Phillips 66 Rodeo Renewable Energy Complex Rodeo, California BAAD Plant 16 # Flare Minimization Plan (FMP) Non-Confidential version Bay Area Air Quality Management District (BAAD), Regulation 12, Rule 12 Environmental Protection Agency (EPA), October 2025, Revision 24 # **Contents** | 1.0 Flar | are Minimization Plan | 1-3 | |----------|--|--------------------| | 1.1 | .1 Safety Statement | 1-3 | | 1.2 | .2 Executive Summary | 1-3 | | 1.3 | .3 Certification | 1-5 | | 1.4 | .4 Revisions to the Flare Management Plan | 1-5 | | 2.0 Flar | are System Information | 2-1 | | 2.1 | .1 Background Information for Flare Systems | 2-1 | | 2.2 | 1.2 Technical Data – Description of Flaring Systems (401.1) 2.2.1 Phillips 66, Rodeo Renewable Energy Complex Flare & Fuel Ganger Overview | as Recovery System | | | 2.2.2 Detailed process flow diagram, PFD (401.1.1) | | | | 2.2.3 Description of Monitoring and Control Equipment (401.1.2) | | | | 2.2.4 Flare Monitoring Instrumentation Description | | | | 2.2.5 Pressure Relief Devices (PRDs) to Flares | 2-19 | | 3.0 Red | eductions & Planned Reductions | 3-20 | | 3.1 | .1 Reductions Previously Realized (401.2) | | | 3.2 | 2.2 Planned Reductions (401.3) | 3-30 | | 4.0 Pre | evention Measures (401.4) | 4-1 | | 4.1 | .1 "Major" Maintenance Activities (401.4.1) | 4-1 | | | 4.1.1 Refinery Maintenance and Turnaround Activities | 4-1 | | | 4.1.2 Measures to Minimize Flaring During Preplanned Maintenance. | | | | 4.1.3 Turnaround and Maintenance Flare Minimization Planning Tool | | | | 4.1.4 Measures to Minimize Flaring During Unplanned Maintenance | | | 4.2 | .2 Gas Quality/Quantity Issues for Each Flare (401.4.2) | | | | 4.2.1 When Flaring is Likely to Occur | | | | 4.2.2 Vent Gas Recovery Systems | | | 4.3 | .3 Recurrent failure (401.4.3) | | | | 4.3.1 Reportable Flaring Events Attributable to the Same Process or I | | | | 4.3.2 Means to Prevent Recurrent Failure | 4-25 | | 5.0 Oth | her Information Requested by APCO to Assure Compliance (401.5) | 5-1 | | 5.1 | .1 New Equipment Installations (404.2) | 5-1 | | 6.0 Roc | oot Cause Analysis and Corrective Action Requirements for Flares | 6-1 | | | 1 BAAD Reportable Flaring Event Determination & Reporting of Cause | | # **Attachments** | Attachment A | Rodeo Renewable Energy Complex Simplified Flare System Overview | |--------------|---| | Attachment B | Rodeo Renewable Energy Complex Detailed Flare Gas System Description | | Attachment C | Rodeo Renewable Energy Complex Flare System Process Flow Diagram | | Attachment D | Rodeo Renewable Energy Complex Unit List | | Attachment E | Flare Minimization Process Flowchart | | Attachment F | Typical Flare Gas Recovery System | | Attachment G | Flaring Event Overview, Recurring Failure Review, and Categorization | | Attachment H | Storage, Treatment, & Recovery Schematic | | Attachment I | Pressure Relief Devices which can vent to the Flare | | Attachment J | Flare Construction | | Attachment K | Compressor Capacity & Monitoring Description BUSINESS CONFIDENTIAL portion | | Attachment L | Fuel Gas System Description BUSINESS CONFIDENTIAL portion | | Attachment M | Cost Effectiveness Calculation Background Material | | Attachment N | Executive Summary Graphs | | Attachment O | Document Revision Log | #### 1.0 Flare Minimization Plan Regulation 12, Rule 12, was adopted by the BAAD in July, 2005, with the objective of reducing emissions from flares at petroleum refineries. Regulation 12, Rule 12 was revised in 2021 to include any establishment that processes petroleum or alternative feedstock to produce gasoline, diesel fuel, aviation fuel, lubricating oils, asphalt or petrochemical feedstocks, or any other similar product. This flare minimization plan for the Phillips 66 Rodeo Renewable Energy Complex (RREC), located in Rodeo, CA is consistent with progress toward that goal. It defines a series of measures that will lead to minimization of flaring without compromising refinery operations and practices with regard to safety. The key tools utilized are careful planning to minimize flaring, measuring, and monitoring of flare events when they occur, coupled with evaluation of the cause of flaring events that do occur. Using this approach, an understanding of the events leading to the flaring event can then be incorporated into future planning and flare minimization efforts. The plan also examines the costs and benefits of potential equipment modifications to further increase flare gas recovery. #### 1.1 Safety Statement This Flare Minimization plan outlines the approach that Phillips 66, Rodeo Renewable Energy Complex has developed to manage and minimize flaring events, without compromising the critical safety function of the flare system. Flares are first and foremost devices to ensure the safety of refinery operations and personnel. **Nothing in the BAAD 12-12 rule or in this Flare Minimization Plan (FMP) should be construed to compromise refinery operations and practices with regards to safety.** #### 1.2 Executive Summary This report covers the time period of July 1, 2024 to June 30, 2025. Attachment N includes plots displaying daily average flare gas flow rates and daily average mass emissions of sulfur dioxide (SO2), methane, and non-methane hydrocarbons. There is an increase in flare volume during 2023 due to the flaring of PSA-purified hydrogen following multiple utility upsets. 2024 flare volumes were also elevated due to the shutdown of petroleum refining units for conversion to renewable feedstocks. The Rodeo Refinery installed and has utilized a Flare Gas Recovery Compressor since the mid-70's. Historic practices emphasized flare minimization. Some of the recent flaring reductions have occurred due to improved monitoring and tracking of flare volumes as well as attributing causes to all flaring as required by BAAD 12-11 and 12-12 and internal policies for incident investigation. Other efforts to minimize flare emissions have occurred through communication and improved awareness. Higher flare volumes in 2016 were due to significant turnaround activities taking place. Key pressure vessels in the flare gas recovery system were removed from service for required 10-year vessel metallurgical inspections in 2016. Although similar turnaround activities took place in 2012 and 2016, a significant reduction in flare volume, duration and SO₂ emissions were achieved in 2016 relative to 2012. Following the turnaround, a relief valve leaking to the flare was discovered. An engineered solution was developed in order to isolate and provide an alternative relief path. In the second half of 2010 the facility experienced a number of flaring events due to the unplanned shutdowns of the 3rd party Hydrogen supplier. Phillips 66 worked closely with the 3rd party Hydrogen supplier to improve reliability at their facility. Work began in 2010 and continued up until mid-2011 when the supplier made significant equipment reliability upgrades during a planned shutdown. In August 2009 three new, redundant liquid ring Flare Gas Recovery Compressors were installed and put in service. The purpose of the new compressors is to provide additional capacity on a consistent basis and to provide for backup compressor capacity. The new compressors are of a different design than the existing compressor and are designed to handle a wider range of composition and of flare gas. They are also less susceptible to liquid carryover impacts. Based on a review of small flaring events, the addition of the new Flare Gas Recovery Compressors has reduced the number and volume of brief peak exceedances that previously occurred. This trend was observed since 2009. More importantly, the new compressors were operated on a regular basis while the older compressor was shutdown for major planned maintenance activities. In the past this type of maintenance activity would have resulted in consecutive days of flaring. In these cases, the new compressors picked up the flare gas recovery load for a number of days and were effective in reducing flaring volumes. Another improvement which has occurred is due to improved planning prior to the occurrence of flare activity. Flaring typically occurs during turnarounds when either the gas quality or quantity is not recoverable by the Fuel Gas Recovery Compressor or System. Turnaround planning is conducted to review the periods when flaring may occur. Prior to the turnaround activity, a team discusses these periods in order to determine methods to minimize flaring. In addition, in 2012 a process of further addressing impacted plant systems (e.g. fuel gas, steam, flaring, etc.) was formalized. This high level overview helps to early identify systems which can be optimized prior to a turnaround and in some cases can further reduces flaring. In early 2011 the manner in which Unit 110 Hydrogen Plant shutdown and startups was changed. This resulted in a significant reduction in the period of flaring which occurs during each of these activities. During 2012 there were a number of periods of flaring associated with Unit 110. Work continued in 2012 and 2013 to further improve procedures to minimize flaring associated with Unit 110 startups and shutdowns. Additionally, although not apparent from the flare trends, there are a number of unit shutdowns that occur each year in which little or no flaring occurs. This is due to past implemented and current practices to reduce flaring. The facility has converted to renewable only feedstocks under BAAD Application No. 31157. Flaring is expected to decrease once operation has reached steady state. The conversion to renewable only feedstock will likely lead to less flaring because
the plant will process lower volatility materials, shutdown refinery process units that would periodically contribute to flaring (Unit 267, Unit 200), and lower its overall feed rate (67,000 barrels of renewable feedstock vs 120,000 barrels of petroleum products). The conversion to renewables did not add additional units that will depressure to the flare. #### 1.3 Certification I certify that, based on the information available to me, the flare minimization plan is accurate, true, and complete. Jared Wittry - Operations Manager # 1.4 Revisions to the Flare Management Plan Pursuant to BAAD 12-12-404 the Flare Minimization Plan is required to be updated, as appropriate, and submitted annually for review and approval by BAAD. The facility must revise and submit the FMP prior to the installation or modification of the equipment referenced in 401.1.1. # 2.0 Flare System Information #### 2.1 Background Information for Flare Systems Petroleum refineries process crude oil by separating it into a range of components, or fractions, and then rearranging those components to better match the yield of each fraction with market demand. Petroleum fractions include heavy oils and residual materials used to make asphalt or petroleum coke, mid-range materials such as diesel (heating oil), jet fuel and gasoline, and lighter products such as butane, propane, and fuel gases. In the past, Rodeo Renewable Energy Complex operated as a petroleum refinery but completed its transition to renewable fuels during 2024. Rodeo Renewable Energy Complex now processes renewable feedstocks into renewable diesel fuel, renewable components for blending with other transportation fuels, and renewable fuel gas. As a result of modifications, the Rodeo Refinery has not processed crude oil since February 12, 2024 and will not process crude oil in the future. The Rodeo Renewable Energy Complex is organized into groups of process units, with the general goal of maximizing the production of transportation fuels. Each unit takes in a set of feed streams and produces a set of product streams with the composition changed (or upgraded) as one step toward production of an optimal mix of refined products. Many of these processes operate at elevated temperatures and pressures, and a critical element of safe design is having the capability of releasing excess pressure via relieving devices to the flare header to manage excess materials in a controlled manner. These separation and rearrangement processes also produce and/or consume materials that are gases at atmospheric pressure. As a final step in processing, many units provide treatment to conform to environmental specifications such as reduced sulfur levels. The refinery is designed and operated so that there will be a balance between the rates of gas production and consumption. Under normal operating conditions, essentially all gases that are produced are routed to the refinery fuel gas system, allowing them to be used for combustion in refinery heaters and boilers. Typical refinery fuel gas systems are configured so that the fuel gas header pressure is maintained by making up natural gas to meet the net fuel requirement. This provides a simple way to keep the system in balance so long as gas needs exceed the volume of gaseous products produced. Additional operational flexibility is typically maintained by having the ability to add butane and having the capability to adjust the rate of fuel gas consumption to a limited extent at the various refinery users (e.g. heaters, boilers, cogeneration units). A header for collection of vapor streams is included as an essential element of nearly every refinery process unit. These are referred to as "flare headers", as the ultimate destination for any net excess of gas is a refinery flare. One of the primary functions of the flare header is safety. It provides the process unit with a controlled outlet for any excess vapor flow, making it an essential safety feature of every refinery. The flare header also has connections for equipment depressurization and purging related to maintenance turnaround, startup, and shutdown, as well as pressure relief devices to handle upsets, malfunctions, and emergency releases. Knockout drums are in place for separation of entrained liquid. This minimizes the possibility of liquid being carried forward to the flare or flare gas compressor. The vapor stream from the unit knockout drum is then routed to the refinery flare gas recovery system. The refinery flare system consists of a series of branch lines from various unit collection systems which join a main flare header. The main flare header is in turn connected to both a flare gas recovery system and to the flares. Normally all vapor flow to the flare header is recovered by the flare gas recovery compressor, which increases the pressure of the flare gas allowing it to be routed to a gas treater for removal of contaminants such as sulfur and then to the refinery fuel gas system. Gases that cannot be recovered or used by the flare gas recovery compressor, the treater(s), and/or the fuel gas system end users flows to a refinery flare so it can be safely disposed of by combustion. A flare seal drum is located at the base of each flare to serve several functions. A level of water is maintained in the seal drum to create a barrier which the gas must cross in order to get to the flare stack. The depth of liquid maintained in the seal determines the pressure that the gas must reach in the flare header before it can enter the flare. This creates a positive barrier between the header and the flare, ensuring that so long as the flare gas recovery system can keep pace with net gas production, no gas from the flare header will flow to the flare. It also guarantees a positive pressure at all points along the flare header, eliminating the possibility of air leakage into the system. Finally, it provides a positive seal to isolate the flare, which is an ignition source, from the flare gas header and the process units. The flare systems combine two flares with different water seal depths, effectively "staging" operation of the flares. Gases exit the flare via a flare tip which is designed to promote proper combustion over a range of gas flowrates. Steam is used to improve mixing between air and hydrocarbon vapors at the flare tip, so as to improve the efficiency of combustion and reduce smoking. A continuous flow of gas to each flare is required for two reasons. Natural gas pilot flames are kept burning at all times at the flare tip to ignite any gas flowing to the flare. Additionally, a small purge gas flow is required to prevent air from flowing back into the flare stack. The sources of normal or base level flow to the refinery flare gas collection system are varied, but in general result from many small sources such as leaking relief valves, instrument purges, and pressure control for refinery equipment items (e.g. overhead systems for distillation columns). Added to this base load are small spikes in flow from routine maintenance operations, such as clearing hydrocarbon from a pump or filter by displacing volatiles to the flare header with nitrogen or steam. Flaring often occurs during unit startups and shutdowns or when pieces of equipment associated with units are taken out of service. Equipment maintenance results in the need for removal of hydrocarbon from process equipment and associated piping before opening, for both safety and environmental reasons including compliance with BAAD Regulation 8 Rule 10. Typical decommissioning procedures include multiple steps of depressurization and purging with nitrogen or steam to the flare header. During these steps, the quality of the fuel gas is degraded and at times cannot be recovered. During startups, low quality gases may also be produced which are not desirable to be recovered. Additionally, when multiple units are shutdown, flaring can occur when gases are being produced at one unit and an interrelated unit which normally utilizes the gases, such as hydrogen, have not yet been started up. Although maintenance-related flows can be large, the design and sizing of refinery flare systems is without exception driven by the need for safe disposal of much larger quantities of gases during upsets and emergencies. A major emergency event, such as a total power failure, will require the safe disposal of a very large quantity of gas and hydrocarbon materials during a very short period of time in order to prevent a catastrophic increase in system pressure. The flow that the flare system could be called upon to handle during an event of this type is several orders of magnitude greater than the normal or baseline flowrate. #### 2.2 Technical Data – Description of Flaring Systems (401.1) This section contains the information required under 401.1 in regard to required Technical Data. # 2.2.1 Phillips 66, Rodeo Renewable Energy Complex Flare & Fuel Gas Recovery System Overview #### 2.2.1.1 General Flare Gas System Overview The Phillips 66 Rodeo Refinery has a flare gas recovery system in which liquids and gases are recovered the majority of the time, cleaned, and utilized as fuel gas in facility heaters and the co-generation plant. When gases cannot be recovered due to quality or quantity issues gases would be routed to the flare. There are two flares on site which function in a semi-cascading manner. The C-1 Main Flare (S-296) is the primary flare that is utilized. The MP-30 Flare (S-398) is used during significant events (i.e. major utilities failure) and during times in which the Main Flare is shut down for maintenance. The Refinery flare system consists of the following key components: - Flare gas compressor recovery system; - · Liquid recovery system; - Video monitoring system; - Flare gas flow measurement system; - · Automated flare gas sampling system, and - Smokeless flare installation. See Attachment A for simplified diagram of the flare gas recovery system.
Attachment B contains a detailed description of the refinery flare gas system. Attachments K and L contain information on the flares and compressors, respectively. #### 2.2.2 Detailed process flow diagram, PFD (401.1.1) See Attachment C for PFD of RREC Flare System components. The PFD contains the information required under 401.1.1. The PFD contains the pipelines, process unit blowdown origins, flare gas recovery system equipment, water seals, surge drums, knock-out pots, and other equipment associated with the flare system. The drawing contains the dimensions and capacities of the flare gas recovery system, compressor, water seals, surge drums, and knockout pots. The transition to Renewables significantly decreased the number of units depressuring to the flare during normal operation. Units that were idled and blinded during the transition to renewables have not been deconstructed at the time of this updated and have not been removed from the process flow diagram. #### 2.2.3 Description of Monitoring and Control Equipment (401.1.2) Locations of flowmeters, temperature and pressure indicators are shown on the PFDs referenced in the section above. Locations of sample points and monitoring equipment are also shown on the PFDs. Listed below are the monitors and controls associated with the flare gas recovery system as required by 401.1.2. #### 2.2.3.1 C-1 Main Flare (S-296) #### Flare System Flowmeters | | Main Flare (S-296) – Flare System Flowmeters | | | | | | |------------------|--|---|-------------------------|-----------------------|--|--| | Tag Number | Description | Location | Type
(e.g. sonic) | Range
(X – Y scfd) | | | | Flare Gas Flow: | | | | | | | | RFLRE:19Fl0520 | Main Flare 42" Line | 42" Line - Upstream of Flare Stack Water Seal (C-1) | Ultrasonic Flowmeter | 0 - 60,000 | | | | RFLRE:19Fl0520l. | 42" Line - low range | | | 0 - 2,000 | | | | RFLRE:19Fl0520h. | 42" Line - high range | | | 0 - 60,000 | | | | | | | | | | | | RFLRE:19FI0513A. | Main Flare 42" Line | 42" Line - Upstream of Flare Stack Water Seal (C-1) | Anemometer ¹ | 0 - 110,000 | | | | | | | | | | | | RFLRE:19Fl0586 | Main Flare 10" Line | 10" Line - From U200 & U267 | Ultrasonic Flowmeter | 0 - 20,000 | | | | RFLRE:19Fl0586l. | 10" Line - low range | | | 0 - 2,000 | | | | RFLRE:19Fl0586h. | 10" Line - high range | | | 0 - 20,000 | | | | | | | | | | | | | Main Flare (S-296) – Flare System Flowmeters | | | | | | |------------------|--|----------------------------------|-------------------------|-----------------------|--|--| | Tag Number | Description | Location | Type
(e.g. sonic) | Range
(X – Y scfd) | | | | RFLRE:19Fl0513. | Main Flare 10" Line | 10" Line - From U200 & U267 | Anemometer ¹ | 0 - 6000 | | | | | | | | | | | | Purge Gas Flow: | | | | | | | | RFLRE:19FIC0510. | Natural Gas Purge | Purge into Flare Stack (C-1) RSR | Orifice Plate | Low: 0 – 1,689 MSCFD | | | | | | | | High: 0 – 3,120 MSCFD | | | | RFLRE:19Fl0521. | Natural Gas Purge | Purge into Flare Stack (C-1) | Orifice Plate | 0 - 25 MSCFD | | | | | | | | | | | | Steam Gas Flow | | | | | | | | RFLRE:FI2673 | Steam Meter | Steam to Flare RSR | Ultrasonic | 0 – 100 Mlb/hr | | | ¹ Does not meet 12-11 accuracy requirements for all ranges. Utilized as a backup meter, when necessary. # **Continuous Recording Instruments** | Main Flare (S-296) – Continuous Recording Instruments | | | | | | |--|--|---|-------------------------------|--|--| | Tag Number | Description | Location | Instrument Type | | | | Pressure | | | | | | | RFLRE:19PIC0530. | 200:19F-1 PRESSURE | Refinery Relief Blowdown Drum (F-1) Pressure | Pressure Indicator | | | | RFLRE:19PI0520. | 42" Line - Upstream of Flare Stack Water Seal (C-1) (integrated with ultrasonic flowmeter) | 42" Line - Upstream of Flare Stack Water Seal (C-1) | Pressure Indicator | | | | | | | | | | | RFLRE:19PI0586. | Main Flare 10" Line (integrated with ultrasonic flowmeter) | 10" Line - From U200 & U267 | Pressure Indicator | | | | Level | | | | | | | RFLRE:19LIC0512. | 200:19F-3 Water Seal Level | 19F-3 Water Seal | Water Seal Level
Indicator | | | | | | | | | | | RFLRE:19LI0508. | 200:19C-1 Flare Stack Water Seal Level | 19C-1 Flare Stack | Water Seal Level
Indicator | | | | Temperature | | | | | | | RFLRE:19TI0520. | 200:Flare Blowdown Line Temperature | 42" Line - Upstream of Flare Stack Water Seal (C-1) | Temperature | | | | RFLRE:19TI0586. 200:10" Line Flare Blowdown Line Temperature | | 10" Line - From U200 & U267 | Temperature | | | | | | | | | | | Main Flare (S-296) – Continuous Recording Instruments | | | | | | |---|--|---|-----------------------------|--|--| | Tag Number | Description | Location | Instrument Type | | | | RFLRE:19TI0528A. | 200:19C-1 Flame Sensor | Flare Tip | Thermocouple | | | | RFLRE:19TI0528B. | 200:19C-1 Flame Sensor | Flare Tip | Thermocouple | | | | RFLRE:19TI0528C. | 200:19C-1 Flame Sensor | Flare Tip | Thermocouple | | | | RFLRE:19TI0528D. | 200:19C-1 Flame Sensor | Flare Tip | Thermocouple | | | | Analyzers | | | | | | | RFLRE:19Al0520. | 42" Line - Molecular Weight | 42" Line - Upstream of Flare Stack Water Seal (C-1) | MW Indicator | | | | RFLRE:19Al0586. | 10" Line – Molecular Weight | 10" Line - From U200 & U267 | MW Indicator | | | | | | | | | | | RFLRE:19Al0501. | 42" Line - Oxygen | 42" Line - Upstream of Flare Stack Water Seal (C-1) | Oxygen Content
Indicator | | | | RFLRE:A2670 | Net Heating Value Calorimeter, NHV RSR | 42" Line - Upstream of Flare Stack Water Seal (C-1) | Calorimeter | | | | RFLRE:A2671 | Hydrogen Composition RSR | 42" Line - Upstream of Flare Stack Water Seal (C-1) | H2 Analyzer | | | # 2.2.3.2 MP-30 Flare (S-398) # Flare System Flowmeters | MP-30 Flare (S-398) – Flare System Flowmeters | | | | | | |---|-----------------------|--|----------------------|-----------------------|--| | Tag Number | Description | Location | Type
(e.g. sonic) | Range
(X – Y scfm) | | | Flare Gas Flow: | | | | | | | RFLRE:19Fl0584. | MP30 48" Line | 48" Line - Downstream of Water Seal (F-604) | Ultrasonic Flowmeter | | | | RFLRE:19Fl0584L. | 48" Line - low range | | | 0 - 2,000 | | | RFLRE:19Fl0584H. | 48" Line - high range | | | 0 - 35,070 | | | RFLRE:19Fl0585. | 36" Line | 36" Line - from Refinery Blowdown Line (F-2) | Ultrasonic Flowmeter | | | | RFLRE:19FI0585L. | 36" Line – Iow range | | | 0-2,000 | | | RFLRE:19Fl0585H. | 36" Line – high range | | | 0 – 120,000 | | | RFLRE:19Fl0580. | | 12" Line - From U200 & U267 | Ultrasonic Flowmeter | | | | RFLRE:19Fl0580L. | | | | 0-2,000 | | | RFLRE:19Fl0580H. | | | | 0 – 510 MSCFH | | | Purge Gas Flow | | | | | | | RFLRE:19FIC0511. | Natural Gas Purge | | Orifice Plate | 0 - 930 MSCFD | | | | | | | | | | | MP-30 Flare (S-398) – Flare System Flowmeters | | | | | | |------------|---|-----------|----------------------|-----------------------|--|--| | Tag Number | Description | Location | Type
(e.g. sonic) | Range
(X – Y scfm) | | | | Steam Flow | | | | | | | | RFLRE:2676 | Steam to Flare RSR | Flare Tip | Ultrasonic | 0 – 100 Mlb/hr | | | ¹ Does not meet 12-11 accuracy requirements for all ranges. Utilized as a backup meter, when necessary. ### **Continuous Recording Instruments** | MP-30 Flare (S-398) – Continuous Recording Instruments | | | | | |--|---|---|--------------------|--| | Tag Number | Tag Number Description Location | | | | | Pressure | | | | | | R230:Pl6014. | 230F-600 Blowdown Drum | Upstream of MP30 Relief Blowdown Drum (F-600) | Pressure Indicator | | | | | | | | | RFLRE:19PI0584. | MP30 48" Line | 48" Line - Downstream of Water Seal (F-604) | Pressure Indicator | | | Level | | | | | | R230:LIC654A. | 230:F-604 MP30 Flare System
Water Seal Make Up H2O Level | F-604 Vessel | | | | R230:LIC654B. | 230F-604 MP30 Flare System
Water Seal H2O Drain Level | F-604 Vessel | | | | | | | | | | MP-30 Flare (S-398) – Continuous Recording Instruments | | | | | |--|--|--|----------------------------|--| | Tag Number | Description | Location | Instrument Type | | | RFLRE:19LI0509. | 200:(C-602) Flare Stack Water
Seal | MP30 Flare Stack (C-602) Water Seal | Water Seal Level Indicator | | | Temperature: | | | | | | RFLRE:19TI0584. | 200:MP30 Flare Vapor
Temperature | 48" Line - Downstream of Water Seal (F-604) | Temperature | | | RFLRE:19TI0529A. | 200:(C-602) NW Flare Pilot | Flare Tip | Thermocouple | | | RFLRE:19Tl0529B. | 200:(C-602) NE Flare Pilot | Flare Tip | Thermocouple | | | RFLRE:19TI0529C. | 200:(C-602) SE Flare Pilot | Flare Tip | Thermocouple | | | RFLRE:19TI0529D. | 200:(C-602) SW Flare Pilot | Flare Tip | Thermocouple | | | Analyzers | | | | | | RFLRE:19Al0584. | 200:MP30 Flare Vapor
Molecular Weight | 48" Line - Downstream of Water Seal (F-604) | Molecular Weight Indicator | | | RFLRE:19Al0585. | 200:MP30 Flare Vapor
Molecular Weight | 36" Line - from Refinery Blowdown Line (F-2) | Molecular Weight Indicator | | | RFLRE:19Al0580. | 200:MP30 Flare Vapor
Molecular Weight | 12" Line - From U200 & U267 | Molecular Weight Indicator | | | RFLRE:19AI0502. | 200:MP30 Flare Oxygen | 48" Line - Downstream
of Water Seal (F-604) | Oxygen Content Indicator | | | | MP-30 Flare (S-398) – Continuous Recording Instruments | | | | | |-------------|--|---|-----------------|--|--| | Tag Number | Description | Location | Instrument Type | | | | RFLRE:A2674 | Net Heating Value Calorimeter,
NHV RSR | 48" Line - Downstream of Water Seal (F-604) | Calorimeter | | | | RFLRE:A2675 | Hydrogen Composition RSR | 48" Line - Downstream of Water Seal (F-604) | H2 Analyzer | | | Unit 200 Flare Gas Recovery Compressor (G-503) See Attachment C and L for diagrams showing locations of meters and analyzers. #### **Flowmeters** | | Flare Gas Recovery Compressor (G-503) Flowmeters | | | | | | | |---------------|--|---|-------------------------|----------|--|--|--| | Tag Number | Description | Type
(e.g. sonic) | Range
(X – Y MMSCFD) | | | | | | Gas Flow: | | | | | | | | | R200:FI_506B. | Flare Gas Recovery Compressor (G-503) | Downstream of Saltwater Exchanger E-510 | Orifice Plate | 0 – 4.64 | | | | #### **Monitors and Instruments** Note: All setpoints and alarms are subject to change. These values may change as operational, or safety optimization opportunities are identified. This list contains the values at the time of publication. ## Flare Gas Recovery Compressor (G-503) Monitors and Instruments | Flare Gas Recovery Compressor (G-503) Monitors & Instruments | | | | | |--|--|-------------------------------------|-----|--| | Tag Number | Description | Location | Att | Setpoint or Alarms | | Pressure | | | | | | R200:PI0509. | 200:F-509 Separator Overhead | F-509 Separator Overhead | С | 0.5 psig Alarm 0.0 psig – Action automatic unloading of compressor cylinders | | R200:PI0513. | 200:G-503 1st Stage | Downstream of 1st Stage | С | None | | R200:PI0515. | 200:G-503 2nd Stage | Downstream of 2 nd Stage | С | None | | R200:PI0514. | 200:G-503 Frame Oil | Downstream of Frame Oil Filters | L | None | | R200 – PAL 575 | 200: G-503 Frame Oil (Local Indication) | Downstream of Frame Oil Filters | L | Shutdown Compressor - < 16 psig | | Temperature | | | | | | R200:Tl0509. | 200:F-509 Separator Overhead | F-509 Separator Overhead | С | Alarm – 150 °F | | R200:TI0511. | 200:G-503 Flare Gas Recovery Compressor
1st Stage | Downstream of 1 st Stage | С | None | | R200:TI0513. | 200:G-503 Flare Gas Recovery Compressor
2nd Stage | Downstream of 2 nd Stage | С | Alarm – 300 °F
Shutdown - 350 °F | # Flare Gas Recovery Compressor (G-503) Monitors & Instruments | Tag Number | Description | Location | Att | Setpoint or Alarms | |-----------------|---|--|-----|---| | R200:TI0510. | 200:G-503 Tempered Water | Upstream of Exchanger E-512 | L | None | | R200:Tl0512. | 200:G-503 Frame Oil | Downstream of Frame Oil Pump | L | None | | Analyzer | | | | | | R200:AI0504. | 200:G-503 Discharge Specific Gravity (SG) | Compressor Discharge | L | Alarm Low SG – 0.60
Alarm High SG – 1.12 | | R200 - AE503. | 200:G-503 Compressor Discharge Oxygen
Analyzer | Compressor Discharge | L | Alarm – 1.5% O ₂ | | Level Indicator | | | | | | R200:L 509 | 200:F-509 Level Indicator (Local Indicator) | F-509 Low Pressure Separator | L | Level is monitored by Operator. | | R200 – LAH 510 | 200:F-509 Level Shutdown (Local Indicator) | F-509 Low Pressure Separator | L | Shutdown Compressor - 30% Level | | R200 – LAH 537 | 200:F-503A Level Shutdown (Local Indicator) | F-503A G-503 First Stage Suction
Pulsation Dampener | L | Shutdown Compressor - 75% Level | | R200 – LAH 538 | 200:F-503C Level Shutdown (Local Indicator) | F-503C: G-503 Second Station
Suction Pulsation Dampener | L | Shutdown Compressor – 75% Level | | R200 – LAH 541 | 200:F-503E Level Shutdown (Local Indicator) | F-503E: G-503 Second Stage Suction
Knock Out Pot | L | Shutdown Compressor – 90% Level | | | | | | | | | I . | L | 1 | 1 | #### 2.2.3.3 Unit 200 Liquid Ring Flare Gas Recovery Compressors (G-540A/B/C) Note: All data in this section is preliminary and subject to change. These values and meter numbers may change as operational, or safety optimization opportunities are identified. The Compressor is undergoing a Process Hazard Analysis (PHA) at the time of the FMP update, which may result in additional changes. At this time all ranges and setpoints are being developed and thus are shown as pending. See Attachment C and L for diagrams showing locations of meters and analyzers. #### **Flowmeters** | Liquid Ring Flare Gas Recovery Compressor (G-540 A/B/C) Flowmeters | | | | | |--|--|--|--------------|---| | Tag Number | Description | Location | Туре | Range | | | | | (e.g. sonic) | (X – Y MMSCFD) | | Gas Flow: | | | | | | FI-1573 | Liquid Ring Flare Gas Recovery Compressor
(G-540A, B, & C) Flow | Downstream of F-540 Gas Separator Drum | Orifice | 0 - 6,000 MSCFD | | Service Liquid Flow: | | | | | | FI-1544 (A)
FI-1545 (B) | Compressor Service Liquid Flow Indication, | To Compressor | Orifice | 0-200 gpm <u>Alarms:</u> Low Low 100 (SD) | | FI-1546 (C) | Alarm, & Shutdown | | | Low 110 gpm
High 150 gpm | #### **Monitors and Instruments** Note: All data in this section is preliminary and subject to change. These values may change as operational, or safety optimization opportunities are identified. The Compressor is undergoing a Process Hazard Analysis (PHA) at the time of the FMP update, which may result in additional changes. #### Liquid Ring Flare Gas Recovery Compressor (G-540 A/B/C) Monitors and Instruments #### Liquid Ring Flare Gas Recovery Compressor (G-540 A/B/C) Monitors & Instruments Tag Number Description Setpoint or Alarms Location Att Pressure High Pressure Alarm and Shutdown Flare Gas to Compressor PI-1541 С Alarm High 115.3 psig. Alarm High High 125.3 psig (SD) Low & High Suction Pressure Alarm Flare Gas to Compressor PI-1543 С Alarm High 18.5 psia. Alarm Low 14.7 psia PI-1881 (A) Compressor Seal Compressor Dual Seal Low Pressure Alarm С Alarm Low 50 psig PI-1882 (B) PI-1883 (C) **Temperature** Suction Temperature Alarm and Shutdown Compressor Suction TI-1540 Alarm High 150 °F С Alarm High High 170 °F (SD) TI – 1547 (A) Compressor Temperature Discharge Gas Discharge of Compressor С Alarm High 150 °F Temperature Indication, Alarm, & Shutdown TI-1548 (B) Alarm High High 170 °F (SD) TI-1549 (C) #### Liquid Ring Flare Gas Recovery Compressor (G-540 A/B/C) Monitors & Instruments Tag Number Description Location Att Setpoint or Alarms Service Water Temperature Alarm Service Water to Compressor TAH-1545 С Alarm High 150 °F Analyzer VI-1541 (A) Compressor Vibration Alarms Connected to compressor С High Alarm 0.4 in/second High High Alarm 0.6 in/second (SD) VI-1542 (B) VI-1543 (C) Level Indicator LI-1881 (A) Compressor Dual Seal Low Level Alarm Compressor Seal С Alarm Low 35% LI-1882 (B) LI-1883 (C) Compressor Suction Liquid Level Alarm and Compressor Suction LAHH-1543 С Alarm Low 32% Shutdown Gas Separator Drum Liquid Level Alarm & LAHH-1540 F-540 Gas Separator Drum Alarm High 85% С Shutdown Alarm High High 99% (SD) Alarm Low 15.2% Alarm Low Low 4.3% (SD) LAH-1542 Gas Separator High Level Alarm F-540 Gas Separator Drum Blowdown С Alarm Low 10% Side #### 2.2.4 Flare Monitoring Instrumentation Description BAAD 12-11 identifies criteria for monitoring flare gas flow and supplemental gas. Flare data is collected and recorded in the site data historian. Data is maintained for a minimum of five years. #### 2.2.4.1 Vent Gas Flow, Steam Assist and Supplemental Rate Monitoring BAAD 12-11 requires each affected flare to be equipped with a flow meter that provides a representative measurement of the total flow rate discharged to each flare. The flow rate data collected is used to determine if flaring events occur that exceed the RCA threshold of 500,000 scf in a 24-hour period. RSR amendments to MACT CC (40 CFR Part 63), effective January 30, 2019, required subject sites to install, operate, calibrate, and maintain a monitoring system capable of continuously measuring, calculating, and recording the volumetric flow rate in the flare header or headers that feed the flare as well as any flare supplemental gas used. This volumetric flow data along with other measured parameters will be used to determine compliance with the net heating value of flare combustion zone gas (NHVcz) at each flare. RREC has the capability of meeting the RSR requirements. The following standards for the vent gas flow meters may be met by RREC (40 CFR 63, Appendix to Subpart CC of Part 63—Tables, Table 13): - Must be located in a position that is representative of the total gas flow rate; - Must have a flow sensor accuracy of +/-20% at velocities ranging from 0.1 to 1 foot per second and an accuracy of +/-5% for velocities greater than 1 foot per second. - Must be maintainable online, - Ensure that the readout of the monitored operating parameter is readout accessible onsite for operational control or inspection, - Must continually correct for pressure and temperature and record flow in standard conditions. - At least quarterly, perform a visual inspection of all components of the monitor for physical and operational integrity and all electrical connections for oxidation and galvanic corrosion if the flow monitor is not equipped with a redundant flow sensor. - Recalibrate the flow monitor in
accordance with the manufacturer's procedures and specifications which is annually. Each flare uses an ultrasonic flow meter to continuously measure the flow rate to the flares. Each flow meter is manufactured according to the specifications in the rule, and the refinery has ensured that each flow meter is installed in a representative location of flare gas flow rate, thereby complying with the selection and installation of the flow meter. The following table summarizes the specifications of each flow meter in use. | Flare Flow Meter Specifications | | | |---------------------------------|--|-------------------------------| | | FLRE:FI520 (Main) – Waste Gas | FLRE:FI580 (MP30) – Waste Gas | | | FLRE:FI586 (Main) - Waste Gas | | | Meter No. | FLRE: FI585 (MP30) - Vent Gas (Waste & NG) | | | | FLRE:FI584 (MP30) – Vent Gas (Waste & NG) | | | | | | | Make | General Electric | SICK | | Model | DigitalFlow™ GF868 | MCUP-SNB3CE00000NSN | | Туре | Ultrasonic Flare Gas Flow Meter | | | Range | 0.1 fps to 328 fps | | | Precision | Repeatability = ±1% | | | Accuracy | ±0.5% | | | Accuracy | +/-20% at velocities ranging from 0.1 to 1 fps and +/-5% for velocities greater than 1 fps | | The meter configuration is a dual-channel bias-90 configuration with temperature and pressure corrected readings. The pressure and temperature readings are used to automatically correct the raw flow meter reading to standard condition flow rates and are reported to the Distributed Control System (DCS). Since the flow meter uses a dual-channel configuration (i.e., two sensors), no quarterly visual inspections of the meter are required. Each flow meter is recalibrated on an annual frequency in accordance with the manufacturer's specifications. The flow meter will be inspected during each calibration verification. Since the flowmeter has no moving parts and is constructed of materials designed to withstand the corrosive environment of the flare vent gas, the manufacturer does not recommend any further routine maintenance. In some cases, the meter includes natural gas purge, sweep or supplemental flow to the flare, in other cases it does not. Attachment C contains Process Flow Diagrams (PFDs) for each flare and their respective monitoring configuration. In cases where natural gas purge, sweep or supplemental flow is downstream of the Flare Flow Meter the purge meter is utilized in conjunction with the Flare Flow Meter to determine the Vent Gas. Under 40 CFR 63.670, RSR requirements allow for mass flow monitors to be used for determining volumetric flow rate of assist steam. The refinery has the capability to use mass flow monitors to aid assist steam rate determination at each of its flares. | Steam Meter Specifications | | | |----------------------------|---|--| | Meter No. | FLRE:FI2673 (Main Flare) | | | | FLRE:Fl2676 (MP30 Flare) | | | Make | SICK | | | Model | FLOWSIC100 EX-S-RE | | | Туре | Ultrasonic Mass Flow Meter | | | Range | 0 – 100 Mlb/hr | | | Precision | -1 (shown in decimal) | | | Accuracy | +/- 2.5-5.0% of reading at range 0.3 m/s up to max value of measuring range | | The following standards are required pursuant to 40 CFR 63, Appendix to Subpart CC of Part 63—Tables, Table 13: - ±5 percent over the normal range measured for mass flow. - Record the results of each calibration check and inspection. - Locate the flow sensor(s) and other necessary equipment (such as straightening vanes) in a position that provides representative flow; reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances. The refinery has added the following natural gas meter for enhanced supplemental gas control and monitoring. | Supplemental Gas (Natural Gas) Monitoring | | | |---|--|--| | Meter No. | FLRE: FI510 (Main Flare) – two range MP30 flare NG is monitored with the Flare Flow meter | | | Make | Rosemount | | | Model | 3051 CD | | | Туре | Differential Pressure with Orifice Plate | | | Range | Low Range: 0 – 1,689 MSCFD
High Range: 0 – 3,120 MSCFD | | | Precision | -1 (shown in decimal) | | | Accuracy | +/- 5% | | The following standards are required pursuant to 40 CFR 63, Appendix to Subpart CC of Part 63—Tables, Table 13: - ±5 percent over the normal range of flow. - Record the results of each calibration check and inspection. - Locate the flow sensor(s) and other necessary equipment (such as straightening vanes) in a position that provides representative flow; reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances. The refinery meter installations can meet the standards listed in 40 CFR 63, Appendix to Subpart CC of Part 63—Tables, Table 13. In addition, preventative maintenance is tracked via the work order database utilized by Phillips 66. #### 2.2.4.2 Heating Value Determination As part of the Refinery Sector Rule (RSR) changes under 40 CFR 63 Subpart CC, there are new requirements for flares which include combustion efficiency standards effective beginning January 30, 2019. The standard requires that a determination of the Net Heating Value (NHV) of vent gas for each affected flare must be determined through prescribed methods via compositional monitoring of the vent gas. US EPA provided the options of a Calorimeter, Gas Chromatograph, and/or Grab Samples for compositional monitoring of the flare vent gas. The refinery historically chose to comply with the RSR NHV requirements at its flares by installing Calorimeters with a Hydrogen measurement module. The Hydrogen measurement module is in place to provide for Hydrogen combustion correction as allowed in 40 CFR 63.670(I)(3). The facility takes grab samples for flare activity as required by BAAD 12-11. Hydrocarbon species of the grab samples is determined in accordance with BAAD 12-11. The refinery reserves the ability to use the hydrocarbon species results to determine Net Heating Value, as needed, if the calorimeter is not functioning. Natural gas is utilized as supplemental gas which is metered independently in the Main Flare. Daily gas chromatograph data is available by the Natural Gas utility supplier. The refinery reserves the ability to use the daily calculated Net Heating Value from the gas chromatograph speciated results. The following table summarizes the specifications of the chosen calorimeter: | Calorimeter & Hydrogen Measurement | | | |------------------------------------|---|--| | Make | HOBRE | | | Model | WIM COMPAS | | | Туре | Calorimeter – NHV
