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard If Pressure is less than 100 PSIG.

CO2 responses have been corrected for Oxygen IR Broadening effect. O2 responses have been corrected for CO2 interference. CO responses have been corrected for CO2 interference.

	пропел	ala: nt: ested Cono		bon dioxide on: 19 %							Reference St			ation / Ur	Cylinder #: Incertainty:	19.34	% ±0.03			
	hstrum Acalytic	ed Concen nent Usod ical Melho fultipoint C	d: od:		VIA-51(	0 S/N 200	D194WK				Traccable to:		Concentra	nple # / C ation / Ur	ation Date: Cylinder #: Incertainty: ation Date:	NTRM 19.349	// 1907( %/±0.0	701 / CC72597 D31%	'3	
		Analysis					Date	11/22/2	12:)7.	1.	· ſ	Secon	d Analys	is Data				Date	,	
	Z:	D		19.34	C:	18.98	Conc:	18.98		1	1	Z:	0	R:	0	C:	0	Conc:		
		19.34	Z:	0		18.99		18.99				R:	0	Z:	0	C:	0	Conc:		
	1	0		18.99		19.35	Conc:	18.99		1		Z:	0	C:	D	R:	0	Conc:	0	
	1 I	h: 41.			N	Acan Test	t Assay:	18.98	%	,		UOM:	%			M	ean Tes	st Assay:		%
Сол	L		Carl	bon monoxi	ide						Reference Si	itandard		Type /	Cylinder #:	GMIS	/ DT00	19705	<u> </u>	
<b></b>				on: 90 ppm											Incertainty:					
		iud Concer													ration Date:					
		mant Usac	•			10 S/N 570	6876015				Traceable to							/ 3-1-45 / FF28	1593	
		tical Mothe		NDIR	/	D							Concentra	ration / U	Incertainty:	: 98,40	) ppm / ±			
				ion: 10/22/20	.02.1								SR	.M Expir	ration Date:	, 01/28	/2020			
	~	1 Analysis					Date	11/22/	2/202	21	Г	Secor	d Analys	sis Data	4:			Date		
	7:	0	s Data; R:	98.1	C:	89.4	Conc:		, <u> </u>	·		Z:	0	R:	0	C:	0	Conc:	0	
	Z:   R.	0 98.1	R: Z:	98.1 0	C:	89.4 89.5	Conc:					2: R:	0	Z:	0	C:	0		0	
	12.	95.1 C	Z: C:		R:	98.2	Conc:				ļ	Z:	0 ´	2. C;	0	R:	ō	Conc:		
		u K: pom	•	00.0			st Assay:	89.4	PI	pm			-		-			est Assay:		ppm
<b>^</b> ~	h		011								Reference S			Tvoe /	Cylinder #:	GMI	5 / ND2'	9287		
Con	mpurrer 			ygen							Kelerando -				Uncertainty:					
				ion: 21 %								-	2011001		ration Date:			12		
		ied Conce					S/N 7MB2021	10A411	ADU0	<b>^1</b>	Traceable to	n SR	M#/Sa					/71-E-19/FF	F22334	1
		mont Use /tica: Meth		Parama			IN / WIGHT	110 100	00.						Uncertainty:					
				lion: 11/12/2	-	,									iration Date:					
		Analysis					Date	11/22	2/20;	21	· 1	Secor	nd Analy	sis Dat	a:			Date		
		C	R:		C:	20/98	Conc:	20.98	в		ļ	Z:	0	R:	0	C:	0	Cons:	0	
		с 20 9	R: Z;		C:		Conc:			1	ļ	R:	ō	Z:	0	C:	0	Conc:	0	
		20.9	Z; C:	-	R:	-11	Conc:					Z;	0	C:	0	R	0	Conc:	0	
	UCN			20.0-		V	st Assay:	20.98		6	1	UOM:	-			N	Aean Te	est Assay:		%
	Ľ.	<u> </u>			/	1					I				Ú	loo.	nM	Na		
A	alyza	٠ŧγ	J1	ose Vasque	<u> </u>						- Certific	ad By		Nels	son Ma					
Aur																				

Information contenent has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical method service employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is a different within the limits of the output the information is accurate within the limits of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is a different within the limits of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising out of the use of the information contained horein exceed the fee distabilished for providing such information.



DocNumber: 270196



Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 **PGVP ID: F22019** 

#### CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS Fill Date: 09/26/2019 Certificate Issuance Date: 10/01/2019 Customer & Order Information Praxair Order Number: 86601158 Lot Number: 70086927001 BEST ENVIRONMENTAL SERVICES Cylinder Style & Outlet: AS CGA 590 Part Number: NI CD6.2505E-AS 339 STEALTH CT LIVERMORE CA 94551 Cylinder Pressure and Volume: 2000 psig 140 ft3 Customer PO Number: 9017 ProSpec EZ Cert **Certified Concentration** NIST Traceable Expiration Date: 10/01/2027 Expanded Uncertainty Cylinder Number: CC50881 ± 0.3 % 6.23 % Carbon dioxide 11.59 % Oxygen ± 0.2 % Nitrogen Balance **Certification Information:** Certification Date: 10/01/2019 Term: 96 Months Expiration Date: 10/01/2027 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. CO2 responses have been corrected for Oxygen IR Broadening effect. O2 responses have been corrected for CO2 interference. (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data: Carbon dioxide Type / Cylinder #: GMIS / CC243646 1. Component: Reference Standard: Concentration / Uncertainty: 6.91 % ±0.208% Requested Concentration: 6.25 % Certified Concentration: 6.23 % Expiration Date: 06/07/2026 SRM # / Sample # / Cylinder #: SRM 1674b / 7-H-07 / FF10631 Horiba VIA-510 S/N 20C194WK Traceable to: Instrument Used: SRM Concentration / Uncertainty: 6.944% / ±0.013% Analytical Method: NDIR Last Multipoint Calibration: 09/18/2019 SRM Expiration Date: 06/17/2019 First Analysis Data: Date 10/01/2019 Second Analysis Data: Date 6,23 0 Z: 0 R: 6,91 C: 6.23 Conc: Z: 0 R: 0 C: 0 Conc: 0 C: 6.23 6.23 D C: Ō 0 R: 6.91 Z: Conc: R: 0 Z: Conc: Z: 0 C: 6.23 R: 6,91 Conc: 6,23 Z: 0 C: 0 R: 0 Conc: 0 Mean Test Assay: UOM: % Mean Test Assav: 6.23 % UOM: % % Type / Cylinder #: GMIS / SGAL2761 2. Component: Oxygen Reference Standard: Concentration / Uncertainty: 14.98 % ±0.119% Requested Concentration: 11.5 % Expiration Date: 07/19/2026 Certified Concentration: 11.59 % Traceable to: SRM # / Sample # / Cylinder #: 2659a / 71-E-19 / FF22331 OXYMAT 5E Instrument Used: SRM Concentration / Uncertainty: 20.863% / ±0.021% Paramagnetic Analytical Method: SRM Expiration Date: 08/23/2021 Last Multipoint Calibration: 09/18/2019 Date 10/01/2019 Second Analysis Data: Date First Analysis Data: Z: 0 R: 14.98 C: 11.6 Conc: 11.59 Z: 0 R: 0 0 Conc: 0 15 0 C: 11.6 Conc: 11.59 Z: 0 0 Conc: 0 R: Z: R: 0 C: 11.58 R: 14.98 Conc: 11.57 0 Conc: 0 Z: 0 **Z**: 0 C: 0 11.59 Mean Test Assay: % UOM: % UOM: % ean Test Assav: % Certified By Jose Vasque Analyzed By Jenna Leckm

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analyti methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the of the information contained herein exceed the fee established for providing such information.



