Sensor Performance, Data Quality, and Novel Applications

My Air Quality: Using Sensors to Know What's in Your Air

> Oakland, CA November 19, 2014

Andrea Polidori, Ph.D. QA Manager; South Coast AQMD

(apolidori@aqmd.gov)

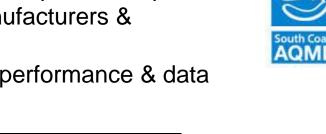
Background

- Technology trend: smaller, faster, cheaper
 - > Example: PCs have evolved into tablets, and cell-phones have become small PCs.

 Most traditional air monitoring instruments are following the same trend

Next?

 Safe to assume that the performance of "low-cost" sensors will soon match that of FRM/FEM instruments.....but when?


Next?

Background

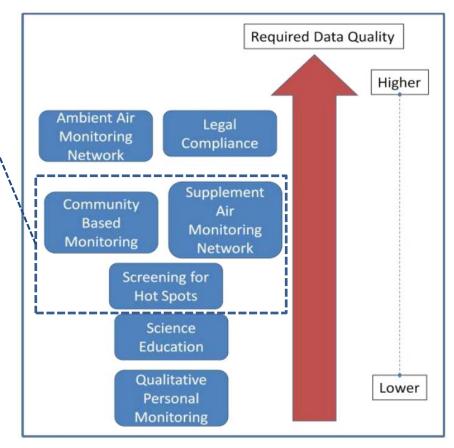
- Many deciding factors, including:
 - > Advancements in sensor technology
 - > Performance & cost of microprocessors
 - > Growing public interest
 - Large tech-company involvement

"Researchers turn Google Glass into health sensor" -wired (Sept. 2014)

- How can governmental agencies help?
 - ➤ Engage, educate, and empower the public
 - Work with sensor manufacturers & developers
 - Characterize sensors performance & data quality



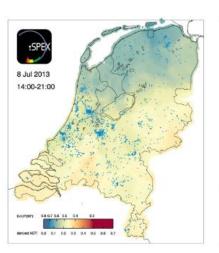
AQ-SPEC

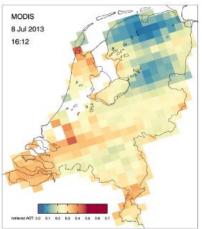

- Evaluation (not certification) program
- · Field and chamber testing
- Determine parameters affecting sensor performance and data quality:
 - > Detection range
 - > Linearity
 - > Detection limit
 - > Accuracy
 - > Precision
 - > Response time
 - > Intra-model variability
 - > Co-pollutant interference
 - > RH and T influences
 - Durability

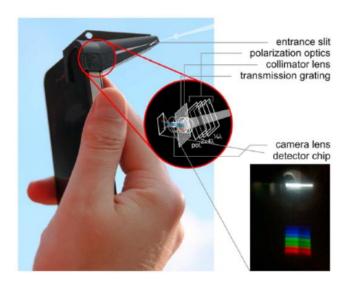
Categorize sensors based on performance

Several novel applications

- Characterize spatial variations
 - > Wide area coverage
- Improve network design
 - > Identify high concentration areas
- Permitting
 - > Monitor before and after construction
- Fence-line monitoring
 - > Large refineries and emission sources
- Community concerns
 - Local impact of freeways, airports, refineries, etc.
- Aerial measurements
 - Stack sampling, plume profiling, and much more



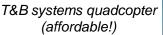

EPA's "DRAFT Roadmap for Next Generation Air Monitoring"


Novel Applications (example): Characterize Spatial Variations

• iSPEX

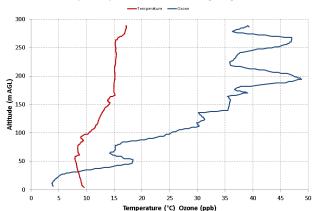
- > < \$4 add-on for smart-phone cameras to measure Aerosol Optical Thickness to estimate atmospheric aerosols!!!
- > Spectropolarimetric method
- > Daytime, cloud-free measurements only
- Project led by Frans Snik, Leiden University (Netherlands)

- Thousands of (free) iSPEX used to for three days in 2013
- Results comparable to groundbased, network, and satellite measurements


Novel Applications (example): Aerial Measurements

Unmanned Aerial Vehicles

- > Provide stable X-Y-Z platform for sample collection
- Sensors can be mounted to provide integrated and real-time data (e.g., GPS, meteorological, gaseous, and particulate)
- FAA Restrictions (commercial vs. recreational) and flight time limitations
- Many potential uses: stack sampling, plume profiling, fence-line monitoring, gradient studies, previously unreachable locations


NASA's Global Hawk UAV (not properly "low-cost")

(...don't call me DRONE!)

Quadcopter Temperature and Ozone Sounding Using 2B POM

Courtesy of

Conclusions

- More comprehensive field and laboratory testing needed to:
 - > Address sensor data quality issues
 - > Correctly interpret sensor data
 - > Appropriately select sensors for specific applications
 - > Promote a more responsible sensor use
 - > Improve performance of available sensors
 - > Design the next generation sensor technology
- Available sensors are not as accurate and reliable as FRM/FEM (yet), but they can be used for many useful applications
- Many short- and long-term challenges, including:
 - > Incorrect use of sensors and sensor data
 - Rapid proliferation
 - > Dealing with "Big data"