Frontal Elution - H2 | | | Precision | -1 (decimal) | | | Accuracy | +/- 1% of full scale | | The following standards were required pursuant to 40 CFR 63, Appendix to Subpart CC of Part 63—Tables, Table 13: - ±2 percent of span for Net Heating Value. - +/-2 percent over the concentration measured or 0.1 volume percent, whichever is greater. - Calibration requirements should follow manufacturer's recommendations, at a minimum. - Specify calibration requirements in your site specific CPMS monitoring plan. - Temperature the sampling system to ensure proper year-round operation. The refinery meter installations are able to meet the standards required pursuant to 40 CFR 63, Appendix to Subpart CC of Part 63—Tables, Table 13. #### 2.2.5 Pressure Relief Devices (PRDs) to Flares All pressure relief valves/devices (PRV/PRD) are tracked in an electronic software tool. The software tool contains information including manufacturer, tag number, type, size, set pressure, orifice size and numerous other details. The tool is cross-referenced with the facility work order scheduling and tracking system known as SAP. The site also documents the design basis for all of the relief devices to the flares. The system contains the information from the software tool includes how the required relief rate is determined for each PRV. Attachment I of this document lists Pressure Relief Devices/Valves that are discharged to the flares. PRV's are removed, inspected, tested, and recertified according to the API 510 Pressure Vessel Inspection Code. API 510, in conjunction with several other API inspection codes, dictates how the interval is established. In general, the intervals are coincident with a unit turnaround, but not always, with API 510 accounting for the difference. The facility utilizes the Risk Based Inspection (RBI) review procedure for determining inspection frequencies based on RV service and history. In addition to API 510 the facility follows the following codes, regulations, and standards at the site in regard to PRV design, inspection, and maintenance. - ASME Boiler & Pressure Vessel Code, Section I for Power Boilers and Section VIII for Unfired Pressure Vessels. - ANSI/ASME B31.3 Chemical Plant and Petroleum Refinery Piping Code - API 510 Pressure Vessel Inspection Code - API 520 Sizing, Selection, and Installation of Pressure-Relieving Devices in Refineries, Parts I & II - API 521 Guide for Pressure-Relieving and Depressuring Systems - API RP 526 Flanged Steel Safety Relief Valves - API RP 576 Inspection of Pressure Relieving Devices In addition to the PRV processes identified above the facility is required to conduct PHAs to identify and mitigate potential risk to personnel and/or equipment. These PHAs look at measures in place to prevent events with unintended consequences. Based on potential risk identified, as these PHAs are conducted mitigation to prevent unintended consequences are put in place. Thus, this mitigation employed following the PHA has a beneficial effect of preventing some unit upsets that could trigger use of PRVs vented to the flare. In addition, the refinery conducts Root Cause Analysis (RCAs) for various
threshold triggering flare events and identifies required corrective actions to prevent recurrence. This also, when applicable, identifies measures to reduce the occurrence of PRVs venting to the flare. The facility also employs applicable redundant prevention measures, at affected pressure relief devices onsite that can discharge to flares. These preventive measures are documented under various facility documentation like Process Safety Information, Operating Limits, Refinery Policies etc. #### 3.0 Reductions & Planned Reductions #### 3.1 Reductions Previously Realized (401.2) #### Changes or Equipment in Place prior to 2003 which Prevent or Minimize Flaring Due to economics and community concern, the refinery has a long history of flare minimization practices. The Flare Gas Recovery Compressor (G-503) was installed in the early 70's. Up until 2000, the facility utilized a ground flare that was located near I-80. When the flare was utilized the flame was very visible from the highway. Prior to 2000, the Refinery Management had expectations for Operations to increase facility reliability to prevent upsets and to develop a means to conduct Startups & Shutdowns with minimal flaring. Those practices remain in place today. In 1999, the Unit 200 Wet Gas Compressor (G-501) seal was upgraded to a dry seal system. Previously, the seal would fail every 12 - 24 months which required a seal replacement. The seal replacement would take approximately 5 - 6 days and flaring would occur throughout this period. After the dry seals were installed, the on-line performance of the Compressor significantly improved. The compressor has not experienced a seal failure since the seal upgrade. The upgrade has resulted in a reduction of approximately 4 - 6 MMSCFD of gas flared for approximately 5 - 6 days every 12 - 24 months. #### **Changes Made to Reduce Flare Emissions** #### June 2012 to June 2025 In accordance with 401.2, listed below are reductions that have been made to reduce flaring over the past 5 years. Many of the items listed are Management System improvements. Although some of these improvements are difficult to quantify, they have had a significant impact on minimizing flaring. | Changes Made to Reduce Flare Emissions
(June 2012 – June 2024) | | | |---|--|--| | Year Installed
or
Implemented | Equipment Item Added, Process Changed or Procedure Implemented | | | Procedures: | | | | | Refinery Policy & Procedure (P&P) 6.05-05 "Flare Monitoring & Reporting" - | | | 1 st Qtr. 2013 | Procedure created to communicate flare sampling, monitoring, & root cause analysis requirements. The contents of the procedure include Responsibilities for personnel at the refinery in respect to flare compliance activities. Sets standards for accountability in regards to monitoring, reporting, and preventing recurrence. Criteria for agency release reporting (i.e., CA OES, CCC HSD, BAAD, NRC, etc.) for flare events. Summary of BAAD 12-11 flare monitoring requirements (e.g., video, flare flow, sampling), Summary of various regulatory reporting requirements. Criteria for incident investigation in respect to BAAD regulations and the Phillips 66 EPA Consent Decree. Means to track flare events with P66 Corporate incident tracking system. | | | | This procedure reduces flaring by demonstrating to employees that those who have defined roles must follow the steps outlined in the procedure and that these activities are important. It also mandates expectation for consistent evaluation of flaring events & development of corrective actions to prevent recurrence. | | | Changes Made to Reduce Flare Emissions (June 2012 – June 2024) | | | |--|---|--| | Year Installed
or
Implemented | Equipment Item Added, Process Changed or Procedure Implemented | | | 3 rd Qtr. 2013 | Refinery Policy & Procedure (P&P) 10.00-01 "Incident Investigation" & Incident Investigation Training - P&P 10.00-01 establishes responsibilities, event triggers, and typical means for conducting incident investigations. The contents of the procedure include: | | | | Definition of the types of incidents that can occur (i.e., minor, serious, major). | | | | Responsibilities for employees that discover an incident and who must complete tasks in respect to incident investigations. | | | | Establishes accountability. | | | | Description of whom and when personnel should be notified of incidents. | | | | Defines who should participate in an incident investigation. | | | | Description of the investigation process. | | | | How the findings of an incident investigation are reviewed. | | | | How findings of an incident investigation should be communicated to employees and Phillips 66 sister refineries. How corrective actions should be addressed. | | | | The existing procedure was updated to denote environmental related events requiring incident investigation. Flaring events are identified in the procedure. P&P 6-7 cross references P&P 5-1. This procedure reduces flaring by demonstrating to employees that those who have defined roles must follow the steps outlined in the procedure and that these activities are important. Without this procedure incidents which occur would not necessarily be investigated and addressed in a consistent fashion. The main value in flaring reduction is that this procedure requires that corrective actions be developed and addressed for incidents. | | | | To ensure good quality investigations are conducted the facility identified key personnel to receive incident investigation training. Training ensured that first reporting (basic who, what, when, where) captures critical initial information. The training also ensures that investigations receive the necessary level of investigation and get to defined root causes. Additional work is on-going to improve and maintain the quality of the investigations conducted. | | | Changes Made to Reduce Flare Emissions
(June 2012 – June 2024) | | | |---|---|--| | Year Installed or
Implemented | Equipment Item Added, Process Changed or Procedure Implemented | | | Procedures: | | | | 2 nd Qtr. 2013 | Emergency Operating Procedure EOP-1 "Guidelines for Standard Public Address System Announcements" - Enhanced Communication within the Facility when Flare Gas Recovery System Load Increases – For example, the facility Public Announcement system is currently used if an increase in the compressor load occurs. This requires process units to review their operations in order to find the cause of the increase and take actions to mitigate. This prevents some flaring events from occurring in that discretionary
gases, such as nitrogen purges and hydrogen, sent to the flare gas recovery system can be scheduled around peak loading periods to maximize gases recovered. Coordination of these activities is done through Operators at various units and Shift Supervisors working together to coordinate their activities in respect to use of the flare gas blowdown system. This minimizes flaring by consciously identify periods in which the blowdown system can be utilized without overloading the flare gas recovery compressor. This results in less periods of flaring due to brief peak loading of the compressor. In addition to this process, the Public Announcement system is utilized during planned and emergency events as specified in some of the Unit 200 procedures (ESOP & NSOP- <i>various</i> -200) to improve equipment use and switching. For example, if the Flare Gas Recovery Compressor (G-503) is put into Wet Gas or Odor Abatement service the public announcement system will be utilized to notify plant personnel of the change in operation. Listed below is a partial list of some of the key procedures where the public announcement system use is referenced: | | | Changes Made to Reduce Flare Emissions
(June 2012 – June 2024) | | | |---|---|--| | Year Installed or
Implemented | Equipment Item Added, Process Changed or Procedure Implemented | | | | Normal Operating Procedures Emergency Operating Procedures | | | | NSOP-001-200 Relief "U200 Table of Safe Operating ESOP-700-200 "Loss of G-501 Compressor" ESOP-701-200 "G-503 Compressor Failure" | | | | NSOP-306-200 "Light Ends Shutdown, Unit Running" | | | | NSOP-704-200 "G-501 Compressor Shutdown & Clean-up" | | | | NSOP-707-200 "G-503 Flare Compressor Planned Shutdown" | | | | NSOP-709-200 G-503 Flare Compressor Start-up | | | | NSOP-710-200 "Switching G-503 to Wet Gas Service" | | | | NSOP-711-200 "Switching G-503 from Wet Gas to
Flare Service" | | | | NSOP-716-200 "Switching G-503 to Odor Abatement
Service" | | | | NSOP 717-200 "G-503 Flare Compressor Circulation" | | | 3 rd Qtr. 2013 | Loss of Emergency Gas Flow to Air Liquide (REOP-25-OPS) - A new Refinery Emergency Operating Procedure (REOP) was developed in response to the June 10, 2013 flaring event after loss of RFG-A to Air Liquide. This procedure will help to reduce the flaring of sour flare gas by improved management of the RFG-A gas at Unit 240 Plant 3 and it should also reduce the overall flaring time for this type of event with improved management of the Flare Gas recovery compressors. | | | 2 nd Qtr. 2011 | Loss of Hydrogen (REOP-21-OPS) Hydrogen is a critical refinery utility. Loss of 3 rd party of site produced hydrogen can result in unit upsets. This procedure helps guide user, typically Shift Superintendent, to make the necessary operational moves in a sequenced fashion to reduce impacts to the refinery. These operational moves help reduce potential rate of flaring that can occur with hydrogen loss. | | | Changes Made to Reduce Flare Emissions (June 2012 – June 2024) | | | |--|--|--| | Year Installed or
Implemented | Equipment Item Added, Process Changed or Procedure Implemented | | | 1 st Quarter 2018 | Activity on the Refinery Flare/Blowdown Systems (REOP-12-OPS) A multi-step procedure was developed to help assist the facility Shift Superintendent coordinate between affected units when there is refinery flare activity and how to quickly respond in order to mitigate flaring in an efficient manner. The procedure incorporates the requirement to review the "Flare System Rundown List" when there is flare activity or heavier than expected load on the Flare Gas Recovery Compressor(s) but the cause is not immediately known. | | | On-Going | Environmental Operating Limits (EOL) Standard. The Rodeo Refinery implemented a new Phillips 66 Corporate Standard designed to enhance existing refinery Environmental monitoring practices. As part of the EOL standard, Environmental, Technical Services, and Operations personnel reviewed site permit, regulatory and other legal requirements and created a new document for Operators and Operation Supervisors to ensure Environmental compliance. When applicable, pre-alarms were developed to alert Operations in order to execute pre-defined corrective actions to avoid non-compliance and flaring incidents. The program is reviewed periodically and updated, as necessary. The EOL table includes flare limits and appropriate response to potential flaring activity above allowable limits. | | | On-Going | Reliability Operating Limits (ROL) Standard. Similar to the EOL Standard referenced above, Phillips 66 maintains a Corporate Standard designed to enhance existing reliability monitoring practices. ROLs are established for a suite of equipment in order to identify parameters that have potential to have an impact on the reliable operation of units and/or equipment. This includes equipment such as flare compressors, utility compressors, critical pumps, etc. Once the ROLs have been identified alarms have been developed to alert Operations when to initiate action based on defined criteria. This standard helps prevent unplanned equipment and unit shutdowns or damage which typically corresponds to improved environmental compliance and performance. | | | Changes Made to Reduce Flare Emissions
(June 2012 – June 2024) | | | |---|--|--| | Year Installed or
Implemented | Equipment Item Added, Process Changed or Procedure Implemented | | | Equipment: | | | | Phased 2006 – 2013 2006 – MP30 (complete) 2009 – Sulfur Plant (complete) 2009 – UK (complete) 2011 – U200/ U267/U250 (complete) 2014 - U110 & SPP (complete) 2015 – U100 & Bulk (complete) (completion dates listed) | Construction & Operation of Central Control Room (CCR) The CCR has been built and currently contains the controls and boardmen for all the process, utility, and bulk movement units. The Boardmen are the Operators that oversee the unit operation and provide direction to Outside Operators. The Boardmen were housed in Control Rooms at their individual units. The CCR brings all the Boardmen together in one large control room. There is an inherent value in having the Boardmen housed in one Control Room that will minimize flaring. Improved communication will occur and better awareness of each unit's impact upon another unit's operation will occur. In addition, optimization by Operations Supervision will be simplified when the unit controls are housed in one Control Room. An example of this benefit is that if one unit is nitrogen purging a vessel which will add loading to the U200 G-503 Flare Gas Recovery Compressor the Boardman can immediately talk to the Unit 200 Boardman about whether or not additional loading can be handled. As the purging is taking place the two Boardmen can work closely together to monitor the impact of purging and provide immediate feedback as to the impact of the activity on the Compressor. Adjustments can be made much more quickly to manage the activity. This enhanced
coordination will reduce in flaring. | | | Changes Made to Reduce Flare Emissions (June 2012 – June 2024) | | | |---|---|--| | Year Installed or
Implemented | Equipment Item Added, Process Changed or Procedure Implemented | | | Phased 2006 – 2013 2006 – MP30 (Complete) 2009 – Sulfur Plant (complete) 2009 – UK (complete) 2011 – U200/ U267/U250 (complete) 2014 – U110 & SPP (complete) 2015 – U100 & Bulk (complete) (completion dates listed) | Controls Modernization – a series of controls modernization projects were completed in 2015. Listed below are the benefits of the modernization projects in respect to flare minimization. Provides for enhanced diagnostic tools (i.e. graphics of unit operation are much more visible and easy to follow) in units where Distributed Control Systems (DCS) are not currently in place (MP30 & Sulfur Recovery Units). Reduction of control system instrumentation failures due to upgrade from old, pneumatic technology. This will result in much better reliability of the controls. Increases unit stability and minimizes unit upsets. Improves operator performance by incorporating Abnormal Situation Management practices such as alarm management and graphic guidelines. Alarm management is a philosophy which prioritizes alarms and minimizes the amount of alarms an operator must respond to in an abnormal situation. This prevents an operator from being overloaded with alarms and helps the operator focus on the immediate issues which must be remedied. Use of human factors in information processing in order to communicate information in a proven, consistent, simplified, meaningful way. Early event detection to reduce abnormal situations which might cause an upset. Installation of state of the art Safety Instrumented Systems (SIS) that will minimize spurious trips. Overall, the Controls Modernization will reduce flaring by minimizing upsets that can occur with the current controls in place. Improving the way that operators interface with controls allows them to prioritize their response to abnormal situations. This can result in more rapidly mitigating an unusual situation and minimizing overall impacts. One example would be by upgrading field tags (which are monitoring devices for operating parameters such as pressure or temperature, currently only visible in the field) to a tag which can be monitored in the control room. For example, if an equipment shutdown occurs | | | | Changes Made to Reduce Flare Emissions (June 2012 – June 2024) | | | | | |----------------------------------|---|--|--|--|--| | Year Installed or
Implemented | Equipment Item Added, Process Changed or Procedure Implemented | | | | | | 1 st Quarter 2019 | EPA Refinery Sector Rule (RSR) 40 CFR 63 Subpart CC Flare Combustion Efficiency Upgrades – all affected refinery flares are required to ensure compliance with sections 63.670 and 63.671 of 40 CFR 63 Subpart CC. This requires high accurate monitoring of steam flow to the flares as well as prescribed net heating value (NHV) determination for vent gas to the flare. Flare activity occurring post January 30, 2019 must comply with the 63.670 combustion efficiency standard of 270 BTU/scf. The Rodeo Refinery has made upgrades to the steam measurements and controls as well as securing a new NHV monitor. | | | | | | October 2019 | Unit 240 D-411 Hydrogen Re-routing During Unicracker Plant 2 Shutdown (SFE 17-103) — Currently when the Unicracker Plant 2 shuts down there can be excess mixed hydrogen in the hydrogen header. Mixed hydrogen contains hydrogen produced from catalytic reformers and PSA high purity hydrogen. Currently, when there is excess mixed hydrogen it is sent to blowdown and then on to the site Flare Gas Recovery Compressors (FGRC) where it can be potentially recovered and utilized as fuel gas. If there is too much hydrogen concentration in the gas routed through the FGRC this can result in compressor shutdowns due to poor gas quality. A FGRC shutdown would result in the flaring of mixed hydrogen and sour recovered gas. High levels of hydrogen in recovered fuel gas can also be a problem for heater operation which demands minimum fuel heating value. This project will re-route the potential discharge of this mixed hydrogen from blowdown to the Unit 240 F-201 relief header which goes directly to the flare rather than to the FGRC and fuel gas. Thus, if the system pressure dictates that mixed hydrogen must be pressure relived it will do so directly to the flare. This will help reduce the total volume of material sent to the flare and reduce the emissions of Sulfur Dioxide (SO ₂) if flaring does occur. | | | | | | | Changes Made to Reduce Flare Emissions
(June 2012 – June 2024) | | | | | |----------------------------------|---|--|--|--|--| | Year Installed or
Implemented | Equipment Item Added, Process Changed or Procedure Implemented | | | | | | Processes: | | | | | | | 1 st Qtr. 2011 - 2013 | Unit 110 Hydrogen Plant Startups and Shutdowns – changes have been made in how Unit 110 startups and shutdowns, when conditions warrant, to minimize flaring. For example, a shutdown takes place and human entry is not required, the unit may be purged with plant Nitrogen rather than hot, pumped Nitrogen. This allows for the Nitrogen to slowly be swept into the blowdown system,
allowing for the Fuel Gas Recovery Compressor to remain operating. For some shutdowns, the amount of flaring has been eliminated vs. a previous average period of 5-1/2 hours. Unit startups have also been reduced from a period of approximately 2-1/2 hours in comparison to the previous duration of 5 hours. Throughout 2011 and 2012 efforts to minimize Unit 110 related flaring has continued by examining steps related to startup and shutdown activities. In 2013 a procedure NOP-206-110 was developed to allow for U110 startup with minimal flaring. This is partially done utilizing natural gas feed at a low rate to minimize potential flaring. | | | | | | On-Going | Flare System Rundown List (R-065) – A checklist was developed for looking for possible sources (lines and monitoring tags) at operating units which may be contributing high base load to the flare compressors and/or directly to the flare. This checklist is to be used by Shift Superintendents, Head Operators, and Unit Supervisors to pinpoint and locate higher than normal flows. | | | | | | 3 rd Quarter 2014 | Unit 110 Hydrogen Plant Control Scheme Upgrade the control scheme for Unit 110 was updated to allow for a better transition between a 10-bed to 5-bed Pressure Swing Adsorber (PSA) operation. When a need to reduce the number of operating PSA Hydrogen purification beds from 10 to 5 the feed to the unit will also automatically adjust. This will reduce the amount of Hydrogen that enters into the blowdown system and will reduce or eliminate flaring associated with this operational transition. | | | | | | 2024 | Conversion from petroleum feedstocks to renewable feedstocks: RREC has not processed any petroleum feedstocks since 2/12/2024 and transitioned to renewable only feedstocks under BAAD Application No. 31157. The production rate capacity changed from 120,000 barrels of petroleum products per day to 67,000 barrels of renewable products. The facility is now classified under NAICS Code 325199 and is no longer operating as a Petroleum Refinery as defined in 40 CFR 63 Subpart UUU. As part of the renewable transition a number of refinery units and heaters were taken out of service by either idling or permanent shutdown. Demolition of a number of units will occur over the next few years. This transition will reduce the overall number of operating units that could cause flaring. Flaring volume has decreased 57% since petroleum operation | | | | | # 3.2 Planned Reductions (401.3) The table below summarizes the actions currently planned to effect further reductions in refinery flaring. # **Planned Actions for Reducing Flaring** | | Planned Actions for Reducing Flaring | | | | | |--|--|--|--|--|--| | Planned Date of
Installation/
Implementation | Equipment Item to be Added, Process to be Changed or Procedure to be Implemented | | | | | | Procedure: | | | | | | | | See above section for items in these categories which have been previously implemented | | | | | | Equipment: | | | | | | | | See above section for items in these categories which have been previously implemented | | | | | | Processes: | | | | | | | On-going | Improved Incident Analysis Investigation – Continue to complete required 12-12 Root Cause analysis and analysis triggered by internal incident investigation drivers. Investigations and corrective actions identified will continue to address issues that may result in flaring if not otherwise addressed. The root cause analysis requires that the facility find the actual cause of flaring, down to a single part that may have failed in some instances. The 12-12 analysis also requires the facility to identify changes that can be made to prevent flaring and list those in the root cause analysis submittal to BAAD. This results in the facility taking action to prevent recurrence of flaring events. For example, some of the recent root cause analysis have identified equipment upgrades that should be made, additional training to be conducted, equipment repairs, etc. | | | | | | | Planned Actions for Reducing Flaring | | | | | | |--|---|--|--|--|--|--| | Planned Date of
Installation/
Implementation | Equipment Item to be Added, Process to be Changed or Procedure to be Implemented | | | | | | | Permit Application
Submitted 12/2011
Permit Withdrawn 3/2023 | Fuel Gas Combustion Sulfur Dioxide Emissions –A permit application was submitted to BAAD to obtain new Sulfur Dioxide (SO2) limits for the Steam Power Plant (SPP) via permit modification. This would allow greater percentage of refinery fuel gas to natural gas to be fired in the turbines. By revising the SPP emission limits it is possible that a large portion of flaring during periods of fuel gas imbalance could be minimized while reducing overall combustion emissions. Historically fuel gas imbalance occurred during major Unicracker turnarounds when 30% of fired duty sources are shutdown. Discussions were previously held with BAAD permit engineers in 2007 to review the benefits and potential permitting mechanisms for repermitting SPP. Numerous discussions and responses have been provided to BAAD in respect to the permit application and permit revisions. BAAD has been provided the necessary supporting information and must approve and finalize the permit for the facility to implement this item. Phillips 66 petitioned the U.S. EPA in April, 2014 for an official applicability determination regarding whether this change | | | | | | | | would trigger NSPS. BAAD requested that this permit application be rescinded in March 2023. The facility expects for fuel gas sulfur to decrease significantly with the transition to renewable feedstocks. Thus, the permit application was rescinded. | | | | | | | On-going | Flare Activity Review – Soon after a reportable flaring event occurs an overview of the event is communicated between site management to quickly review likely causes and means to prevent recurrence. | | | | | | | Maintenance: | | | | | | | | On-going | G-503/G-540 Flare Gas Recovery Compressors - this practice began more than 5 years ago and continues to date. Approximately every 18 months, in association with a major unit turnaround, the G-503 Flare Gas Recovery Compressor is taken out of service for a major overhaul. The purpose is to maintain critical equipment associated with the compressor in order to prevent unplanned failures. This practice minimizes overall downtime for the compressor. The work is scheduled with a major turnaround since gasses produced at the facility are at reduced rates and many fuel gas consumers are out of service. Without this maintenance it is more likely that the compressor would experience unplanned failures during periods when high gas volumes are being produced. The unplanned failure repair is of longer duration because the personnel and equipment must be assembled without advanced planning. In many cases, diagnosis must be performed to determine the failure and this can take considerable time. Whereas, planned maintenance prevents many of these types of failures from occurring. As with regular maintenance on a vehicle, this maintenance performs a similar purpose. Now that the new Liquid Ring Flare Gas Recovery Compressor has been installed all flare gas recovery compressors will | | | | | | | | be maintained on a routine basis yet it will be done when the spare compressor(s) are in operation which will further reduce overall flare emissions. | | | | | | # 4.0 Prevention Measures (401.4) # 4.1 "Major" Maintenance Activities (401.4.1) This section discusses refinery maintenance and turnaround activities, outlines measures to minimize flaring during both preplanned and unplanned maintenance activities. A description of flaring that occurs during
major maintenance activities is included in this section and in the section titled "When Flaring is Likely to Occur" in accordance to 401.4.1. As required by 401.4.1 a review of flaring associated with major maintenance has been conducted and is referenced below. The measures taken to prevent flaring during portions of major maintenance activities are included in the section titled "Measures to Minimize Flaring During Preplanned Maintenance." # 4.1.1 Refinery Maintenance and Turnaround Activities Maintenance activities often result in a higher than normal flow of material to the flare gas recovery system. In order to maintain process equipment, the first step is to clear the process equipment and associated piping of hydrocarbons, before the system is opened to the atmosphere, for both safety and environmental reasons, including compliance with BAAD Regulation 8 Rule 10, (Process Vessel Depressurization). How this is accomplished depends on the physical properties of the hydrocarbons to be removed (vapor pressure, viscosity) and on the process details of the equipment that is to be maintained. The first step is to recover as much of the hydrocarbon as is possible by transferring it to a process unit that is not in the part of the refinery that is being prepared for maintenance. For example, liquid hydrocarbons can be pumped to tankage or another process system; gases under pressure may be depressurized to another process unit. Heavy hydrocarbons that are viscous at ambient temperatures are often displaced from the equipment to be maintained using lighter hydrocarbons, e.g., diesel type material. This material can then be pumped from the equipment. Although depressurization and pump-out can be used to remove the bulk of the hydrocarbon from the equipment, they leave some residual material. Following pump-out or depressurization to other process equipment, the next step in decommissioning typically requires a low-pressure location that has the ability to accept a wide range of hydrocarbon materials in order to avoid putting these materials to the atmosphere. The flare gas header is the only location within the refinery that meets these criteria. Equipment items containing materials that are gases at ambient temperature and pressure are often vented to the flare gas recovery system so that the hydrocarbon can be recovered as fuel gas. To free the equipment of hydrocarbons following depressurization, they can be purged using an inert gas such as nitrogen. Alternatively, nitrogen can be added to the equipment increasing the internal pressure. The resulting mixture of nitrogen and hydrocarbon can then be released to the flare header, reducing the pressure in the equipment. Steam can be substituted for nitrogen in some cases, but not for processes that need to be kept dry in order to avoid corrosion or catalyst damage, or for some other reason. For equipment containing liquids, often steam or nitrogen are used to "blow" the liquid to the flare header. The liquid hydrocarbon and condensed steam are separated from the vapor phase and returned to the refinery's recovered oil system and to wastewater treatment either at the unit knockout drum or at the flare knockout drum. Nitrogen with hydrocarbon vapor continues on to flare gas recovery. Once the bulk of the liquid hydrocarbon has been displaced, the flow of steam or nitrogen is continued to remove any residual hydrocarbon by vaporization. Steam can be more effective for heavier materials as it increases their volatility by increasing temperature. Proprietary solvents such as "Zyme-flow" are sometimes used in aqueous solution for removal of residual hydrocarbons. When aqueous solvents are used, they are typically circulated in the equipment and then treated. Although these procedures eliminate hydrocarbon emissions related to equipment opening, they require a high volumetric, high velocity, steam, or nitrogen flowrate in order to be effective. This high flowrate of inert gas can create several sets of circumstances where flare gas recovery is not feasible. These problems relate either to the change in fuel gas composition (increased molecular weight or temperature) or to the increase in volumetric flowrate. In addition to an increase in flare gas average molecular weight from higher than normal nitrogen flowrate, there is also the potential for much lower than average molecular weight gas from increased flow of hydrogen. There are many process and reactor systems within a refinery that contain gases with a high hydrogen content. When this equipment is decommissioned by depressurization to the flare gas header, there can be a sharp decrease in the flare gas average molecular weight. ## **Effect of Flare Gas on Downstream Equipment** Gas composition affects the equipment in the flare gas recovery system. Specifically: - High nitrogen content can impact heaters, boilers, and the flare gas compressor. - Hydrogen and other low molecular weight gases impact flare gas compressor performance. - Steam impacts knock out drums and compressors. High flows of nitrogen from equipment purging leads to a much higher than normal inert content in the recovered flare gas, greatly reducing its fuel value (measured as BTU/scf) and increasing its molecular weight. Reciprocating compressor (G-503) increase the pressure of a constant inlet volumetric flowrate of gas. For a given volume of gas, an increase in molecular weight creates an increase in its mass. This increases the work that the compressor has to do to compress the gas, overloading and potentially damaging the machine. For a reciprocating compressor, the compression ratio (ratio of outlet pressure to inlet pressure) is high enough that more than one stage of compression is needed. The temperature of the gas increases as it is compressed. The gas is cooled between stages in order to control the temperature increase. Operation of a reciprocating compressor with a feed stream that has a molecular weight outside of the range for which it was designed (e.g., high hydrogen content) can lead to a temperature increase exceeding the design limitations of the machine. Flare Gas Compressor (G-503) is shutdown in order to protect it from failure that could be caused by a decrease in molecular weight. The Liquid Ring compressors are expected to have a wider range of operating conditions. The compressors and associated control system will have enhanced monitoring in comparison with the existing Reciprocating Compressor. There will still be limitations on the type of gases that should be recovered and utilized in the fuel gas system (i.e., high volumes of hydrogen potentially impacting Btu values). Additionally, if low BTU flare gas is transferred to the fuel gas header, the lower fuel value can have the effect of reducing combustion efficiency, as the combustion device burners are designed to operate with fuels that have higher heat content per cubic foot. In extreme cases, the heating value of the gas can be reduced by dilution with nitrogen to the point of extinguishing the burner flame. This creates the potential for unburned fuel to accumulate in the heater or boiler, potentially leading to an explosion when it is re-ignited. NFPA 85 – Boiler and Combustion Systems Hazards Code and NFPA 86 Standards for Ovens and Furnaces warn against this possibility. A major advantage of using steam to clear hydrocarbons from equipment is its elevated temperature; however this can be a disadvantage with respect to flare gas recovery. When the distance the gas must travel to reach the flare gas compressor is large, (the flare header is long), the gas will cool, and much of the steam will condense and be removed as water at the knock-out drum. However; with a shorter flare line or a long-duration steam out event, the temperature of the flare gas at the flare gas compressor can be elevated significantly. If the temperature of the flare gas stream at the inlet to the flare gas compressor exceeds machine limits, the gas must be diverted away from the compressor inlet in order to avoid mechanical damage. ## **Summary** Each of the situations described above potentially leads to the need to divert gas produced during refinery maintenance away from the flare gas recovery compressor and to a flare. This is a necessary result of maintenance procedures which have been adopted to minimize the release of hydrocarbons to the atmosphere during equipment opening. The need to divert gas is driven by the quantity and composition of the gases produced during equipment shutdown and startup. Major maintenance activities can result in flaring, as discussed above. A review of maintenance-related flaring from 2000 to 2006 at the Phillips 66 Rodeo Renewable Energy Complex in Rodeo has been completed. Due to the requirement to install flowmeters and report flare emissions to BAAD the data from September 2003 to date is the most accurate for this review. Subsequent flaring taking place during equipment startups and shutdowns are being examined as part of the Turnaround Planning Flare Minimization Process and causal analysis being conducted. Based on the review there were means of further reducing and/or eliminating flaring that were identified. Included below is a summary of the measures identified and rationale for the acceptance or rejection of the concept: # Major Maintenance Prevention Measure Evaluation This is a list of prevention measures that were identified based on the 5-year look back of Major Maintenance activities. Attachment G is a summary of all flaring events and is grouped by category. Based on the 5-year look back the following types of flaring were identified for elimination: - Flaring associated with Hydrogen Unit Startups/Shutdowns (H2 SU/SD) - Flaring due to G-503 Flare Gas Recovery Compressor Planned Maintenance (G-503 PM) - General Flaring Associated with Major Maintenance (.e.g. nitrogen purging, steaming, etc.) (General) | Major Maintenance – Prevention
Measure Evaluation | | | | | | | |---|---|---|--|---|---|--| | Measure
Description | | | ··· | | Section
Reference
(for more
details) | | | Addition of Unit 110
Hydrogen Vent | • Dec. 2006 | Installation of a vent which will allow a small stream of purified hydrogen to be vented. | H2 SU/SD | n/a | 3.2 | | | Odor Abatement/Flare
Gas Recovery System
Optimization | October 2008 – Construction Start August 2009 (completed) | A set of 3 Liquid Ring Compressors were installed in order to provide redundant and extra capacity for the Flare Gas Recovery compressor. This will eliminate some flaring events that have historically occurred by having additional flare gas recovery service. A separate odor abatement compressor was installed which will provide further reliability for the odor abatement system. | G-503 SU/SD
G-503 Brief Peak
Loading | Completed | 3.2 | | | Turnaround (T/A) Planning Procedure | 4 th Qtr. 2006 | Being coordinated with submittal of Flare Minimization Plan. | H2 SU/SD
G-503 PM
General | n/a | 4.1.3 | | | Shutdown & Startup
Activity Extension | 4 th Qtr. 2006 | This will be included as part of the T/A Planning Procedure. In some cases flaring may be eliminated or minimized by extending the period that a unit is going through shutdown or startup. | General | To be included as part of T/A Planning Procedure process. | 4.1.3 | | | | Major Maintenance – Prevention Measure Evaluation | | | | | | | |------------------------------------|---|--|--|---|---|--|--| | Measure
Description | Schedule for
Implementation | Rationale to Support Schedule | Type of Flaring
that would be
Reduced or
Eliminated | Rationale for
Rejecting Measure | Section
Reference
(for more
details) | | | | | | An example would be to nitrogen (N ₂) purge equipment at a lower rate so the G-503 Flare Gas Recovery Compressor can handle the excess N ₂ . More importantly, the safest operating conditions for a unit are when it is out of service or when it is running at normal conditions. The transition period, which occurs during startup and shutdown, requires special attention and procedures. Equipment placed under these conditions experience temperature and pressure changes which can result in hydrocarbon leaks. Due to these factors it is necessary to minimize the duration of transition periods. | | This will not be utilized in each case due to transitional activity concerns. | | | | | Rate Reduction / Unit
Shutdowns | 4 th Qtr. 2006 | This will be included as part of the T/A Planning Procedure process. In some cases flaring may be eliminated or minimized through reducing rates or shutting down units. The implications of shutting down a unit must be examined for each case. For example, shutting down additional units may result in more fuel gas imbalance (i.e., production of more gas then can be consumed). The refinery units are interrelated so shutting down one or two units will result in impacts to other units. In some cases a number of units must be shutdown in association with a particular unit. In order to properly shutdown units they must be depressured and purged. This typically results in flaring. So, the shutdown of associated units doesn't reduce flaring in all cases and must be | General | To be included as part of T/A Planning Procedure process. It is not beneficial to use this for all situations as described in the previous column. | 4.1.3 | | | | | Major Maintenance – Prevention Measure Evaluation | | | | | | | |---|---|--|--|--------------------------------------|---|--|--| | Measure
Description | | | Type of Flaring
that would be
Reduced or
Eliminated | Rationale for
Rejecting Measure | Section
Reference
(for more
details) | | | | | | evaluated for the overall benefit on a case by case basis. Rate reduction is typically only of potential value if refinery is out of fuel gas balance. See Section 4.1.2 for the steps taken to mitigate fuel gas imbalances, including rate reduction. Some units may be an overall fuel consumer so reducing rate may not be helpful. The benefits need to be examined on a case by case basis. | | | | | | | Implementation of
Prevention Measures
Identified during
Causal Analysis
Reporting | 3 rd Qtr. 2005 | Prevention Measures are identified during the required BAAD flare event Causal Analysis reporting. These measures are then implemented to reduce flaring. Note: General programmatic prevention measures identified will be listed in this section during Annual updates. Equipment specific prevention measures have been added to Attachment G. | Various | n/a | 3.1 | | | | Identification of Cause
of Small (<500,000
SCFD or <500 lb.