## APPENDIX E PROCESS DATA

#### City of Berkely Flare Process Data

1550

	Flow	F	lare Temp	•		
	Min	Max	Min	Max		
926	65.20	65.67	1303	1311	Run 1	
927	65.30	65.83	1486	1490		
928	65.33	65.83	1564	1565		
929	65.20	65.77	1591	1591		
930	65.27	65.93	1576	1577		
931	65.33	65.90	1567	1567		
932	65.23	65.80	1571	1571		
933	65.37	65.93	1578	1578		
934	65.27	65.80	1565	1566		
935	65.23	65.77	1554	1554		
936	65.17	65.87	1554	1554		
937	65.20	65.83	1556	1557		
938	65.30	65.93	1555	1555		
939	65.37	65.87	1557	1557		
940	65.37	65.80	1561	1561		
941	65.37	65.77	1565	1565		
942	65.27	65.70	1562	1563		
943	65.33	65.77	1558	1558		
944	65.47	65.93	1553	1553		
945	65.03	65.77	1553	1553		
946	65.33	66.07	1552	1552		
947	65.30	65.83	1553	1553		
948	65.43	65.87	1556	1556		
949	65.30	65.87	1561	1561		
950	65.17	65.80	1560	1560		
951	65.30	65.80	1554	1554		
952	65.27	65.97	1553	1554		
953	65.10	65.67	1553	1553		
954	65.30	65.83	1553	1553		
955	65.30	65.93	1550	1550		
956	65.30	65.83	1553	1553		
957	65.40	65.93	1553	1553		
958	65.23	65.80	1	. 1553		
959	65.23	65.87	1552	1552		
1000	65.33	65.80	1556	1556	Stop	
1001	65.37	65.83	1559	1560	Avg	65.56
1002	65.50	66.10	1557	1557		
1003	65.37	65.80	1556	1556		
1004	65.43	65.83	1556	1556		
1005	65.37	65.80	1558	1558		
1006	65.30	65.90	1555	1556		
1007	65.43	65.87	1555	1555		
1008	65.23	65.97	1555	1555		
1009	65.40	65.87	1554	1554		
1010	65.43	65.90	1553	1553		
1011	65.27	65.93	1547	1547		
1012	65.40	65.80	1554	1554		
1013	65.30	65.77	1554	1555		
1014	65.20	65.93	1553	1553	Run 2	
1015	65.20	65.73	1550	1551		
1016	65.33	65.87	1548	1548		
1017	65.17	65.77	1558	1558		
1018	65.43	66.10	1564	1564		
1019	65.40	65.90	1560	1561		
1020	65.30	65.87	1557	1557		
1021	65.37	66.00	1558	1558		

#### City of Berkely Flare Process Data

65.59

1555

	Flow	F	lare Temp	1	
	Min	Max	Min	Max	
1022	65.50	66.10	1557	1558	
1023	65.43	65.87	1560	1560	
1024	65.37	65.97	1557	1557	
1025	65.67	65.90	1551	1551	
1026	65.43	65.93	1551	1551	
1027	65.17	65.87	1555	1555	
1028	65.40	65.80	1558	1558	
1029	65.43	65.83	1559	1559	
1030	65.23	65.87	1551	1551	
1031	65.33	65.77	1548	1548	
1032	65.37	66.03	1552	1553	
1033	65.37	65.83	1556	1557	
1034	65.23	65.90	1558	1558	
1035	65.30	65.77	1557	1557	
1036	65.17	65.77	1559	1560	
1037	65.23	65.77	1555	1555	
1038	65.13	65.60	1542	1543	
1039	65.43	65.83	1549	1549	
1040	65.40	65.83	1554	1554	
1041	65.30	66.03	1556	1557	
1042	65.33	65.80	1557	1557	
1043	65.17	65.70	1552	1553	
1044	65.43	65.90	1559	1559	
1045	65.37	65.73	1560	1560	
1046	65.17	65.73	1556	1556	Stop
1047	65.27	65.93	1554	1555	Avg
1048	65.17	65.73	1544	1544	
1049	65.27	65.87	1549	1549	
1050	65.43	65.87	1547	1548	
1051	65.27	65.87	1549	1549	
1052	65.13	65.73	1554	1554	
1053	65.33	65.93	1557	1557	
1054	65.30	65.87	1559	1559	
1055	65.27	65.83	1559	1559	
1056	65.27	65.70	1550	1550	
1057	65.37	65.90	1556	1556	
1058	65.37	65.77	1558	1558	
1059	65.33	65.93	1555	1556	
1100	65.37	65.80	1558	1558	
1101	65.30	65.83	1553	1553	Run 3
1102	65.30	65.70	1555	1555	
1103	65.30	65.70	1555	1555	
1104	65.33	65.97	1550	1550	
1105	65.20	65.70	1549	1550	
1106	65.17	65.87	1558	1559	
1107	65.17	65.77	1563	1564	
1108	65.37	66.03	1554	1554	
1109	65.17	65.77	1548	1548	
1110	65.27	65.90	1546	1547	
1111	65.43	65.87	1555	1555	
1112	65.23	65.93	1562	1562	
1113	65.27	65.67	1556	1556	
1114	65.47	65.97	1552	1552	
1115	65.40	65.93	1558	1559	
1116	65.37	65.80	1554	1555	
1117	65.50	65.93	1557	1557	