SO2) Flaring Activity | 1 st Qtr. 2007 | Conduct regular meetings with Operation personnel who are responsible for the flare operation to identify causes of all flare activities. | Various | n/a | 3.1 | | | | Storage, Treatment,
Recovery Scenario 1
– Addition of New 1.5 | n/a | n/a | G-503 PM
(portion)
General | Determined not to be cost effective. | 4.2.2.1 | | | | | Major Maintenance – Prevention Measure Evaluation | | | | | | | | |---|---|-------------------------------|--|--|---|--|--|--| | Measure
Description | Schedule for
Implementation | Rationale to Support Schedule | Type of Flaring
that would be
Reduced or
Eliminated | Rationale for
Rejecting Measure | Section
Reference
(for more
details) | | | | | MMSCF/D
Compressor | | | | | | | | | | Storage, Treatment,
Recovery Scenario 2
– Addition of New 6.0
MMSCF/D
Compressor | n/a | n/a | G-503 PM
General | Determined not to be cost effective. However, a set of three new Flare Gas Recovery Compressors were installed in conjunction with the Clean Fuels Expansion Project. | 4.2.2.1 | | | | | Storage, Treatment, Recovery Scenario 3 & 4 – Addition of New High Pressure Storage Sphere, Compressor, & Amine Treater | n/a | n/a | H2 SU/SD
G-503 PM
General | Determined not to be cost effective. Technological, operability, and safety feasibility not yet determined. It is likely that upon further study cost effectiveness will be further diminished. Operability and feasibility of safe operation of such a system may also pose a challenge. | 4.2.2.1 | | | | Section 4.1.2 contains a list of measures that are currently in practice for reducing flaring. From this review, one of the greatest potentials for achieving further cost-effective reductions in flaring lies in maintenance planning with flare minimization as a goal, coupled with the existing goals of safety and minimizing production impacts due to extended downtimes. The essential component of any plan that satisfies maintenance needs while minimizing flaring is that it must mitigate or eliminate the conditions described in the sections above that make recovery of flare gas impossible. In practical terms this means taking a series of actions specific to the unit being decommissioned to limit the rate at which flare gas is generated and maintain its temperature and composition within a
range acceptable for transfer via a flare gas compressor and for use in the fuel gas system. Concepts for accomplishing this are discussed in the section following. # 4.1.2 Measures to Minimize Flaring During Preplanned Maintenance In accordance with 401.4.1, feasible prevention measures that can be used to minimize future flaring: (including that related to scheduled process unit turnarounds and immediate near-term shutdowns) are listed below. Numerous prevention measures are utilized to prevent flaring from occurring during portions of major maintenance events. The information is organized by process unit and by topic. There are also some general measures listed that are used at most units, when applicable. Refer to Attachment D for list of unit names and numbers. It is noted that although prevention measures are routinely employed, as explained in the previous section, all flaring cannot be eliminated due to gas quality and quantity issues associated with major maintenance activities. Hydroprocessing (U228, U229, U230, U231, U240-2, U244, U248, U250) Hydroprocessing units are depressurized to hydrogen recovery, or other lower pressure locations, and only after this are they depressurized to flare gas recovery, reducing the load on the flare gas recovery system. This prevents flaring by minimizing load on the flare gas recovery system and decreases the period in which flaring occurs during venting activities. Following depressurization, the remaining hydrocarbon is removed by increasing the pressure in the equipment with nitrogen and then depressurizing it to flare gas recovery multiple times. Doing this quickly helps with mixing, which improves removal of hydrocarbon from the vessel so that fewer cycles are needed. This minimizes the volume of low quality gasses that are sent to the flare. Depressurization of the unit to the flare gas recovery system is staged in order to minimize exceeding the capacity or quality parameters of the system in order to maximize the time in which the flare gas recovery compressor is on-line. The longer the flare gas recovery compressor is on-line the less flaring that occurs. Gases are recirculated using the hydrogen recycle compressors as the reactors cool. When the equipment is cooled and at low pressure, nitrogen pressurization and release steps are used to clear hydrocarbons. Hydrogen-containing streams are directed to the hydrogen plant. Use of hydrogen recycle for cooling and cleaning minimizes the need for nitrogen which, when utilized, typically results in flaring. U250 - A high pressure hydrotreater design is used to avoid flow to the flare by containing the process during loss of utilities. Without this design, additional volume of materials would be sent to the flare during loss of utilities. See Section 3.1 for more details on elements of this design. ### Reformer (U231, U244) The timing of the steps involved in the regeneration cycle are controlled and the venting / depressuring rate limited to be within the capacity of the compressors. This minimizes the total vent stream that must be sent to the flare. The units in this category are currently idled with the facility's transition to renewables. # Delayed Coker (U200) The delayed coker drum cooling cycle time is coordinated with other activities to prevent exceeding the Flare Gas Recovery Compressor capacity. The unit in this category is currently idled with the facility's transition to renewables. # Fractionation Units (Various units, throughout refinery) Vents from depressurization of fractionation units are recovered using the flare gas compressor system rather than being routed to the flare, when capacity is available, or gas quality allows. This minimizes flaring by reducing the volume of gasses that must be sent to the flare. # Compressor (U200 Flare & Blowdown System) ## Compressor Maintenance Flare gas compressors are maintained during planned unit shutdowns, to improve reliability during periods of normal operation. A planned shutdown provides an opportunity to do maintenance while flare system load is lower. Regular preventative maintenance of flare gas compressors, as described further in Section 3.2, is used to improve their reliability. Maintenance is also conducted on compressors based on critical monitoring (i.e. vibration, temperature, load) results. # Flare System Monitoring Flare Gas Recovery Compressor load is monitored to identify & mitigate higher than normal baseline load. High loads are mitigated by identifying the source and making reductions. For example, if a PRV is venting to blowdown then the responsible unit will be identified and directed to make adjustments to prevent the PRV from venting. The flare gas recovery compressor is monitored when maintenance is being conducted at other units that will cause the compressor to be taken off-line. The purpose is to minimize the amount of compressor downtime in order to protect the compressor and minimize the total time the compressor is shutdown and reduce overall flaring. Plant personnel who oversee flare gas recovery systems have been instilled with an improved understanding. The operators monitor flare gas compressor load to check for high load or load changes, record instances of flaring and potential causes, take action to minimize flaring, and notify Shift Superintendents when flaring occurs. This results in conscious management of the flare system to minimize flaring. Flow and/or temperature measurement as a means of indicating flow in each flare header is used to identify and eliminate sources of flow to the flare gas header. Indication of flow during periods when flow is not expected is a direct indication of flaring. As described above, operators respond to flaring events by attempting to track the source and working with the Shift Superintendent to take action to make reductions or eliminate flaring. The monitoring parameters available for the Liquid Ring Compressors will be more robust and provide more on-line indication of changes in flare gas quality. This enhanced monitoring will likely assist in the optimization of compressor on-line performance. On-line diagnostic tools are utilized to monitor flows to the flare in order to minimize flaring duration. See Section 3.1 "Operational Improvement – Monitoring" for more details on how these tools reduce flaring. When higher than normal flare gas recovery compressor loads are detected announcements are made throughout the refinery in order to proactively identify and address the source of gases. See Section 3.1 Emergency Operating Procedure EOP-1 "Guidelines for Standard Public Address System Announcements" for more details. ## Fuel Gas Scrubbing Gases collected by the flare gas compressor are scrubbed whenever possible. This includes periods of fuel gas imbalance and periods when the compressor capacity is exceeded but the compressor is still operational. This results in reduced sulfur dioxide emissions from the flare. # Sulfur Recovery and Treatment Units (U235, U237) The refinery has a sulfur recovery unit and a sulfur treatment unit. During periods of maintenance the sulfur handling is shifted from one unit to the other. Thus, no flaring is necessary during scheduled unit startups or shutdowns. Additionally, sulfur load can readily be reduced by decreasing sour water stripping. # General Measures (used at various units, as applicable) ## Liquid Vessel Cleanup Chemical cleaning is used to so that cleanup is faster, minimizing the time needed for steam out. Chemical cleaning works similar to using dish soap on greasy dishes in that cleaning time and rinse water is minimized. Thus, in practice overall time in which steaming must occur is minimized, thus minimizing flaring. Chemical cleaning is primarily used in units where there is a high volume of residual oil and solids in equipment and piping. Chemical cleaning must be balanced with wastewater treatment plant capabilities. # **Depressurization** Separate flare gas headers are in place at the Unicracker Complex for the Reactor section and Hydrogen Plant so that some gases produced during maintenance, startup, and shutdown can be directly routed to the flare. This minimizes the volume of gases sent to the flare during maintenance activities since it provides a separate system from the refinery blowdown system. This allows a portion of the refinery gasses to be recovered while only those from the Unicracker are sent to the flare. ## Pressure Relief Routine maintenance of PRDs, consistent with API 510, is used to minimize "routine" flow to the flare gas header. The purpose of the maintenance is to ensure the PRDs are operating properly at the appropriate set points and not relieving prior to the intended set point. Proper operation of PRDs provides a safe operation, reduces the base load and allows the system to better able to handle flow peaks during maintenance or other periods where there is additional flow in the blowdown system. ## Source Reduction If there are indications of increased base load to the flare gas compressor efforts are taken to identify and mitigate or minimize the source of gasses. This is done by identifying the flare header affected by use of monitoring parameters, as available, such as flare header flow meters, pressure and temperature indicators. # Shutdown/Startup Planning & Scheduling A specific plan will be developed to minimize flaring during each turnaround, as each is unique. Specific actions depend on which parts of the unit are being brought down and which other units are down at the same time. Note: Historically this has taken place for major turnarounds, this will be expanded to minor turnarounds as well. Specific "flare planning" has been conducted in respect to major turnarounds. Plans have been prepared to insure there will be a viable fuel balance during each time period during the shutdown. The length of the shutdown has been extended in some cases to allow equipment to be purged at lower
rates that can be handled by the flare gas recovery system. Extension of shutdown length will be considered as part of the turnaround planning procedure referenced in Section 2. There are limitations to this activity. The safest operating condition for a unit is either when it is out of service or when it is running at normal conditions. The transition period, which occurs during startup and shutdown, requires special attention and procedures. Equipment placed under these conditions experience temperature and pressure changes during the transition period which can result in hydrocarbon loss. Due to these factors, it is necessary to minimize the duration of transition periods. Rate reductions and unit shutdowns at interrelated units occur to balance inventory. This will be included as part of the T/A Planning Procedure process referenced in Section 2. The implications of shutting down a unit must be examined for each case. For example, shutting down additional units may result in more fuel gas imbalance (i.e. production of more gas then can be consumed). The refinery units are interrelated so shutting down one or two units will result in impacts to other units. In some cases, a number of units must be shutdown in association with a particular unit. To properly shutdown units they must be depressured and purged. This typically results in flaring. So, the shutdown of associated units doesn't reduce flaring in all cases and must be evaluated for the overall benefit on a case-by-case basis. Rate reduction is typically only of potential value if refinery is out of fuel gas balance. Again, the big picture needs to be examined. Some units may be an overall fuel consumer so reducing rate may not be helpful. The benefits need to be examined on a case-by-case basis. Load shed planning is used to keep the fuel gas system in balance as units come up/down. Following the turnaround, any flaring that did occur is reviewed and a list of lessons learned is developed in order to minimize flaring during future turnaround events. Note: This is a minimization effort that is being instituted in a more rigorous manner as part of this FMP. This consistently applied review will help establish successful flare minimization practices that can be utilized in the future. Shutdown activities are staged to keep the rate to the flare gas compressor low. This will be considered on a case by case basis as part of the turnaround planning procedure referenced in Section 2 which addresses flare minimization. Turnarounds are scheduled to bring some units down every year, so that not all units are down at any one time. Turnarounds are scheduled to minimize downtime associated with the unit and to provide a window for conducting preventative maintenance in order to promote equipment reliability. Conducting turnarounds on a regular basis prevents unplanned shutdowns that can lead to long periods of flaring if the necessary equipment is not available to quickly remedy a failure. The duration between turnarounds is being extended over time as technology improves in order to minimize production impacts. This also results in minimizing flaring over long periods of time (i.e. 5 – 10-year windows). The reason this reduces flaring is that the number of turnarounds in a 10-year period is reduced if the duration between turnarounds is extended. Eliminating one or two turnarounds in a 10-year period will eliminate the flaring associated with the startup and shutdown activities. The duration between turnarounds is being extended due to improvements such as longer catalyst life, better unit monitoring, better metallurgy, enhanced inspection technology and procedures. Shutdown and Startup Execution Equipment is purged slowly to avoid overloading flare gas recovery system capacity. The minimum purge rate that can be achieved is limited by the need to prepare the equipment for maintenance. This will be evaluated as part of the turnaround planning procedure referenced in Section 2. Cleanup activities are cascaded so that large amounts of nitrogen are not routed to the flare at any one time. If all equipment was purged with nitrogen simultaneously this would likely overwhelm the flare gas recovery compressor. By cascading the purging, this allows the flare gas recovery compressor to recovery gasses to blowdown during a longer period of time, thus minimizing overall flaring since the compressor has been kept on-line for a longer period of time. Steam is used instead of nitrogen for equipment clearing, as much of the steam condenses reducing the load on the flare recovery system. Steam is typically used in cases where there are not equipment vacuum limitations (e.g. piping, small equipment). Vessels typically have vacuum limitations. During steamout the peak flow to the flare gas recovery system is minimized by monitoring the steam rate and cutting back if the rate is too high. This does not eliminate all flaring associated with steamout procedures but minimizes the total amount of flaring. The molecular weight of the flare gas is monitored, so that it is diverted away from the flare gas compressor when approaching outside of parameters that it can handle or that is suitable for combustion in unit heaters and boilers. This minimizes flaring by optimizing the period in which the compressor is on-line while also protecting the compressor from an equipment failure. Feed and product compressors are used to recycle material during startup until product specifications are met, allowing flaring to be avoided. The alternative would be to send gasses that have run once-through the reactors directly to blowdown. This minimizes the load to the flare gas recovery system and eliminates the potential for flaring. ### **Communication Measures** There is coordination from operator to operator and coordination within the shift organization so that the flare gas compressor load is not exceeded. The operators call to check on compressor operation before initiating actions that increase vent load. ## Fuel Gas Balance The fuel balance is adjusted to avoid flaring. This is done by examining the fuel gas balance which contains fuel producers and consumers. Depending on the environmental, safety and process constraints, operational changes are made dependent on which units have the most impact to the balance and the most flexibility. Reductions in fuel consumption or increases in consumption are attempted at numerous locations to get the facility back into fuel gas balance. Steps taken to prevent fuel gas imbalances include and are generally included in the order of potential impact are: - Minimize or cease butane vaporization to fuel gas. - Increasing fuel consumption at operating heaters. - Increasing production (i.e. fuel consumption) at Co-Generation plant. - Operating steam turbines rather than electric drivers for pumps and compressors. - Adjust the fuel supply at the Co-Generation plant to back out purchased natural gas and use more refinery fuel gas. - Adjusting the severity of unit operations to affect the rate of gas production. - Reducing process unit rates to decrease fuel gas generation. If a fuel gas imbalance does occur gasses are typically scrubbed for hydrogen sulfide removal. Excess clean gasses are then flared while additional measures are taken to mitigate the imbalance. ## Reliability The reliabilities of ancillary systems which can lead to flaring if they trip have been improved, reducing flaring. See the "Maintenance Excellence Philosophy" portion of Section 4.3.2.1 for more details of the facilities reliability practices. Incident investigations, as further described in Section 3.1 and 3.2, are utilized to determine root cause of failures and determine appropriate corrective actions to prevent recurrence. Maintenance is conducted on compressors based on critical monitoring (i.e. vibration, temperature, load) results. Preventative maintenance is conducted on critical pieces of equipment (pumps, compressors, etc.) throughout the refinery to prevent failures. The benefits described for Flare Gas Recovery Compressors in Section 3.2, preventative maintenance conducted on critical equipment serves a similar purpose. Planned maintenance prevents failures. Equipment failures can often lead to flaring if a unit experiences an upset or must be shutdown. By conducting preventative maintenance, failures can be prevented which reduces flaring. # 4.1.3 Turnaround and Maintenance Flare Minimization Planning Tool A planning tool has been developed and will be used to minimize flaring associated with planned turnaround and maintenance events, incorporating the minimization concepts outlined above. The means in which it will be utilized is presented in Attachment E. Listed below is an overview of the elements contained in the procedure: - Establishing a timeline for conducting the initial evaluation of when flaring may occur prior to the turnaround; - Scoping of the flaring that is expected to occur; - Checklist which has a list of elements which should be considered in respect to flare minimization techniques; - Post turnaround review of flaring which occurred. - Documentation of lessons learned during the turnaround & successful minimization techniques utilized. - Incorporation of lessons learned into appropriate shutdown, operating procedures, facility documents. This process will minimize flaring by requiring more planning to address flaring that may occur during a unit shutdown and turnaround. It will also cause personnel associated with turnaround activities to develop means to alter their work to take action to minimize flaring. Lessons learned will be captured and used for future turnarounds to continue efforts to minimize and/or eliminate flaring. See Section 3 **Turnaround Planning Flare Minimization Procedure** discussion for more detail. ## 4.1.4 Measures to Minimize Flaring During Unplanned Maintenance There are occasions, primarily because of equipment malfunction, where
a relatively immediate decision is made to shut down a block of the refinery, typically within a period of hours, allowing very little time for specific planning. In these cases, although the maintenance planning tool can still be used, it is often not possible to make the adjustments necessary to minimize flaring to the same extent as is possible when the shutdown is planned. Despite this, there are many actions that can be taken to minimize flaring even when there is very little advance notice. For these cases, the refinery utilizes general procedures that have been developed to minimize flaring during all maintenance events, as shown in the attached flowchart. Although there is less of an opportunity for scheduling turnaround activities to ensure that there will be a home for all the gas generated at each step of the process, many of the same general principles apply when the decision to bring the unit down is immediate. # 4.2 Gas Quality/Quantity Issues for Each Flare (401.4.2) This section discusses when flaring is likely to occur due to gas quality/quantity issues, systems for recovery of vent gas, and options for recovery, treatment, and use of flare gas in accordance with 401.4.2. # 4.2.1 When Flaring is Likely to Occur Releases of vent gas to the flare result from an imbalance between the quantity of vent gas produced by the refinery and the rate at which it can be compressed, treated to remove contaminants (sulfur compounds) and utilized as fuel gas. Situations that can lead to flaring can be grouped together based on similarity of cause. These general categories, including specific examples of events which fit into each category, are outlined, and discussed below as required by 401.4.2 in respect to flaring that may reasonably be expected to occur due to issues of gas quantity and quality. The general categories listed below usually precede flaring, but other events may initiate flaring as described in the categories below (e.g. mechanical breakdown, inadvertent actions, 3rd party utility shutdown, etc.). ## 4.2.1.1 Maintenance, Turnaround, Startup, and Shutdown Generally, to maintain either an individual equipment item or a block of refinery equipment, it is necessary to remove it from operation and clear it of process fluids. Examples include: - Unit shutdown - Working on equipment - Catalyst change - Plant leak repairs - Compressor system repairs (planned and unplanned) - Unit Startup # Fuel and Hydrogen Gas Balance All these activities of necessity impact refinery operations in a variety of ways. To minimize the risk of flaring, there must, at all times, be a balance between producers and consumers of fuel gas. When either a block of equipment or an individual equipment item is removed from service, if it either produces or consumes gases, then the balance of the fuel gas system is changed, and adjustments are necessary to bring the system back into balance. If the net change in gas production/consumption is large and adjustments in the rate at which gas is produced/consumed by other units cannot be made quickly enough, then flaring results. Flaring also occurs during Hydrogen Plant startups, shutdowns, or when a downstream hydrogen user experiences a sudden outage. As previously described, flare gas recovery compressors cannot operate with high volumes of hydrogen in the system without sustaining damage. When a hydrogen plant has been shutdown it typically is shutdown with a hydrogen consumer. In order to properly startup the consumer unit the hydrogen must first be available. Therefore, hydrogen plants are started up initially and may not have an outlet for all the hydrogen being produced. If a vent is not available, the hydrogen is sent to the flare gas recovery system if the system can handle minor volumes, otherwise it is sent to the flare. Hydrogen is also utilized for downstream equipment sweeping, thus the hydrogen plant is typically shutdown after the downstream unit. Thus, for similar reasons to startup there can be hydrogen containing streams sent to the flare system. If a hydrogen consumer suddenly shuts down, in order to minimize overall facility impacts, the hydrogen plant is typically kept running, rates may be reduced, but excess hydrogen flared until the downstream unit is restarted. Specific examples of this effect and fuel gas balance issues are listed below: - Fewer locations that can accept the gas due to equipment/units out of service - Hydrogen plant startup/shutdown - o Including Excess Hydrogen production following startup or unit shutdown - Temporary flaring of off-spec hydrogen during startup - Planned & Unplanned shutdowns can result in flaring - Planned & Unplanned shutdowns of the third party plant can result in flaring. - Unicracker Complex turnaround (i.e. numerous combustion devices shutdown) ## **Equipment Preparation for Maintenance** Additionally, in order to clear hydrocarbons from equipment in a safe and orderly fashion so as to allow it to be maintained, a variety of procedures must be used. Many of these necessary procedures result in changes in the quantity and quality of fuel gas produced. For example: - Depressurization of equipment - Pressurization of equipment with nitrogen or natural gas to remove hydrocarbon resulting in low fuel value (high nitrogen content) gas which cannot be used with burners designed for "normal" fuel gas, as there can be NOx production and flameout concerns with low BTU gas. - Steaming provides an efficient means for removing hydrocarbon clingage from equipment, but the effects of steam (high temperature, condensation production) can result in the need to shutdown flare gas recovery compressors. See the "Refinery Maintenance and Turnaround Activities" section for more details in regards to the reasons for flaring during equipment preparation for maintenance. ## Preventative Maintenance, On-Line Planned Maintenance, Equipment Upgrades, Changes In order to prevent unplanned failures preventative maintenance (PM) is conducted at varying schedules. Typically, PM is conducted to minimize production and/or environmental impacts by grouping PM activities together. Additionally, equipment upgrades occur periodically or changes may be made to improve existing systems. During equipment upgrades/changes pieces of equipment may be required to be taken out of service for brief periods of time to ensure worker safety and/or allow for equipment access. Flare Gas Recovery Compressor Maintenance - Major Maintenance - typically conducted in conjunction with the Unicracker Complex turnaround to minimize environmental impact (i.e. less gas being produced while the Unicracker Complex is shutdown). The purpose of the PM is to maintain the compressor to minimize unplanned failures. This results in better on-line efficiency. Unplanned failures typically require more downtime due to time needed to diagnose the failure and then acquiring the necessary parts to make repairs. Minor Maintenance – Based on on-going monitoring conducted on the compressor, see Recurring Failure section for more details, minor maintenance is conducted to replace parts or equipment which may fail or is not operating per the design. Purpose of the maintenance is to minimize and control downtime by preventing an unplanned, uncontrolled failure which may result in increased downtime. Additionally, the maintenance also can restore the compressor capacity and prevent flaring if the compressor is not functioning up to the equipment design. Refinery Relief and Blowdown System Maintenance – Periodic maintenance is required on sections of the relief and blowdown systems (e.g. process vessels, drums, flare water seals, flare tips, etc.). This maintenance can include periodic, required metallurgical equipment inspections as well as preventative maintenance cleaning and replacement of components. These activities are required to prevent unplanned shutdowns which might incur long repair periods of not performed proactively. Miscellaneous PM, Equipment Upgrades, Changes Flare Gas Recovery System Maintenance - Construction tie-ins to the flare system, instrument changes, electrical upgrades, new equipment installations could require equipment to be taken out of service. This might result in flaring in order to isolate equipment and then also during equipment startup. Equipment Upgrades / Changes - are made periodically to improve existing systems. This may require various pieces of equipment to be temporarily taken out of service. Portions of operating units or individual pieces of equipment may be taken offline for preventative maintenance or repairs. This can result in flaring during the clearing of equipment and flaring when equipment is put back in service. On-Line Maintenance - Water washing of U244 D-506 and U231 D-105 Reformate Stabilizer is conducted periodically. The procedure is managed in order to minimize loading to the flare gas recovery system but there are periods when flaring may occur during this procedure. These units were idled with the transition to renewable feedstocks. # 4.2.1.2 High Base/Continuous Load Although flaring is often the result of a sudden, short-term imbalance in the flare/fuel gas system, it is made more likely when the gap between the capacity of the flare gas recovery system and long-term average flow to the flare header is reduced. Examples of base load to the flare header include: - Leakage of relief valves - Low pressure equipment vented to flare header, e.g. tower overhead systems - Delayed coker depressurization - Low pressure tankage or odor sources vented to flare header via blower or compressor - Hydrocrackers and reformers at end of run with elevated gas production rates - Accumulation of small actions each of which results in production of flare gas - Seasonal issues with cooling water temperature resulting in increased rates to flare header - Temporary re-rerouting of gases from other systems such as odor abatement to fuel gas recovery in
order to prevent system overpressure. - Feed quality issue resulting in temporary increased base load. In cases of this type of flaring when the flare gas compressor is still operating the gasses recovered by the compressor will continue to be scrubbed for hydrogen sulfide removal at Unit 233. ## 4.2.1.3 Reduced Consumption of Fuel Gas Treated flare gas may be flared during supply/demand imbalance. If flaring is to be minimized, it is necessary to balance fuel gas producers and consumers in the refinery. Refinery modifications that can change the fuel gas balance so as to make flaring more likely include: - Energy efficiency projects that reduce fuel gas consumption - Fuel gas imbalances can occur when fuel consumers (e.g. heaters, turbines) are shutdown and more gas is being produced then can be consumed. - Fuel gas imbalances can occur when the third-party Hydrogen Plant conducts planned or unplanned maintenance on feed filters and knock out drums. ## 4.2.1.4 Upset/Malfunction An imbalance in the flare gas system can also result from any of a series of upsets or equipment malfunctions that either increase the volume of flare gas produced or decrease the ability of the fuel gas handling system to accommodate it. Examples include: - · Leaking relief valves, PRV malfunction - Relieving relief valves - Equipment plugging - Loss of a major compressor (e.g. Wet gas compressor) - Loss of flare gas compressors, including but not limited to: - o Reciprocating compressor seats overheating from high nitrogen or hydrogen content - Fuel gas with low specific gravity (due to Hydrogen), or high heat of compression resulting in overheating - o High inlet temperature to flare gas compressor - o Monitored safety/protective parameter (e.g. vibration) triggered shutdown. - o General mechanical problems inherent in the operation of rotating equipment. - High liquid level. - o Equipment failure resulting in loss of compressor efficiency. - Loss of other compressors (e.g. odor abatement, recycle hydrogen) - Loss of a utility (steam, air, cooling water, power) - · Loss of air fins or condensers - Failure of instrumentation, valve, pump, compressor, etc. to function as designed. - Fuel quality upsets - Hydrogen plant Pressure Swing Adsorption (PSA) operational changes (e.g. switching from 10 bed to 8 bed operation). - Hydrogen plant PSA valve leaks resulting in a unit upset. - Hydrogen may be sent to the flare system when there is a supply/demand imbalance. - Unplanned/sudden shutdown of 3rd party Hydrogen Plant. - Equipment failure which results in an immediate or controlled unit shutdown (e.g. charge pump failure) - Feed quality issue resulting in unit upset. (e.g. wet feed, lighter than typical feed) - Control system failures resulting in either unit shutdowns or unit not operating as efficiently in manual operating mode. - The unit Hazard and Operability (HAZOP) studies contain more specific listings of potential causes of equipment malfunctions and upsets which may lead to flaring. # 4.2.1.5 Emergencies Equipment failures and operational issues that result in equipment overpressure, typically leading to relief valves opening to the flare system, are classed as emergencies. Emergency flaring events are severe instances of upsets or malfunction. Emergencies are further defined in BAAD 12-12. - Line leak, fires due to leaking flanges, etc. can result in emergency unit shutdowns in which material from units is quickly sent to the flare. - Unit Hazards and Operability Studies (HAZOPs) and Process Hazards Analysis (PHA) also reference emergency conditions which may lead to flaring. These studies are a systematic evaluation of the hazards involved in the process. PHAs are required for initiation of a process, for major equipment/operating changes, and at least once every five years after that. One of the values of PHA's is to identify potential hazardous and develop means for mitigating hazards before they occur. For example, one of the ways to conduct this evaluation is to take unit piping and instrument diagram (P&ID). The consequences of failure of pieces of equipment (e.g. on a pump if flow is lost, flow is increased, flow is decreased) are discussed and the mitigation in place is reviewed. Where improvements should be made they are identified and tracked to completion. See Section 4.3.2.1 for more details about PHAs. #### 4.2.1.6 Miscellaneous - Undetermined Cause in some cases the cause of flaring cannot be determined. Typically, this is during minor flaring events (<500,000 scfd). Systems have been setup to try and pinpoint the cause of all flaring events, most events are traced back to a source but there are instances when a direct cause cannot be determined. - Natural Gas Purge flaring can occur if there is a spike in the natural gas purge flow. One of the ways this may occur is if the natural gas purge valve is opened too quickly or at a rate greater than typical flow. This results in the brief flaring of excess purge gas. - False Flow Meter Reading as previously described to BAAD, many parameters (e.g. water seal level, flare line pressure, flare tip cameras) are utilized to determine whether or not flaring has actually occurred. In some cases flow may be detected by the meter, for example due to thermal expansion, but not all other parameters indicate that flaring has occurred. This is a common issue due to the sensitivity of the ultrasonic flow meters. #### 4.2.1.7 Other Causes There are many potential causes of flaring, some of which are exceedingly difficult to eliminate, despite careful planning and system design. ## 4.2.2 Vent Gas Recovery Systems As required by 401.4.2 the following sections contain an audit of the vent gas recovery, storage, and treatment capacity. In addition, an evaluation for installing additional recovery, storage, or treatment equipment to recover portions of gases periodically sent to the flare. Refinery unit operations both produce and consume light hydrocarbons. Most of these hydrocarbons are routed directly from one refinery process unit to another. Refineries are constructed with a network of flare headers running throughout each of the process units in order to allow collection and safe handling of any hydrocarbon vapors that cannot be routed directly to another process unit. The hydrocarbon vapors are collected at low pressures in these flare headers. These gases are recovered for reuse by increasing their pressure using a flare gas compressor system. The compressed gases are typically returned to the refinery fuel gas system for use in fired equipment within the refinery. Any gas not compressed and sent to the fuel gas system is routed to a flare so it can be disposed of safely by combustion under controlled conditions. A typical flare gas system is shown in Attachment F. To recover flare gas for use in the fuel gas system, three criteria must be met. First, there must be sufficient flare gas compressor capacity. Second, there must be sufficient gas treating capacity. Finally, there must either be available storage volume or a user (e.g. fired heater) with a need for the gas. If any of these conditions are not met, then the gas cannot be recovered into the fuel gas header. ## **Existing Systems for Vent Gas Recovery** Within the Phillips 66 Rodeo Renewable Energy Complex at Rodeo, CA, the systems that currently exist for recovery of vent gas are described by the table below. | Flare System | Vent Gas
Recovery
Capacity
(MM scfd) | Storage
Capacity
(MM scf) | Scrubbing
Capacity for Vent
Gas
(MM scfd) | Total Gas Scrubbing Capacity (MM scfd) | |----------------------------|---|---------------------------------|--|--| | Main Flare & MP30
Flare | 4.75 | None | None | 35 ¹ | $_1$ The facility does not have a scrubber for gases sent directly to the flare. The flare gas recovery system typically sends gases to U233 for H_2S removal and then sends these gases to fired sources. The capacity listed above includes the total capacity of the scrubbing system. The Phillips 66, Rodeo Renewable Energy Complex vent gas recovery system does not include any dedicated capacity for storage of fuel gas or vent gas. However, on a continuous basis the refinery optimizes the refinery fuel gas system of producers and consumers to maximize the capacity available for treatment and reuse of recovered gases by employing the following strategies: - Adjusting the sources of fuel that are made up to the fuel gas system including imported natural gas, and butane: - Adjusting the operations of units that produce fuel gas range materials including at times reducing severity of operations to reduce fuel gas production if it would put the refinery in a flaring situation; - Adjusting the refinery profile for consumption of fuel gas by ensuring the cogeneration unit is at its maximum capacity (within constraints on exporting power), shifting rotating equipment to turbine drivers (which operate with steam generated in the fuel gas fired boilers), and at times reducing the throughput of processing units to minimize gas production. There are limitations to this activity. For example, the cogeneration unit has a sulfur dioxide (lb./hr) limit. The cogeneration unit utilizes a fuel mixture of refinery fuel gas (sulfur containing) and natural gas (nearly nil sulfur). As the ratio of refinery fuel gas is increased the units start approaching their sulfur dioxide limits. The amount of fuel gas burned in facility heaters is limited by permit conditions and energy efficiency constraints. - When possible, the usage of fuel gas can be increased for brief periods of time to mitigate or prevent flaring. # 4.2.2.1 Options for Recovery, Treatment and Use To address the requirements of Regulation 12 Rule 12 (401.4), the Phillips 66, Rodeo Renewable Energy Complex at Rodeo, CA has
considered the feasibility of further reducing flaring through additional recovery, treatment, and/or storage of flare header gases, or to use the recovered gases through other means. This evaluation considers the impact these additional systems would have on the volume of flared gases remaining in excess of what has already been recovered (as noted in the previous section), and the associated mass flow of hydrocarbons emitted after combustion in the flare control device. A typical flare header is connected to both a flare gas recovery system and to one or more flares. Normally all vapor flow to the flare header is recovered by a flare gas recovery compressor, which increases the pressure of the flare gas allowing it to be routed to a gas treater for removal of contaminants such as sulfur and then to the refinery fuel gas system. Gas in excess of what can be handled by the flare gas recovery compressor(s), the treater(s), and/or the fuel gas system end users flows to a refinery flare so it can be safely disposed of by combustion. Therefore, in order to reduce the volume of gas flared, three essential infrastructure elements are required: sufficient compressor capacity to increase the pressure of the gas to the point where it can be used in the refinery fuel system, sufficient storage volume to dampen out the variation in volumetric flowrate to the flare gas header, and sufficient capacity in treating systems to condition the gas (primarily by removal of sulfur) for use in the fuel gas system. Options for storage of flare gas are analogous to those for storage of other process gases. Gases can be stored at low pressure in expandable gas-holders with either liquid (water) or dry (fabric diaphragm) seals. The volumes of these systems expand and contract as gas is added or removed from the container. Very large vessels, containing up to 10,000,000 cubic feet of gas can be constructed by using multiple "lifts", or stages. Gases can also be stored at higher pressures, and correspondingly lower volumes, in steel bullets or spheres. The optimal pressure vessel configuration depends on system design pressure and total required storage volume. For any type of gas storage facility, selection of an acceptable site and obtaining the permits necessary for construction both present difficulties. Despite the refinery's demonstrated commitment and strong track record with respect to safe handling of hazardous materials, the surrounding community can be expected to have concerns about any plan to store large volumes of flammable gas containing hydrogen sulfide and other sulfur compounds. Safety concerns are expected to impact site selection as well, with a relatively remote location preferred. Modifications to the recovery, storage and treating of refinery flare gases are subject to the provisions and approval of federal and local regulations including Process Safety Management (PSM), Contra Costa County Industrial Safety Ordinance (ISO), and California Accidental Release Prevention Program (CalARP). Although the objective of the project would be a reduction in flaring, there are expected to be multiple hurdles along the path to a construction/land use permit. Flare gas treating is used to condition flare gas for use as fuel in the refinery fuel gas system. Treatment is focused on removal of sulfur compounds, with some systems improving fuel value by removing carbon dioxide as well. A range of technology options exist, most of which are based on absorption of acid gases into a "lean" amine solution (MEA, DEA, MDEA, DGA) with regeneration of the resulting "rich" solution by stripping at lower pressure. In order to recover additional fuel gas it is necessary to have sufficient capacity to match the capacity of gas treating systems to the peak flowrate of the flare gas requiring treatment. To assess the potential effect of additional flare gas recovery, a hypothetical design for an upgraded system was developed. The impact that this system would be expected to have on hydrocarbon emissions, based on the refinery's recent flaring history, was then evaluated. Results of this evaluation are provided for three system capacities corresponding to the rate of flow of additional flared gases that could be recovered, the modifications required to achieve that recovery, and the estimated total installed cost for the additional equipment needed for the increase in recovery. The budgetary level (order of magnitude) cost information provided in this section has been developed based on total installed cost data from similar installations where available, otherwise vendor quotes in combination with standard industry cost estimation procedures have been used to estimate system cost. An evaluation was conducted for the Phillips 66, Rodeo Renewable Energy Complex in Rodeo, CA. To conduct the analysis a summary of historical flaring was prepared. Flaring events were categorized to determine feasible means for reducing flaring through storage, recovery, and treatment. See Attachment G for summary of categorized, historical flaring. The period of 2004 – 2006 was utilized to determine general trends. The data for 2005 was utilized to quantify potential costs and benefits of additional storage, recovery, and/or treatment. Based on the data review it was determined that four cases should be examined. The cases include the following scenarios: - Case 1 Installation of Small Compressor (1.5 MMSCF/day) to enhance existing compressor recovery during peak loading. - Case 2 Installation of Large Compressor (6.0 MMSCF/day) to eliminate minor compressor loading events and some flaring events which occur during brief Flare Gas Recovery Compressor (G-503) preventative maintenance periods. - Case 3 Installation of high pressure storage sphere, installation of large compressor, and addition of amine treater. Value of this case would be to eliminate all events listed in Case 2 as well as some events which are quality driven (e.g. high Nitrogen & Hydrogen) due to equipment purging. - Case 4 Similar to Case 3 with a higher percentage of the volume generated during the quality driven flaring events would be eliminated. See Attachment H for example schematic of the equipment installations that would be involved in Case 3 and 4. Listed below is a summary of the overview of the analysis performed and the results of the analysis. | | Storage, Treatment, & Recovery Scenario - Emission Reduction & Cost Effective Analysis | | | | | | | | | | |------|--|-------|-------|-------|--------------------------------------|------------------------------|------------------|--|--|-------------------| | | Estimated Potential Reductions (tons/yr.) | | | | Cost