E-3

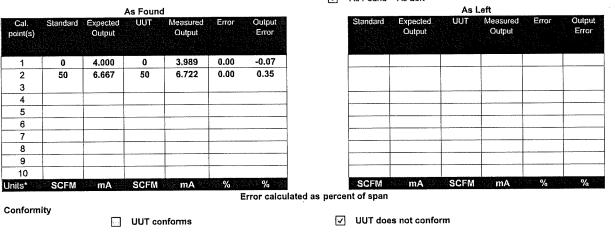
#### City of Berkely Flare Process Data

	Flow	F	lare Tem	p	
	Min	Max	Min	Max	
1118	65.23	65.83	1554	1555	
1119	65.17	65.77	1549	1550	
1120	65.43	65.77	1544	1545	
1121	65.23	65.60	1558	1559	
1122	65.53	65.93	1557	1558	
1123	65.43	66.03	1554	1554	
1124	65.17	65.77	1557	1557	
1125	65.27	65.60	1559	1560	
1126	65.27	65.83	1548	1549	
1127	65.27	65.63	1550	1550	
1128	65.33	65.83	1554	1554	
1129	65.20	65.87	1558	1558	
1130	65.27	65.87	1561	1562	
1131	65.40	65.83	1538	1539	
1132	65.40	65.97	1544	1545	
1133	65.43	65.90	1555	1556	
1134	65.30	65.83	1565	1565	Stop
					Avg

65.57 1554

### **Calibration Certificate**

# TELSTAR *


Telstar Instruments Inc 1717 Solano Way, Suite #34, Concord Ca Tel 925-671-2888 - Fax 925-671-9507

Tel 925-671-2888 - Fax 925-671-9507		Certificate Calibration date Next calibration due	CC-WO-202-01 5/16/2022 5/16/2023					
		Location of calibrati	on					
Company name	SCS Field Services	Company name	Company name SCS Field Services					
Address	1100 Spinnaker Way Berkley	Address	1100 Spinnaker Way, Berkley					
Contact	Mike Flanagan							
Instrument inform	nation	Received	In Tolerance					
Manufacturer	Kurz	Returned	In Tolerance					
Model	454FTB-12-HT							
Serial	FD35746A							
Tag		Calibrated range	0	to	300	SCFM		
Description	Flare flow	User Specified Tolera	User Specified Tolerance		3.00	%		
		Instrument Output	4	to	20	mA		
Test standards u	sed This calibration certificate documents the	traceability to national standards, whi	ch states the units of r	neasurem	nent accord	ding to the		

International System of Units (SI)

ID I	Description	Senai number	Centilicate	
CAL210	Fluke 725	1608092	185084	11/4/2022

Procedure Used

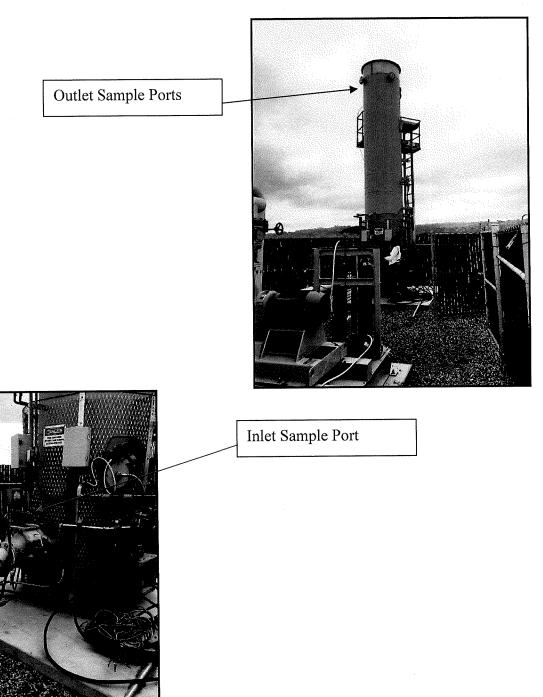


As Found = As Left

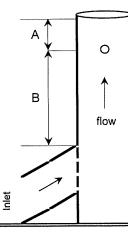
Remarks

☑ INSTRUMENT RETURNED TO SERVICE (EXPLAIN IN REMARKS IF NOT)

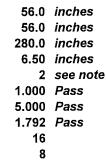
Verified zero. Removed, cleaned and inspected. Sensor should be returned to OEM for factory wind tunnel calibration. Verified output corresponds to flow rate.


This calibration certificate should not be published or reproduced other than in full Date 5/16/2022 Ben Marston Service Engineer Ben Marston Signature

## APPENDIX F STACK DIAGRAMS


### **BEST ENVIRONMENTAL**

# City of Berkeley Berkeley, CA

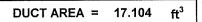

LFG Flare (A-4)

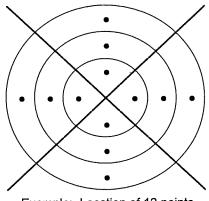


### City Of Berkeley Landfill, Flare TRAVERSE POINT LAYOUT (NON-PARTICULATE) **CIRCULAR STACKS OVER 24 INCHES**



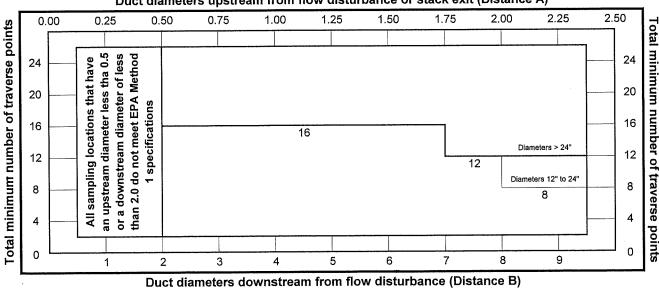
**Typical vertical** exhaust stack





Stack diameter:	5
Upstream diameter (A):	5
Downstream diameter (B):	28
Port length:	6
Number of ports being used:	
Equivalent upstream diameter (A):	1.0
Equivalent downstream diameter (B):	5.0
All points at least 1.0" from stack wall:	1.7
Total points:	

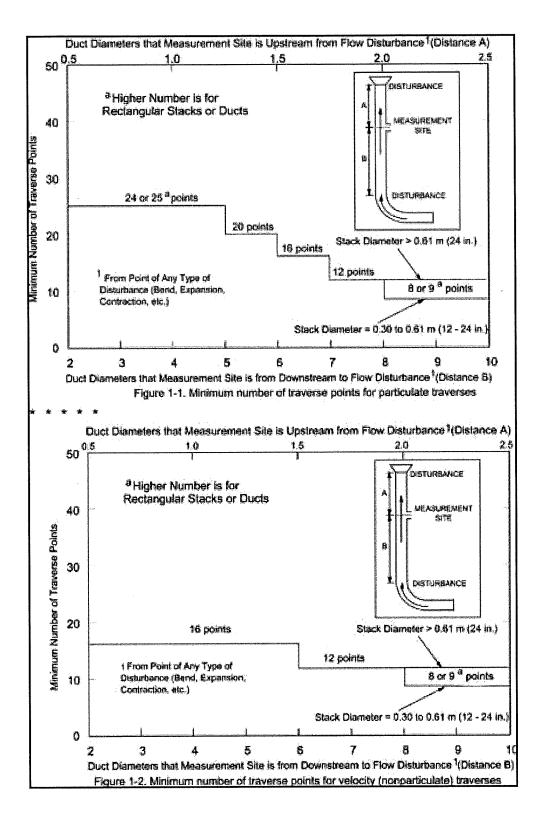
All

Points per port:


Point	% Diameter	Inside wall	Outside port
		Distance (in)	Distance (in)
1	3.2	1.8	8.3
2	10.5	5.9	12.4
3	19.4	10.9	17.4
4	32.3	18.1	24.6
5	67.7	37.9	44.4
6	80.6	45.1	51.6
7	89.5	50.1	56.6
8	96.8	54.2	60.7
N/A	#N/A	#N/A	#N/A
N/A	#N/A	#N/A	#N/A
N/A	#N/A	#N/A	#N/A
N/A	#N/A	#N/A	#N/A






Example: Location of 12 points

Note: No traverse point shall be within 1.0" of the stack walls (see Sections 11.3.1)



### Duct diameters upstream from flow disturbance or stack exit (Distance A)

# APPENDIX G SAMPLING SYSTEM DIAGRAMS



#### **EPA METHOD 1**

### **EPA METHOD 1**

TABLE 1-1 CROSS-SECTION LAYOUT FOR RECTANGULAR STACKS

Number of tranverse points layout	Matrix
9	3×3
12	4×3
16	4×4
20	5×4
25	5×5
30	6×5
36	6×6
42	7×6
49	7×7

#### TABLE 1-2-LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

[Percent of stack diameter from inside wall to traverse point]

Traverse point	Number of traverse points on a diameter											
number on a									1			
diameter	2	4	6	8	10	12	14	16	18	20	22	24
1	14.6	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3		75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4		93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5			85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6			95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7				89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.1
8				96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9					91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.0
10					97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.2
11						93.3	85.4	78.0	70.4	61.2	39.3	32.3
12						97.9	90.1	83.1	76.4	69.4	60.7	39.8
· 13		, i i i					94.3	87.5	81.2	75.0	68.5	60.2
14							98.2	91.5	85.4	79.6	73.8	67.7
15								95.1	89.1	83.5	78.2	72.8
16								98.4	92.5	87.1	82.0	77.0
17									95.6	90.3	85.4	80.6
18									98.6	93.3	88.4	83.9
19										96.1	91.3	86.8
20										98.7	94.0	89.5
21											96.5	92.1
22											98.9	94.5
23												96.8
24												98.9

### **EPA METHOD 1**

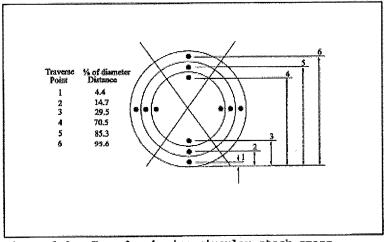



Figure 1-3. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

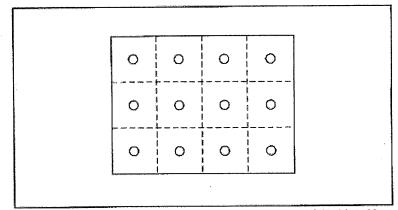
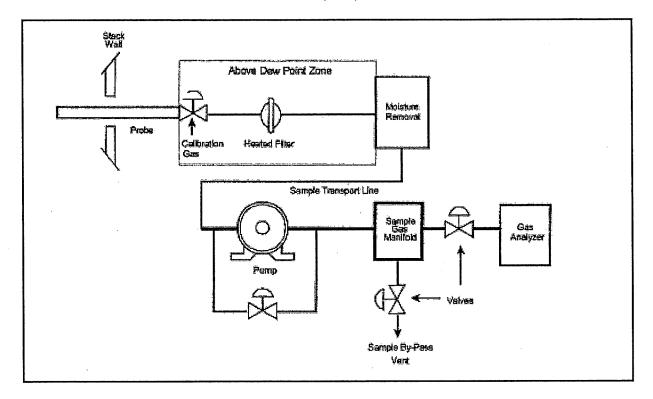
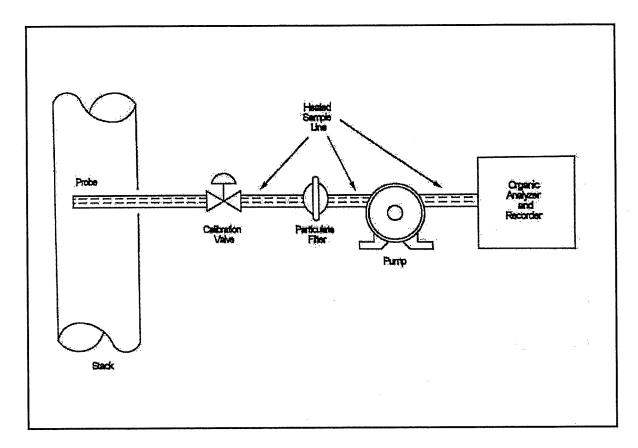




Figure 1-4. Example showing rectangular stack cross section divided into 12 equal areas, with traverse points at centroid of each area.




### EPA Methods 3A, 6C, 7E & 10

**CEM Sampling Train** 

BEST ENVIRONMENTAL

### EPA Method 25A



### **Organic Concentration Measurement System**

**G-6** 

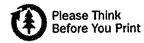
# APPENDIX H SOURCE TEST PLAN

### **Bobby Asfour**

From:	Gloria Espena <gespena@baaqmd.gov></gespena@baaqmd.gov>
Sent:	Thursday, June 30, 2022 11:14 AM
To:	Bobby Asfour; Marco Hernandez
Cc:	Harquail, Stephen
Subject:	NST-7518: NST Request-City of Berkeley Marina Landfill
Attachments:	Contractor ST Supplemental Form.docx
Follow Up Flag:	Follow up
Flag Status:	Flagged

**NST-7518** has been assigned the pending 7/15/2022 work referenced below.

Also, we've introduced a new, supplemental form to be included when reports are submitted. It's just a sheet intended to help us with processing reports and prioritizing report review. The intention of the email is not to request additional testing. Please complete and submit the attached **"Contractor ST Supplemental Form"** with the final test report.


NST number(s) that are assigned for each source test notifications are for inner-office tracking purposes only, not an approval of the test plan. (For source testing methodologies please review permit conditions, BAAQMD Regulations and CFR, accordingly). Future notifications and report submittals should be made to **GEspena@baaqmd.gov** and **cc:** <u>MHernandez@baaqmd.gov</u>.

If you have other questions, please contact Marco Hernandez at mhernandez@baaqmd.gov.