Effective
Basis
(tons) | Cost of
Control
(\$MM) | Co
Abat
Sy | ualized
ost of
tement
stem
MM) |
Cost
fectiveness
asis (\$/ton) | | | Case | VOC | SO2 | NOx | CO | PM | | | | | | | 1 | -0.15 | -0.62 | -0.02 | -0.19 | negligible | -0.98 | \$ 3.25 | \$ | 1.06 | \$
(1,084,092) | | 2 | -1.12 | -4.51 | -0.13 | -1.38 | -0.01 | -7.16 | \$ 7.50 | \$ | 2.51 | \$
(350,420) | | 3 | -1.57 | -6.35 | -0.19 | -1.94 | -0.02 | -10.07 | \$ 23.40 | \$ | 6.19 | \$
(615,476) | | 4 | -2.02 | -8.18 | -0.24 | -2.51 | -0.02 | -12.97 | \$ 23.40 | \$ | 6.19 | \$
(477,509) | ¹ Basis is BAAD Guidelines for calculation of cost-effectiveness for BACT using the "levelized cash flow method". Costs for equipment were based on cost curves developed by a third-party. It should be noted that the cost basis did not include the consideration of infrastructure adequacy and did not include all potential equipment and instrumentation necessary. It is expected that once a more rigorous evaluation is performed the costs will significantly be impacted. For example, the cost of infrastructure needs for equipment utilizing electricity and air is expected to be significant. Attachment M contains data utilized to calculate the cost effectiveness of the four cases described above. The storage sphere costs were based on quotes provided by Chicago Bridge and Iron and are contained in the Attachment. A cost curve was prepared by a third-party for the compressor costs. The costs were based on data points of actual costs provided by WSPA membership. For Case 3 and 4, the evaluation is based on the need for installation of new major systems in order to increase recovery of flare gases from current levels: Additional flare gas recovery compressor capacity - the estimated cost to provide additional compressor capacity to recover vent gas flowing in the flare header in excess of current compressor capacity, for transfer to storage and / or treatment. Costs provided are for one unspared compressor system to be added to one existing flare header. The estimate is for a reciprocating compressor with all necessary appurtenances for operation, including knock out pots, coolers, and instrumentation for a fully functional system. - Addition of surge volume storage capacity the estimated cost to provide temporary surge storage for a portion of the gases routed to the flare header in excess of the volumes currently being recovered, treated, and consumed. The addition of temporary surge storage volume is necessary for any further increase in flare gas recovery to allow flare gas flow (which is highly variable) to be matched to the demand for fuel gas. The cost used is based on a storage volume equal to the total volume of gas accumulated over one day, and is based on recovery in a high pressure sphere system with discharge at a controlled rate back to the flare gas header. Other lower pressure approaches were considered (low pressure gas holder, medium pressure sphere), but for the sizes analyzed a high pressure sphere was identified as the preferred approach based on operational,
safety and economic considerations. - Additional recovered gas treatment capacity the cost of additional amine-based treating capacity to process recovered gases for sulfur removal so that they can be burned by existing fuel gas consumers without exceeding environmental or equipment operational limits. The assumption is that for small increases in treating capacity the existing treater(s) will be modified / upgraded to allow for the increase. No additional cost has been included for expansion of sulfur recovery system capacity. Based on this review the Phillips 66, Rodeo Renewable Energy Complex has concluded that further expansion of systems for the recovery, treatment and use of flared gases is not the most effective approach to reducing these emissions. The refinery has concluded that the major source of flared gases on a volume basis can be attributed to large flow rate, low quality flaring events, especially those of extended duration such as may occur during emergency events or prolonged shutdowns where systems within the refinery are out of fuel gas (and / or hydrogen) balance. The refinery has allocated significant resources to the development of procedures to plan for, manage, and minimize large flow and duration flaring events. Further resources have also been allocated effectively to ongoing preventive maintenance programs, and even to adjust refinery operations on a severity and throughput basis. These approaches have been identified to be more effective than providing additional flare gas recovery system capacity. Additionally, it is expected that the practices discussed in this plan, specifically the development of a formal turnaround flare management procedure, continuation of incident investigations, and management system programs will result in further reductions of flaring events. These will likely prove to be most cost effective and meaningful. ## 4.2.2.2 Preventing Production of Low-Quality Flare Gas Measures to help prevent production of low-quality flare gas, e.g. sour gas, low BTU gas, high nitrogen content are further investigated in this section. The discussion is integrated with the discussion of turnaround and maintenance events as gas quantity (insufficient demand) and gas quality (unscrubbed during upset/malfunction and nitrogen/steam during turnaround) are the primary drivers for flaring during these events. It is for this reason that the measures used to minimize production of low quality fuel gas are closely related to those that can be applied to reduce flaring during maintenance and turnaround events. Preventing production of sour flare gas is accomplished by making sure that recovered flare gas is routed to the fuel gas system via a gas treating system. It is preventing the production of sour fuel gas that drives the need to match the capacity of treating systems to accept flare gas to flare gas recovery capacity. High fuel gas nitrogen levels are primarily caused by the nitrogen used to purge hydrocarbons from equipment in preparation for equipment opening. High nitrogen fuel gas content is controlled by limiting the rate at which nitrogen is introduced to equipment and ultimately the flare gas system during nitrogen purging operations. There can be a trade-off between nitrogen flowrate and the effectiveness with which the nitrogen mixes within the contents of the vessel from which hydrocarbons are being removed. These must be balanced on a case-by-case basis to determine the purge rate that represents the best compromise among competing process needs. Scheduling decommissioning activities to minimize overlapping nitrogen purge events is one of the best ways to control the nitrogen content of flare gas. # 4.3 Recurrent failure (401.4.3) - of Pollution Control Equipment - Process Equipment, or - A process to operate in a normal or usual manner: # 4.3.1 Reportable Flaring Events Attributable to the Same Process or Equipment Item For the Period from June 30, 2019 to June 30, 2025 A discussion and analysis of each event, including actions taken to avoid future flaring as a result of the same cause and the adequacy of maintenance schedules and protocols. Flaring as the result of malfunctions and upsets is included in the analysis. Attachment G contains a listing of the reportable events and the associated corrective actions. | | Reportable Flaring Events Attributable to the Same Process or Equipment Item | | | | | | | | |--------------------|---|---|--|--|--|--|--|--| | Date | Process or Equipment
Item | Actions Taken to Avoid Future Flaring | | | | | | | | 1/13/22 | Unit 246 was shutdown so | During the shutdown on 1/13/2022, all plugs that were removed during the 2019 turn | | | | | | | | 5/9/22-
5/10/22 | that header box plugs in E- 818 (fin fan cooling exchanger) could be optimally torqued to achieve desired gasket seating. | around were torqued to adequate level. During the shutdown on 5/9/22-5/10/22, compromised plugs were removed, header threads cleaned, and new plugs installed and torqued to adequate level. Review and update internal torque value tables that provide guidance for fin fan plug torqueing. | | | | | | | Note: This includes recurrent failures which have occurred with a 5-year window of the FMP operational period. #### 4.3.2 Means to Prevent Recurrent Failure There are many programs in place in order to prevent recurrent failures. The programs fall into two major categories; proactive and reactive. The purpose of the proactive programs is to have systems in place based on potential failures that could occur in order to prevent failures from occurring. The reactive programs examine failures that have occurred in order to learn from the failure and develop stronger proactive programs to prevent recurrence. The facility employs many levels of proactive and reactive programs. # 4.3.2.1 Proactive Programs BAAD Regulation references "the adequacy of existing maintenance schedules and protocols" for air pollution control and process equipment in respect to recurrent failures. There are major programs in place which support the prevention of failures. Additionally, these programs facilitate continuous improvement to prevent failures. Key programs in place are described below. # Phillips 66 HSE Management System Phillips 66 Corporation requires each refinery to implement a standard Health, Safety, and Environmental (HSE) Management System. This is achieved through providing organization structure, programs, procedures, processes, and resources to manage business activities safely and with respect and care for the environment. The HSE Management System seeks to: - Demonstrate management commitment to health, safety, & environmental stewardship. - Ensure that all reasonably practicable steps are taken to identify the hazards and risks arising from business activities. - Establish adequate control over business activities with the aim of achieving safe, incident, and injury free working conditions. - Maximize the operational integrity, reliability, and efficiency. - Ensure regulatory compliance. - Promote high standards and the continuous improvement of HSE performance. ## **Process Safety Management (PSM)** The refinery must comply with EPA's PSM. Major elements of PSM are also incorporated in California's Accidental Release Prevention Program (CalARP), the Contra Costa County (CCC) Industrial Safety Ordinance (ISO) and EPA's Risk Management Program. There are fourteen elements of PSM, each of these elements is included in some fashion with the programs listed above. In addition, the CCC ISO and CAL ARP program have some additional elements. Although all the elements directly or indirectly prevent failures or minimize the impact of a failure if it occurs, listed below are some of the programs that most directly support failure prevention. <u>Employee Participation</u> – Employees at all levels must be involved with the elements of PSM. This encourages ownership, participation and buy-in of incident investigation results and means for improvement, and promotes a better safety and operating culture. <u>Process Safety Information (PSI)</u> – the refinery is required to maintain accurate Process Safety Information. PSI includes chemical inventory, accurate drawings, operating procedures, etc. <u>Process Hazards Analysis (PHA)</u> - A PHA is a systematic evaluation of the hazards involved in the process. PHAs are required for initiation of a process and at least once every five years after that. The PHA team should be multi-disciplinary, including maintenance, operations, and engineering. The facilitator of the PHA must be trained in the methodology being used. For proper conduct of a PHA, the PSI must be as complete as possible. One of the values of PHA's is to identify potential hazardous and develop means for mitigating hazardous before they occur. <u>Operating Procedures</u> - Operating procedures include not only the steps for normal operations, but for upset conditions, temporary operations, start-up, and shutdown. Very important safety information must also be included in operating procedures. Contained in the procedures are basic hazards of exceeding operational limits, appropriate response to upset conditions, safety and health information, and emergency operations. The procedures are required to be up to date and reliable. They are also a critical element in training of personnel. <u>Training</u> - Training is required for all employees new to a process before they become involved in that process. The training must include the hazards of the chemicals and
process and what is necessary to protect themselves, their fellow employees, and their surrounding communities. Training should be both written/classroom and hands-on. Employers must evaluate the effectiveness of training and make adjustments to content and frequency of training based on those evaluations. <u>Pre-Startup Safety Review (PSSR)</u> - The Pre-Startup Safety Review is done before startup of a new operation or startup following a change in the process (see Management of Change, below). It is a means for ensuring that all essential action items and recommendations from the PHA have been completed prior to beginning operations. It is also the point at which the design parameters and standards used for construction are verified. If training or modifications to Process Safety Information (PSI) are necessary, completion of these items is also verified during the PSSR. Startup should not be allowed to occur until all safety-critical PSSR items have been completed. <u>Mechanical Integrity</u> - Employers are required to have a program to ensure the integrity of processes and equipment. Aspects include listing applicable equipment, training of maintenance personnel, inspection and testing, and maintenance of such systems as controls, vessels, piping, safety systems, and emergency systems. Development and modifications to the mechanical integrity program should be made based on operational experience, relevant codes, and industry standards. Management of Change (MOC) - "Change" includes anything that would require a change in Process Safety Information. This includes changes to equipment, processes, and instrumentation. A proper MOC system requires that any change be evaluated prior to its implementation. The level of evaluation can depend on the degree of change and its criticality to the safety of the operation. In addition to the evaluation and approval of a change, MOC requires that suitable training be conducted (if necessary) and the relevant PSI be updated. Compliance Audits - Per OSHA, compliance audits must be conducted at least once every three years. The purpose of the audits is to determine whether the practices and procedures developed under the provisions of the PSM standard are being followed and are effective. The auditor(s) must be knowledgeable in PSM and should be impartial to the facility being audited. An audit report must be developed and the employer must promptly respond to each of the findings. Once deficiencies are corrected, the corrective action must also be documented. ## Maintenance Excellence Philosophy <u>Predictive Maintenance</u> - The Rodeo Refinery utilizes predictive maintenance tools for both rotating equipment (pumps, blowers, fans, motors) and fixed equipment (pressure vessels, piping, storage tanks). These tools can be used to predict equipment condition and failures so that appropriate preventive measures can be taken, or so repairs can be scheduled prior to a failure. The Rotating Equipment/Reliability Department is responsible for ensuring that rotating equipment is in good condition and the Metallurgical Engineering and Inspection (ME&I) department is responsible for inspecting fixed equipment in the facility. ## **ROTATING EQUIPMENT** The following is a list of tools and techniques used for maintaining the rotating equipment: - Operator Inspections/Seal Integrity - Equipment Deficiencies - Vibration Analysis - Lube Oil Testing - Overhaul Testing ## **Operator Inspections / Seal Integrity** Operators visually inspect the equipment case and seal/packing area for signs of leakage. Mechanical seals are the number one failure mode in centrifugal pumps. Operations and maintenance personnel include visual monitoring of seals in their shift rounds. In some cases, for example where dual seals are installed, instrumentation (level, pressure, etc.) is available to alert operations that action is required. Seals subject to LDAR (Leak Detection and Repair) regulations are monitored for hydrocarbon emissions on a regular basis. Operators listen to and observe the equipment operation to detect any unusual noises and/or vibrations that may indicate damage or wear. # **Equipment Deficiencies** If a potential deficiency is observed, the operator contacts the Operations Supervisor to request consultation by the appropriate craft or by the Rotating Equipment Group. If it is determined that repair is required, the operator submits a Work Request via the Computerized Maintenance Management System and initiates the steps necessary to make the equipment available for repair. The Work Request documents the deficiencies noted during the operator inspection. ## Vibration Analysis Vibration analysis can be a useful predictive maintenance activity to identify potential equipment failures so that proper maintenance can be scheduled before a failure occurs. Vibration readings are taken using hand-held piezoelectric accelerometers. Readings are normally taken on all bearing planes (horizontal, vertical, axial). Local panel readings for vibration and temperature, where applicable, are also entered into the data collector. The data is then typically uploaded into the vibration analysis computer, which can be compared to historical data, industry guidelines, or vendor data to assist in scheduling maintenance or indicating the need for additional detailed analysis. Rodeo Refinery personnel participate on a Phillips 66 Rotating Equipment Best Practices Network to facilitate learning in this area. ## **Lube Oil Testing** Several pieces of rotating equipment are classified as critical. A sample of lube oil is drawn from the appropriate critical equipment, or other machinery of interest, quarterly or as warranted. This sample is sent to a certified laboratory for a standard set of analyses. The results are transmitted to the Machinery Specialist. The results of each analysis are entered into a computer database as a single record. The data included in the record are: - Equipment tag number - Date of sample - Analysis results Sample test results are trended and compared to established limits of operation for each specific piece of equipment. If a deficiency is noted, the Machinery Specialist initiates an appropriate corrective action. These could include continued monitoring, oil replacement, filtration, or a repair of the equipment. ## Overhaul Inspections Equipment that has been removed to the shop for repair undergoes a detailed internal inspection to identify wear or damage that could affect performance or mechanical integrity. Machinists perform visual inspections and measure clearances for comparison to manufacturer's specifications. If necessary, the Inspection Group can perform more sophisticated tests (radiographs, ultrasonic, magnetic particle, liquid penetrant and materials analysis) if requested by the Rotating Equipment Group or Maintenance. #### FIXED EQUIPMENT The Rodeo Refinery utilizes the following techniques to ensure fixed equipment is in good condition: - External Visual Inspection, - · Internal Visual Inspections, and - Thickness Surveys. ## **External Visual Inspection** The primary reasons for performing external visual inspections of pressure vessels, piping and storage tanks are to determine the type, rate and causes of any deterioration present that may negatively affect their mechanical integrity and/or service performance and to determine if any maintenance work is required to maintain the equipment in a safe operating condition. External visual inspections are performed by qualified Phillips 66 or contract inspectors. The external visual inspection results are documented in an external inspection report. The report is completed and dated by the inspector(s) performing the external visual inspection. It is reviewed by the plant's Inspection Supervisor or authorized representative. The completed report is filed in the equipment inspection history file located in the plant's Inspection Department. ## **Internal Visual Inspection** The primary reasons for performing an internal visual inspection are: - to determine if the essential sections of the vessel are safe to operate until the next inspection: - 2. to determine the type, rate and causes of any deterioration present which may negatively affect its mechanical integrity; and. - 3. to determine if any maintenance work is required to maintain the pressure vessel in a safe operating condition. The internal visual inspections are performed by qualified Phillips 66 or contract inspectors. Pressure vessels are typically visually inspected internally at least once every 10 years, in accordance with API standards. Non-fired boilers are inspected every 6 years maximum and fired boilers are inspected every 3 years maximum, in accordance with State of California requirements. In practice, many vessels and heaters in sulfur plants are visually inspected internally during a boiler inspection period, at a 3, 6, or 9 year interval and therefore, well within the 10 year maximum interval allowed by API industry standards. The inspection results are documented in an internal inspection report. The report is completed and dated by the inspector(s) performing the internal visual inspection. It is reviewed by the plant's Phillips 66 Inspection Supervisor or authorized representative. The completed report is filed in the equipment inspection history file located in the plant's Inspection Department. #### **Thickness Survey** A representative number of thickness measurements are taken on pressure vessels via ultrasonic and/or radiographic thickness techniques for remaining wall thickness at intervals pre-established by the industry. Thickness surveys are also performed on most process piping runs. The thickness survey is prompted by the plant's Inspection Department to meet all requirements for thickness surveys as outlined in the applicable API standard. The thickness surveys are performed by qualified Phillips 66 or contract inspectors who
have the appropriate education, experience, and qualifications. The general area of each thickness monitoring location (TML) is ultrasonically scanned and/or radiographed, and the lowest reading is recorded. When using ultrasonics, scanning the general area rather than monitoring the same exact location increases the chance of finding local corrosion and typically yields a larger (more conservative) general corrosion rate. The thickness survey results are completed and dated by the inspector(s) performing the thickness survey. It is reviewed by the Phillips 66 site Inspection Coordinator or authorized representative. The completed report is filed in the appropriate equipment file and all data is recorded in an electronic database (PCMS System). <u>Preventive Maintenance</u> - Preventive maintenance activities ensure that equipment and instrumentation function properly through their design life. Examples of these activities are outlined below. Deficiencies are corrected at the time of the inspection where possible or work orders are written to facilitate cleaning or repair. #### Instrumentation Instruments that are critical to unit operations are reviewed and calibrated and cleaned as needed. Examples include flow meters, fire eyes, temperature monitoring devices and analyzers used for performance monitoring and control. Plant performance testing, through pressure surveys, temperature indicators, efficiency calculations or other data collection is used to resolve discrepancies in measurement devices. ## **Rotating Equipment** To ensure reliable operation of rotating equipment, spare equipment can be operated, where installed, to facilitate repair. Seals and bearings are replaced based on inspections or predictive maintenance activities. Preventive maintenance tasks include cleaning, adjustment, and lubrication. Operators replace lubricating oil and grease on a frequency set by a master schedule for the Refinery. Appropriate lubricants are specified in a written plan. Steam turbine drivers' over-speed trip protection devices are tested at an established frequency. Fans and mixers are cleaned, lubricated, and tested. ### Fixed equipment Thickness measurements and corrosion monitoring (probes, coupons, external UT, and critical process variables) are used to schedule preventive maintenance on vessels. Refurbishment of steel through weld buildup, plate replacement, coatings, or vessel replacement is used to ensure the mechanical integrity of pressure vessels. Refractory is replaced based on inspections, monitoring skin temperatures and thickness in fired equipment and based on internal visual inspections of refractory condition. # Jacketing/Tracing Integrity of steam and electric tracing used in sulfur processing units is verified through regular plant walkthroughs/checklists by plant operations and maintenance personnel. # **Catalyst & Chemicals** Unit catalyst and chemical activity is monitored by unit engineers and operators through pressure surveys and temperature indicators. Lab testing is conducted on intermediate and products to monitor quality. When quality is compromised, operational parameters or other means are employed to ensure continued performance. <u>Turnaround Inspection And Repair</u> - Major maintenance turnarounds of the process and utility units are planned based on predictive/preventative maintenance activities. Prior to each planned shutdown, a work scope is developed for detailed inspection, repair, replacement and testing of equipment, catalyst, and chemicals to ensure the unit will operate properly until the next planned shutdown. The exact activities for each planned shutdown are determined by Operations, ME&I, Engineering, Reliability and Maintenance personnel prior to each shutdown. A criticality ranking process is used to determine which proposed work activities are included in the turnaround inspections and repairs. Where practical, maintenance is performed on the equipment while the unit is still in operation. Typical turnaround activities include cleaning equipment, replacing/rejuvenating catalyst and chemicals and inspecting/repairing/replacing equipment as needed. ## **Critical Instruments & Safety Instrumented System** The facility has a list of critical devices and has a procedure for handling Safety Instrumented Systems. Safety Instrumented Systems (SIS) take processes to a safe state when predetermined conditions are exceeded. This includes set points such as pressure, temperature, level, etc. These programs maintain the reliability of such devices and systems in order to ensure that shutdown systems have been appropriately established and are reliable. ### **Near Miss/Good Catch Program** A process is in place that encourages all employees to identify and report potential near misses. Near misses are undesired events which, under different circumstances, could have resulted in harm to people, damage to property or the environment, or production/business loss. Near misses may also include unsafe practices, acts or conditions. The value of this program is that it facilitates: - Identifying and addressing safety, procedural, environmental impact, design, or equipment issues in a proactive, non-threatening manner. - Identifies learning or training opportunities. - Sharing of "lessons learned" and best practices with other employees and facilities. # **Incident Investigation** An internal procedure is in place which identifies the type of failures which require incident investigation. This process is a key part of our Health, Safety, and Environmental Management System. Failures captured by this process typically include accidents, injuries, events with potential off-site impact, some levels of flaring events, upsets which result in business loss. The procedure requires that an investigation be conducted and corrective actions identified. The regulatory drivers for this program include, but are not limited to; EPA's PSM, EPA Risk Management Program, Contra Costa County (CCC) Industrial Safety Ordinance (ISO), California's Accidental Release Prevention Program (CalARP). Additionally, there are strong business case drivers for completing incident investigation and preventing recurrence. # **Root Cause Reporting** In addition to the incident investigations described above, root cause is required to be reported for higher level events based on various regulatory drivers. Regulatory drivers include but are not limited to; BAAD regulations 12-11 & 12-12, EPA SARA/CERCLA reporting requirements, Phillips 66 EPA Consent Decree requirements, Contra Costa County ISO. # Flare Monitoring & Reporting Procedure The procedure documents the BAAD monitoring and reporting requirements. Additionally, it contains levels in which flare incident investigations must be conducted. The levels correspond to those required by BAAD and in the Phillips 66 Consent Decree. See Attachment D for general overview of the process for reviewing flaring events. # **Use of Incident Investigation Documentation Software** Phillips 66 requires use of a Corporate wide software tool in which certain risk levels of incidents must be tracked. An overview of the incident is included in the software as well as the corrective actions. # **High Learning Value Event (HLVE)** If an event occurs in which a lesson learned might have value to sister refineries within Phillips 66 a system has been established for quickly sharing lessons learned so that other facilities may not experience a similar incident. # **Corporate Incident Notification Requirements** Higher level events, such as off-site impacts, require immediate notification to Phillips 66 corporate representatives. ## Corporate Health, Safety, and Environmental Reporting Requirements Flaring volumes are required to be reported and are tracked refinery by refinery to the Corporation on a regular basis. #### **Key Performance Indicators (KPIs) -** KPIs are reported internally throughout the facility on a periodic basis. The KPIs include the number and cause of flaring events. The purpose is to inform plant personnel of occurrences of these events and to encourage continuous improvement by tracking cause and number. # **Regulatory Notifications** There are various regulatory drivers which require notification of various levels of flaring events. Drivers include; BAAD 12-12, EPA's SARA/CERCLA, CCC Community Warning System requirements, etc. # 5.0 Other Information Requested by APCO to Assure Compliance (401.5) # 5.1 New Equipment Installations (404.2) No other information has been requested by the APCO. # 6.0 Root Cause Analysis and Corrective Action Requirements for Flares # 6.1 BAAD Reportable Flaring Event Determination & Reporting of Cause The BAAD mandates that root cause analysis be performed for flare events which exceed defined parameters. | Flaring Incident Definitions | BAAD 12-12-406 | |---|---| | Main FlareMP30 Flare | ≥500 lbs. SO ₂ per 24-hr
≥ 500,000 scf per calendar day | | Root Cause Analysis (RCA) Completion
Deadlines | Within 60 days following the end of the month [12-12-406] ¹ ¹ The Phillips 66 Consent Decree requires ≥500 lbs. SO₂ cause analysis to be completed within 45 days. | ### **ATTACHMENT A** RODEO RENEWABLE ENERGY COMPLEX SIMPLIFIED FLARE SYSTEM OVERVIEW #### **ATTACHMENT B** # Phillips 66 Rodeo Renewable Energy Complex, Rodeo, CA Flare Gas System Detailed Description Listed below is a detailed overview of the facility flare system. Although some parameters are contained in this description they are subject to change as operational or safety enhancements are identified. The Refinery Relief and Blowdown Systems provide a means for recovery or safe disposal of gases and liquids, which may be generated by
the process units. Typical sources of normal flow include coke drum steamout and switching, sampling, activation of relief valves, distillation tower overhead vapors, and purging of equipment for maintenance or startup. During emergencies, major flow may occur from heater or unit depressuring and the lifting of pressure relief valves. Gases and liquids flow through relief and blowdown lines to blowdown accumulators and knockout drums. Gases and vapors pass overhead to be recovered or flared. The liquids are generally reprocessed through appropriate operating units. There are two flares in the refinery – the Main Flare and MP-30 Flare. There are three relief and blowdown systems; the Refinery, the Hot Coker Blowdown, and the MP-30 system. Typically the gases sent to the blowdown systems are recovered, treated, and then utilized for fuel in the facility heaters and co-generation equipment. During periods when gases are not recovered, the flare gases are typically sent to the Main Flare. The Refinery and Hot Coker Blowdown system gases are routed to the Main Flare. The units located in the MP30 Complex relieve to the MP-30 Blowdown system. Typically, the gases sent to the MP-30 Blowdown System are recovered in conjunction with the gases from the Refinery and Hot Coker Blowdown system due to interconnecting piping. This interconnecting piping also accommodates minor flaring so that gases from the MP-30 Blowdown System are typically sent to the Main Flare. There are periods in which the Main Flare is shutdown in association with the Unicracker Complex shutdown. During these periods, the Refinery Blowdown system can be diverted to the MP-30 Flare. The Hot Coker Blowdown system would also be diverted to the MP-30 Flare while the Main Flare is shutdown. #### Refinery Relief and Blowdown System The Main Relief and Blowdown system handles relief and blowdown from the Coking Unit 200, Crude Unit 267, Gasoline Fractionation, Caustic Treating and Deisobutanizer Unit 215, Diesel Hydrotreating Unit 250, Steam Power Plant, Hydrogen Plant Unit 110, Fuel Gas Center Unit 233, the Unicracker Complex including Reforming Unit 244, Unit 246 Heavy Oil Hydrocracker (mid-2009), and Unisar Unit 248, Sulfur Units, Isomerization Unit 228, the Unit 120 3rd Party Hydrogen Plant (mid-2009), and minor MP-30 releases. The transition to renewables led to the idling of several of these units including the Coking Unit 200, Crude Unit 267, Gasoline Fractionation, Caustic Treating and Deisobutanizer Unit 215, and Isomerization Unit 228. The units that were idled are currently blinded from the flare system. #### F-1 Blowdown Drum Vapor and liquid releases from the units listed above flow through various blowdown headers to Refinery Blowdown Drum F-1. The Unicracker complex has its own separate Blowdown Drum F-45 upstream of F-1 to limit the liquid releases to F-1. Vapor and liquid release from the Unicracker Complex discharge into F-45. Liquids are knocked out and the vapor flows from F-45 through a 36-42" header to F-1. Not all relief valves from the Unicracker Complex discharge to F-45. Relief valves from D-305 Fractionator discharge directly into the 36-42" header from F-45. The Steam Power Plant and Unit 110 also have separate Blowdown Drums upstream of F-1 – Blowdown Drum F-35 and Flare Knock Out Drum V-18, respectively. The sites of the Steam Power Plant and Unit 110 have low points in their relief headers. Liquids condensing in the SPP and Unit 110 flare headers to F-1 flow back down the flare header to their respective blowdown drums. Entrained liquids are knocked out in F-1. At a high liquid level in F-1, blowdown pumps G-1A/1B automatically start and pump the collected liquid through Cooling Water Exchanger E-1 to the foul water tank. The foul water tank has a water phase and hydrocarbon liquid phase. The water phase is fed to the Phenolic Water Stripper D-901. The hydrocarbon liquid phase becomes feed to Coking Unit 200 or to Naphtha Hydrotreater Unit 230. #### F-3 Water Seal Drum and G-503 Flare Vapor Recovery Compressor Water Seal Drum F-3, located between drum F-1 and the Main Flare, permits the use of the blowdown system and its drums as suction surge for the G-503 Flare Vapor Recovery Compressor during normal releases. F-3 usually contains about an eight-foot water seal that diverts the gas in Blowdown Drum F-1 down the main 36" Unicracker blowdown header to the F-509 Knock Out Drum for G-503. The G-503 compressor, located in the Coker Light Ends area, returns the compressed gases to the refinery fuel gas system. The compressor design flowrate is 200,000 scf/hr of 23 MW gas. G-503 may also spare the Unit 200 G-501 Coker Wet Gas Compressor or the Unit 200 Odor Abatement compressors G-60A/B/C. When the vapor flowrate is higher than 200,000 scf/hr, vapors released to the refinery blowdown system break through the F-3 water seal and flow to the Main Flare. If the vapors released are from the MP-30 blowdown system, the vapors may also break through the F-604 water seal and flow to the MP-30 Flare. When G-503 is in G-501 or G-60A/B/C service, or G-503 is down, the F-3 water seal is removed, and vapors flow directly to the Main Flare. The F-604 water seal is not removed when G-503 is down, so that flaring of the normal releases only occurs at one flare stack. #### Main Flare Header Flare gas from D-7 Blowdown Drum and Unit 240 reactor depressuring gas release downstream of Water Seal Drum F-3. The Unit 240 reactor depressuring line bypasses drum F-1 and Water Seal Drum F-3 to accommodate depressuring of the reactors at a 300 psi/min rate. The Hot Coker Blowdown bypasses the F-3 Water Seal Drum to minimize back pressure on the Hot Coker Blowdown Drum D-7. Any gas breaking through the F-3 water seal, vapor from D-7, and/or Unit 240 depressuring gas enter the Main Flare Stack C-1 through a water seal at the base of the flare. This seal is one of the flashback protections for the Main Flare - prevents the backflow of gas or air into the flare lines, which could create explosive mixtures. Additional flashback protections are the molecular seal and continuous purge of the flare stack. An on-line oxygen analyzer is located between F-3 and 19C-1 and sounds an alarm on high oxygen content in the Unit 200 DCS to warn operators of potentially explosive mixtures in the flare header. #### .Vacuum Protection for Refinery Blowdown System After a hot vapor release through F-3, the water seal in F-3 will be automatically re-established on level control. To ensure flashback from the flare cannot occur, natural gas is added to F-1 on pressure control (PIC-530) at low pressures. The pressure indicator controller PIC-530 indicates and alarms in the Unit 200 DCS. #### Main Flare Purge Gas Requirements Natural gas supplies purge gas to prevent flashback. The purge gas enters the Main Flare above the water seal at the base of the flare. The molecular seal prevents both convective and diffusional backflow of air into the stack. The proprietary seal design allows some of the rising flare and purge gases to be trapped in the seal. This creates a zone, which is higher than atmospheric pressure and lower in molecular weight than air (lighter than air). Air cannot backflow through such a zone. #### Smokeless Flaring at Main Flare A small continuous flow of steam to the flare is provided to prevent a condensate build-up in the steam line and provide cooling to the flare tip. During a flaring event, additional steam is injected at the tip to aspirate air into the flame and ensure smokeless burning of the flare gases. Flow indicators, located on the two flare headers - 10" header from D-1 and 42" header from F-1-to the Main Flare stack- detect releases to the flare. These flow indicators also alarm in the Unit 200 DCS, so that the Unit 200 operators are aware that gas is being released to the flare. A monitor of the flare is located in the Unit 200 control room; so that the Unit 200 operators can continuously view the flare operation. If the flare is smoking, the steam flowrate to the flare tip is adjusted manually by the Unit boardman from the Unit 200 DCS. The CFEP project relief system changes are making enhancements to the steam associated with both flares to allow for higher volume flaring events to occur without resulting in a smoking flare. These enhancements will be taking place mid-2009. #### MP-30 Relief and Blowdown System When the Main Flare is in service, normally only the MP-30 Complex major releases flow to the MP-30 Flare. However, the MP-30 Relief and Blowdown System can also handle releases from Coking Unit 200 (Idled – 2024), Crude Unit 267 (Idled – 2024), Gasoline Fractionation, Caustic Treating and Deisobutanizer Unit 215 (Idled – 2024), Diesel Hydrotreating Unit 250, Steam Power Plant, Hydrogen Plant Unit 110, Fuel Gas Center Unit 233, Sulfur Units, and Isomerization Unit 228 (Idled – 2024), when the Main Flare is down for maintenance. During this maintenance period, the blowdown headers for Units 267 (Idled – 2024), 200 (Idled – 2024), 215 (Idled – 2024), 250, 110, 233, 228, Steam Power Plant, and Sulfur Plant Complex headers can be diverted to Blowdown Drum F-2. Releases to F-2 will flow directly to the MP-30 Flare Stack. Diverting the blowdown headers to F-2 is only done, when Blowdown Drum F-1 and/or Water Seal Drum F-3 must also be inspected or repaired with the Main Flare. If F-1 and F-3 do not have to be inspected when Main Flare is down, a 26" interconnecting line downstream of F-3 is opened to the 36" header from F-2. This allows the refinery to keep G-503 Flare Compressor in service during the maintenance of the Main Flare and minimize flaring. Only major releases will break the F-3 water seal and flow through the 26" interconnecting line to the MP-30 Flare. #### MP-30 Complex Blowdown Drum F-600 Releases from the Hydrotreating Units 229 and 230 and Reforming Unit 231 flow to Blowdown Drum F-600. Any liquid releases or entrained liquid
will drop out in F-600. Liquid in F-600 gravitates to F-603 Drain Pot. On high level in F-603, blowdown pumps G-600/601 automatically start. The liquids are pumped by level control through Blowdown Slops Cooler E-600 to the foul water tank, the same foul water tank for the Refinery Relief and Blowdown System. When level in F-603 has dropped to the preset level, the pumps automatically stop. Minor vapor releases up to 200,000 scf/hr are diverted from F-600 to the Refinery Blowdown System by a 15-foot water seal in F-604 Water Seal Drum downstream of F-600. These minor releases flow to the Refinery Blowdown System through a 12" cross-connecting line to the Sulfur Plant/Isomerization Unit common blowdown header. Major vapor releases break the water seal in F-604 and flow through a 42"/48" flare header to the MP-30 Flare. #### Vacuum Protection for F-600 and F-604 To prevent a vacuum, PIC-601 on F-600 adds natural gas to the MP-30 Blowdown on low pressure. In addition, the pipe entering the F-604 seal leg rises 19 feet above the top of the 15-foot water seal. Therefore, if a vacuum or partial vacuum occurs in the MP-30 blowdown system, water in F-604 will back flow up the seal pipe, but the seal will not be broken. On low pressure in the flare header, separate pressure controller PIC-658 adds natural gas to the flare line to prevent flashback. A small continuous flow of natural gas through a restriction orifice sweeps the flare line to ensure the line does not contain any H₂S, NH₃, or other heavier hydrocarbons after flaring ceases. #### MP-30 Flare F-2 Blowdown Drum (Partial spare for F-1) When blowdown headers are lined up to F-2, any entrained liquids in the vapor releases or any liquid releases to F-2 are knocked out in F-2. F-2 is also a low point in the system. Any liquid that condenses in the 36" header will flow back to F-2. At a high level in F-2, blowdown pumps G-2A/B automatically start and pump the collected liquid through Cooling Water Exchanger E-2 to the foul water tank. The foul water tank is the same foul water tank as listed for the Refinery Relief and Blowdown System. When a low level in F-2 is again reached, the blowdown pumps automatically stop. Even when no Unit blowdown headers are lined up to F-2, F-2 must remain in service when the MP-30 Flare is in service. Any high level at the base of the MP-30 flare is gravity drained to F-2. The continuous purge required for the MP-30 Flare Stack to prevent flashback also flows through F-2. #### MP-30 Flare Operation The MP-30 flare operates similarly to the Main Flare. The MP-30 Flare also has four electronic spark ignited pilots. Pilot operation is basically the same as the Main Flare. The MP-30 Flare also has a molecular seal. The flare tip is 48"diameter. Natural gas is also used as the purge gas for to prevent flashback. The continuous purge gas requirement of 0.01 ft/sec to the MP-30 Flare Stack is supplied through pressure regulator PCV-565 and flow restriction orifice FO-523 to 19F-2. The purge gas flows from 19F-2 through the 36" flare header to the MP-30 Flare. (The minimum purge requirement of 445 SCF/hr for this flare stack is set by the manufacturer's molecular seal and flare tip design.) In addition to the molecular seal and continuous purge, a water seal exists at the base of the flare stack to prevent flashback. The seal is designed to have a continuous water purge of 0.5 gpm. A continuous water purge ensures that any condensed hydrocarbon vapor that may accumulate is removed from the base of the flare. The continuous water purge and/or any condensed hydrocarbon gravitate from to F-2 for removal to the foul water tank. An on-line oxygen analyzer is located on the main 48" flare header downstream of the 36" F-2 flare header and 12" D-7 header connections. The analyzer sounds an alarm on high oxygen content in the Unit 200 DCS to warn operators of potentially explosive mixtures in the MP-30 flare system. #### Smokeless Flaring at MP-30 Flare A small continuous flow of steam is provided to the flare tip to prevent a condensate build-up in the steam line and provide cooling to the flare tip. When flaring occurs, additional steam is injected at the tip to aspirate air into the flame and ensure smokeless burning of the flare gases. Flow indicators, located on the 48" header from MP-30, the 36" header from F-2, and the 12" header from D-7 detect releases to the flare. These flow indicators alarm on high flowrates in the Unit 200 DCS. A monitor of the flare is also located in the Unit 200 control room; so that the Unit 200 boardman can continuously view the MP-30 flare. If there is a flow to the flare or the flare is smoking, the steam to the flare tip is manually increased by the boardman from the Unit 200 DCS. #### Hot Coker Blowdown System The Hot Coker Blowdown system was built with the Unicracker Complex in 1970. Releases to the hot Coker Blowdown System flow through a 16" blowdown header to Blowdown Accumulator F-6. Even though the system is described as the Hot Coker Blowdown system, not all releases are hot nor are all releases from Unit 200 Coking Section. Originally, most of the releases to the blowdown system were from relief valves on heater outlets, blowdown lines from heater outlets, and the relief valves on the Unit 200 Coke Drums (hot releases in excess of 650 °F). However, other factors such as type of material released from a relief valve will also cause the relief valve to be connected to the Hot Coker Blowdown System. Other Unit 200 connections include Unit 200 Vacuum Tower relief valve, crude feed pump relief valve, various thermal relief valves for heat exchangers, and pump clean-out/ blowdown lines at Unit 200. The Unit 267 Desalter, crude pump relief valves, and Diesel Filter relief valves discharge to the Hot Coker Blowdown System as well. Although Unit 233 can relieve to either F-6 or F-3 the primary route is through F-6. This is manually controlled. During periods of fuel gas imbalance the excess clean fuel gas is vented to F-6 through the 10" line. Liquid releases to the Hot Coker Blowdown system drop out in F-6. A high liquid alarm on F-6 that sounds on the DCS alerts the Unit 200 Operators that liquid is flowing to F-6. Operators manually start blowdown drum pump G-61 to pump the liquid to the recoverable oil tank. If the liquid is a hot release, the Operators will divert cooler gas oil from Unit 200 to the Hot Coker Blowdown header to cool the liquid release before pumping to tankage. Any vapor that is released from F-6 flows to Blowdown Drum D-7. On high temperature in the D-7 overhead line (150 °F), a water deluge control valve automatically opens to flood water into D-7. A high temperature alarm sounds in the Unit 200 control room on the DCS and a valve positioner alarm from this control valve sounds on the Unit 200 alarm panel when the deluge valve opens. This alerts operators that a hot release has occurred and additional operator intervention may be required for D-7. Water gravitates through the water deluge control valve from Tank 286 to D-7 and condenses most of the vapor released to D-7 by contact with the vapor by flowing over the disc and donut baffles inside D-7. Any vapor not condensed will flow overhead from D-7 to one of the flares for combustion. D-7 overhead is normally lined up to the Main Flare. The water and any entrained hydrocarbon liquid will discharge from D-7 through a water seal leg to the process sewer. During any release at the flares or to the Hot Coker Blowdown System, the pressure in D-7 will not exceed 15 psig. This water seal leg ensures that the water seal is not blown during any potential release. Some of the condensed hydrocarbon in D-7 will separate from the water at the base of D-7. The operators manually line up D-7 bottom to the Blowdown Drum Pump G-61 to pump the hydrocarbon liquids from D-7 to the recoverable oil tank. Gasses from the Hot Coker Blowdown system are recovered if the pressure in the blowdown does not exceed the pressure necessary to blow the water seal in the C-1 Flare Stack Water Seal Drum. Gasses are periodically sent to the flare from the Hot Coker Blowdown system. This 10" line is monitored with a separate ultrasonic meter. In 2006 there was approximately 150 hours in which flow was sent to the flare from this system. The majority of these 150 hours, approximately 90%, was during a period of fuel gas imbalance when clean fuel gas was being sent to the flare. (Clean fuel gas is not generated from the Hot Coker Blowdown system, excess gas is routed through the 10" line upstream of where the flow is monitored). Each stack tip has four electronic spark ignited pilots, each with its own ignition system. The pilots utilize electronic spark ignition for an automatic re-light function. When the thermocouple on the pilot senses a pilot outage (low thermocouple reading), the spark igniter immediately reacts to re-light the pilot. After a set period, the loss of pilot indication will alarm in the DCS in the control room. As a back-up system to this automatic electronic spark ignition system, each pilot has a manual flame front generator line. Temperature indicators for each pilot also alarm on low temperature in the to alert the operators that pilot flameout has possibly occurred. If the low temperature alarm remains on because the automatic spark ignition system has not been successful to re-ignite the pilot, an operator is then dispatched to the field to manually operate the flame front generator to re-ignite the pilot. #### Capacity of the Relief and Blowdown Systems The Refinery and MP-30 flare systems are sized to handle releases during refinery-wide utility failures -refinery-wide power failure, total saltwater cooling system failure, or 150 psig steam failure. The maximum design relief case for both these flare systems is currently a refinery-wide power failure. The relief scenarios were reevaluated as part of the 2009 CFEP. The design of an individual
unit blowdown header may be based on other failures. For example, the DIB blowdown header design is based on a refinery-wide saltwater failure. The Unit 267 blowdown header design is based on a 150-psig steam failure. The MP-30 blowdown system (consisting of F-600, F-604, and MP-30 blowdown header) is sized to handle releases from common utility failures for the MP-30 Complex - Units 229, 230, and 231. The two major utility failures, causing the highest relief loads, are power failure and cooling water failure. Power failure creates the highest radiation release concern in the flare area, because a refinery-wide power failure can cause both the MP-30 Flare and the Main Flare to have large releases. An MP-30 cooling water failure creates the highest back pressure in the system for certain MP-30 relief valves. #### **Interrelated Systems** Wet Gas Stream, process units, and compressor - The light ends section of Unit 200 (Idled 2024), Crude/Coking Unit (Idled 2024), previously processed the bubble tower wet gas and bubble tower raw naphtha stream to produce a stabilized naphtha. Wet gas (high C3 – C5 content) from the bubble tower reflux drum is compressed by the G-501 Wet Gas Compressor, a multi-stage centrifugal compressor. The compressed gas is mixed with the bubble tower raw naphtha. In exchanger E-511, salt water cools the combined stream before the stream discharges into the F-502 High-Pressure Separator. Vapor from the high-pressure separator flows to the D-503 Absorber. In D-503, the vapor is contacted with a stripped lean oil which removes the heavier components from the vapor. The scrubbed off-gas from D-503 is then pressure controlled to the light ends sour fuel gas header. The combined sour fuel gas stream from the light ends section flows to Unit 233, the Refinery Fuel Gas Center. The Flare Gas Recovery Compressor (G-503) can be put into Wet Gas Compressor (G-501) service, if needed. This is done on a planned and emergency basis. The value of this is to minimize overall flaring. The "Wet Gas" Compressor runs at a rate much higher than the Flare Gas Recovery Compressor. The Flare Gas Recovery Compressor typically runs at about 50% of the maximum flow on an annual average basis. When the Flare Gas Recovery Compressor is put into Wet Gas Compressor service the entire capacity of the Flare Gas Recovery Compressor is utilized. Although flaring will likely occur, the total rate of flaring has been minimized by approximately 2.3 MMSCFD by placing the Flare Gas Recovery Compressor into Wet Gas Compressor service. Odor Abatement: stream, process units, and compressor – There is a group of compressors and a closed vent system referred to as the "Odor Abatement" (OA) system. The OA System is a Refinery wide collection system that includes tank blanketing, vacuum towers non-condensable vapor, de-gassing vapors from various processes, butane tanks vents, and the iso-pentane tank vents. Seasonal ambient temperature increases will impact various processes causing an increase in flow of material to the OA System. The purpose of the system is to collect and control vapors from the sources listed above. Natural gas is purged into the system based on certain set points. Natural Gas as Blanketing Gas for tanks has been used due to low H2S/Sulfur content, nil oxygen content, consistent quality, and low molecular weight. Low molecular weight and low $H_2S/Sulfur$ are only critical to finished low sulfur products. Nil oxygen content is critical for finished product and intermediate products to prevent formation of materials that foul preheat exchangers. The compressors help maintain pressure in the system and maintain movement of the vapors. The vapors are routed, via the odor abatement compressors directly to Unit 233 Fuel Gas Center. The vapors are co-mingled with other recovered streams, such as the U200 Wet Gas & Flare Gas Recovery vapors, for sulfur removal. There are 4 odor abatement compressors. Typically, one or two compressors are operating with a third one as backup. A 4th compressor was installed 2nd Quarter 2009. Following the installation of the 4th compressor, 2 to 3 compressors will typically be operated with 1 to 2 spare compressors. The Flare Gas Recovery Compressor can be put into Odor Abatement service, if needed. Without compressor(s) in odor abatement service the tanks and other equipment associated with the system may relieve to the atmosphere, resulting in potential excess emissions and odors. By utilizing the Flare Gas Recovery Compressor in Odor Abatement service, emissions directly to the atmosphere are mitigated but flaring will likely take place. <u>F-502-</u> F-502 which is shown on the PFD shown in Attachment B is related to the Wet Gas Compressor system described above. Gasses collected and compressed in the G-501 Wet Gas Compressor are then sent to the Unit 200 F-502 High Pressure Separator. If the Flare Gas Recovery Compressor (G-503) is utilized in Wet Gas Compressor service, then the Flare Gas Recovery Compressor would discharge to the F-502 separator. #### ATTACHMENT C # RODEO RENEWABLE ENERGY COMPLEX FLARE SYSTEM PROCESS FLOW DIAGRAM # **ATTACHMENT D** # Phillips 66 Unit List | Unit Number | Unit Description | |-------------|---| | 40 | Raw Materials Receiving Unit | | 76 | Gasoline Blending Unit | | 80 | Refined Oil Shipping Unit | | 100 | Process Water Unit | | 110 | Hydrogen Plant | | 120 | Hydrogen Plant (new in 2009, 3 rd party operated by Air Liquide) | | 130 | Pretreatment - Fats, Oils, and Grease Recovery unit | | 150 | Pretreatment - High Pour Point Unit | | 160 | Pretreatment - Low Pour Point Unit | | 200 | Coking Unit (Idled 2024) ¹ | | 200 | Relief and Blowdown System | | 215 | Gasoline Fractionation and Deisobutanizer, and Caustic Treating Unit | | | (Idled 2024) ¹ | | 228 | Isomerization Unit (Idled 2024) ¹ | | 229 | Mid-Barrel Unionfining Unit (Idled 2024) ¹ | | 230 | Naphtha Unionfining Unit (Idled 2024) ¹ | | 231 | Magnaforming Unit (Idled 2024) ¹ | | 233 | Fuel Gas Center | | 235 | Sulfur Unit (new in 2009) | | 236 | Sulfur Unit (Shutdown 06/18/2024) ¹ | | 237 | Sulfur Treatment Unit (new in 2024) | | 238 | Sulfur Unit (Shutdown 06/18/2024) ¹ | | 240 | Unicracking Unit | | 244 | Reforming Unit (Idled 2024) | | 246 | Heavy Oil Hydrocracker (new in 2009) | | 248 | Unisar Unit | | 250 | Renewable Diesel Hydrotreating Unit | | 267 | Crude Distillation Unit (Shutdown 10/02/2023) ¹ | | MTC | Marine Terminal Complex | | PTA | Pre-Treatment Area | | SPP | Steam Power Plant | | | Relief and Blowdown System | ¹Shutdown or idled units are typically isolated from the flare system. #### **ATTACHMENT E** RODEO RENEWABLE ENERGY COMPLEX FLARE MINIMIZATION PROCESS FLOWCHART # Flare Minimization Flowchart # **ATTACHMENT F** **TYPICAL FLARE GAS RECOVERY SYSTEM** # Typical Flare Gas Recovery System Legend Normal Flare Gas Recovery Flow Path Normal Flare Gas ### **ATTACHMENT G** # RODEO RENEWABLE ENERGY COMPLEX FLARING EVENT OVERVIEW & CATEGORIZATION # **Historic Flaring Trends** | Year | Total Flow | Events
Requiring
RCA | Events
Requiring
RCA | All Others | |-------|------------|----------------------------|----------------------------|------------| | | (MMSCF/Y) | (MMSCF) | (% of Total
Flow) | (MMSCF) | | 2004 | 234 | 231 | 99% | 3.5 | | 2005 | 58 | 55 | 94% | 3.3 | | 2006 | 71 | 68 | 96% | 2.9 | | 2007 | 43 | 42 | 97% | 1.3 | | 2008 | 24 | 21 | 88% | 2.9 | | 2009 | 159 | 139 | 88% | 16.5 | | 2010 | 37 | 30 | 82% | 6.7 | | 2011 | 51 | 44 | 87% | 6.6 | | 2012 | 150 | 111 | 74% | 39.0 | | 2013 | 21 | 10 | 48% | 10.9 | | 2014 | 14 | 11 | 79% | 2.9 | | 2015 | 70 | 60 | 86% | 10.1 | | 2016 | 50 | 46 | 92% | 3.7 | | 2017 | 9 | 7 | 82% | 1.6 | | 2018 | 6 | 4 | 57% | 2.7 | | 2019 | 22 | 13 | 57% | 9.6 | | 2020 | 14 | 5.2 | 37% | 9.0 | | 2021 | 11.2 | 9.6 | 82% | 2.0 | | 2022 | 12.5 | 2.4 | 19% | 10.1 | | 2023 | 256.4 | 232 | 91% | 24.0 | | 2024 | 26.6 | 16.8 | 63% | 9.8 | | 2025* | 4.4 | 0.0 | 0% | 4.4 | ^{*} Until June 30th, 2025 #### **Prevention Measures** Listed in Causal Analysis Submitted to BAAQMD & Recurrent Failure Analysis | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow & Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |---------|--|---|--|---|-----------------------|---|---|-------------------| | 3/25/19 | Fuel Gas Upset - Flaring Fuel Gas to SPP | A fuel gas upset occurred on March 25, 2019 that resulted in hydrogen sulfide (H ₂ S) in the refinery fuel gas (RFG) to be at estimated concentrations greater than the 162 ppm (3-hour average) regulatory limit. Due to the higher-than-typical sulfur concentrations in the RFG, refinery personnel reduced RFG
consumption at the Steam Power Plant (SPP) gas turbines to meet SPP federally enforceable permit conditions that limit SO ₂ mass emissions. The reduction in consumption of RFG at the SPP resulted in excess RFG being sent to the flare. This resulted in the flaring of partially scrubbed gas with higher-than-typical sulfur concentrations. | Lack of anti-foam in DGA system. | Replaced pump with spare. | COMPLETED 3/26/19 | Duration: 22.86 hours
Flow: 1,726 MSCF
Emissions (lb)
SO2 – 317
CH4 – 500
NMHC – 1,377 | 4.2.1.4 Upset/Malfunction – Fuel
Gas Quality Upsets | Failure? 151-19 N | | | | | Foaming in DGA resulting in loss of H ₂ S stripping efficiency. | Add additional alarms to provide early indication when foaming may be occurring. | COMPLETED 6/21/19 | | | | | 4/23/19 | 3rd Party
Hydrogen Plant
shutdown due to
faulty component
on PSA valve | On April 23, 2019 at approximately 5:50 PM the Air Liquide Hydrogen Plant located next to the refinery experienced a sudden unplanned shutdown. Off-gas produced at the Phillips 66 Rodeo Refinery which is referred to as RFG A is a process feed to the Air Liquide Hydrogen Plant Hydrogen Reformer. Due to the sudden, unplanned shutdown the RFG A was not being utilized as feed by the Air Liquide Plant. This resulted in flaring of scrubbed RFG A gas. In addition, due to the sudden loss of a large volume of Hydrogen which supports the refinery process units this resulted in upset conditions for a number of units as well as fuel gas imbalances due to the sudden change in demand for refinery fuel gas. | Unplanned shutdown due to faulty component on PSA valve. | Faulty valve component identified and replaced prior to 3 rd party hydrogen plant restart. | COMPLETED 4/24/19 | Duration: 7.63 hours Flow: 1,048 MSCF Emissions (lb) SO2 – 18 CH4 – 267 NMHC – 676 | Fuel and Hydrogen Gas Balance (4.2.1.1) – Unplanned Hydrogen supplier shutdowns | 152-19
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow &
Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |-----------|---|---|---|---|-----------------------|--|---|--------------------| | | | | | | | | | Recurrent Failure? | | 9/25/2019 | G-501 Wet Gas
Compressor (G-
501)
experienced an
unplanned
shutdown. | At approximately 9:56 AM on September 25, 2019 the G-501 Wet Gas Compressor (G-501) experienced an unplanned shutdown. Following the G-501 shutdown, the gas from the Unit 200 Bubble Tower, which is normally recovered by G-501, was subsequently relieved to the refinery flare gas recovery system (FGRS). Due to the excess gas normally recovered by G-501, the FGRS could not recover the additional process gas resulting in flaring of unscrubbed gas. Per site procedures, steps were taken to put the G-503 flare gas recovery compressor in G-501 Wet Gas Recovery compressor in G-501 Service in order to reduce flow to the flare. Due to challenges in returning G-501 WGC to service it was determined to shut the Unit 200 Coker process unit down to cease flaring rather than wait for the G-503 flare gas recovery compressor were compressor was claring rather than wait for the G-503 flare gas recovery compressor was returned back into flare gas recovery service. | Controller operation in unusual mode. | Identify and enhance means to communicate unusual modes of operation for critical controllers, such as WGC spillback in manual. | COMPLETED 2/28/20 | Duration: 9:02 Flow: 1,983 Emissions (lb) SO2 - 7,082 CH4 - 511 NMHC - 1,474 | Upset/Malfunction – Loss of major
compressor, G-501 Wet gas
Compressor (4.2.1.4) | 355-19
N | | | | | Upon the initial shutdown of the G-501 compressor it would not immediately restart. It was found the starter electrical connections were bad which prevented rapid restart. The cause of the bad electrical connection is unknown, but it is potentially due to high AMP operation or some issue that occurred following the November 2018 startup following unit turnaround. | Replace components of the electrical starter to allow G-501 to restart. | COMPLETED 9/25/19 | | | | | | | | There was not heightened awareness that this AMP alarm may indicate G-501 shutdown nor that the compressor may be operating in an abnormal mode of operation. | Review and update the G-501
alarm set points to ensure proper
notification of potential equipment
shutdown. | COMPLETED 9/26/2019 | | | | | 10/3/19 | Unit 246 planned
shutdown | On October 3, 2019 Unit 246 was being shut down for maintenance work. As part of the unit shutdown, and to prepare for maintenance and entry, the unit was depressured and purged. The purged material was vented directly to the MP-30 Flare which resulted in the flaring of unscrubbed gases. | No new prevention measures or corrective actions were identified. These activities were planned maintenance activities that will re-occur in the future. | N/A | N/A | Duration: 32:45 Flow: 4,771 Emissions (lb) SO2 - 65 CH4 - 1,427 NMHC -861 | Maintenance, Turnaround, Startup,
and Shutdown – Equipment
Preparation for Maintenance,
Depressuring and Purging | 398-19
N | | 10/21/19 | Unit 240 Plant 2
Planned
Shutdown | On October 21, 2019 Unit 240 Plant 2 was being shut down for maintenance work. As part of the unit shutdown, and to prepare for maintenance and entry, the unit was depressured and purged. The purged material was vented directly to the Main Flare which resulted in the flaring of unscrubbed gases. | No new prevention measures or
corrective actions were identified.
These activities were planned
maintenance activities that will re-occur
in the future. | N/A | N/A | Duration: 9:07 Flow: 691 Emissions (lb) SO2 – 12 CH4 – 477 NMHC –59 | Maintenance, Turnaround, Startup,
and Shutdown – Equipment
Preparation for Maintenance,
Depressuring and Purging | 399-19
N | | 10/30/19 | Main Flare
turnaround and
F-3 vessel
inspection | Beginning on October 30, 2019 a planned
shutdown was conducted on the Main
Flare (S-296) and equipment associated
with the flare. The purpose of the
shutdown was to conduct preventative | No new prevention measures or
corrective actions were identified.
These activities were planned
maintenance activities that will re-occur
in the future. | N/A | N/A | Duration: 28:19 Flow: 2,948 Emissions (lb) | Maintenance, Turnaround, Startup,
Shutdown – Equipment
Preparation for Maintenance & | 400-19
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow & Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |----------|---|---
--|--|---|--|--|-------------| | | | maintenance work on the Main Flare and to conduct a required vessel inspection on the F-3 Water Seal drum on the Main Flare system. To remove the flare equipment from service chemical cleaning and steaming was performed to remove residual hydrocarbons from the system and to ensure safe working conditions for personnel conducting flare equipment inspection work. While the Main Flare was out of service for maintenance, flow was re-routed to the MP30 Flare (S-398). | | | | SO2 – 344
CH4 – 692
NMHC –562 | Working on Equipment (Section 4.2.1.1) | Failure? | | 11/11/19 | Unit 110
Hydrogen Plant
Pressure Swing
Adsorber
Unplanned
Shutdown | On November 11, 2019 the Rodeo Refinery was utilizing hydrogen from Unit 110, one of the two normal sources of Hydrogen. The Air Liquide third party Hydrogen Plant was undergoing a turnaround thus, was not providing a second source of hydrogen to the refinery. At approximately 1:09 PM there was an unplanned shutdown of a portion of the Unit 110 Hydrogen Plant. The Pressure Swing Adsorber (PSA) Hydrogen purification portion of Unit 110 shutdown. The loss of hydrogen led to the shutdown of the Unit 250 Diesel Hydrotreater. Flaring of unscrubbed gas occurred due to the shutdown of the PSA, the shutdown of Unit 250, and the related hydrogen imbalance that occurred as the PSA and Unit 250 restored normal operation following the shutdowns. | Valve PV-78C broken spring | Spring replaced Evaluate and update the Preventative Maintenance (PM) frequency for PSA valves dependent on service, maintenance history, and manufacturer recommendations | COMPLETED 11/15/19 COMPLETED 3/2/2022 | Duration: 8:40
Flow: 1,965
Emissions (lb)
SO2 – 140
CH4 – 498
NMHC –181 | Hydrogen Gas Balance (4.2.1.1) – unplanned Hydrogen plant shutdown Upset/Malfunction (4.2.1.4) – Hydrogen plant PSA operational changes, switching from 10 bed to 8 bed operation Upset/Malfunction (4.2.1.4) – failure of PSA valve | 038-20
N | | 12/2/19 | Fuel gas upset | A fuel gas upset occurred on December 2, 2019 that resulted in elevated sulfur concentrations in the refinery fuel gas ("RFG"). Due to the higher-than-typical sulfur concentrations in the RFG, RFG consumption at the Steam Power Plant (SPP) gas turbines was reduced to remain in compliance with federally enforceable permit conditions that limit SPP SO ₂ mass emissions. The reduction in consumption of RFG at the SPP resulted in flaring of the scrubbed RFG. | Passivation agent used during pre-
sulfiding caused elevated total sulfur in
SPP fuel gas. | Identify alternative passivation agent for use during pre-sulfiding that will not result in the formation of mercaptans | COMPLETED 8/13/20 | Duration: 17:10 Flow: 3,200 Emissions (lb) SO2 – 53 CH4 – 802 NMHC –1,865 | Upset/Malfunction (4.2.1.4) – fuel gas quality upsets Maintenance, Turnaround, Startup, and Shutdown (4.2.1.1) – unit startup | 082-20
N | | 12/9/19 | Unicracker
Complex
planned
shutdown | The Unicracker (Unit 240) Complex underwent a turnaround during the 4th quarter of 2019. During the startup of Unit 240 there was a period of intermittent flaring of unscrubbed gas on December 9, 2019. | U240 high catalyst activity during catalyst conditioning. | Determine if another catalyst conditioning agent can be used that would allow for better control of light hydrocarbon production during future start-ups with fresh catalyst. | COMPLETED 4/13/20 | Duration: 7:55 (int) Flow: 248 Emissions (lb) SO2 – 712 CH4 – 51 | Maintenance, Turnaround, Startup,
and Shutdown (4.2.1.1) – Unit
startup and catalyst change | 050-20
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow &
Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |--------------------------------|---|---|--|--|---|---|--|-------------| | | | | | | | NMHC - 162 | | Failure? | | 12/11/19 | SRU Upset | At approximately 5:00 AM an upset began at the Sulfur Recovery Unit 235 (U235). Shortly after the Sulfur Recovery Unit 236 (U236) also began to show indications of upset conditions. In light of the upset conditions at U235 and U236 and resulting impacts to the Refinery fuel gas system, the Refinery Emergency Operating Procedure (REOP-10) "Unplanned Sulfur Plant Shutdown or Loss of DGA Circulation" was implemented. One of the elements of this procedure is to circulate the Flare Gas Recovery Compressors (FGRCs), which resulted in flaring of unscrubbed gas. Flaring occurred primarily from 7:52 AM to 11:40 AM. There were a few other brief (<10 minute individual) minor periods of flaring during the day. | Sponge oil pre-saturator vessel F-304 level indicator LI-004 malfunctioned during unit start up. Vessel hydrocarbons carried over to the DGA system. | Upon discovery of the failed level indicator, liquid level in F304 was manually lowered and the level indicator was corrected. Schedule re-occuring preventative maintenance testing plan for LI-004. Update Unit 240 Plant 3 start up procedure to require visual level verification of F-304 throughout start up activities. Include weekly visual level verification using sight glass in unit operator rounds | COMPLETED 12/11/19 COMPLETED 3/7/20 COMPLETED 3/13/20 COMPLETED 3/13/20 | Duration: 7:55 (int) Flow: 532 Emissions (lb) SO2 – 7,500 CH4 – 174 NMHC – 258 | Upset/Malfunction (4.2.1.4) — Failure of instrumentation, valve, pump, compressor, etc. to function as designed. Upset/Malfunction (4.2.1.4) — Fuel quality upsets | 054-20
N | | 3/5/20 | 3 rd party power
voltage sag. | On March 5, 2020 a voltage sag occurred in the third-party power supply. This resulted in flaring due to the loss of compressors and other major pieces of equipment. In addition, several process units were impacted by the voltage sag. The Unit 246 Hydrocracker shut down following the voltage sag. Flaring occurred after the voltage sag due to the unit and electrical impacts. Additional flaring occurred the following day due to a unit startup. | Third Party Power Supply Voltage Sag Routing of Unit 246 D-803 H ₂ S Stripper overhead liquid to blowdown | 1. Phillips 66 has engaged the third-party and has requested that its standard preventative maintenance practices be shared with Phillips 66. Phillips 66 is also in communication with the supplier on future capital projects for improving electrical supply reliability for lines that supply electricity to the refinery. 2. Update procedure to keep U246 D-803 H2S Stripper overhead on-grade to Unit 240 Plant 3 at lower process rates before routing this stream to blowdown. | 1. COMPLETED 3/20/2020 3. COMPLETED 6/9/20 | Duration: 3:57 Flow: 208 Emissions (lb) SO2 – 715 CH4 – 32 NMHC – 143 | Upset/Malfunction (4.2.1.4) – Loss of a Utility | 143-20
N | | 10/16, 10/17 and
10/19/2020 | d | On October 16, 2020 at approximately 3:32 p.m. the Air Liquide Hydrogen Plant located next to the refinery experienced a sudden unplanned shutdown. Off-gas produced at the Phillips 66 Rodeo | Unplanned shutdown due to PSA valve operation. | Slow to close valve identified and replaced prior to 3 rd party hydrogen plant restart. | COMPLETED 10/17/20 | Duration: 39:03 int Flow: 4,226 MSCF Emissions (lb) | Fuel and Hydrogen Gas Balance
(4.2.1.1) –
Unplanned Hydrogen
supplier shutdowns | 468-20
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow & Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |------------------------|------------------------------|--|---|---|---|---|---|--------------------| | | | | | | | | | Recurrent Failure? | | | | Refinery, which is referred to as RFG A, is a process feed to the Air Liquide Hydrogen Plant Hydrogen Reformer. Due to the sudden, unplanned shutdown the RFG A was not being utilized as feed by the Air Liquide Plant. This resulted in flaring of scrubbed RFG A gas. The sudden loss of a large volume of hydrogen, which supports the refinery process unit operations, resulted in upset conditions and shutdowns for several process units as well as fuel gas imbalances. These process unit upsets and shutdowns resulted in the flaring of unscrubbed gas. | | | | SO2 – 688
CH4 – 474
NMHC – 816 | | | | 10/6/21 to
10/14/21 | | On September 28, 2021 a third-party hydrogen plant that supplies hydrogen to the refinery shut down, resulting in a shutdown of the Unicracker Complex. Following restart of the third-party hydrogen plant, Phillips 66 restarted the Unicracker Complex on October 2, 2021. Shortly following startup, Phillips 66 detected a low rate of flare flow at the Main Flare. Phillips 66 promptly investigated the cause of this low flare flow and determined the flow to the flare was downstream of the flare seal drum and likely originating from the Unicracker Complex. It was determined that pressure safety valves (PRVs) 2PSV30 and 2PSV31 on the 2F-201 High Pressure (HP) Separator were the most likely source of the flow to the flare. This source was confirmed by systematically and safely sequentially isolating valves upstream from the pressure relief valves. Flare activity due to the leaking PSVs continued until the unit was shut down and the PSVs were replaced. | UK Plant 2 100 lb. Relief Vales (2PSV30 and 2PSV31) Leaking to Flare Lack of visibility of control valve in closed position | Plant 2 shut down to replace the pressure relief valves. The seating material for the replacement PSVs was upgraded during the shutdown to help further prevent recurrence during future unit startups. 2. The DCS displays to show SIS alarms in two displays | 1. COMPLETED 10/16/21 2. COMPLETED 10/16/2021 | Duration: 208:39 int Flow: 4,893,360 MSCF Emissions (lb) SO2 – 1,282 CH4 – 949 NMHC – 1,232 | High Base Continuous Load (4.2.1.2) – Leakage of relief valves Upset/ Malfunction (4.2.1.4)- Leaking relief valves, PRV malfunction | 438-21
N | | 11/11/21 | | Flaring occurred at the Main Flare (S296) on November 11, 2021, for approximately 1 hour and 48 minutes from 12:20 P.M. until approximately 208 P.M. due to a Sulfur Recovery Unit (SRU) Complex upset. In response to this event the Refinery emergency sulfur plant shutdown procedure (REOP-10) was implemented | Amine flash drum F-803 level indicator LIT-801 failed. | Upon identification of
the level indication
failure, the pneumatic
level indicator at the
spare drum was
replaced with an
electronic | COMPLETED 11/12/21 COMPLETED 12/17/21 | Duration: 1:48 int Flow: 395 MSCF Emissions (lb) SO2 - 6,352 CH4 - 135 NMHC - 239 | Upset/ Malfunction (4.2.1.4)- Failure of instrumentation, valve, pump, compressor, etc. to function as designed. | 482-21
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow & Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |-----------------------------|------------------------------|---|--|---|-----------------------|--|--|--------------------| | | | | | | | | | Recurrent Failure? | | | | to initiate operational changes to minimize impact. One of the elements of this procedure is to circulate the Flare Gas Recovery Compressors (FGRCs) which resulted in flaring of unscrubbed gas. During the flare activity there was also a period of uncertified observations of the flare which indicated the presence of visible emissions. The flare visible emissions courred from approximately 12:31 P.M. until 1:45 P.M. | | differential pressure level indicator 2. Revise Procedure RD-U236-NOP-921 "Amine Flash Drum F- 809 Remove from Service" to include enhanced monitoring of Amine and oil side while in F-803 service. | | | | | | 01/13/22 | | On January 13, 2022, process vessels at Unit 246 were purged and cooled with nitrogen as part of a planned shutdown for maintenance of the unit. During this period, nitrogen was used to purge gases from the unit and cool equipment. These unscrubbed gases were directed to the flare and bypassed the flare gas recovery system. | Unit 246 was shut down for repairs to one of its coolers and partially depressured. During the shutdown, unscrubbed gas and vent gas was sent to the flare. | | N/A | Duration: 10:00
Flow: 561 MSCF
Emissions (lb)
SO2 – 100
CH4 – 161
NMHC – 27.3 | Maintenance, Turnaround, Startup,
Shutdown – Equipment
Preparation for Maintenance
(Section 4.2.1.1) | 122-22
Y | | 02/23/22 | | On February 23, 2022, there were periods of intermittent flaring at the MP-30 flare (S398) due to a Unicracker Complex upset. During flare activity at the MP-30 Flare, unscrubbed gases were directed to the flare and bypassed the flare gas recovery system. During this upset there was also flaring at the Main Flare (S296). No BAAQMD 12-12 thresholds were exceeded for the Main Flare. There was a period of smoking from the Main Flare that was reported as a Tille V deviation. | Redundant software connection falsely indicated abnormal temperature differential. | Remove redundant software connected temperature signal to minimize possibility of corrupted data transfers. Hardwire only temperature indication was retained for safety system initiation. | COMPLETED 2/25/2022 | Duration: 2:19 Flow: 781 MSCF Emissions (lb) SO2 – 13 CH4 – 325 NMHC – 52.8 | Equipment failure which results in
an immediate or controlled unit
shutdown- Upset/Malfunction
(Section 4.2.1.4) | 174-22
N | | 05/09/22 to
05/10/22 | | On May 9, 2022, process vessels at Unit 246 were purged and cooled with nitrogen as part of a planned shutdown for maintenance of the unit. During this period, nitrogen was used to purge gases from the unit and cool equipment. These unscrubbed gases were directed to the flare and bypassed the flare gas recovery system. | Unit 246 was shut down for cooler
equipment repairs and partially
depressured. During the
shutdown,
unscrubbed gas and vent gas was sent
to the flare. | No new prevention measures or corrective actions were identified. The maintenance at Unit 246 and partial depressurization is a planned activity. | N/A | Duration: 11:50 int
Flow: 1058 MSCF
Emissions (lb)
SO2 – 464
CH4 – 384
NMHC – 72 | Maintenance, Turnaround, Startup,
Shutdown – Equipment
Preparation for Maintenance
(Section 4.2.1.1) | 257-22
Y | | 01/21/2023 to
01/22/2023 | | On January 21, 2023 flaring occurred from approximately 10:30 p.m. to January 22, 2023 at 7:35 a.m. due to a utility system upset. The utility system upset resulted in numerous units being shutdown and/or idled due to loss of utility steam. The unit shutdowns and subsequent restarts resulted in | SPP B Turbine Overspeed Trip Indication failed. | Inspect speed trip probes and associated wiring. Replace failed speed probes and nearby wiring re-tightened | COMPLETED 1/22/2023 | Duration: 13:10 int
Flow: 4730 MSCF
Emissions (lb)
SO2 – 449
CH4 – 1020
NMHC – 1336 | Upset/Malfunction (4.2.1.4) Failure of instrumentation to function as designed Fuel and Hydrogen Gas Balance (4.2.1.1) Fewer locations that can accept gas due to equipment/units out of service | 163-23
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow &
Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |-----------------------------|------------------------------|---|---|---|---|---|---|--------------------| | | | | | | | | | Recurrent Failure? | | | | intermittent flaring through January 27, 2023. This upset resulted in the flaring of scrubbed and unscrubbed gas. | | | | | Maintenance, Turnaround, Startup,
& Shutdown (4.2.1.1) Unit startup | | | 01/23/2023 to
01/27/2023 | | On January 21, 2023 flaring occurred from approximately 10:30 p.m. to January 22, 2023 at 7:35 a.m. due to a utility system upset. The utility system upset resulted in numerous units being shutdown and/or idled due to loss of utility steam. The unit shutdowns and subsequent re-start of the process units resulted in intermittent flaring through January 27, 2023. The unit re-start activity occurred primarily from January 23 to 27, 2023. This upset resulted in the flaring of scrubbed and unscrubbed gas. | Primary cause of flaring was unit shutdown caused by the SPP-B upset on 01/22/2023 (see previous entry). | See previous entry for the flaring event that occurred on 1/21/2023-1/22/2023 | See previous entry for the flaring event that occurred on 1/21/2023-1/22/2023 | Duration: 68:58 int
Flow: 1288 MSCF
Emissions (lb)
SO2 – 625
CH4 – 292
NMHC – 741 | Upset/Malfunction (4.2.1.4) — Failure of instrumentation to function as designed (initiating event) Fuel and Hydrogen Gas Balance (4.2.1.1) — Fewer locations that can accept gas due to equipment/units out of service Maintenance, Turnaround, Startup, & Shutdown (4.2.1.1) — Unit startup | 163-23
N | | 04/11/2023 to
04/12/2023 | | At approximately 4:42 p.m. on April 11, 2023, the A-Turbine of the Rodeo Refinery Steam Power Plant (SPP) tripped offline. This resulted in a steam utility upset along with multiple unit shutdowns. | SPP A Turbine trip due high combustor basket temperature. | Revise the SPP shutdown procedure to specify the SPP and refinery fuel gas system constraints and necessary conditions that limit SPP turbine operation on two-turbine operation. During future planned maintenance, the SPP A pneumatic controller will be inspected as needed. | 1. COMPLETED 12/8/2023
2. COMPLETED 4/3/2025 | Duration: 11:18 int
Flow: 2380 MSCF
Emissions (lb)
SO2 – 1127
CH4 – 590
NMHC - 1186 | Upset/Malfunction (4.2.1.4) Loss of a utility (steam, air, cooling water, power). Fuel and Hydrogen Gas Balance (4.2.1.1). Fewer locations that can accept gas due to equipment/units out of service. Maintenance, Turnaround, Startup, & Shutdown (4.2.1.1) - Unit shutdown | 215-23
N | | 04/12/2023 to
04/19/2023 | | On April 12 through 19, 2023 various refinery units were in the process of startup after unplanned shut down due to a utility upset on April 11, 2023. As part of the startup, recycle gases and other gases were vented to the Flare Gas Recovery System and directly to the flare. This contributed to the flaring of excess off-gas and PSA purified hydrogen. | The primary cause for flaring was due to startup of various units in the refinery and the third-party hydrogen and steam provider following a utility upset. | No new prevention measures or corrective actions were identified. Start-up activities after unplanned shutdown due to process upsets will re-occur in the future. | N/A | Duration: 195:36
Flow: 103,645 MSCF
Emissions (lb)
SO2 – 4628
CH4 – 1796
NMHC - 1381 | Maintenance, Turnaround, Startup,
& Shutdown (4.21.1) – Unit
startup, fuel gas balance, hydrogen
imbalance | 232-23
N | | 05/14/2023 to
05/15/2023 | | Maintenance, Turnaround, Startup, & Shutdown (4.2.1.1) – Unit startup, fuel gas balance, hydrogen imbalance. | The primary cause for flaring was due to a leaking pilot-type relief valve PSV-05B. Upon identification of elevated flow, the pressure relief valve was isolated, and the relief valve was removed for repairs. | PSV-05B removed from service for repair and refurbishing. | COMPLETED 5/19/2023 | Duration: 00:33 Flow: 1232 MSCF Emissions (lb) SO2 – 33 CH4 – 90 | 4.2.1.2 High Base/ Continuous
Load – Leakage of relief valves | 299-23
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow &
Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |---------------------------|------------------------------|---|---|---|---|---
--|-------------| | | | | | | | NMHC - 80 | | Failure? | | 7/7/2023 to
7/8/2023 | | At approximately 8:52 p.m. on July 7, 2023, the G-802 recycle gas compressor at Unit 246 (Heavy Gas Oil Hydrocracker) tripped and caused the unit to shut down. Intermittent flaring from the shutdown and immediate startup occurred until approximately July 8, 2023, at 7:58 p.m. In response to the flaring event, process unit feed rates at adjacent units were reduced. BAAQMD issued NOV A62220 in response to this flaring event. | Lube Oil pump tripped during routine maintenance activity. | Enhance critical pump switch procedure to include more details about pump switch steps. The enhanced procedure will require field operators to verbally confirm with the board operator that discharge pressure is at the proper level for the pump being brought into service prior to stopping the spare pump that is being removed from service. | COMPLETED 2/29/2024 | Duration: 23:05 (int) Flow: 4,784 MSCF Emissions (lb) SO2 - 2854 CH4 - 815 NMHC - 582 | Upset/Malfunction (4.2.1.4) – Loss
of major gas compressor. | 332-23
N | | 8/23/2023 to
8/26/2023 | | At approximately 3:00 p.m. on August 23, 2023, the C-Turbine of the Rodeo Refinery Steam Power Plant (SPP) experienced an emergency shutdown due to a low level in its high-pressure steam drum, F-40C. This resulted in a steam utility upset along with multiple unit shutdowns. As the refinery began the controlled shutdown and rate reduction of several process units to stabilize conditions, flaring started at approximately 3:10 p.m. Intermittent flaring continued until August 26, 2023 at approximately 12:30 a.m. Startup of units that experienced unplanned shutdowns began around 11:00 p.m. on August 23, 2023. | Phillips 66 performed an emergency shutdown of SPP-C following a visual inspection of the high pressure steam drum, F-40C, to verify a low-level alarm. Before the high-pressure steam drum dropped in level, a compressed air cooler (E-8) on the SPP instrumentation air system was discovered to have a high-pressure differential. Due to this high pressure differential, a pressure regulator (PCV-905) opened allowing backup plant air to bypass the SPP instrument air dryer. The plant air system has excess moisture when compared to the SPP instrument air system. Phillips 66 believes this excess moisture from the plant air led to a build-up of water in the SPP instrument air system. The water in the instrument air system caused the boiler feed water valve controller, FIC-3213, to shut the valve, which stopped boiler feed water flow to the high-pressure steam drum. | Operators will perform periodic checks and draining of the SPP instrumentation air system. Additional air dryers were added to the primary air system to prevent moisture buildup. A routine backflush of the E-8 exchanger has been established to prevent a high-pressure differential. | COMPLETED 9/1/2023 COMPLETED 9/1/2023 COMPLETED 9/14/2023 | Duration: 56:58 (int) Flow: 79,127 MSCF Emissions (lb) SO2 – 531 CH4 – 2,689 NMHC – 7,992 | Upset/Malfunction (4.2.1.4) - Loss
of a utility (steam, air, cooling
water, power) | 435-23
N | | 12/4/2023 to
12/9/2023 | | On December 4, 2023, Phillips 66 began to lower feed rate at U246 and led to a hydrogen imbalance. Hydrogen was vented to the main flare from December 4-8, 2023. The primary cause of the flaring at the MP-30 flare was the shutdown and depressuring of Unit 246. During purging and cooling, nitrogen is sent directly to the MP-30 Flare. During this time, the only gases flared are those unscrubbed gases remaining in the process unit and the nitrogen used to purge the unit. | Unit shutdown and cleaning. | No new prevention measures or corrective actions were identified. These activities were planned maintenance activities that will reoccur in the future. | N/A | Duration: 91:29 (int) Flow: 36,370 MSCF Emissions (lb) SO2 – 271 CH4 – 2,453 NMHC – 1,223 | Maintenance, Turnaround, Startup,
Shutdown – Equipment
Preparation for Maintenance. Fuel and Hydrogen Gas Balance
(Section 4.2.1.1) | 049-24
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow &
Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |--------------------------|------------------------------|---|--|---|-----------------------|---|--|--------------------| | | | | | | | | | Recurrent Failure? | | 2/13/2024 to
3/1/2024 | | Starting in approximately January 2024 the facility began transitioning to a renewable feed complex. As part of that transition several facility units were shutdown in January and February 2024. Flaring began at 2:47 p.m. on February 13, 2024 at the Main Flare (S-296) as Phillips 66 began the shutdown of Unit 200 and Unit 240 for a planned shutdown and maintenance turnaround. Shutdown activities occurred at the Multi-Purpose Unit 30 (MP30) complex approximately one week later. As part of the unit shutdowns, and to prepare for maintenance and entry, all units were depressuring to blowdown for liquid and gaseous material recovery, the remaining material was purged to the Main Flare for U200 and U240. The MP-30 flare was utilized for the MP-30 shutdown, purging, and cleaning. | Unit shutdown and cleaning. | No new prevention measures or corrective actions were identified. These activities were planned maintenance activities that will reoccur in the future. | N/A | Duration: 209:25 (int) Flow: 5,676 MSCF Emissions (lb) SO2 - 98 CH4 - 1,268 NMHC - 442 | Maintenance, Turnaround, Startup,
Shutdown – Equipment
Preparation for Maintenance (e.g.