Thank you,

### Gloria M. Espena

Meteorology & Measurements Source Test Section & Performance Evaluation Group The Bay Area Air Quality Management District 375 Beale Street, Ste. 600 | San Francisco, CA 94105 Ofc (415) 749-4725 | Fax (510) 758-3087 gespena@baaqmd.gov | www.baaqmd.gov



From: Bobby Asfour <bobby@best-enviro.com>
Sent: Wednesday, June 29, 2022 2:55 PM
To: Gloria Espena <GEspena@baaqmd.gov>; Marco Hernandez <MHernandez@baaqmd.gov>
Cc: Harquail, Stephen <sharquail@scsengineers.com>
Subject: NST Request-City of Berkeley Marina Landfill

CAUTION: This email originated from outside of the BAAQMD network. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Gloria,

Please accept this email as notification of source test for the above referenced facility.

Site Number: 3590 Plant Name: City of Berkeley-Marina Landfill, Cesar Chavez Park, 11 Spinnaker Way, Berkeley, CA 94710 Plant Contact: Stephen Harquail, SCS Field Services Plant Contact Phone: (503) 867-2369, <u>sharquail@scsengineers.com</u> Testing Company: Best Environmental Testing Company Contact: Bobby Asfour Testing Company Contact Phone: 925-455-9474 x 103, <u>bobby@best-enviro.com</u> Purpose of Testing: Condition #1826 Annual Compliance Source: A-4 Description: LFG Flare

Test Parameters & Methods: Flare: Condition 1826 Outlet: NOx, CO, O2, CH4, NMOC, Flow Inlet: Gas BTU, N2, O2, CO2, Total Reduced Sulfur, LFG speciation section 16/Flow Rate NMOC & CH4 DRE, Combustion zone Temperature, LFG Flow Methods to be Used: Triplicate 30-minute runs for all samples/parameters:

### Outlet: EPA 3A, 7E, 10, 18 , 19 & 25A

- stratification traverses
- Onsite NOx converter check

#### Inlet: ASTM D-1945/3588 & 6228, EPA Methods 18, 25C & TO-15

- Triplicate samples will be collected concurrently with outlet sampling.
- Appropriate sampling media containers will be used. (Multiple samples sample will be collected into various sampling media containers during each run to meet analytical/method/turnaround requirements)
- AAC lab will perform TO-15 and EPA Method 25C, BE will perform all other sample analysis.

Reporting units:

- Heat input. SCFM, Lbs/MMBtu (include fuel meter calibrations)
- Avg. combustion zone temperature (recorded data or strip chart will be included in final report)
- Pollutant mass emissions; ppm, lbs/hr. & lbs./MMBtu.
- Methane destruction efficiency by weight.

Test Dates: July 15, 2022

# APPENDIX I PERMIT TO OPERATE OR AUTHORITY TO CONSTRUCT

**I-1** 



BAY AREA AIR QUALITY MANAGEMENT DISTRICT

City of Berkeley/Engr Div/Public Works 1947 Center St, 4th fl Berkeley, CA 94704

Attention: Lorin Jensen, P E

ALAMEDA COUNTY Pauline Russo Cutter Scott Haggerty Rebecca Kaplan Nate Miley

CONTRA COSTA COUNTY John Giola Dáyid E. Hudson (Cháir) Karan Mitchoíf Mark Ross

> MARIN COUNTY Katle Rice (Vice Chair)

NAPA COUNTY Brad Wagenknecht

SAN FRANCISCO COUNTY Hillary Ronen Jeff Sheehy

SAN MATEO COUNTY David J. Canepa Carole Groom Doug Kim

SAN'İA CLARA COUNTY Margaret Abe-Koga Cindy Chavez Liz Kniss Rod G. Sinks (Saoretary)

> SOLANO COUNTY Pete Sanchez James Spering

SONOMA COUNTY Teresa Barrell Shirlee Zane

Jack P. Broadbent EXECUTIVE OFFICER/APCO



Application No.: 26799 Plant No. 3590 Equipment Location: Cesar Chavez Prk Barkeley, CA 94704

Dear Applicant:

SUBJECT:

PERMIT TO OPERATE ABATEMENT EQUIPMENT

This letter is to advise you that your Permit to Operate the following is approved:

A-4 Landfill Gas Flare Flare

Operation of this equipment is subject to condition no. 1826

We have made the necessary changes to our records so that your annual permit renewal billing will reflect the presence of this equipment. You are advised that all applicable existing permit conditions which apply to source(s) abated by this abatement device are still in effect and enforceable.

Please include you application number with any correspondence with the District. The District's regulations may be viewed online at <u>www.baaqmd.gov</u> If you have any questions on this matter, please call Catherine S Fortney, Senfor Air Quality Engineer at (415) 749-4671.

ł Very truly yours, Air Quality Engineering Manager Acting Director of Engineering

March 1, 2018



Plant Name: City of Berkeley/Engr Div/Public WorksA-4Landfill Gas Flare

Condition No. 1826 Plant No. 3590

Application No. 26799

For: S-1 Landfill with Gas Collection System and A-3/A-4 Landfill Gas Flare

 All collected landfill gas from the S-1 Landfill with Gas Collection System shall be abated by the properly maintained and properly operated A-3 or A-4 Landfill Gas Flare. Raw or untreated landfill gas shall not be vented to the atmosphere, except for unavoidable landfill gas emissions that occur during collection system installation, maintenance, or repair (which is performed in compliance with Regulation 8, Rule 34, Sections 113; 117, and/or, 118) and inadvertent component or surface leaks that do not exceed the limits specified in 8-34-301.2 or 8-34-303.

Until the completion of the installation and start-up of A-4 Landfill Gas Flare, all collected landfill gas from the S-1 Landfill with Gas Collection System shall be continue to be abated by A-3 Landfill Gas Flare.

(Basis: Regulation 8-34-301)

- 2. The Heat input to the A-3 Landfill Gas Flare shall not exceed 63.9 million BTU per day and shall not exceed 23,330 million BTU per year. The Heat Input to the A-4 Landfill Gas Flare shall not exceed 57.6 million BTU per day and shall not exceed 21,024 million BTU per year. In order to demonstrate compliance with this part, the Permit Holder shall calculate and record, on a monthly basis, the maximum daily and total monthly heat input to the flare based on: (a) the landfill gas flow rate recorded pursuant to Regulation 8-34-508 and 8-34-501.10, (b) the average methane concentration in the landfill gas measured in most recent source test, and (c) a high heating value for methane of 1013 BTU per cubic foot at 60 degrees F. (Basis: Regulation 2-1-301)
- 3. Until the completion of the installation and start-up of A-4 Landfill Gas Flare, operation of A-3 Landfill Gas Flare shall be operated for a minimum of 312 hours in every month. Operation of the landfill gas collection system and flare may be discontinued if the methane concentration in the collected landfill gas is less than 20% methane by volume, or if the landfill gas flare flow rate falls below 250 cfm measured at the blower discharge. Landfill gas wells or collectors shall not be disconnected or removed and isolation valves shall not be shut completely off, without prior written authorization from the District, unless the Permit Holder complies with all applicable provisions of Regulation 8, Rule 34, Sections 113, 117, and 118.