equipment depressuring, Nitrogen
purging, equipment steaming) Maintenance, Turnaround, Startup,
Shutdown – Fuel Gas Imbalance | 154-24
N | | 2/23/2024 | | On February 23, 2024 while only one renewable process unit was operating, a sulfur plant upset led to higher than typical sulfur concentrations in the refinery fuel gas (RFG). Due to higher than typical sulfur concentrations in the RFG, RFG consumption was reduced at the SPP gas turbines. This was done to ensure meeting SPP permit conditions that limit SO2 emissions. The reduction in consumption of RFG at the SPP resulted in excess RFG being sent to the flare and the flaring of scrubbed gas. | The primary cause of the flaring was excess RFG that could not be combusted in the gas turbines at the SPP due to the federally enforceable SPP permit conditions that limit SO2 emissions. RFG consumption was reduced in the gas turbines at the SPP to ensure compliance with SO2 emission limits, which led to excess RFG being sent to the flare. This was done by shutting out RFG fuel to SPP combustion and firing those sources on utility provided natural gas during the upset. | No new prevention measures or corrective actions were identified. Operation of the Sulfur Recovery Unit 238 at low refinery sulfur levels contributed to this event. As part of the Rodeo Renewed permit, Sulfur Recovery Units 236 and 238 will be permanently shut down and a new unit, Sulfur Treatment Unit 237 (STU 237), will be put in service to handle the greatly decreased amount of sulfur generated by the facility in renewable feed operation. | N/A | Duration: 06:47 Flow: 1,282 Emissions (lb) SO2 – 21 CH4 – 216 NMHC – 555 | Upset/Malfunction – Fuel Gas
Quality Upset (Section 4.2.1.4) | 162-24
N | | 3/5/2024 to
3/7/2024 | | On March 5, 2024 Unit 250 was
being shut down for planned maintenance work. As part of the unit shutdown, and to prepare for maintenance and entry, the unit was depressured and purged. Purge gases were directed to the flare. Shutdown of Unit 250 also caused fuel gas imbalance. | The primary cause of the flaring was the scheduled shutdown of Unit 250. Shutdown of U250 also led to fuel gas imbalance. | No new prevention measures or corrective actions were identified. The shutdown of Unit 250 and depressurization is a planned activity. | N/A | Duration: 62:00
Flow: 1,421
Emissions (lb)
SO2 – 24
CH4 – 692
NMHC – 314 | Maintenance, Turnaround, Startup,
Shutdown – Equipment
Preparation for Maintenance (e.g.
equipment depressuring, Nitrogen
purging, equipment steaming).
(Section 4.2.1.1) Maintenance, Turnaround, Startup,
Shutdown – Fuel Gas Balance
(Section 4.2.1.1) | 188-24
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow &
Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. | |---------------------------|------------------------------|--|--|---|-----------------------|--|---|-------------------------| | 3/8/2024 to
3/9/2024 | | On March 5, 2024 Unit 250 was being shut down for maintenance work. Flaring due to Unit 250 shutdown is addressed in a separate root cause analysis report. Flaring continued through March 9 due to subsequent Unit 250 startup and fuel gas imbalance. | The primary cause of the flaring was fuel gas imbalance due to the scheduled startup of Unit 250. | No new prevention measures or corrective actions were identified. The startup of Unit 250 is a planned activity. | N/A | Duration: 34:41 (int) Flow: 4,671 Emissions (lb) SO2 – 77 CH4 – 574 NMHC – 287 | Maintenance, Turnaround, Startup, Shutdown – Equipment Preparation for Maintenance (e.g. equipment depressuring, Nitrogen purging, equipment steaming). (Section 4.2.1.1) Maintenance, Turnaround, Startup, Shutdown – Fuel Gas Balance (Section 4.2.1.1) | Failure?
189-24
N | | 4/16/2024 to
4/18/2024 | | Flaring began at 01:28 a.m. on April 16, 2024 at the Main Flare (S-296) as Phillips 66 began the shutdown of Unit 246 (U246) through controlled depressuring. As part of the unit shutdown, and to prepare for maintenance, Unit 246 was depressured and purged. Following depressuring to blowdown for liquid and gaseous material recovery, the remaining material was purged to the Main Flare for U246. | The depressuring and nitrogen pourging was conducted in preparation to take U246 out of service. The purged material was vented directly to the Main Flare. By venting directly to the flare, the need to shut down the Flare Gas Recovery Compressor(s) is prevented, and overall flare emissions are minimized. | No new prevention measures or corrective actions were identified. The shutdown and depressurization of units is a planned activity. | N/A | Duration: 51:58 (int) Flow: 1,390 Emissions (lb) SO2 – 23 CH4 – 149 NMHC – 25 | Maintenance, Turnaround, Startup,
Shutdown – Equipment
Preparation for Maintenance (e.g.
equipment depressuring, Nitrogen
purging, equipment steaming) | 190-24
N | | 7/10/2024 | | On July 10, 2024, the Rodeo Renewable
Energy Complex experienced a unit upset
that led to a flaring event. Flaring occurred
intermittently from approximately July 10,
2024 at 3:05 PM until
July 10, 2024 at 7:50 PM. | On July 10, 2024, a facility contractor was removing scaffolding that had been in place for turnarround activities related to the petroleum to renewable feed transition that had occurred in prior months. On this day, as the scaffolding was disassembled and removed, a piece of scaffolding hit a coupling with enough force to break the coupling. The coupling housed an instrument air-line that was used by the control valve for the Unit 240 G-201 feed pump. Due to the sudden loss of air, the control valve closed, and the pump stopped supplying feed to the unit, per design. The loss of feed to Unit 240 resulted in flaring. | No prevention measures were identified. The pump shutdown after loss of instrument air as designed. | N/A | Duration: 4:49 (int) Flow: 884 Emissions (lb) SO2 – 15 CH4 – 37 NMHC – 288 | 4.2.1.4 Upset/Malfunction -
Equipment Failure which results in
an immediate or controlled unit
shutdown (e.g. charge pump
failure) & loss of utility (air) | 322-24
N | | 10/2/2024 | | On October 2, 2024, flaring occurred at the Main Flare (S-296) and MP30 Flare (S-398) intermittently from approximately 11:28 a.m. until 7:41 p.m. Phillips 66 staff were performing maintenance on a failled pressure transmitter (246-PDIT-0271C) on the G-802 Recycle gas compressor at Unit 246. While performing the maintenance, seal gas flow was inadvertently shut off to the G-802 Recycle Gas Compressor. Subsequently, G-802 shut down and a per design, safety instrumented system depressuring of Unit | The primary cause of the flaring was the shutdown of the Recycle Gas Compressor (U246) due to an accidental shutdown of pressure transmitters. | In response to the flaring event, process unit feed rates at adjacent units were reduced. Work was initiated to restore the recycle gas compressor. | N/A | Duration: 8:13 (int) Flow: 974 Emissions (lb) SO2 – 16 CH4 – 290 NMHC – 459 | Upset/Malfunction (4.2.1.4) – Loss
of other compressors (e.g., recycle
gas compressor). | 457-24
N | ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) | Date | Process or
Equipment Item | Flaring Event Description | Root Cause Finding | Action Item(s) | Proposed Dates/Status | Duration, Flow &
Emissions | Consistency with Flare Minimization Plan (12-12-406.3) | ESDR No. Recurrent Failure? | |-----------------------------|------------------------------|--|--|--|-----------------------|--|---|------------------------------| | | | 246 (Heavy Gas Oil Hydrocracker) to the
flare system was initiated. | | | | | | | | 11/26/2024 to
11/28/2024 | | Flaring occurred at the Main Flare (S-296) due to the unplanned shutdown of Unit 240 due to GT-202 recycle gas compressor trip. The flaring of scrubbed and unscrubbed gas occurred intermittently from November 26, 2024, at approximately 10:36 p.m. until November 28, 2024, at approximately 3:30 p.m. | The primary cause of the flaring was fuel gas imbalance due to the GT-202 recycle gas compressor trip, causing the shutdown of Unit 240. | In response to the flaring event, process unit feed rates at adjacent units were reduced. Work was initiated to stabilize and safely de-pressure the unit. | N/A | Duration: 23:56 (int) Flow: 3,197 Emissions (lb) SO2 – 56 CH4 – 347 NMHC – 839 | Upset/Malfunction (4.2.1.4) – Loss
of Major Compressor (e.g. recycle
compressor). | 011-25
N | Note: Phillips 66 review the recurring flare events based on the causes that occur onsite, not caused by third party. ESDR No. – Internal document tracking number. Recurrent Failure – Flaring caused by the recurrent failure of air pollution control equipment, process
equipment, or a process to operating in a normal or usual manner. Recurrent is two times or more in a 5 year period. (BAAQMD 12-12-401.4.3) ### **ATTACHMENT H** STORAGE, TREATMENT, & RECOVERY SCHEMATIC # Flare Gas Recovery With Storage Sphere # **ATTACHMENT I** Pressure Relief Valves that can Vent to the Flare | | | - | 6: | | | |--|-----------------------|------------------------|------|------------------------------|--| | Unit | subtype | Tag | Size | Service Type | Location Description | | COKER - #200 COKER | CVS NO RD | 21912-000 | 2 | LIGHT LIQUID | G/4 NSD P G-61 PRV PSV-120 | | COKER - #200 COKER | CVS NO RD | 32203-000 | | GAS / VAPOR | G/15 100FT SE FLR 19C-1 | | COKER - #200 COKER | CVS NO RD | 32304-000 | | LIGHT LIQUID | G/3 65FT SE CNR J ST. & ROAD 6 PRV PSV-84 | | COKER - #200 COKER | CVS NO RD | 22044-000 | | GAS / VAPOR | 1/10 TOP V F-501 PRV | | | | 22366-000 | | GAS / VAPOR | 1/7 WSD V D-561 PRV PSV-1869 | | COKER - #200 COKER
COKER - #200 COKER | CVS NO RD CVS NO RD | 22429-000 | 1.5 | GAS / VAPOR GAS / VAPOR | 1/4 CTR V F-540 PRV PSV-1865 | | COKER - #200 COKER | CVS NO RD | 27097-000 | | GAS / VAPOR | G/7 7FT S V F-503E PRV PSV-131 | | COKER - #200 COKER | CVS NO RD | 27152-000 | | GAS / VAPOR | G/5 10FT SW C G-503 PRV PSV-120 | | COKER - #200 COKER | CVS NO RD | 50214-000 | | GAS / VAPOR GAS / VAPOR | G/7 10FT NW C G-503 PRV PSV-120 | | COKER - #200 COKER | CVS NO RD | 25289-000 | | GAS / VAPOR | 1/7 WSD V F-31 PRV PSV-61 | | COKER - #200 COKER | CVS NO RD | 23963-000 | | GAS / VAPOR GAS / VAPOR | G/18 SESD V F-14 PRV | | COKER - #200 COKER | CVS NO RD | 130770-000 | | GAS / VAPOR | 1/5 9FT NE FF E-62B PRV PSV-401B | | COKER - #200 COKER | CVS NO RD | 130772-000 | 0.75 | GAS / VAPOR GAS / VAPOR | 1/5 9FT NE FF E-62C PRV PSV-401C | | COKER - #200 COKER | CVS NO RD | 130772-000 | | GAS / VAPOR | 1/5 8FT NE FF E-62A PRV PSV-404A | | COKER - #200 COKER | CVS NO RD | 130777-000 | 1.0 | GAS / VAPOR | 1/5 10FT NE FF E-62A PRV PSV-401A | | COKER - #200 COKER | CVS NO RD | 130779-000 | 1.5 | GAS / VAPOR | 1/5 ESD FF E-62C PRV PSV-469 | | COKER - #200 COKER | CVS NO RD | 23768-000 | | GAS / VAPOR | 1/5 8FT NE FF E-62C PRV PSV-4040 | | COKER - #200 COKER | CVS NO RD | 23779-000 | 1.3 | GAS / VAPOR | 1/5 10FT NE FF E-62B PRV PSV-405B | | COKER - #200 COKER | CVS NO RD | 23785-000 | | GAS / VAPOR | 1/5 9FT NE FF E-62A PRV PSV-405A | | COKER - #200 COKER | CVS NO RD | 91506-000 | | GAS / VAPOR | 1/5 8FT NE FF E-62B PRV PSV-404B | | COKER - #233 FUEL GAS CENTER | CVS NO RD | 31963-000 | | GAS / VAPOR | G/11 5FT E V F-601 PRV PSV-11 | | COKER - #233 FUEL GAS CENTER | CVS NO RD | 6555-000 | | GAS / VAPOR | 1/3 ABV V F-603 PRV PSV-9 PRV | | COKER - #233 FUEL GAS CENTER | CVS NO RD | 6715-000 | | GAS / VAPOR | G/10 ABV E E-601 PRV PV-601 PRV | | COKER - #233 FUEL GAS CENTER | CVS NO RD | 6754-000 | | GAS / VAPOR | 1/6 ESD V F-605 PRV PSV-10 PRV | | COKER - #233 FUEL GAS CENTER COKER - #233 FUEL GAS CENTER | PRESSURE RELIEF VALVE | 144347-000 | | GAS / VAPOR GAS / VAPOR | 1/10 SSD V F-601 BLD PSV 1 | | COKER - #233 FUEL GAS CENTER | CVS NO RD | 7323-000 | | GAS / VAPOR | G/15 TOP V F-604 PRV PSV-5 PRV | | COKER - #233 FUEL GAS CENTER COKER - #233 FUEL GAS CENTER | CVS NO RD | 7347-000 | | GAS / VAPOR GAS / VAPOR | 1/10 ABV V F-601 PRV PV-1 PRV | | COKER - #233 FUEL GAS CENTER COKER - #233 FUEL GAS CENTER | CVS NO RD | 7378-000 | | GAS / VAPOR GAS / VAPOR | 1/9 ABV V F-602 PRV PV-2 PRV | | EAST BULK - #100 WASTE WATER | CVS NO RD | 10543-000 | | LIGHT LIQUID | G/5 NWSD TK TK-501 PRV | | EAST BULK - #100 WASTE WATER EAST BULK - #100 WASTE WATER | CVS NO RD | 10654-000 | | GAS / VAPOR | G/7 4FT S C E-235B PRV PSV-71 | | EAST BULK - #100 WASTE WATER EAST BULK - #100 WASTE WATER | CVS NO RD | 10654-000 | | GAS / VAPOR GAS / VAPOR | G/8 NESD V F-207B | | | | | | GAS / VAPOR | G/7 4FT S C E-235A PRV PSV-1378 | | EAST BULK - #100 WASTE WATER EAST BULK - #100 WASTE WATER | CVS NO RD CVS NO RD | 10703-000
10728-000 | | GAS / VAPOR GAS / VAPOR | G/7 4F1 S C E-235A PRV PSV-1378
G/8 NESD V F-207A PRV | | EAST BULK - #100 WASTE WATER EAST BULK - #100 WASTE WATER | CVS NO RD | 10786-000 | | GAS / VAPOR GAS / VAPOR | 1/4 TOP V F-206 PRV PSV-900 | | EAST BULK - #100 WASTE WATER EAST BULK - #100 WASTE WATER | CVS NO RD | 10938-000 | | GAS / VAPOR | 1/4 19FT W P G-210 PRV PSV-848 | | | | 11023-000 | | GAS / VAPOR | | | EAST BULK - #100 WASTE WATER | CVS NO RD | | | | 1/4 8FT N P G-234C PRV PSV-847 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11139-000 | | LIGHT LIQUID | G/3 111FTW P G-231 PRV PSV-237 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11166-000 | | LIGHT LIQUID | G/2 12FT SW P G-231 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11167-000 | | LIGHT LIQUID | G/2 12FT SW P G-231 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11178-000 | | LIGHT LIQUID | G/1 5FT SW P G-231 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11186-000 | | LIGHT LIQUID | G/3 WSD P G-231 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11569-000 | | LIGHT LIQUID | G/3 6FT W TK TK-194 PRV PSV-183 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11570-000 | | LIGHT LIQUID | G/3 6FT W TK TK-194 PRV PSV-151 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11571-000 | | LIGHT LIQUID | G/3 6FT W TK TK-194 PRV PSV-150 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 2874-000 | | LIGHT LIQUID | G/5 SWSD TK TK-502 PRV PSV-1441 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11426-000 | | GAS / VAPOR | G/5 WSD TK TK-235 PRV PCV-235 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11432-000 | | GAS / VAPOR | G/8 5FT NW TK TK-235 PRV PSV-132 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 11458-000 | | LIGHT LIQUID | G/8 NESD TK TK-236 PRV PSV-133 | | EAST BULK - #100 WASTE WATER EAST BULK - #100 WASTE WATER | CVS NO RD CVS NO RD | 11461-000 | | LIGHT LIQUID
LIGHT LIQUID | G/5 ESD TK TK-236 PRV PCV-236
G/6 NESD P G-10 PRV-PSV-4 PRV | | | | 10255-000 | | | G/4 NSD P G-8 PRV PSV-5 | | EAST BULK - #100 WASTE WATER EAST BULK - #100 WASTE WATER | CVS NO RD CVS NO RD | 10268-000
10270-000 | | LIGHTLIQUID | | | EAST BULK - #100 WASTE WATER | CVS NO RD | 10285-000 | | | G/4 SSD P G-7 PRV PSV-6
G/6 SSD P G-9 PRV PSV-4 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 10322-000 | | LIGHTLIQUID | G/3 SSD P G-167 PRV PSV-U-355 | | EAST BULK - #100 WASTE WATER | CVS NO RD | 10332-000 | | LIGHT LIQUID | G/4 SSD P G-267 PRV PSV-955 | | EAST BULK - #40 RAW MAT. | ATOM NO RD | 2771-000 | | HEAVY LIQUID | T/2 SESD TK-153 PSV-153A | | EAST BULK - #40 RAW MAT. | ATOM NO RD | 2772-000 | | HEAVY LIQUID | T/2 SESD TK-153 PSV-153C | | EAST BULK - #40 RAW MAT. | ATOM NO RD | 2024-000 | | HEAVY LIQUID | G/5 NORTH OF TK 106 PSV-618 | | EAST BULK - #40 RAW MAT. | ATOM NO RD | 2040-000 | | HEAVY LIQUID | G/3 NORTH OF TK 106 1/0 PSV-613 | | EAST BULK - #40 RAW MAT. | ATOM NO RD | 2042-000 | | HEAVY LIQUID | G/3 NORTH OF TK 106 1/0 PSV-612 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29029-000 | | LIGHT LIQUID | G/3 20FT NE CNR M ST & ROAD 5 PRV PSV-1548 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29032-000 | | LIGHT LIQUID | G/3 20FT NE CNR M ST & ROAD 5 PRV PSV-1348 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29055-000 | 1 | LIGHT LIQUID | G/2 38FT SW V F-809 PRV PSV-7 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29059-000 | 0.75 | LIGHT LIQUID | G/2 36FT SW V F-809 PRV PSV-5 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29107-000 | | GAS / VAPOR | G/4 48FT W V F-809 PRV PSV-62 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29112-000 | | GAS / VAPOR | G/4 48FT E V F-809 PRV PSV-383 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29116-000 | | LIGHT LIQUID | G/4 48FT E V F-809 PRV PSV-379 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29119-000 | | LIGHT LIQUID | G/4 48FT E V F-809 PRV PSV-358 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29122-000 | | LIGHT LIQUID | G/4 48FT E V F-809 PRV PSV-359 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29124-000 | | GAS / VAPOR | G/4 48FT E V F-809 PRV PSV-180 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29127-000 | 0.75 | LIGHT LIQUID | G/4 48FT E V F-809 PRV PSV-387 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29185-000 | 0.75 | LIGHT LIQUID | G/8 4FT N CNR O ST & ROAD 7 PRV PSV-388 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29187-000 | | LIGHT LIQUID | G/2 NSD CNR O ST & ROAD 7 PRV PSV-591 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29229-000 | | LIGHT LIQUID | G/5 60FT NE CNR N ST & ROAD 7 PRV PSV-44 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29275-000 | | LIGHT LIQUID | G/6 25FT S CNR M ST. & ROAD 7 PRV PSV-30 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29294-000 | | LIGHT LIQUID | G/3 40FT S CNR M ST. & ROAD 7 PRV PSV-702 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29300-000 | 1 | LIGHT LIQUID | G/3 42FT S CNR M ST. & ROAD 7 PRV PSV-436 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29329-000 | 0.75 | LIGHT LIQUID | G/4 15FT NE CNR I ST & ROAD 7 PRV PSV-121 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29330-000 | 0.75 | LIGHT LIQUID | G/4 16FT NE CNR I ST. & ROAD 7 PRV PSV-547 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29347-000 | 0.75 | LIGHT LIQUID | 1/2 6FT NE P CP-827 PRV | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29411-000 | | LIGHT LIQUID | G/3 50FT SW CNR M ST & ROAD 7 PRV PSV-384 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29418-000 | | LIGHT LIQUID | G/2 35FT SW CNR M ST. & ROAD 7 PRV PSV-365 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29420-000 | | LIGHT LIQUID | G/3 45FT SW CNR M ST. & ROAD 7 PRV PSV-363 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29430-000 | | LIGHT LIQUID | G/4 50FT SW CNR M ST. & ROAD 7 PRV PSV-364 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29439-000 | | LIGHT LIQUID | G/5 55FT S CNR M ST & ROAD 7 PRV PSV-411 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29442-000 | | LIGHT LIQUID | G/5 54FT S CNR M ST & ROAD 7 PRV PSV-410 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29482-000 | | LIGHT LIQUID | G/2 28FT SW CNR M ST & ROAD 6
PRV PSV-461 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29488-000 | | LIGHT LIQUID | G/2 25FT SW CNR M ST & ROAD 6 PRV PSV-460 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29546-000 | | LIGHT LIQUID | G/2 20FT SW P CP-1253 PRV PSV-51 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29575-000 | 0.75 | LIGHT LIQUID | G/3 30FT W CNR J ST & ROAD 7 PRV PSV-812 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29577-000 | 0.75 | LIGHT LIQUID | G/4 40FT W CNR J ST & ROAD 7 PRV PSV-37 | | | | | | | | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29586-000 | 0.75 | LIGHT LIQUID | G/2 38FT W CNR J ST. & ROAD 7 PRV PSV-176 | |---|---|--|--|---|--| | EAST BULK - #40 RAW MAT. | CVS NO RD | 29589-000 | 0.75 | LIGHT LIQUID | G/2 38FT W CNR J ST. & ROAD 7 PRV PSV-402 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29591-000 | 0.75 | LIGHT LIQUID | G/2 38FT W CNR J ST. & ROAD 7 PRV PSV-398 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29592-000 | 0.75 | LIGHT LIQUID | G/2 38FT W CNR J ST. & ROAD 7 PRV PSV-200 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29595-000 | | LIGHT LIQUID | G/4 39FT W CNR J ST & ROAD 7 PRV PSV-1546 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29621-000 | | LIGHT LIQUID | 1/6 18FT SE P CP-931 PRV PSV-594 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29635-000 | | LIGHT LIQUID | G/5 10FT S P CP-931 PRV PSV-212 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29658-000 | | LIGHT LIQUID | 1/7 15FT S P CP-931 PRV | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29663-000 | | LIGHT LIQUID | G/7 13FT SE P CP-389 PRV PSV-40 | | EAST BULK - #40 RAW MAT. | CVS NO RD | | | LIGHT LIQUID | G/5 10FT SE P G-106 PRV PSV-228 | | | | 29666-000 | | | | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29680-000 | | LIGHT LIQUID | 1/7 16FT SW P CP-389 PRV | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29682-000 | | LIGHT LIQUID | G/2 18FT SW P CP-389 PRV PSV-235 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29684-000 | | LIGHT LIQUID | G/2 14FT SW P CP-389 PRV PSV-301 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29687-000 | 0.75 | LIGHT LIQUID | G/7 12FT SW P G-106 PRV PSV-197 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29688-000 | 0.75 | LIGHT LIQUID | G/2 12FT SW P G-106 PRV PSV-244 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29704-000 | 0.75 | LIGHT LIQUID | G/2 15FT SW P G-106 PRV PSV-292 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29708-000 | 0.75 | LIGHT LIQUID | 1/7 15FT SW P CP-389 PRV | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29717-000 | 0.75 | LIGHT LIQUID | 1/7 22FT SW P CP-389 PRV PSV-332 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29729-000 | | LIGHT LIQUID | G/4 31FT SW P CP-389 PRV PSV-185 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29731-000 | | LIGHT LIQUID | G/6 33FT SW P CP-389 PRV PSV-144 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29733-000 | | LIGHT LIQUID | G/3 33FT SW P CP-389 PRV PSV-182 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29744-000 | | LIGHT LIQUID | 1/1 28FT SW P CP-794 PRV PSV-171 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 29801-000 | | LIGHT LIQUID | G/2 75FT SW BLDG 76 CONTROL ROOM PRV | | | | | | | | | EAST BULK - #40 RAW MAT. | CVS NO RD | 80909-000 | 1 | | G/6 21FT W J ST&RD 7 PSV40-300 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 2103-000 | | HEAVY LIQUID | G/2 NW OF TK-284 PSV 5 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 2120-000 | | HEAVY LIQUID | G/2 NW OF TK-284 PSV-23 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 2130-000 | | HEAVY LIQUID | G/2 NW TK-284 PSV-850 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 2137-000 | | HEAVY LIQUID | G/3 NW of TK-257 PSV 132 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 2150-000 | 1.5 | HEAVY LIQUID | G/3 NW of TK-257 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 2273-000 | 1.5 | LIGHT LIQUID | G/2 NORTH OF TK-296 PIPEWAY PSV-371 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 2274-000 | | LIGHT LIQUID | G/2 NORTH OF TK-296 PIPEWAY PSV-3 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 2290-000 | | LIGHT LIQUID | G/4 NE OF TK-296 PSV-72 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28230-000 | | GAS / VAPOR | G/3 47FT SW TK TK-202 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28490-000 | | GAS / VAPOR | G/5 NESD V F-600 PRV PSV-0075 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28791-000 | | LIGHT LIQUID | G/3 5FT SW TK TK-298 PRV PSV-374 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28793-000 | | LIGHT LIQUID | G/3 5FT SW TK TK-298 PRV PSV-374 G/3 5FT SW TK TK-298 PRV PSV-375 | | EAST BULK - #40 RAW MAT. | | | | | | | | CVS NO RD | 28806-000 | | LIGHT LIQUID | G/4 WSD TK TK-298 PRV PSV-76 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28849-000 | | LIGHT LIQUID | G/2 5FT SW TK TK-295 PRV PSV-380 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28850-000 | | LIGHT LIQUID | G/3 6FT SW TK TK-295 PRV PSV-366 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3807-000 | 1 | GAS / VAPOR | G/4 SOUTH OF TK 223 PSV-735 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3812-000 | 1.5 | GAS / VAPOR | G/4 SOUTH OF TK 223 PSV-736 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3815-000 | 1.5 | GAS / VAPOR | G/11 SOUTH OF TK 223 PSV-722 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3826-000 | 1.5 | GAS / VAPOR | G/3 NORTH OF TK 223 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 81315-000 | 1 | LIGHT LIQUID | G/4 10FT W TK TK-202 PSV-25 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 81331-000 | | LIGHT LIQUID | G/3 SWSD TK TK-202 PSV-4 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 82728-000 | | LIGHT LIQUID | G/3 NESD TK TK-285 PRV PSV-801 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 84424-000 | | LIGHT LIQUID | G/5 NWSD TK TK-271 PSV-776 | | EAST BULK - #40 RAW MAT. | ATOM NO RD | 14042-000 | | LIGHT LIQUID | G/4 EAST OF G-9 4 FT PSV 604 | | | | | | | | | EAST BULK - #40 RAW MAT. | CVS NO RD | 27722-000 | | LIGHT LIQUID | G/4 7FT E P G-4 PRV PSV-18 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3669-000 | | HEAVY LIQUID | G/3 10 FT NE CV-305 PSV -55 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3677-000 | | HEAVY LIQUID | G/4 50 FT NW CONTROL ROOM PRV-48 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3683-000 | | HEAVY LIQUID | G/4 SS NW C.R SESD PRV-02 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3692-000 | 8 | HEAVY LIQUID | G/7 65 FT NW C.R.PRV-01 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3730-000 | 8 | HEAVY LIQUID | G/9 70FT NW C.R PRV-103 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 3757-000 | 8 | HEAVY LIQUID | G/10 75 FT NW C.R PSV | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4453-000 | 1 | HEAVY LIQUID | G/5 18FT SW BLDG 40 CNTRL ROOM 10FT W ANALYZER HOL | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4469-000 | | HEAVY LIQUID | G/5 25FT SW BLDG 40 CNTRL ROOM 15FT W ANALYZER HOU | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4479-000 | | HEAVY LIQUID | G/5 35FT SW BLDG 40 CNTRL ROOM 15FT W ANALYZER HOU | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4486-000 | | HEAVY LIQUID | G/5 35FT SW BLDG 40 CNTRL ROOM 15FT W ANALYZER HOU | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4501-000 | | HEAVY LIQUID | G/5 20FT SW BLDG 40 CNTRL ROOM 10FT W ANALYZER HOL | | EAST BULK - #40 RAW MAT. | | | | | | | | PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 4614-000 | | HEAVY LIQUID | G/4 50ft SW CNTRL ROOM ESD PMP G-3 NESD MANIFOLD F | | EAST BULK - #40 RAW MAT. | | 4629-000 | | HEAVY LIQUID | G/3 50ft SW CNTRL ROOM ESD PMP G-3 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4699-000 | | HEAVY LIQUID | G/5 17FT NE PMP G-3A PSV-602 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4712-000 | | HEAVY LIQUID | G/3 10FT E PMP G-4 BLW PSV-18 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4810-000 | | HEAVY LIQUID | G/9 10 FT NE PMP G-7 ABV CV-305 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4834-000 | | HEAVY LIQUID | G/3 10 FT SE PMP G-6 BLW PSV-73. | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4888-000 | | HEAVY LIQUID | G/4 ESD PMP G-6A PSV-57 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4905-000 | 1 | HEAVY LIQUID | G/4 SESD PMP G-9 PSV-603 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4921-000 | 1 | HEAVY LIQUID | G/4 NESD PMP G-9 PSV-604 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4998-000 | | HEAVY LIQUID | G/450 FT NW C.R BLW PSV-15 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 5006-000 | | HEAVY LIQUID | G/8 50 FT NW CONTROL ROOM PRV | | EAST BULK - #40 RAW MAT. | CVS NO RD | 27191-000 | | LIGHT LIQUID | G/4 4FT W TK TK-150 PRV PSV-20 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 27191-000 | | LIGHT LIQUID | G/4 6FT W TK TK-150 PRV PSV-20 | | | | | | | | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28043-000 | | LIGHT LIQUID | G/6 100FT E TK TK-156 TOP PIG LAUNCHER | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28139-000 | | LIGHTLIQUID | G/3 NESD TK TK-180 PRV PSV-551 | | EAST BULK - #40 RAW MAT. | CVS NO RD |
28140-000 | | LIGHT LIQUID | G/4 NESD TK TK-180 PRV | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28154-000 | | LIGHT LIQUID | G/4 8FT N TK TK-180 PRV PSV-55A | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28156-000 | | LIGHT LIQUID | G/4 8FT N TK TK-180 PRV PSV-556 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28200-000 | 0.75 | LIGHT LIQUID | G/3 NWSD TK TK-150 PRV PSV-71 | | | | 3986-000 | 1.5 | HEAVY LIQUID | G/3 EAST OF TK156 PSV-166 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | | | HEAVY LIQUID | G/4 EAST OF TK156 PSV-43 | | | PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 4001-000 | 1.0 | | | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4001-000 | | HEAVY LIQUID | G/4 EAST OF TK156 PSV-45 | | EAST BULK - #40 RAW MAT. EAST BULK - #40 RAW MAT. EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 4001-000
4003-000 | 1.5 | HEAVY LIQUID HEAVY LIQUID | G/4 EAST OF TK156 PSV-45
G/3 SOUTH OF TK157 PSV-4 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000 | 1.5
1.5 | HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000
4029-000 | 1.5
1.5
1.5 | HEAVY LIQUID
HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4
G/3 SE OF TK157 PSV-5 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000
4029-000
4030-000 | 1.5
1.5
1.5
1.5 | HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4 G/3 SE OF TK157 PSV-5 G/4 SE OF TK157 PSV-6 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000
4029-000
4030-000
4041-000 | 1.5
1.5
1.5
1.5
1.5 | HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4
G/3 SE OF TK157 PSV-5
G/4 SE OF TK157 PSV-6
G/4 SOUTH OF TK157 PSV-3 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000
4029-000
4030-000
4041-000
4044-000 | 1.5
1.5
1.5
1.5
1.5
1.5 | HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4 G/3 SE OF TK157 PSV-5 G/4 SE OF TK157 PSV-6 G/4 SOUTH OF TK157 PSV-3 G/4 SOUTH OF TK 158 PSV-7 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000
4029-000
4030-000
4041-000 | 1.5
1.5
1.5
1.5
1.5
1.5
1.5 | HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4
G/3 SE OF TK157 PSV-5
G/4 SE OF TK157 PSV-6
G/4 SOUTH OF TK157 PSV-3 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000
4029-000
4030-000
4041-000
4044-000 | 1.5
1.5
1.5
1.5
1.5
1.5
1.5 | HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4 G/3 SE OF TK157 PSV-5 G/4 SE OF TK157 PSV-6 G/4 SOUTH OF TK157 PSV-3 G/4 SOUTH OF TK 158 PSV-7 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000
4029-000
4030-000
4041-000
4044-000
4050-000 | 1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4 G/3 SE OF TK157 PSV-5 G/4 SE OF TK157 PSV-6 G/4 SOUTH OF TK157 PSV-3 G/4 SOUTH OF TK 158 PSV-7 G/4 SOUTH OF TK -158 PSV-8 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000
4029-000
4030-000
4041-000
4044-000
4050-000
4061-000 | 1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4 G/3 SE OF TK157 PSV-5 G/4 SE OF TK157 PSV-6 G/4 SOUTH OF TK157 PSV-3 G/4 SOUTH OF TK 158 PSV-7 G/4 SOUTH OF TK 158 PSV-7 G/4 SOUTH OF TK 158 PSV-8 G/5 SE OF TK 158 PSV-9 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4001-000
4003-000
4019-000
4029-000
4030-000
4041-000
4044-000
4050-000
4061-000
4077-000 | 1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | HEAVY LIQUID | G/3 SOUTH OF TK157 PSV-4 G/3 SE OF TK157 PSV-5 G/4 SE OF TK157 PSV-6 G/4 SOUTH OF TK157 PSV-3 G/4 SOUTH OF TK 158 PSV-7 G/4 SOUTH OF TK 158 PSV-7 G/4 SOUTH OF TK 158 PSV-8 G/5 SE OF TK 158 PSV-9 G/3 NORTH OF TK 159 PSV-1 | | EAST BULK - #40 RAW MAT. | | | | | | |---|---|--|---|---
--| | LOUI DULK - THU DAVY INAT. | PRESSURE RELIEF VALVE | 4123-000 | 1.5 | HEAVY LIQUID | G/3 EAST OF TK 108 U-706 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4133-000 | 1.5 | HEAVY LIQUID | G/4 EAST OF TK 108 PSV-707 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4148-000 | | HEAVY LIQUID | G/3 NORTH OF TK 155 PSV-238 | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4161-000 | | HEAVY LIQUID | G/4 NORTH OF TK 155 PSV-38 | | | | | | | | | EAST BULK - #40 RAW MAT. | PRESSURE RELIEF VALVE | 4165-000 | | HEAVY LIQUID | G/3 NORTH OF TK 155 PSV-42 | | EAST BULK - #40 RAW MAT. | CVS NO RD | 28479-000 | 0.75 | GAS / VAPOR | T/4 SWSD TK TK-269 PRV PSV-269 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 60447-000 | 0.75 | LIGHT LIQUID | G/4 10FT NW G-324/CP-311 CV FV-321 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 14223-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/2 6FT NESD G-18 PSV-6 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 14248-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/4 6FT ESD G-459 PSV-70 | | | | | | | | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 14257-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/3 7FT NESD G-459 PSV-4 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 14259-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/3 8FT NESD G-459 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 14265-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/2 ESD G-79 PSV-34 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 14284-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/-2 12FT SSD G-459 PSV-69 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 14286-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/-2 13FT SSD G-459 PSV-39 | | | | | | | | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 14341-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/1 25FT SWSD G-459 PSV-71 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 14364-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/10 15FT SWSD G-459 PSV-73 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13797-000 | 6 | GAS / VAPOR | T/5 NESD TK F-300 PRV PSV-759 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13801-000 | 6 | GAS / VAPOR | T/5 ESD TK F-300 PRV PSV-760 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 13844-000 | | GAS / VAPOR | T/4 SESD TK F-301 PRV PSV-351 | | | | | | | | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 13851-000 | | GAS / VAPOR | T/4 NWSD TK F-301 PRV PSV-350 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13859-000 | 3 | GAS / VAPOR | T/4 NESD TK F-301 PRV PSV-352 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13911-000 | 0.75 | LIGHT LIQUID | G/5 5FT SW P G-325 PRV PSV-135 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13914-000 | 0.75 | LIGHT LIQUID | G/4 7FT SW P G-325 PRV PSV-134 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13954-000 | | LIGHT LIQUID | G/3 7FT NW P G-321 PRV PSV-32 | | | | | | | | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13968-000 | | LIGHT LIQUID | G/5 NSD P G-321 PRV PSV-13 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 2932-000 | | LIGHT LIQUID | G/4 8FT SW P G-309 PRV PSV-181 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 80803-000 | 2 | GAS / VAPOR | T/5 SWSD TK TK-300 PRV-757 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 80806-000 | | GAS / VAPOR | T/5 SWSD TK TK-300 PRV-758 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11652-000 | | LIGHT LIQUID | G/3 4FT SE P PD-121 PRV PSV-112 | | | | | | | | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11663-000 | | LIGHT LIQUID | G/3 ESD P PD-121 PRV PSV-3 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11683-000 | | LIGHT LIQUID | G/3 3FT SE P PD-119 PRV PSV-118 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11701-000 | 1 | LIGHT LIQUID | G/4 5FT E P PD-119 PRV PSV-118 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11720-000 | | LIGHT LIQUID | G/3 6FT NE V F-10 PRV PSV-111 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11753-000 | | LIGHT LIQUID | G/3 NSD V F-181 PRV PSV-120 | | | | | | | | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11760-000 | | LIGHT LIQUID | G/3 SSD V F-182 PRV PSV-121 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11813-000 | 1 | LIGHT LIQUID | G/3 SSD V F-183 PRV PSV-122 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11818-000 | 1 | LIGHT LIQUID | G/3 NSD V F-184 PRV PSV-123 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11841-000 | 2 | GAS / VAPOR | T/4 T V F-183 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 11849-000 | | GAS / VAPOR | T/1 WSD V F-182 PRV PSV 115 | | | | | | | | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 11860-000 | | GAS / VAPOR | T/1 ESD V F-181 PRV PSV-116 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 11869-000 | | GAS / VAPOR | T/1 ESD V F-184 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11873-000 | 1.5 | GAS / VAPOR | 1/5 NESD V F-184 PRV PSV-118 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11922-000 | 1 | LIGHT LIQUID | G/4 11FT NE P G-500 PRV PSV-12 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11937-000 | | LIGHT LIQUID | G/2 30FT E P G-500 PRV PSV-133 PRV | | | | | | | | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 11979-000 | | LIGHT LIQUID | G/6 4FT E P G-506 PRV PSV-17 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12009-000 | 1 | LIGHT LIQUID | G/5 ESD P G-504 PRV PSV-33 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12023-000 | 0.75 | LIGHT LIQUID | G/5 ESD P G-500 PRV PSV-79 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12028-000 | 0.75 | LIGHT LIQUID | G/5 WSD P G-500 PRV PSV-91 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12051-000 | | | G/3 NWSD P PD-74 PRV PSV-103 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12058-000 | | LIGHT LIQUID | G/3 WSD P PD-74 PRV PSV-102 PRV | | | | | | | | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12065-000 | | LIGHT LIQUID | G/3 7FT W P PD-74 PRV PSV-76 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12074-000 | 1 | LIGHT LIQUID | G/6 12FT W P G-501 PRV PSV-85 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12089-000 | 1 | LIGHT LIQUID | G/5 ESD P G-501 PRV PSV-80 PRV | | EAST BULK - #76 GAS BLDNG. | | 12102-000 | | | | | | TCVS NO RD | | 1 | LIGHT LIQUID | G/4 10FT SE P G-501 PRV PSV-7 PRV | | | CVS NO RD | | | LIGHT LIQUID | G/4 10FT SE P G-501 PRV PSV-7 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 | 1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV | | EAST BULK - #76 GAS BLDNG.