CONTRACTOR OF STREET,
A LONG
<b>1000</b>

Plant Name: City of Berkeley/Engr Div/Public Works A-4 Landfill Gas Flare Condition No. 1826 Plant No. 3590

Application No. 26799

Upon issuance of the Permit to Operate for A-4 Landfill Gas Flare, the gas collection and control system shall be operated continuously in accordance with Regulation 8-34-301.1.

(Basis: Regulations 8-34-301,1, 8-34-404).

4. The Permit Holder has been issued a Permit to Operate for the landfill gas collection system components listed below. Well and collector locations, depths, and lengths are as described in detail in Permit Applications #1507, #1665, and #2351. The Permit Holder shall apply for and receive an Authority to Construct before modifying the landfill gas collection system described in this part. Increasing or decreasing the number of wells or collectors, changing the length of collectors, or significantly changing the locations of wells or collectors are all considered to be modifications that are subject to the Authority to Construct requirement. (Basis: Regulations 8-34-301.1, 8-34-303, and 8-34-304)

Type of Component	. Number of Components
Vertical Wells	42.
Horizontal Collectors	2
Trench Collectors	14

- 5. A temperature monitor with a readout display and continuous recorder (recording thermocouple) shall be installed and maintained on the flare. One or more thermocouples shall be placed in the primary combustion zone of the flare and shall accurately indicate combustion zone temperature at all times. Temperature charts shall be retained for at least five years and made available at all times for District inspection. The temperature monitor and recorder are subject to the requirements of Regulation 1-523. (Basis: Regulations 1-523, 8-34-501.3, 8-34-501.12, and 8-34-507)
- 6. The combustion zone temperature of the flare shall be maintained at a minimum of 1400 degrees F, averaged over any 3-hour period. If a source test demonstrates compliance with all applicable requirements at a different temperature, the APCO may revise this temperature limit, based on the following criteria. The minimum combustion zone temperature for A-4 shall be equal to the average combustion zone temperature determined during the most recent complying source test minus 50 degrees F, provided that the minimum combustion zone temperature is not less than 1400 degrees F. (Basis: Regulations 2, Rule 5, 8-34-301.3)

		ity of Berkeley/Engr Div/Public ¥ 11 Gas Flare	/orics	·
	Condition No. 1	1826 Plant No. 3590	Application No. 26799	
· ·	Flare sha	oxide (NOx) emissions fro 11 not exceed 0.06 lb/MM ( Cumulative Increase)		
	Flare sha	onoxide (CO) emissions from all not exceed 0.2 lb/MM 8 Cumulative Increase)		
. <u>.</u>	A-4 Landf methane a	ane organic compound (NMQC fill Gas Flare shall not e at 3% oxygen, dry. Cumulative Increase)		
	so as to by at lea	n of A-4 Landfill Gas Flar ensure that methane (CH4) ast 99% by weight. (Basis: ar 10, Section 95464(b)(2)	emissions are abated CCR, Title 17,	· .
ʻ.	gas shall sulfur di concentra collectec expressec	luced sulfur compounds in t be monitored as a surrog Loxide in the landfill gas ation of total reduced sul i landfill gas shall not e i as hydrogen sulfide. Regulation 9-1-302)	ate for monitoring flare's exhaust. The fur compounds in the	
	local and	andfill Gas Flare shall b remote alarm systems. Regulation 8-34-301)	e equipped with both	
	301, Regu the CARB holder sh test on l initial s following a. land b. conce nitro total land c. conce the I test d. stack e. conce and C f. conce gas, land g. the C	to demonstrate compliance ulation 8, Rule 34, Sectio MSW Methane Mitigation Re hall conduct an initial Di Landfill Gas Flare A-4. A source test shall determin g; Fill gas flow rate to the entrations (dry basis) of Ogen (N2), oxygen (O2), m L non-methane organic comp Fill gas; entrations (dry basis) of landfill gas from laborato ing for SO2 in flare stack < gas flow rate from the f entrations (dry basis) of 2 in the flare stack gas; entration (dry basis) of 52 in the flare stack gas; entration (dry basis) of S if laboratory analysis fo fill gas is not performed; CH4, and NMOC destruction he flare; and	ns 301.3 and 412, and gulation, the permit strict-approved source t a minimum, the e the flare (dry basis); carbon dioxide (CO2), ethane (CH4), and ounds (NMOC) in the sulfur compounds in ry analysis, if gas is not performed; lare (dry basis); NOX, CO, CH4, NMOC, 02 in the flare stack r sulfur compounds in	
	-		· · · ·	نسبو و

I-5

Plant Name: City of Ben A-4 Landfill Gas Fl	rkeley/Engr Div/Public Wo are	prks	
Condition No. 1826	Plant No. 3590	Application No. 26799	
	combustion temperatu	ire in the flare	

The initial source test shall be conducted no later than 120 days after start-up of Landfill Gas Flare A-4. The permit holder shall obtain approval from the District's Source Test Section for all source testing procedures at least 14 days in advance of the source test. The Source Test Section shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days of test completion, a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition. (Basis: Cumulative Increase, Regulations 2-5, 2-1-301, 8-34-301.3 and 8-34-412, CCR Title 17, Subchapter 10, Sections 95464(b)(2)(A) and 95464(b)(4))

- 14. In order to demonstrate compliance with the CARB Regulation to Reduce Methane Emissions from Municipal Solid Waste Landfills, the permit holder shall conduct an annual District-approved source test on Landfill Gas Flare A-4. At a minimum, the annual source test shall determine the following:
  - a. landfill gas flow rate to the flare (dry basis);
  - concentration (dry basis) of methane (CH4), and total non-methane organic compounds (NMOC) in the landfill gas; and
  - c. the CH4, and NMOC destruction efficiencies achieved by the flare.

The annual source test shall be conducted no later than 45 days after the anniversary date of the initial source test performed under Part 13 above. The permit holder shall obtain approval from the District's Source Test Section for all source testing procedures at least 14 days in advance of the source test. The Source Test Section shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days of test completion, a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition.

Upon completion of three consecutive annual source tests demonstrating compliance with Parts 7 - 11 above, the permit holder may petition the BAAQMD to conduct this source test once every three years rather than annually. If a subsequent source test fails to demonstrate Compliance with Parts 7 - 11 above, the source test frequency will return to annual.

(Basis: Cumulative Increase, CCR Title 17, Subchapter 10, Sections 95464(b)(2)(A) and 95464(b)(4))



Plant Name: City of Borkeley/Engr Div/Public Works A-4 Landfill Gas Flare Condition No. 1826 Plant No. 3590

Application No. 26799

15. The permit holder shall conduct a characterization of the landfill gas concurrent with the initial source test and annual source tests required by parts 13 and 14 above. The landfill gas sample shall be drawn from the main landfill gas header. The permit holder shall ensure that the landfill gas is analyzed for the following compounds:

1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,4-Dichlorobenzene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane Acrylonitrile Benzene Carbon Tetrachloride Chlorobenzene Chlorodifluoromethane Chloroethane Chloroform Dichlorodifluoromethane Dichloromethane Ethylene Dibromide Ethylene Dichloride Ethylbenzene Fluorotrichloromethane Hexane Isopropyl Alcohol Methyl Ethyl Ketone Methyl Isobutyl Ketone Perchloroethylene Toluene Trichloroethylene Vinyl Chloride Xylenes

All concentrations shall be reported on a dry basis. The District shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days of test completion a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition.

(Basis: Regulations 2-5, 8-34-412)

- 16. In order to demonstrate compliance with the above conditions, the owner/operator shall maintain the following records in a District-approved logbook:
  - a. Record the operating times and the landfill gas flow rate to the A-3/A-4 Landfill Gas Flare on a daily basis.
     Summarize these records on a monthly basis.
     Calculate and record the heat input to A-3/A-4 pursuant to part 2 above.
  - b. Maintain continuous records of the combustion zone temperature for the A-3/A-4 Landfill Gas Flare during all hours of operation.
  - c. Maintain records of all test dates and test results performed to maintain compliance with parts 7 - 11 above, or to maintain compliance with any applicable rule or regulation.

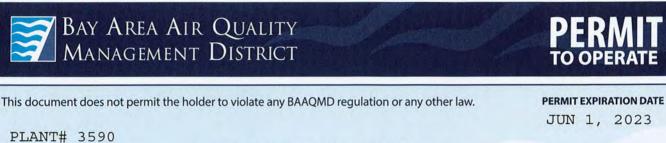
All records shall be maintained on site or shall be made readily available to District staff upon request for a period of at least two years from the date of entry. These recordkeeping requirements do not replace any

1000	I TRAM
and the second	∎ A
The second	副
Charles !	翩
	翻

Plant Name: City of Berkeley/Engr Div/Public WorksA-4Landfill Gas FlareCondition No. 1826Plant No. 3590Ap

Application No. 26799

recordkeeping requirements contained in any other applicable rule or regulation. (Basis; Cumulative Increase, Regulations 2-1-301, 2-6-501, 8-34-301, and 8-34-501)


End of Conditions

Permit to Operate

05/18/22	A3590	Page 1
Bay Area A Managemen	ir Quality nt District	PERMIT TO OPERATE
This document does not permit the	e holder to violate any BAAQMD regulation or any other law.	<b>PERMIT EXPIRATION DATE</b> JUN 1, 2023
PLANT# 3590		UUN 1, 2025
City of Berkeley 1947 Center St, Berkeley, CA 94		
	Location: Cesar Chavez Prk Berkeley, CA 947	04
S# DESCRIPTION		[Schedule] PAID
Landfill with Ga Abated by:	with gas collection system, Mult as Collection System (42 Vert.& 2 Hor A4 Flare at: P4 Stack	
A4 Industrial Fla Landfill Gas F	are - Other (not refinery), 240K B lare	TU/hr max 0 [exempt]
	ource, 1 Exempt Source	
*** See attach	ed Permit Conditions ***	
set forth in the attached condition	above are based on information supplied by permit holde as of the Permit to Operate. The limits of operation in mits is considered a violation of District regulations	the permit conditions are not
		967 A
375 Beal	e Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAQMD	0.GOV

05/18/22	A3590	Page 2
Bay Ar Manag	REA AIR QUALITY GEMENT DISTRICT	PERMIT TO OPERATE
	ermit the holder to violate any BAAQMD regulation or any other law.	<b>PERMIT EXPIRATION DATE</b> JUN 1, 2023
PLANT# 3590 ========	*** PERMIT CONDITIONS ***	
Source#	Subject to Condition Numbers	
1	1826	
The operating parameters de set forth in the attached c be exceeded Exceeding the	escribed above are based on information supplied by permit hold conditions of the Permit to Operate. The limits of operation ase limits is considered a violation of District regulations su	der and may differ from the limits in the permit conditions are not to ubject to enforcement action
	375 Beale Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAQN	ID.GOV

05/	1	8	1	2	2
-----	---	---	---	---	---



*** PERMIT CONDITIONS ***

#### COND# 1826 applies to S#'s 1, A4

For: S-1 Landfill with Gas Collection System and A-4 Landfill Gas Flare

1. All collected landfill gas from the S-1 Landfill with Gas Collection System shall be abated by the properly maintained and properly operated A-4 Landfill Gas Flare. Raw or untreated landfill gas shall not be vented to the atmosphere, except for unavoidable landfill gas emissions that occur during collection system installation, maintenance, or repair (which is performed in compliance with Regulation 8, Rule 34, Sections 113, 117, and/or, 118) and inadvertent component or surface leaks that do not exceed the limits specified in 8-34-301.2 or 8-34-303. (Basis: Regulation 8-34-301)

The Heat Input to the A-4 Landfill Gas Flare shall not 2. exceed 57.6 million BTU per day and shall not exceed 21,024 million BTU per year. In order to demonstrate compliance with this part, the Permit Holder shall calculate and record, on a monthly basis, the maximum daily and total monthly heat input to the flare based on: (a) the landfill gas flow rate recorded pursuant to Regulation 8-34-508 and 8-34-501.10, (b) the average methane concentration in the landfill gas measured in most recent source test, and (c) a high heating value for methane of 1013 BTU per cubic foot at 60 degrees F. (Basis: Regulation 2-1-301)

3. The gas collection and control system shall be operated continuously in accordance with Regulation 8-34-301.1.

(Basis: Regulations 8-34-301.1, 8-34-404).

The Permit Holder has been issued a Permit to Operate 4. for the landfill gas collection system components listed below. Well and collector locations, depths, and lengths are as described in detail in Permit Applications #1507, #1665, and #2351. The Permit Holder shall apply for and receive an Authority to Construct before modifying the landfill gas collection system described in this part. Increasing or decreasing the number of wells or

375 Beale Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAOMD.GOV

Page 3



BAY AREA AIR QUALITY Management District



Page

4

This document does not permit the holder to violate any BAAQMD regulation or any other law.

JUN 1, 2023

PLANT# 3590

# *** PERMIT CONDITIONS ***

collectors, changing the length of collectors, or significantly changing the locations of wells or collectors are all considered to be modifications that are subject to the Authority to Construct requirement. (Basis: Regulations 8-34-301.1, 8-34-303, and 8-34-304)

Type of Component	Number of Components
Vertical Wells	42
Horizontal Collectors	2
Trench Collectors	14

5. A temperature monitor with a readout display and continuous recorder (recording thermocouple) shall be installed and maintained on the flare. One or more thermocouples shall be placed in the primary combustion zone of the flare and shall accurately indicate combustion zone temperature at all times. Temperature charts shall be retained for at least five years and made available at all times for District inspection. The temperature monitor and recorder are subject to the requirements of Regulation 1-523.

(Basis: Regulations 1-523, 8-34-501.3, 8-34-501.12, and 8-34

507)

- 6. The combustion zone temperature of the flare shall be maintained at a minimum of 1400 degrees F, averaged over any 3-hour period. If a source test demonstrates compliance with all applicable requirements at a different temperature, the APCO may revise this temperature limit, based on the following criteria. The minimum combustion zone temperature for A-4 shall be equal to the average combustion zone temperature determined during the most recent complying source test minus 50 degrees F, provided that the minimum combustion zone temperature is not less than 1400 degrees F. (Basis: Regulations 2, Rule 5, 8-34-301.3)
- 7. Nitrogen oxide (NOx) emissions from the A-4 Landfill Gas Flare shall not exceed 0.06 lb/MM BTU. (Basis: Cumulative Increase)
- 8. Carbon monoxide (CO) emissions from the A-4 Landfill Gas Flare shall not exceed 0.2 lb/MM BTU. (Basis:

375 Beale Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAQMD.GOV

A3590

05/	1	8	1	2	2
001	-	~	/	-	-





Page

5

This document does not permit the holder to violate any BAAQMD regulation or any other law.

JUN 1, 2023

PLANT# 3590

*** PERMIT CONDITIONS ***

A3590

Cumulative Increase)

9. Non methane organic compound (NMOC) emissions from the A

4 Landfill Gas Flare shall not exceed 30 ppmv as methane at 3% oxygen, dry.

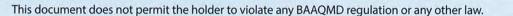
(Basis: Cumulative Increase)

- 10. Operation of A-4 Landfill Gas Flare shall be conducted so as to ensure that methane (CH4) emissions are abated by at least 99% by weight. (Basis: CCR, Title 17, Subchapter 10, Section 95464(b)(2)(A))
- 11. Total reduced sulfur compounds in the collected landfill gas shall be monitored as a surrogate for monitoring sulfur dioxide in the landfill gas flare's exhaust. The concentration of total reduced sulfur compounds in the collected landfill gas shall not exceed 300 ppmv (dry) expressed as hydrogen sulfide.
  (Paging: Pogulation 9 1 202)

(Basis: Regulation 9-1-302)

12. The A-4 Landfill Gas Flare shall be equipped with both local and remote alarm systems. (Basis: Regulation 8-34-301)

13. Deleted Application 31264


14. In order to demonstrate compliance with the CARB Regulation to Reduce Methane Emissions from Municipal Solid Waste Landfills, the permit holder shall conduct a District-approved source test on Landfill Gas Flare A-4 every three years within 45 days of the anniversary date of the initial source test. At a minimum, the annual source test shall determine the following:

a. landfill gas flow rate to the flare (dry basis);

b. concentration (dry basis) of methane (CH4), and total non-methane organic compounds (NMOC) in the landfill gas; and

c. the CH4, and NMOC destruction efficiencies achieved by the flare.

The permit holder shall obtain approval from the District's Source Test Section for all source testing procedures at least 14 days in advance of the source test. The Source Test Section shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days BAY AREA AIR QUALITY Management District



JUN 1, 2023

PLANT# 3590

# *** PERMIT CONDITIONS ***

A3590

of test completion, a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition.

If a source test fails to demonstrate Compliance with Parts 7 - 11 above, the source test frequency will return to annual.

(Basis: Cumulative Increase, CCR Title 17, Subchapter 10, Sections 95464(b)(2)(A) and 95464(b)(4))

15. The permit holder shall conduct a characterization of the landfill gas concurrent with the source tests required by part 14 above. The landfill gas sample shall be drawn from the main landfill gas header. The permit holder shall ensure that the landfill gas is analyzed for the following compounds:

1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,4-Dichlorobenzene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane Acrylonitrile Benzene Carbon Tetrachloride Chlorobenzene Chlorodifluoromethane Chloroethane Chloroform Dichlorodifluoromethane Dichloromethane Ethylene Dibromide Ethylene Dichloride Ethylbenzene Fluorotrichloromethane Hexane Isopropyl Alcohol Methyl Ethyl Ketone Methyl Isobutyl Ketone Perchloroethylene Toluene Trichloroethylene Vinyl Chloride Xylenes

All concentrations shall be reported on a dry basis. The District shall be notified of the scheduled test date at least 7 days in advance of the source test. Within 45 days of test completion a comprehensive report of the test results shall be submitted to the Manager of the District's Source Test Section for review and disposition. (Basis: Regulations 2-1-403, 2-5)

16. In order to demonstrate compliance with the above conditions, the owner/operator shall maintain the following records in a District-approved logbook:

Page

PERMIT TO OPERATE

6





7

Page

This document does not permit the holder to violate any BAAQMD regulation or any other law.

**PERMIT EXPIRATION DATE** JUN 1, 2023

PLANT# 3590

#### *** PERMIT CONDITIONS ***

A3590

a. Record the operating times and the landfill gas flow rate to the A-4 Landfill Gas Flare on a daily basis.Summarize these records on a monthly basis. Calculate and record the heat input to A-4 pursuant to part 2 above.b. Maintain continuous records of the combustion zone temperature for the A-4 Landfill Gas Flare during all hours of operation.

c. Maintain records of all test dates and test results performed to demonstrate compliance with parts 7 - 11 above, and with any applicable rule or regulation.d. Records required by the CARB Regulation "Methane Emissions from Municipal Solid Waste Landfills."

All records shall be maintained on site or shall be made readily available to District staff upon request for a period of at least five years from the date of entry. These recordkeeping requirements do not replace any recordkeeping requirements contained in any other applicable rule or regulation.

(Basis; Cumulative Increase, Regulations 2-1-301, 8-34-301, 8-34-501, CCR Title 17, Subchapter 10, Section 95470)

END OF CONDITIONS

375 Beale Street, Suite 600, San Francisco, CA 94105 - (415) 771.6000 - WWW.BAAQMD.GOV

	rea Air Quality ement District	**	SOURCE	EMISSIONS	; **			LANT # ay 18,	
S# 	Source Description				PART	nnual A ORG 	verage NOx 	lbs/da SO2 	ay CO 
1	Landfill with Gas Collec	ctic	on Syste	em (42 Ve	-	1.89	.03	-	-
	ΤΟΤΑΙS				.26	2.12	.09	.72	.1

** PLANT TOTALS FOR EACH EMITTED TOXIC POLLUTANT **

Pollutant Name	Emissions lbs/day
Toluene	.02
Hydrogen Sulfide (H2S)	.03

•