EAST BULK - #76 GAS BLDNG. | CVS NO RD
CVS NO RD | 12113-000
12146-000 | 1 | LIGHT LIQUID
LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV
G/5 ESD P G-502 PRV PSV-81 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 | 1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV | | EAST BULK - #76 GAS BLDNG.
EAST BULK - #76 GAS BLDNG. | CVS NO RD
CVS NO RD | 12113-000
12146-000 | 1
1
1 | LIGHT LIQUID
LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV
G/5 ESD P G-502 PRV PSV-81 PRV | | EAST BULK - #76 GAS BLDNG.
EAST BULK - #76 GAS BLDNG.
EAST BULK - #76 GAS BLDNG. | CVS NO RD CVS NO RD CVS NO RD | 12113-000
12146-000
12181-000 | 1
1
1 | LIGHT LIQUID
LIGHT LIQUID
LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV
G/5 ESD P G-502 PRV PSV-81 PRV
G/7 ESD P CP-507 PRV PSV-799 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12214-000 | 1
1
1
1 | LIGHT LIQUID
LIGHT LIQUID
LIGHT LIQUID
LIGHT LIQUID
LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NE P CP-745 PRV PSV-186 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12214-000
12236-000 | 1
1
1
1
1 | LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NF P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12181-000
12214-000
12214-000
12236-000
12259-000 | 1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15F1 NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD |
12113-000
12146-000
12181-000
12182-000
12214-000
12236-000
12259-000
12272-000 | 1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 11FT W P CP-746 PRV PSV-104 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12214-000
12236-000
12259-000
12272-000 | 1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NE P CP-745 PRV PSV-186 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 15FT W P CP-746 PRV PSV-104 G/5 15FT W P CP-746 PRV PSV-104 G/5 ESD P-747 PRV PSV-106 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12214-000
12236-000
12259-000
12272-000 | 1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 11FT W P CP-746 PRV PSV-104 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12214-000
12236-000
12259-000
12272-000 | 1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NE P CP-745 PRV PSV-186 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 15FT W P CP-746 PRV PSV-104 G/5 15FT W P CP-746 PRV PSV-104 G/5 ESD P-747 PRV PSV-106 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12214-000
12236-000
12272-000
12272-000
12392-000
12392-000
2885-000 | 1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15F1 NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 11F1 W P CP-746 PRV PSV-104 G/5 ESD P C-747 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12214-000
12236-000
12272-000
12272-000
12322-000
12322-000
2885-000
2900-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 11FT W P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P-747 PRV PSV-106 G/5 ESD P-747 PRV PSV-101 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-63 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12214-000
12236-000
12259-000
12292-000
12392-000
12392-000
2885-000
2900-000
50425-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID GAS/VAPOR | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NE P CP-745 PRV PSV-186 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 15FT W P CP-746 PRV PSV-104 G/5 15FT W P CP-746 PRV PSV-104 G/5 ESD P C-746 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-84 PV G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW V F-181 PRV PSV-119 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12212-000
12236-000
12272-000
12292-000
12322-000
2885-000
2900-000
50425-000
82797-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P C-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-740 PRV PSV-84 PV G/4 20FT W P CP-1260 PRV PSV-63 11/43FT NW P-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12214-000
12236-000
12259-000
12292-000
12392-000
12392-000
2885-000
2900-000
50425-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NE P CP-745 PRV PSV-186 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 15FT W P CP-746 PRV PSV-104 G/5 15FT W P CP-746 PRV PSV-104 G/5 ESD P C-746 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-84 PV G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW V F-181 PRV PSV-119 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000
12146-000
12181-000
12182-000
12212-000
12236-000
12272-000
12292-000
12322-000
2885-000
2900-000
50425-000
82797-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P C-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-740 PRV PSV-84 PV G/4 20FT W P CP-1260 PRV PSV-63 11/43FT NW P-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12148-000 12182-000 12214-000 12236-000 12272-000 12292-000 12322-000 2900-000 50425-000 82797-000 84076-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-789 G/5 NSD P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 11FT W P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-101 G/5 ESD P CP-746 PRV PSV-101 G/5 ESD P CP-740 PRV PSV-101 G/5 ESD P CP-740 PRV PSV-80 G/5 ESD P G-506 PRV PSV-80 G/3 10FT W P CP-1280 PRV PSV-83 11/4 3FT NW V F-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 7FT SE P P-1280 TX 1A PRV PSV-798 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12141-000 12182-000 12214-000 12236-000 12259-000 12292-000 12322-000 2885-000 2900-000 50425-000 82797-000 84071-000 84071-000 12811-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 15FT NE P CP-745 PRV PSV-186 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P CP-746 PRV PSV-101 G/5 ESD P CP-740 PRV PSV-101 G/5 ESD P CP-740 PRV PSV-101 G/5 ESD P CP-740 PRV PSV-80 J/4 3FT NW VF-181 PRV PSV-83 J/4 3FT NW VF-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-80 PRV G/7 FT SE P P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12292-000 12392-000 2885-000 2900-000 50425-000 82797-000 84071-000 84076-000 12811-000 12820-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 IIFT W P CP-746 PRV PSV-104 G/5 IIFT W P CP-746 PRV PSV-104 G/5 ESD P-747 PRV PSV-106 G/5 ESD P-747 PRV PSV-101 G/5 ESD P-744 PRV PSV-101 G/5 ESD P-744 PRV PSV-101 G/3 ESD P CP-744 PRV PSV-101 G/3 ESD P G-744 PRV PSV-101 G/3 ESD P G-744 PRV PSV-119 G/3 ESD P G-506 PRV PSV-84 PRV G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 PFT SE P P-1260 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-1 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12292-000 12292-000 2900-000 50425-000 84071-000 84071-000 12811-000 12811-000 12804-000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV
PSV-104 G/5 11FT W P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P C-747 PRV PSV-101 G/5 ESD P C-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-63 11/4 3FT NW VF-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT EP G-501 PRV PSV-86 PRV G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT EP P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1304 PRV PSV-810 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12292-000 12392-000 2885-000 2900-000 50425-000 82797-000 84071-000 84076-000 12811-000 12820-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 IIFT W P CP-746 PRV PSV-104 G/5 IIFT W P CP-746 PRV PSV-104 G/5 ESD P-747 PRV PSV-106 G/5 ESD P-747 PRV PSV-101 G/5 ESD P-744 PRV PSV-101 G/5 ESD P-744 PRV PSV-101 G/3 ESD P CP-744 PRV PSV-101 G/3 ESD P G-744 PRV PSV-101 G/3 ESD P G-744 PRV PSV-119 G/3 ESD P G-506 PRV PSV-84 PRV G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 PFT SE P P-1260 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-1 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12292-000 12322-000 2900-000 50425-000 84071-000 84071-000 12811-000 12811-000 12804-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 11FT W P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P C-747 PRV PSV-101 G/5 ESD P C-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-63 11/4 3FT NW VF-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT EP G-501 PRV PSV-86 PRV G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT EP P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1304 PRV PSV-810 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12292-000 12392-000 2885-000 2900-000 50425-000 84071-000 84076-000 12811-000 12820-000 12820-000 12820-000 12900-000 12900-000 12910-000 12910-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P C-505 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 IST NE P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 IST P CP-746 PRV PSV-104 G/5 IST P CP-746 PRV PSV-101 G/5 ESD P G-747 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/4 2DFT W P CP-128 D PRV PSV-63 11/4 3FT NRV VF-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 7FT SE P P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1303 PRV PSV-810 PRV G/5 NESD P G-1303 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-808 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12272-000 12292-000 12322-000 2805-000 84071-000 84076-000 12811-000 12804-000 12904-000 12904-000 12901-000 12901-000 12902-000 12902-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 ESD P CATA PRV PSV-105 G/5 ESD P CATA PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-746 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-43 1/4 3FT NW VF-181 PRV PSV-119 G/3 10FT W F 10 ESD C HEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 10FT W F 10 ESD C HEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 W DV F-2 PRV G/5 NESD P G-1304 PRV PSV-810 PRV G/5 NESD P G-1304 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-808 G/5 NESD P G-1301 PRV PSV-808 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12214-000 12236-000 12272-000 12272-000 12292-000 12322-000 2885-000 2900-000 50425-000 84076-000 12811-000 12811-000 12810-000 12810-000 12910-000 12910-000 12910-000 12910-000 12910-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P CF-746 PRV PSV-101 G/5 ESD P CF-746 PRV PSV-101 G/5 ESD P CF-06 PRV PSV-80 G/5 ESD P CF-0746 PRV PSV-80 G/3 10FT W F-10 ESD CHEM TOTE G/3 10FT W F-10 ESD CHEM TOTE G/3 TFT SE P P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-1 PRV G/5 NESD P C-1304 PRV PSV-810 PRV G/5 NESD P C-1304 PRV PSV-809 G/5 NESD P C-1303 PRV PSV-809 G/5 NESD P G-1301 PRV PSV-808 G/5 NESD P G-1301 PRV PSV-807 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12259-000 12272-000 12292-000 12292-000 12902-000 82797-000 84071-000 84076-000 12811-000 12820-000 12916-000 12916-000 12916-000 12916-000 12912-000 12922-000 12982-000 12982-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P C-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ISD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 ISD P CP-746 PRV PSV-104 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-63 11/4 3FT NW P-181 PRV PSV-199 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/12 WSD V F-1 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1304 PRV PSV-810 PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-808 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-807 G/4 7FT E P C-1282 PRV PSV-797 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12214-000 12236-000 12272-000 12272-000 12292-000 12322-000 2885-000 2900-000 50425-000 84076-000 12811-000 12811-000 12810-000 12810-000 12910-000 12910-000 12910-000 12910-000 12910-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P CF-746 PRV PSV-101 G/5 ESD P CF-746 PRV PSV-101 G/5 ESD P CF-06 PRV PSV-80 G/5 ESD P CF-0746 PRV PSV-80 G/3 10FT W F-10 ESD CHEM TOTE G/3 10FT W F-10 ESD CHEM TOTE G/3 TFT SE P P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-1 PRV G/5 NESD P C-1304 PRV PSV-810 PRV G/5 NESD P C-1304 PRV PSV-809 G/5 NESD P C-1303 PRV PSV-809 G/5 NESD P G-1301 PRV PSV-808 G/5 NESD P G-1301 PRV PSV-807 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12259-000 12272-000 12292-000 12292-000 12902-000 82797-000 84071-000 84076-000 12811-000 12820-000 12916-000 12916-000 12916-000 12916-000 12912-000 12922-000 12982-000 12982-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P C-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ISD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 ISD P CP-746 PRV PSV-104 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-63 11/4 3FT NW P-181 PRV PSV-199 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/12 WSD V F-1 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1304 PRV PSV-810 PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-808 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-807 G/4 7FT E P C-1282 PRV PSV-797 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12214-000 12236-000 12272-000 12292-000 12292-000 2900-000 50425-000 84071-000 84071-000 12811-000 12804-000 12910-000 12910-000 12910-000 12910-000 12911-000
12911-000 12911-000 12911-000 12911-000 12911-000 12911-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 ESD P CA74 PRV PSV-106 G/5 ESD P CA74 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-746 PRV PSV-30 IV ST PSV-300 G/5 ESD P C-746 PRV PSV-30 G/5 ESD P C-746 PRV PSV-30 G/5 ESD P C-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-83 IV 33FT NW V F-181 PRV PSV-19 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P C-1280 TX 1A PRV PSV-798 PRV G/5 NESD P G-1303 PRV PSV-810 PRV G/5 NESD P G-1304 PRV PSV-810 PRV G/5 NESD P G-1302 PRV PSV-808 G/5 NESD P G-1301 PRV PSV-808 G/5 NESD P G-1301 PRV PSV-808 G/5 NESD P G-1301 PRV PSV-809 G/4 FT E P CP-1281 PRV PSV-796 G/4 FT E P CP-1281 PRV PSV-796 G/4 9FT W P G-1170 PRV PSV-125 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12214-000 12214-000 12236-000 12272-000 12272-000 12292-000 12322-000 2885-000 2900-000 50425-000 84071-000 84076-000 12811-000 12810-000 12910-000 12910-000 12910-000 12910-000 12910-000 12910-000 12910-000 12910-000 12910-000 12910-000 12910-000 12910-000 12910-000 12910-000 13059-000 13059-000 13059-000 13059-000 13059-000 131310-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 11FT W P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P CF-747 PRV PSV-101 G/5 ESD P CF-748 PRV PSV-101 G/5 ESD P CF-06 PRV PSV-80 G/5 ESD P CF-074 PRV PSV-101 G/5 ESD P CF-074 PRV PSV-80 G/5 ESD P CF-074 PRV PSV-80 G/3 10FT W F-10 ESD CHEM TOTE G/3 10FT W F-10 ESD CHEM TOTE G/3 FT SE P P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-1 PRV G/5 NESD P C-1304 PRV PSV-809 G/5 NESD P C-1304 PRV PSV-809 G/5 NESD P C-1301 PRV PSV-809 G/5 NESD P C-1301 PRV PSV-809 G/5 NESD P CP-1281 PRV PSV-907 G/4 FT E P CP-1282 PRV PSV-797 G/4 FT E P CP-1282 PRV PSV-797 G/4 FT E P CP-1281 PRV PSV-126 G/4 9FT W P C-1171 PRV PSV-125 PRV G/4 13FT W P G-1170 PRV PSV-125 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12292-000 12392-000 12392-000 12392-000 12392-000 12392-000 12392-000 12392-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 13093-000 13093-000 1313146-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 IIFT W P CP-746 PRV PSV-104 G/5 IIFT W P CP-746 PRV PSV-104 G/5 ESD P C-744 PRV PSV-101 G/3 ESD P C-744 PRV PSV-101 G/3 ESD P C-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW V F-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 7FT SE P P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1303 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1301 PRV PSV-809 G/4 7FT E P CP-1281 PRV PSV-797 G/4 7FT E P CP-1281 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-124 G/5 ESD P C-823 PRV PSV-79 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12272-000 12292-000 12322-000 84071-000 84071-000 84076-000 12804-000 12916-000 12916-000 12916-000 12916-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 13059-000 131318-000 131318-000 131318-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 ESD P C-747 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-746 PRV PSV-101 G/5 ESD P C-7540 PRV PSV-80 G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW VF-181 PRV PSV-119 G/3 10FT WF-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 10FT WF-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 NESD P C-1304 PRV PSV-810 PRV G/5 NESD P G-1302 PRV PSV-810 PRV G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/4 7FT E P CP-1281 PRV PSV-796 G/4 7FT E P CP-1281 PRV PSV-796 G/4 9FT W P G-1170 PRV PSV-125 PRV G/4 SED P G-8120 PRV PSV-126 G/4 SED P G-8120 PRV PSV-124 G/5 SED P G-8120 PRV PSV-124 G/5 SED P G-8120 PRV PSV-124 G/6 SED P C-8120 PRV PSV-124 G/6 SED P C-8120 PRV PSV-124 G/6 SED P C-8120 PRV PSV-2 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12292-000 12392-000 12392-000 12392-000 12392-000 12392-000 12392-000 12392-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 13093-000 13093-000 1313146-000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 IIFT W P CP-746 PRV PSV-104 G/5 IIFT W P CP-746 PRV PSV-104 G/5 ESD P C-744 PRV PSV-101 G/3 ESD P C-744 PRV PSV-101 G/3 ESD P C-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW V F-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 7FT SE P P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1303 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1301 PRV PSV-809 G/4 7FT E P CP-1281 PRV PSV-797 G/4 7FT E P CP-1281 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-124 G/5 ESD P C-823 PRV PSV-79 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12272-000 12292-000 12322-000 84071-000 84071-000 84076-000 12804-000 12916-000 12916-000 12916-000 12916-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 12918-000 13059-000 131318-000 131318-000 131318-000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 ESD P C-747 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-746 PRV PSV-101 G/5 ESD P C-7540 PRV PSV-80 G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW VF-181 PRV PSV-119 G/3 10FT WF-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 10FT WF-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 NESD P C-1304 PRV PSV-810 PRV G/5 NESD P G-1302 PRV PSV-810 PRV G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/4 7FT E P CP-1281 PRV PSV-796 G/4 7FT E P CP-1281 PRV PSV-796 G/4 9FT W P G-1170 PRV PSV-125 PRV G/4 SED P G-8120 PRV PSV-126 G/4 SED P G-8120 PRV PSV-124 G/5 SED P G-8120 PRV PSV-124 G/5 SED P G-8120 PRV PSV-124 G/6 SED P C-8120 PRV PSV-124 G/6 SED P C-8120 PRV PSV-124 G/6 SED P C-8120 PRV PSV-2 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12259-000 12272-000 12292-000 12392-000 12392-000 12392-000 12392-000 12392-000 12392-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12902-000 12916-000 12916-000 12916-000 12916-000 12916-000 12916-000 12916-000 13059-000 13131-000 13131-000 13131-000 13126-000 13226-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ISD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 IST W P CP-746 PRV PSV-104 G/5 IST W P CP-746 PRV PSV-104 G/5 IST W P CP-746 PRV PSV-101 G/5 ESD P G-506 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-63 1143 FT NW V F-181 PRV PSV-199 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 7FT SE P P-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/12 WSD V F-1 PRV G/12 WSD V F-1 PRV G/5 NESD P G-1303 PRV PSV-809 G/5 NESD P G-1303
PRV PSV-809 G/5 NESD P G-1304 PRV PSV-807 G/4 7FT E P CP-1281 PRV PSV-807 G/4 7FT E P CP-1281 PRV PSV-796 G/4 9FT W P G-1170 PRV PSV-126 G/4 4FT W P G-1170 PRV PSV-126 G/4 4FT SE P G-18 PRV G/5 ESD P C-823 PRV PSV-124 G/5 ESD P C-823 PRV PSV-125 G/6 24FT SE P G-18 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12214-000 12236-000 12272-000 12292-000 12322-000 2885-000 2900-000 50425-000 84071-000 84071-000 12811-000 12811-000 12900-000 12900-000 12910-000 13059-000 13059-000 131310-000 131310-000 131310-000 13226-000 13226-000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 ESD P-747 PRV PSV-105 G/5 ESD P-747 PRV PSV-101 G/5 ESD P-749 PRV PSV-101 G/5 ESD P-749 PRV PSV-101 G/5 ESD P G-749 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW V F-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 WSD V F-2 PRV G/5 NESD P G-1304 PRV PSV-810 PRV G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1301 PRV PSV-809 G/4 7FT E P CP-1281 PRV PSV-796 G/4 9FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-124 G/5 EST P CP-823 PRV PSV-124 G/5 EST SE P G-18 PRV 1/1 25FT SE P G-18 PRV G/5 15FT SE P G-459 PRV G/5 15FT SE P G-459 PRV G/5 15FT SE P G-459 PRV PSV-38 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12214-000 12236-000 12272-000 12292-000 12292-000 12902-000 84071-000 84071-000 12802-000 12802-000 12902-000 12902-000 12902-000 12902-000 12903-000 12903-000 12904-000 12904-000 12904-000 12904-000 12904-000 12905-000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 ESD P CA747 PRV PSV-106 G/5 ESD P CA747 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW VF-181 PRV PSV-19 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P C-10 ESD CHEM TOTE G/7 4FT E P C-501 PRV PSV-80 PRV G/5 NESD P G-1303 PRV PSV-810 PRV G/5 NESD P G-1303 PRV PSV-809 G/5 NESD P G-1303 PRV PSV-809 G/5 NESD P G-1301 PRV PSV-808 G/5 NESD P G-1301 PRV PSV-909 G/4 7FT E P CP-1281 PRV PSV-796 G/4 3FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-126 G/4 24FT E P G-18 PRV 1/1 25FT SE P G-18 PRV 1/1 25FT SE P G-459 PRV PSV-38 PRV G/5 NESD P G-459 PRV PSV-38 PRV G/5 NESD P G-1306 PRV PSV-38 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12259-000 12272-000 12292-000 12292-000 12392-000 82797-000 84071-000 84076-000 12811-000 12910-000 13059-000 13059-000 13059-000 131310-000 13226-000 13226-000 13226-000 13226-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ISD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 ISD P CP-746 PRV PSV-104 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-89 G/3 20FT W P CP-1280 PRV PSV-89 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 20FT W P CP-1280 PRV PSV-87 G/3 PSV PSV-87 G/5 NESD P G-1304 PRV PSV-810 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1304 PRV PSV-809 G/5 NESD P G-1304 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1304 PRV PSV-907 G/4 7FT E P CP-1282 PRV PSV-907 G/4 7FT E P CP-1282 PRV PSV-797 G/4 7FT E P CP-1282 PRV PSV-797 G/4 7FT E P CP-1282 PRV PSV-796 G/4 9FT W P G-1170 PRV PSV-126 G/4 13FT W P G-1170 PRV PSV-126 G/6 24FT SE P G-18 PRV G/5 10FT SE P G-18 PRV G/5 ISFT SE P G-130 PRV PSV-38 PRV G/5 ISFT SE P G-130 PRV PSV-38 PRV G/5 10FT SE P G-459 PRV G/5 10FT SE P G-1305 PRV RSV-911 PRV G/5 SEFT SE P G-1305 PRV RSV-911 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12214-000 12236-000 12272-000 12292-000 12292-000 12902-000 84071-000 84071-000 12802-000 12802-000 12902-000 12902-000 12902-000 12902-000 12903-000 12903-000 12904-000 12904-000 12904-000 12904-000 12904-000 12905-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 ESD P CA747 PRV PSV-106 G/5 ESD P CA747 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P C-746 PRV PSV-83 1/4 3FT NW VF-181 PRV PSV-19 G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW VF-181 PRV PSV-19 G/3 10FT WF-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 10FT WF-10 ESD CHEM TOTE G/7 4FT E P CP-1280 TX 1A PRV PSV-798 PRV G/12 WSD V F-1 PRV G/5 NESD P G-1303 PRV PSV-810 PRV G/5 NESD P G-1303 PRV PSV-809 G/5 NESD P G-1303 PRV PSV-808 G/5 NESD P G-1301 PRV PSV-808 G/5 NESD P G-1301 PRV PSV-907 G/4 7FT E P CP-1281 PRV PSV-796 G/4 3FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-125 G/4 2FT EP G-18 PRV 1/1 25FT SE P G-18 PRV 1/1 25FT SE P G-459 PRV PSV-38 PRV G/5 NESD P G-459 PRV PSV-38 PRV G/5 NESD P G-1305 PRV PSV-38 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12259-000 12272-000 12292-000 12292-000 12392-000 82797-000 84071-000 84076-000 12811-000 12910-000 13059-000 13059-000 13059-000 131310-000 13226-000 13226-000 13226-000 13226-000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ISD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 ISD P CP-746 PRV PSV-104 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-106 G/5 ESD P C-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-89 G/3 20FT W P CP-1280 PRV PSV-89 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 20FT W P CP-1280 PRV PSV-87 G/3 PSV PSV-87 G/5 NESD P G-1304 PRV PSV-810 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1304 PRV PSV-809 G/5 NESD P G-1304 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1304 PRV PSV-907 G/4 7FT E P CP-1282 PRV PSV-907 G/4 7FT E P CP-1282 PRV PSV-797 G/4 7FT E P CP-1282 PRV PSV-797 G/4 7FT E P CP-1282 PRV PSV-796 G/4 9FT W P G-1170 PRV PSV-126 G/4 13FT W P G-1170 PRV PSV-126 G/6 24FT SE P G-18 PRV G/5 10FT SE P G-18 PRV G/5 ISFT SE P G-130 PRV PSV-38 PRV G/5 ISFT SE P G-130 PRV PSV-38 PRV G/5 10FT SE P G-459 PRV G/5 10FT SE P G-1305 PRV RSV-911 PRV G/5 SEFT SE P G-1305 PRV RSV-911 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12272-000 12292-000 12322-000 84071-000 84071-000 84076-000 12804-000 12916-000 12916-000 12916-000 12922-000 12922-000 12932-000 12932-000 12943-000 12944-000 12944-000 12945-000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | LIGHT LIQUID | G/5 ESD P G-503 PRV
PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P CP-507 PRV PSV-81 PRV G/5 ESD P CP-507 PRV PSV-89 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-186 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 IFT W P CP-746 PRV PSV-104 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P C-747 PRV PSV-105 G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NW VF-181 PRV PSV-119 G/3 10FT WF-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 10FT WF-10 ESD CHEM TOTE G/7 4FT E P CP-1280 PRV PSV-80 G/3 NESD P C-1304 PRV PSV-80 G/5 NESD P G-1304 PRV PSV-80 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/4 7FT E P CP-1281 PRV PSV-796 G/4 3FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-126 G/4 SED P G-823 PRV PSV-2 G/6 24FT SE P G-18 PRV J/1 25FT SE P G-18 PRV G/5 SED P G-459 PRV G/5 SED P G-459 PRV G/5 SED P G-459 PRV PSV-127 PRV G/4 15FT SE P G-459 PRV PSV-127 PRV G/4 15FT SE P G-135 PRV PSV-127 PRV G/4 15FT SE P G-135 PRV PSV-127 PRV G/4 15FT SE P G-136 PRV PSV-127 PRV G/4 15FT SE P G-136 PRV PSV-127 PRV G/4 15FT SE P G-150 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12259-000 12272-000 12292-000 12392-000 12392-000 12593-000 12791-000 1280-000 1280-000 1280-000 1280-000 1280-000 1280-000 1280-000 12810-000 131310-000 131310-000 131310-000 131260-000 13235-000 13235-000 13235-000 13305-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P C-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-186 G/5 ISFT NE P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-102 G/5 ESD P CP-745 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-104 G/5 ESD P CP-744 PRV PSV-101 G/5 ESD P G-506 PRV PSV-84 PRV G/5 ESD P G-506 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-63 11/4 3FT NW Y-181 PRV PSV-199 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/12 WSD V F-1 PRV G/12 WSD V F-2 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1303 PRV PSV-80 G/5 NESD P G-1303 PRV PSV-80 G/5 NESD P G-1302 PRV PSV-80 G/5 NESD P G-1302 PRV PSV-90 G/4 9FT W P G-1170 PRV PSV-796 G/4 9FT W P G-1170 PRV PSV-126 G/4 9FT W P G-1170 PRV PSV-126 G/4 13FT W P G-1170 PRV PSV-124 G/5 SSD P C-823 PRV PSV-2 G/6 24FT SE P G-180 PRV G/5 NESD P G-1305 PRV PSV-126 G/4 13FT W P G-1170 PRV PSV-127 G/6 13FT SE P G-180 PRV G/5 15FT SE P G-459 PRV G/5 15FT SE P G-459 PRV G/5 15FT SE P G-459 PRV PSV-127 PRV G/3 19FT W P G-1170 PSV-126 G/4 15FT W P G-1170 PSV-127 PRV G/3 19FT W P G-1170 PSV-126 G/4 15FT W TK TK-169 PRV PSV-127 PRV G/3 19FT W P G-1170 PSV-126 G/4 15FT W TK TK-169 PRV PSV-500 PRV 1/0 9FT NW P G-504 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 12113-000 12146-000 12146-000 12182-000 12182-000 12214-000 12236-000 12272-000 12272-000 12292-000 12322-000 84071-000 84071-000 84076-000 12804-000 12916-000 12916-000 12916-000 12922-000 12922-000 12932-000 12932-000 12943-000 12944-000 12944-000 12945-000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | LIGHT LIQUID | G/5 ESD P G-503 PRV PSV-82 PRV G/5 ESD P G-502 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-81 PRV G/7 ESD P CP-507 PRV PSV-799 G/5 NSD P CP-507 PRV PSV-88 G/5 ISFT NE P CP-745 PRV PSV-186 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-102 G/5 ESD P CP-746 PRV PSV-104 G/5 ISFT NE P CP-745 PRV PSV-104 G/5 ISFT NE P CP-746 PRV PSV-104 G/5 ESD P CP-746 PRV PSV-106 G/5 ESD P CP-747 PRV PSV-101 G/5 ESD P CP-747 PRV PSV-101 G/5 ESD P C-747 PRV PSV-101 G/5 ESD P C-747 PRV PSV-101 G/5 ESD P C-748 PRV PSV-84 PRV G/4 20FT W P CP-1280 PRV PSV-83 1/4 3FT NWV F'-181 PRV PSV-119 G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P G-501 PRV PSV-86 PRV G/3 10FT W F-10 ESD CHEM TOTE G/7 4FT E P CP-1280 PRV PSV-89 PRV G/12 WSD V F-2 PRV G/5 NESD P G-1304 PRV PSV-810 PRV G/5 NESD P G-1302 PRV PSV-809 G/5 NESD P G-1302 PRV PSV-809 G/4 7FT E P CP-1282 PRV PSV-796 G/4 3FT W P G-1176 PRV PSV-126 G/4 9FT W P G-1176 PRV PSV-126 G/4 13FT W P G-1176 PRV PSV-126 G/4 13FT W P G-1176 PRV PSV-127 G/5 NESD P G-138 PRV 1/1 25FT SE P G-18 PRV G/5 15FT SE P G-459 PRV G/5 15FT SE P G-459 PRV PSV-38 PRV G/5 15FT SE P G-459 PRV PSV-38 PRV G/5 15FT SE P G-1459 PRV PSV-127 PRV G/4 15FT W P G-1170 | | EAST BULK - #76 GAS BLDNG. | | | | | | |---|---|---|--
--|--| | | CVS NO RD | 13338-000 | | LIGHT LIQUID | G/3 120FT W P CP-231 PRV S | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13349-000 | | LIGHT LIQUID | G/5 155FT SW TK TK-174 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13368-000 | | LIGHT LIQUID | G/5 5FT SW TK TK-174 PRV PSV-788 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13387-000 | | LIGHT LIQUID | G/5 7FT E TK TK-110 PRV PSV-790 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13394-000 | | LIGHT LIQUID | G/5 6FT E TK TK-110 PRV PSV-789 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13398-000 | | LIGHT LIQUID | G/5 NESD TK TK-110 PRV PSV-781 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13403-000 | | LIGHT LIQUID | G/4 NESD TK TK-110 PRV PSV-805 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13451-000 | | LIGHT LIQUID | G/3 160FT SW TK TK-167 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13455-000 | | LIGHT LIQUID | G/3 158FT SW TK TK-167 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13456-000 | | LIGHT LIQUID | G/3 157FT SW TK TK-167 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13460-000 | | LIGHT LIQUID | G/3 155FT SW TK TK-167 PRV PSV-458 PRV | | EAST BULK - #76 GAS BLDNG.
EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13484-000 | | LIGHT LIQUID | G/4 SWSD TK TK-167 PRV PSV-452 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD CVS NO RD | 13500-000 | | LIGHT LIQUID | G/4 6FT S TK TK-167 PRV PSV-442 PRV | | | | 13505-000 | | LIGHT LIQUID | G/4 6FT S TK TK-167 PRV PSV-443 PRV | | EAST BULK - #76 GAS BLDNG.
EAST BULK - #76 GAS BLDNG. | CVS NO RD CVS NO RD | 13562-000
13563-000 | | LIGHT LIQUID
LIGHT LIQUID | G/5 SWSD TK TK-168 PRV PSV-47 PRV
G/4 SWSD TK TK-168 PRV PSV-120 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13574-000 | | LIGHT LIQUID | G/4 6FT S TK TK-168 PRV PSV-407 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13580-000 | | LIGHT LIQUID | G/3 6FT S TK TK-168 PRV PSV-407 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13614-000 | | LIGHT LIQUID | 1/4 149FT SW TK TK-169 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13624-000 | | LIGHT LIQUID | G/5 SWSD TK TK-169 PRV PSV-451 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13635-000 | | LIGHT LIQUID | G/4 6FT S TK TK-169 PRV PSV-453 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13640-000 | | LIGHT LIQUID | G/4 6FT S TK TK-169 PRV PSV-455 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13646-000 | | LIGHT LIQUID | G/3 174FT SE TK TK-169 PRV PSV-43 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13648-000 | | LIGHT LIQUID | G/3 176FT SE TK TK-169 PRV PSV-47 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13649-000 | | LIGHT LIQUID | G/7 200FT SE TK TK-169 PRV PSV-766 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13684-000 | | LIGHT LIQUID | G/5 151FT N TK TK-105 PRV PSV-183 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13728-000 | | LIGHT LIQUID | G/4 WSD TK TK-170 PRV PSV-544 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13730-000 | | LIGHT LIQUID | G/2 WSD TK TK-170 PRV PSV-545 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13740-000 | | LIGHT LIQUID | G/4 SSD TK TK-170 PRV PSV-557 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 13744-000 | | LIGHT LIQUID | G/4 SSD TK TK-170 PRV PSV-562 PRV | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 1972-000 | | HEAVY LIQUID | G/4 TK-129 SE OF ROOF DRAINLINE PSV-659 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 1986-000 | | HEAVY LIQUID | G/3 TK-129 BELOW PLATFORM PSV-658 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 1990-000 | | HEAVY LIQUID | G/3 TK-129 BELOW PLATFORM PSV-657 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 1998-000 | | HEAVY LIQUID | G/3 ESD TK-173 PSV-548 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 2001-000 | | HEAVY LIQUID | G/2 ESD TK-173 PSV-549 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 2012-000 | 1.5 | HEAVY LIQUID | G/3 ESD TK-173 PSV-564 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 2014-000 | 1.5 | HEAVY LIQUID | G/3 ESD TK-173 BELOW PLATFORM PSV-552 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 2180-000 | 1.5 | HEAVY LIQUID | G/3 SW OF TK 107 PSV-689 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 2183-000 | 1.5 | HEAVY LIQUID | G/4 SW OF TK 107 PSV-688 | | EAST BULK - #76 GAS BLDNG. | PRESSURE RELIEF VALVE | 2190-000 | 1.5 | HEAVY LIQUID | G/6 NW OF TK 107 PSV-696 | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 2771-000 | 8 | HEAVY LIQUID | T/2 SESD TK-153 PSV-153A | | EAST BULK - #76 GAS BLDNG. | ATOM NO RD | 2772-000 | | HEAVY LIQUID | T/2 SESD TK-153 PSV-153C | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 83951-000 | | LIGHT LIQUID | G/4 WSD TK TK-174 PRV PSV-441 PRV | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 83953-000 | | LIGHT LIQUID | G/5 5FT SW TK TK-174 PRV PSV-444 | | EAST BULK - #76 GAS BLDNG. | CVS NO RD | 90555-000 | | LIGHT LIQUID | G/3 SWSD TK TK-167 PRV PSV-448 PRV | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 14392-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/6 18FT NE P G-101 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 14406-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/5 15FT NW P-2 PSV-33 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 14444-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/25 10FT NW G-630 PSV-82 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 15777-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/3 ESD G-8 PSV-38 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 15783-000
31074-000 | | HEAVY LIQUID NON RODEO RE-NEW LIGHT LIQUID | G/7 SESD G-8 PSV-39 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | | | | | | EACT DULL #00 DEE OU CLUDO | CVC NO DD | | | | G/3 80FT NW BLDG 80 CONTROL ROOM PRV PSV-52 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 | 0.75 | GAS / VAPOR | G/7 50FT NE BLDG 80 CONTROL ROOM PRV | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000 | 0.75
0.75 | GAS / VAPOR
LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV
G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 | | EAST BULK - #80 REF. OIL SHIPG.
EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD CVS NO RD | 31128-000
31161-000
31163-000 | 0.75
0.75
0.75 | GAS / VAPOR
LIGHT LIQUID
LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV
G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18
G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 | | EAST BULK - #80 REF. OIL SHIPG. EAST BULK - #80 REF. OIL SHIPG. EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD CVS NO RD CVS NO RD | 31128-000
31161-000
31163-000
31165-000 | 0.75
0.75
0.75
0.75 | GAS / VAPOR
LIGHT LIQUID
LIGHT LIQUID
LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV
G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18
G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17
G/11 25FT NW CNR F ST. & ROAD 8 PRV | | EAST
BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000 | 0.75
0.75
0.75
0.75
0.75 | GAS / VAPOR LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK-203 PRV PSV-748 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000
31278-000 | 0.75
0.75
0.75
0.75
0.75
0.75 | GAS / VAPOR LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000
31278-000
31283-000 | 0.75
0.75
0.75
0.75
0.75
0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NF TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 | | EAST BULK -#80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000
31278-000
31283-000
31317-000 | 0.75
0.75
0.75
0.75
0.75
0.75
0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK. 203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 | | EAST BULK -#80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000
31278-000
31283-000
31317-000
31330-000 | 0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 5FT NE CNR M ST & ROAD 8 PRV PSV-820 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000
31278-000
31283-000
31337-000
31330-000 | 0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 5FT NE CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000
31278-000
31283-000
31317-000
31330-000 | 0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 5FT NE CNR M ST & ROAD 8 PRV PSV-820 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31165-000
31165-000
31244-000
31278-000
31278-000
31317-000
31332-000
31332-000
31337-000 | 0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 12FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-594 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-714 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/-3 20FT E CNR M ST & ROAD 8 PRV PSV-574 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000
31278-000
3137-000
31337-000
31332-000
31337-000
31347-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-79 G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 8FTF E CNR J ST & ROAD 8 PRV PSV-714 G/2 8FTF E CNR M ST & ROAD 8 PRV PSV-80 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-57 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-57 G/3 20FT E CNR M ST & ROAD 8 NWSD LN 501 G/-1 29FT E CNR M ST & ROAD 8 NWSD LN 501 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000
31278-000
313183-000
31330-000
31332-000
31337-000
31337-000
31337-000
31337-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 5FT NE CNR M ST & ROAD 8 PRV PSV-594 G/2 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 NWSD LN 501 G/3 33FT E CNR M ST & ROAD 8 NWSD LN 501 G/3 33FT E CNR M ST & ROAD 8 SWSD LN 501 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31165-000
31165-000
31244-000
31278-000
31278-000
31337-000
31337-000
31337-000
31337-000
31357-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-14 G/2 5FT NE CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 NWSD LN 501 G/1 29FT E CNR M ST & ROAD 8 SWSD LN 301 G/3 33FT E CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT E CNR M ST & ROAD 8 PRV PSV-512 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000
31161-000
31163-000
31165-000
31244-000
31278-000
31278-000
31317-000
31332-000
31332-000
31332-000
31332-000
31332-000
31335-000
31360-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 12FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-74 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-50 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 NWSD LN 501 G/3 20FT E CNR M ST & ROAD 8 SWSD LN 501 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 34FT NE CNR M ST & ROAD 8 PRV PSV-521 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31244-000 31278-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 3137-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-19 G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 8FTF E CNR J ST & ROAD 8 PRV PSV-174 G/2 8FTF E CNR J ST & ROAD 8 PRV PSV-174 G/2 8FTF E CNR M ST & ROAD 8 PRV PSV-50 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-57 G/3 20FT E CNR M ST & ROAD 8 NWSD LN 501 G/1 29FTE CNR M ST & ROAD 8 NWSD LN 501 G/3 33FT R CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31244-000 31278-000 31328-000 31330-000 31332-000 31337-000 31337-000 31365-000 31365-000 31360-000 31362-000 31364-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 5FT
NE CNR M ST & ROAD 8 PRV PSV-594 G/2 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 30FT E CNR M ST & ROAD 8 NWSD LN 501 G/3 33FT E CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-514 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-515 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31163-000 31165-000 31244-000 31278-000 31283-000 31332-000 31332-000 31337-000 31337-000 31337-000 31362-000 31362-000 31362-000 31366-000 31366-000 31366-000 31368-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-19 G/2 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-574 G/2 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 NWSD LN 501 G/1 20FT E CNR M ST & ROAD 8 NWSD LN 501 G/3 33FT E CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31244-000 31278-000 31278-000 3137-000 31337-000 31337-000 31337-000 31337-000 31362-000 31366-000 31366-000 31366-000 31366-000 31366-000 31368-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-420 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/-3 20FT E CNR M ST & ROAD 8 PRV PSV-522 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31165-000 31165-000 31244-000 31278-000 3137-000 3137-000 31337-000 31337-000 31347-000 31360-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-19 G/2 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-574 G/2 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 NWSD LN 501 G/1 20FT E CNR M ST & ROAD 8 NWSD LN 501 G/3 33FT E CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-501 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31278-000 31278-000 3137-000 31317-000 31337-000 31337-000 31337-000 31337-000 31337-000 31337-000 31367-000 31367-000 31368-000 31368-000 31368-000 31368-000 31417-000 31417-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 20FT NW CNR F ST. & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-74 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-520 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-524 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT E CNR M ST & ROAD 8 PRV PSV-718 G/2 60FT E CNR M ST & ROAD 8 PRV PSV-718 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-503 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-670 G/5 60FT NE CNR M ST & ROAD 8 PRV PSV-670 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31244-000 31278-000 31278-000 31327-000 31337-000 31337-000 31337-000 31357-000 31367-000 31367-000 31368-000 31368-000 31368-000 31418-000 31418-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/12 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 25FT NW CNR F ST. & ROAD 8 PRV PSV-593 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-174 G/2 25FT NE CNR M ST & ROAD 8 PRV PSV-520 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 33FT CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV
PSV-426 G/5 60FT NE CNR M ST & ROAD 8 PRV PSV-427 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31165-000 31165-000 31244-000 31278-000 3137-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/12 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/16 25FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-594 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-510 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-510 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-510 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-511 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-511 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-511 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-511 G/3 35FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 65FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-569 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31244-000 31278-000 31328-000 31317-000 31330-000 31337-000 31337-000 31347-000 31360-000 31360-000 31360-000 31360-000 31360-000 31360-000 31410-000 31410-000 31410-000 31411-000 31411-000 31411-000 31411-000 31411-000 31412-000 31537-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/12 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 25FT NW CNR F ST. & ROAD 8 PRV PSV-78 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 25FT NE CNR M ST & ROAD 8 PRV PSV-574 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 25FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-516 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-517 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-569 G/4 50FT S TK TK-288 PRV PSV-767 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31244-000 31283-000 31283-000 313278-000 31337-000 31337-000 31337-000 31367-000 31367-000 31368-000 31368-000 31368-000 31418-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/16 25FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 26FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 25FT NE CNR M ST & ROAD 8 PRV PSV-74 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-521 G/3 33FT CR CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 60FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 65FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-426 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31278-000 313283-000 31337-000 31337-000 31337-000 31361-000 31360-000 31415-000 31500-000 31500-000 31500-000 31500-000 31500-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV G/7 65FT NE TK TK-203 PRV PSV-748 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 8FT E CNR J ST & ROAD 8 PRV PSV-174 G/2 8FT E CNR M ST & ROAD 8 PRV PSV-420 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-522 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 34FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-603 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31278-000 3137-000 3157-000 3157-000 3157-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 12FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 25FT NW CNR F ST. & ROAD 8 PRV PSV-78 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J
ST & ROAD 8 PRV PSV-594 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-607 G/5 60FT NE CNR M ST & ROAD 8 PRV PSV-613 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-613 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-613 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-613 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-613 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-613 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-620 G/5 50FT NE CNR M ST & ROAD 8 PRV PSV-620 G/5 50FT NE CNR M ST & ROAD 8 PRV PSV-630 G/4 50FT S TK TK-288 PRV PSV-763 G/11 20FT NE CNR FST & ROAD 8 PRV G/7 57FT N TK TK-260 PRV PSV-732 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31284-000 31278-000 31278-000 313283-000 31317-000 31337-000 31337-000 31337-000 31337-000 31367-000 31368-000 31368-000 31368-000 31418-000 31418-000 31418-000 31418-000 31418-000 31418-000 31418-000 31418-000 31418-000 31418-000 31418-000 31538-000 31538-000 31538-000 31538-000 31538-000 31538-000 31538-000 31553-000 31553-000 31553-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-74 G/2 20FT NC CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-514 G/2 8FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 8FT E CNR M ST & ROAD 8 PRV PSV-74 G/2 20FT NC CNR M ST & ROAD 8 PRV PSV-50 G/2 20FT NC CNR M ST & ROAD 8 PRV PSV-50 G/3 20FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 23FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 33FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 33FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 35FT NC CNR M ST & ROAD 8 PRV PSV-51 G/3 55FT C CNR M ST & ROAD 8 PRV PSV-51 G/3 55FT C CNR M ST & ROAD 8 PRV PSV-51 G/3 55FT C CNR M ST & ROAD 8 PRV PSV-60 G/5 60FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 60FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 61FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 61FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 61FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 61FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 61FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 61FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 61FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 61FT NC CNR M ST & ROAD 8 PRV PSV-60 G/5 61FT NC CNR M ST & ROAD 8 PRV PSV-763 G/5 61FT NC CNR FST. & ROAD 8 PRV PSV-731 G/7 52FT NT KT K-2201 PRV PSV-731 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31278-000 313278-000 31337-000 31337-000 31337-000 31337-000 31360-000 31360-000 31360-000 31360-000 31360-000 31360-000 31360-000 31360-000 31360-000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 315000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 26FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 25FT NE CNR M ST & ROAD 8 PRV PSV-174 G/2 25FT NE CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/3 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-522 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-526 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-526 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-526 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 35FT NE CNR M ST & ROAD 8 PR | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31278-000 313283-000 31317-000 31337-000 31337-000 31337-000 31360-000 31413-000 31413-000 31413-000 31413-000 31413-000 31413-000 31561-000 31561-000 31561-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 5FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-594 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-520 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT E CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31278-000 313283-000 31317-000 31337-000 31337-000 31337-000 31360-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 12FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 25FT NW CNR F ST. & ROAD 8 PRV PSV-174 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-574 G/2 27FT E CNR M ST & ROAD 8 PRV PSV-714 G/2 27FT NE CNR M ST & ROAD 8 PRV PSV-574 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-521 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-522 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513
G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 56FT E CNR M ST & ROAD 8 PRV PSV-524 G/3 56FT E CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31278-000 31278-000 31327-000 31337-000 31337-000 31337-000 31337-000 31367-000 31367-000 31368-000 31368-000 31368-000 31418-000 31418-000 31418-000 31418-000 31551-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 26FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 26FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 25FT NE CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/3 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/3 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 33FT CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 60FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 60FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 51FT ST KTK-288 PRV PSV-730 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 25FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 G/1 20FT NE CNR M ST & ROAD 8 PRV PSV-426 | | EAST BULK - #80 REF, OIL SHIPG, | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31278-000 313283-000 31317-000 31337-000 31337-000 31337-000 31360-000 31400-000 31410-000 31410-000 31410-000 31410-000 31410-000 31500-000 31778-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/16 25FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-174 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-174 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-503 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 61FT NE CNR M ST & ROAD 8 PRV PSV-4 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31165-000 31165-000 31244-000 31278-000 3137-000 3157-000 3157-000 3157-000 3157-000 3157-000 3157-000 3157-000 3157-000 3157-000 3157-000 3157-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 5FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-594 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-74 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-560 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-513 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-520 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-520 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-520 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-520 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-520 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-520 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-520 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-420 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-420 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-420 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-420 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-420 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-420 G/3 55FT E CNR M ST & | | EAST BULK - #80 REF, OIL SHIPG, | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31244-000 31283-000 313278-000 31337-000 31337-000 31337-000 31337-000 31367-000 3157-000 3157-000 3157-000 3157-000 3157-000 3157-000 3157-000 3157-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM
PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 25FT NE CNR M ST & ROAD 8 PRV PSV-520 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-521 G/3 33FT CR CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-571 G/3 45FT NE CNR M ST & ROAD 8 PRV PSV-571 G/3 45FT NE CNR M ST & ROAD 8 PRV PSV-570 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-570 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-570 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-570 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 60FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 60FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 61FT NE CNR M ST & ROAD 8 PRV PSV-426 G/5 51FT S TK K-228 PRV PSV-732 G/7 55FT NE K K-288 PRV PSV-732 G/7 55FT NE K K-289 PRV PSV-731 G/2 52FT E CNR M ST & ROAD 8 PRV PSV-426 G/1 12FT NE CNR F ST & ROAD 8 PRV PSV-420 G/1 25FT S TK K-201 PRV PSV-731 G/2 52FT E CNR M ST & ROAD 8 PRV PSV-426 G/1 12FT NE CNR F ST & ROAD 8 PRV PSV-470 G/1 21FT NE CNR F ST & ROAD 8 PRV PSV-470 G/1 21FT NE CNR F ST & ROAD 8 PRV PSV-470 G/1 21FT NE CNR F ST & ROAD 8 PRV PSV-470 G/1 21FT NE CNR F ST & ROAD 8 PRV PSV-470 G/1 21FT NE CNR F ST & ROAD 8 PRV PSV-470 G/1 21FT NE CNR F ST & ROAD 8 PRV PSV-470 G/1 21FT NE CNR F ST & ROAD 8 PRV PSV-470 G/1 21FT NE CNR F ST & ROAD 8 PRV | | EAST BULK - #80 REF, OIL SHIPG, | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31283-000 31337-000 31337-000 31337-000 31337-000 31365-000 31366-000 31366-000 31366-000 31415-000 31418-000 31551-000 31551-000 31551-000 31551-000 31554-000 31554-000 31564-000 30564-000 30564-000 3057-000 3057-000 30564-000 30564-000 30564-000 30564-000 30564-000 30564-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 25FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 26FT NE CNR J ST & ROAD 8 PRV PSV-174 G/2 25FT NE CNR M ST & ROAD 8 PRV PSV-174 G/2 25FT NE CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-820 G/3 20FT NE CNR M ST & ROAD 8 PRV PSV-821 G/3 33FT CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-520 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 55FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR PST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR ST & ROAD 8 PRV PSV-426 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31278-000 313283-000 31317-000 31337-000 31337-000 31337-000 31360-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 5FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-594 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-571 G/3 45FT NE CNR M ST & ROAD 8 PRV PSV-572 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-573 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-573 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-573 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR M ST & ROAD | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31278-000 31328-000 31317-000 31332-000 31337-000 31337-000 31360-000 31410-000 31410-000 31410-000 31410-000 31510-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 25FT NW CNR F ST. & ROAD 8 PRV PSV-78 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-594 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-570 G/3 56FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 56FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 56FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 56FT NE CNR M ST & ROAD 8 PRV PSV-569 G/4 50FT S TK TK-288 PRV PSV-767 G/5 60FT NE CNR M ST & ROAD 8 PRV PSV-569 G/4 50FT S TK TK-288 PRV PSV-767 G/5 55FT NT K TK-281 PRV PSV-731 G/3 55FT E CNR M ST & ROAD 8 PRV PSV-569 G/4 50FT S TK TK-288 PRV PSV-767 G/5 55FT NT K TK-21 PRV PSV-731 G/2 55FT NE CNR M ST & ROAD 8 PRV PSV-569 G/4 50FT S TK TK-280 PRV PSV-731 G/3 18FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST &
ROAD 8 PRV PSV-427 G/3 63FT NE CNR M ST & ROAD 8 PRV PSV-427 G/3 63F | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31128-000 31161-000 31161-000 31165-000 31165-000 31244-000 31278-000 313283-000 31317-000 31337-000 31337-000 31337-000 31360-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 31560-000 | 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | GAS / VAPOR LIGHT LIQUID | G/7 50FT NE BLDG 80 CONTROL ROOM PRV G/2 20FT NW CNR F ST. & ROAD 8 PRV PSV-18 G/2 21FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/11 25FT NW CNR F ST. & ROAD 8 PRV PSV-17 G/12 5FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-593 G/3 18FT NE CNR J ST & ROAD 8 PRV PSV-594 G/2 20FT NE CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR J ST & ROAD 8 PRV PSV-714 G/2 87FT E CNR M ST & ROAD 8 PRV PSV-820 G/2 20FT NE CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 20FT E CNR M ST & ROAD 8 PRV PSV-574 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-512 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-521 G/3 33FT NE CNR M ST & ROAD 8 PRV PSV-524 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-513 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-571 G/3 45FT NE CNR M ST & ROAD 8 PRV PSV-572 G/3 35FT NE CNR M ST & ROAD 8 PRV PSV-573 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-573 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-573 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-569 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT E CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 5FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR M ST & ROAD 8 PRV PSV-426 G/3 15FT NE CNR M ST & ROAD | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30005-000 | 1 | LIGHT LIQUID | G/12 9FT N P G-4 PRV PSV-1440 | |---|---|--|---|---|--| | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30016-000 | 1 | LIGHT LIQUID | G/5 17FT SW P G-3 PRV PSV-31 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30025-000 | | LIGHT LIQUID | G/9 4FT S P G-101 PRV PSV-39 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30043-000 | | LIGHT LIQUID | G/2 20FT NW P G-101 PRV PSV-29 | | | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30119-000 | | LIGHT LIQUID | G/9 13FT E P G-2 PRV PSV-16 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30126-000 | | LIGHT LIQUID | G/9 17FT E P G-1 PRV PSV-15 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30159-000 | 0.75 | LIGHT LIQUID | G/6 18FT S P G-101 PRV PSV-31 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30182-000 | 0.75 | LIGHT LIQUID | G/6 6FT W P G-3 PRV PSV-43 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30189-000 | | LIGHT LIQUID | G/6 8FT NW P G-3 PRV PSV-23 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30238-000 | | LIGHT LIQUID | G/5 13FT NE P G-7 PRV PSV-1 | | | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30254-000 | | LIGHT LIQUID | G/9 25FT NE P G-7 PRV PSV-4 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30259-000 | 0.75 | LIGHT LIQUID | G/4 23FT NE P G-7 PRV PSV-2 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30271-000 | 0.75 | LIGHT LIQUID | G/5 24FT N P G-7 PRV PSV-3 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30309-000 | 0.75 | LIGHT LIQUID | G/5 5FT NW P G-5 PRV PSV-12 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30315-000 | | LIGHT LIQUID | G/5 4FT NW P G-5 PRV PSV-9 | | | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30319-000 | | LIGHT LIQUID | G/5 3FT NW P G-5 PRV PSV-10 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30328-000 | | LIGHT LIQUID | G/3 13FT NW P G-5 PRV PSV-22 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30330-000 | 0.75 | LIGHT LIQUID | G/3 12FT NW P G-5 PRV PSV-23 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30332-000 | 0.75 | LIGHT LIQUID | G/9 11FT NW P G-5 PRV PSV-46 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30338-000 | | LIGHT LIQUID | G/5 26FT NW P G-5 PRV PSV-13 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30343-000 | | LIGHT LIQUID | G/7 15FT N P G-2 PRV PSV-47 | | | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30349-000 | | LIGHT LIQUID | G/7 15FT N P G-2 PRV PSV-48 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30360-000 | 0.75 | LIGHT LIQUID | G/5 25FT NW P G-2 PRV PSV-35 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30364-000 | 0.75 | LIGHT LIQUID | G/5 25FT NE P G-101 PRV PSV-32 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30369-000 | 0.75 | LIGHT LIQUID | G/5 ESD WEST BATT LIMIT | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30380-000 | | LIGHT LIQUID | G/3 MID WEST BATT LIMIT PRV | | | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30392-000 | | LIGHT LIQUID | G/4 WSD WEST BATT LIMIT PRV | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 30404-000 | 0.75 | LIGHT LIQUID | G/5 NSD WEST BATT LIMIT PRV PSV-51 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 34399-000 | 1 | LIGHT LIQUID | G/2 9FT W P G-5 PRV PSV-89 | | EAST BULK - #80 REF. OIL SHIPG. | CVS WITH RD | 50951-000 | | GAS / VAPOR | T/2 ESD TK F-833 PRV PSV-47 | | EAST BULK - #80 REF. OIL SHIPG. | CVS WITH RD | 50953-000 | | GAS / VAPOR | T/2 ESD TK F-833 SSD PRV PSV-48 | | | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 81138-000 | | LIGHT LIQUID | G/8 18FT S P G-101 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 81463-000 | | LIGHT LIQUID | G/2 34FT E TK F-833 NSD PFRM PSV-U-435 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 81807-000 | 1 | LIGHT LIQUID | G/3 13FT SE P G-2 PRV PSV-6 | | EAST BULK
- #80 REF. OIL SHIPG. | ATOM NO RD | 1851-000 | | HEAVY LIQUID | G/3 SOUTH OF TK 1009 PSV 523 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 1869-000 | | HEAVY LIQUID | G/4 SW OF TK 1009 PSV 529 | | | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 1879-000 | | HEAVY LIQUID | G/3 SOUTH OF TK 1010 PSV 540 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 1885-000 | 1 | HEAVY LIQUID | G/3 SW TK-1010 PSV-533 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 1907-000 | 1.5 | HEAVY LIQUID | G/5 EAST TK 1010 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 1918-000 | 1.5 | HEAVY LIQUID | G/4 PSV 585 TK 1011 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 1929-000 | | HEAVY LIQUID | G/2 PSV-580 TK 1011 | | | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 2207-000 | | HEAVY LIQUID | G/6 WEST OF TK-1001 PSV-537 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 2224-000 | 1.5 | HEAVY LIQUID | G/4 SE OF TK-1001 PSV-514 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 2237-000 | 1.5 | HEAVY LIQUID | G/3 PSV-525 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 2252-000 | 1.5 | HEAVY LIQUID | G/4 PSV-534 tk 1003 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31001-000 | | HEAVY LIQUID | G/3 115FT S TK TK-1001 PRV PSV-765 | | | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31003-000 | | HEAVY LIQUID | G/3 113FT S TK TK-1001 PRV PSV-150 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31007-000 | | HEAVY LIQUID | G/3 112FT S TK TK-1001 PRV PSV-505 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31010-000 | 1 | HEAVY LIQUID | G/3 111FT S TK TK-1001 PRV PSV-502 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 31012-000 | 1 | HEAVY LIQUID | G/3 110FT S TK TK-1001 PRV PSV-500 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 3845-000 | | HEAVY LIQUID | G/3 WEST OF TK-1007 PSV-787 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 3848-000 | | | G/3 WEST OF TK-1007 PSV-795 | | | | | | HEAVY LIQUID | | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 3860-000 | | HEAVY LIQUID | G/1 NW OF TK-1007 PSV-779 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 50052-000 | 1 | HEAVY LIQUID | G/4 SSD TK TK-1004 PRV PSV-530 | | EAST BULK - #80 REF. OIL SHIPG. | Thermal Relief Valve w/no RD | 51346-000 | 0.75 | HEAVY LIQUID | G/4 3FT S TK TK-1006 PRV | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 52412-000 | | HEAVY LIQUID | G/3 5FT S TK TK-1002 PRV PSV-532 | | | | 52418-000 | | | | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | | | HEAVY LIQUID | G/3 SESD TK TK-1002 PRV PSV536 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 82803-000 | | HEAVY LIQUID | G/4 SWSD TK TK-1001 PRV PSV-537 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 91554-000 | 0.75 | HEAVY LIQUID | G/4 SSD TK TK-1005 PSV-520 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 91715-000 | 0.75 | HEAVY LIQUID | G/4 3FTS TK TK-1004 PRV PSV-528 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 91716-000 | | HEAVY LIQUID | G/4 SESD TK TK-1005 PSV-531 | | | Thermal Relief Valve w/no RD | 91717-000 | | HEAVY LIQUID | G/4 SSD TK TK-1006 | | EAST BULK - #80 REF. OIL SHIPG. | | | | | | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 0377-000 | | LIGHT LIQUID | WEST OF TK 208 PSV 721 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 0391-000 | | LIGHT LIQUID | WEST OF TK 208 PSV-708 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 0392-000 | | LIGHT LIQUID | PSV-709 BELOW PLATFORM ON PILL LINE | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 144211-000 | 0.75 | GAS / VAPOR | G/4 26FT SW TK-281 PSV-0093 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 144212-000 | | GAS / VAPOR | G/4 27FT SW TK-281 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 1807-000 | | LIGHT LIQUID | G/4 PSV-11 WSD SAMPLE STATION | | EAST BULK - #80 REF. OIL SHIPG. | | H | | LIGHT LIQUID | | | | ATOM NO RD | 1821-000 | 1 | II IVALII LICAUIIA | G/3 WEST OF TK 209 PSV 7/1 | | | | | | | WEST OF TK 209 PSV 710 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 1823-000 | | LIGHT LIQUID | | | EAST BULK - #80 REF. OIL SHIPG.
EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD
ATOM NO RD | 1935-000 | 0.75 | LIGHT LIQUID
HEAVY LIQUID | G/3 SW OF TK 1012 PSV 581 | | | | | 0.75 | LIGHT LIQUID | | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD | 1935-000 | 0.75
1 | LIGHT LIQUID
HEAVY LIQUID | G/3 SW OF TK 1012 PSV 581 | | EAST BULK - #80 REF. OIL SHIPG. EAST BULK - #80 REF. OIL SHIPG. EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD
ATOM NO RD
CVS NO RD | 1935-000
1949-000
30502-000 | 0.75
1
0.75 | LIGHT LIQUID
HEAVY LIQUID
HEAVY LIQUID
LIGHT LIQUID | G/3 SW OF TK 1012 PSV 581
G/1 SW OF TK 1012 PSV 587
G/3 NWSD TK TK-101 PRV PSV-85 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS NO RD CVS NO RD | 1935-000
1949-000
30502-000
30520-000 | 0.75
1
0.75
0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT LIQUID LIGHT LIQUID | G/3 SW OF TK 1012 PSV 581
G/1 SW OF TK 1012 PSV 587
G/3 NWSD TK TK-101 PRV PSV-85
G/4 8FT W TK TK-210 PRV PSV-712 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS NO RD CVS NO RD CVS NO RD CVS NO RD | 1935-000
1949-000
30502-000
30520-000
30524-000 | 0.75
1
0.75
0.75
0.75 | LIGHT LIQUID HEAVY LIQUID HEAVY LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID | G/3 SW OF TK 1012 PSV 581
G/1 SW OF TK 1012 PSV 587
G/3 NWSD TK TK-101 PRV PSV-85
G/4 8FT W TK TK-210 PRV PSV-712
G/3 8FT W TK TK-210 PRV PSV-713 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS NO RD | 1935-000
1949-000
30502-000
30520-000
30524-000
30544-000 | 0.75
1
0.75
0.75
0.75
0.75 | LIGHT LIQUID HEAVY LIQUID HEAVY LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID | G/3 SW OF TK 1012 PSV 581
G/1 SW OF TK 1012 PSV 587
G/3 NWSD TK TK-101 PRV PSV-85
G/4 8FT W TK TK-210 PRV PSV-712
G/3 8FT W TK TK-210 PRV PSV-713
G/5 10FT S TK TK-241 PRV PSV-711 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS NO RD CVS NO RD CVS NO RD CVS NO RD | 1935-000
1949-000
30502-000
30520-000
30524-000 | 0.75
1
0.75
0.75
0.75
0.75 | LIGHT LIQUID HEAVY LIQUID HEAVY LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID | G/3 SW OF TK 1012 PSV 581
G/1 SW OF TK 1012 PSV 587
G/3 NWSD TK TK-101 PRV PSV-85
G/4 8FT W TK TK-210 PRV PSV-712
G/3 8FT W TK TK-210 PRV PSV-713 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS NO RD | 1935-000
1949-000
30502-000
30520-000
30524-000
30544-000 | 0.75
1
0.75
0.75
0.75
0.75
0.75 | LIGHT LIQUID HEAVY LIQUID HEAVY LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID LIGHT LIQUID | G/3 SW OF TK 1012 PSV 581
G/1 SW OF TK 1012 PSV 587
G/3 NWSD TK TK-101 PRV PSV-85
G/4 8FT W TK TK-210 PRV PSV-712
G/3 8FT W TK TK-210 PRV PSV-713
G/5 10FT S TK TK-241 PRV PSV-711 | | EAST BULK - #80 REF, OIL SHIPG. | ATOM NO RD ATOM NO RD CVS | 1935-000
1949-000
30502-000
30520-000
30524-000
30544-000
30608-000
30616-000 | 0.75
1
0.75
0.75
0.75
0.75
0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581
G/1 SW OF TK 1012 PSV 587
G/3 NWSD TK TK-101 PRV PSV-85
G/4 8FT W TK TK-210 PRV PSV-712
G/3 8FT W TK TK-210 PRV PSV-713
G/5 10FT S TK TK-241 PRV PSV-111
G/4 8FT W TK TK-243 PRV PSV-784
G/4 8FT W TK TK-243 PRV PSV-785 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS | 1935-000
1949-000
30502-000
30520-000
30524-000
30544-000
30608-000
30616-000
30636-000 | 0.75
1
0.75
0.75
0.75
0.75
0.75
0.75 | LIGHT LIQUID HEAVY LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-111 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-784 G/5 10FT SW TK TK-243 PRV PSV-785 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS | 1935-000
1949-000
30502-000
30520-000
30524-000
30544-000
30608-000
30616-000
30636-000
30678-000 | 0.75
1
0.75
0.75
0.75
0.75
0.75
0.75
2
0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/3 NWSD TK TK-101 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-713 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/4 SFT W TK TK-243 PRV PSV-785 G/4 SFT W TK TK-243 PRV PSV-785 G/4 SFT W TK TK-243 PRV PSV-785 G/4 SFD TK TK-287 PRV PSV-623 | | EAST BULK - #80 REF, OIL SHIPG. | ATOM NO RD ATOM NO RD CVS | 1935-000
1949-000
30502-000
30520-000
30524-000
30544-000
30608-000
30616-000
30636-000
30678-000
30681-000 | 0.75
1
0.75
0.75
0.75
0.75
0.75
0.75
2
0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK K-1012 PSV 587 G/3 NWSD TK K-1012 PRV PSV-785 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-711 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-243 PRV PSV-565 G/4 SSD T K TK-287 PRV PSV-566 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS | 1935-000
1949-000
30502-000
30520-000
30524-000
30544-000
30608-000
30616-000
30636-000
30678-000 | 0.75
1
0.75
0.75
0.75
0.75
0.75
0.75
2
0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/3 NWSD TK TK-101 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-711 G/4 8FT W TK TK-243 PRV PSV-784
G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-243 PRV PSV-785 G/4 8FT W TK TK-243 PRV PSV-785 G/4 SFT W TK TK-243 PRV PSV-785 G/4 SSD TK TK-281 PRV PSV-623 | | EAST BULK - #80 REF, OIL SHIPG. | ATOM NO RD ATOM NO RD CVS | 1935-000
1949-000
30502-000
30520-000
30524-000
30544-000
30608-000
30616-000
30636-000
30678-000
30681-000 | 0.75
1
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK K-1012 PRV PSV-85 G/4 8FT W TK TK-101 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-711 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-243 PRV PSV-785 G/4 SDT TK TK-243 PRV PSV-785 G/4 SSD TK TK-287 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-566 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS | 1935-000 1949-000 30502-000 30520-000 30524-000 30524-000 30544-000 30608-000 30616-000 30636-000 30678-000 30681-000 30691-000 3891-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-711 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-281 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-5665 G/4 SWSD TK TK-287 PRV PSV-575 G/4 SE OT TK TK-287 PRV PSV-575 | | EAST BULK - #80 REF, OIL SHIPG. | ATOM NO RD ATOM NO RD CVS PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 1935-000 1949-000 30502-000 30520-000 30524-000 30524-000 30544-000 30608-000 30616-000 30678-000 30681-000 30681-000 30891-000 3891-000 3891-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK K-1012 PRV PSV-85 G/4 8FT W TK TK-101 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-711 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-281 PRV PCV-623 G/4 SSD TK TK-287 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-565 G/4 SWD TK TK-287 PRV PSV-575 G/4 SSD TK TK-287 PRV PSV-575 G/4 SSE OT TK-287 PSV PSV-575 | | EAST BULK - #80 REF, OIL SHIPG. | ATOM NO RD ATOM NO RD CVS PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 1935-000 1949-000 30502-000 30520-000 30524-000 30524-000 30544-000 30616-000 30616-000 30636-000 30678-000 30681-000 30691-000 3891-000 3891-000 3991-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-711 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/4 8FT W TK TK-243 PRV PSV-785 G/4 SFT W TK TK-243 PRV PSV-785 G/4 SFT W TK TK-243 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-565 G/4 SSW DT KTK-287 PRV PSV-575 G/4 SE OT TK-291 PSV-1013 G/4 SE OT TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV | | EAST BULK - #80 REF, OIL SHIPG. | ATOM NO RD ATOM NO RD CVS RD RESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 1935-000 1949-000 30502-000 30520-000 30524-000 30524-000 30544-000 30616-000 30636-000 30678-000 30681-000 30691-000 3891-000 3994-000 3991-000 39925-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-714 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-281 PRV PSV-565 G/4 SSD TK TK-287 PRV PSV-575 G/4 SS G TK-291 PSV-1013 G/4 SE G TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV G/4 EAST OF TK-291 PSV | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 1935-000 1949-000 30502-000 30520-000 30524-000 30524-000 30544-000 30616-000 30616-000 30636-000 30678-000 30681-000 30691-000 3891-000 3891-000 3991-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-711 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-281 PRV PCV-623 G/4 SSD TK TK-287 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-565 G/4 SSW DT KTK-287 PRV PSV-575 G/4 SE OT TK-291 PSV-1013 G/4 SE OT TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS RD RESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 1935-000 1949-000 30502-000 30520-000 30524-000 30524-000 30544-000 30616-000 30636-000 30678-000 30681-000 30691-000 3891-000 3994-000 3991-000 39925-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-714 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-281 PRV PSV-565 G/4 SSD TK TK-287 PRV PSV-575 G/4 SS G TK-291 PSV-1013 G/4 SE G TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV G/4 EAST OF TK-291 PSV | | EAST BULK - #80 REF, OIL SHIPG. | ATOM NO RD ATOM NO RD CVS PRESSURE RELIEF VALVE | 1935-000 1949-000 30520-000 30520-000 30524-000 30524-000 30544-000 30616-000 30616-000 30636-000 30681-000 30681-000 30691-000 30991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1.5 1.5 1.5 1.5 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 BFT W TK TK-210 PRV PSV-712 G/3 BFT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-243 PRV PSV-785 G/4 SSD TK TK-287 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-565 PSV PSV-565 G/4 SSD TK TK-287 PSV PSV-565 G/4 SSD TK TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV G/4 EAST OF TK 292 PSV-854 G/4 EAST OF TK 292 FSONT OF PLATFORM G/2 SOUTH OF TK 292 PSV-307 | | EAST BULK - #80 REF, OIL SHIPG. | ATOM NO RD ATOM NO RD CVS PRESSURE RELIEF VALVE | 1935-000 1949-000 30502-000 30520-000 30524-000 30524-000 30544-000 30616-000 30616-000 30636-000 30681-000 30691-000 3891-000 3891-000 3911-000 3925-000 39344-000 3944-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT GAS / VAPOR | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-714 G/5 10FT S TK TK-242 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-243 PRV PSV-676 G/4 SSD TK TK-287 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-575 G/4 SSD TK TK-287 PRV PSV-575 G/4 SSD TK TK-287 PSV 1013 G/3 SCD TK TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV-954 G/4 EAST OF TK 292 FRONT OF PLATFORM G/2 SOUTH OF TK-292 PSV-307 G/3 WEST OF TK 281 PSV-307 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS PRESSURE RELIEF VALVE | 1935-000 1949-000 30502-000 30520-000 30524-000 30524-000 30544-000 30616-000 30616-000 30678-000 30681-000 30681-000 30691-000 3891-000 3891-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-714 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-281 PRV PSV-565 G/4 SSD TK TK-287 PRV PSV-565 G/4 SSD TK TK-287 PRV PSV-565 G/4 SSD TK TK-287 PRV PSV-575 G/4 SE OT TK-291 PSV-1013 G/4 SE OT TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV G/4 EAST OF TK-292 PSV-854 G/4 EAST OF TK-292 PSV-855 G/3 WEST OF TK-291 PSV-1551 G/3 WEST OF TK-291 PSV-1551 G/3 WEST OF TK-291 PSV-1551 G/4 9FT S TK TK-241 PRV PSV-74 | | EAST BULK - #80 REF, OIL SHIPG. | ATOM NO RD ATOM NO RD CVS PRESSURE RELIEF VALVE | 1935-000 1949-000 30520-000 30520-000 30524-000 30524-000 30544-000 30608-000 30616-000 30636-000 30681-000 30691-000 3891-000 3891-000 3991-000 3991-000 3911-000 3911-000 3911-000 3911-000 3911-000 3911-000 3911-000 3911-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1.5 1.5 1.5 1.1 1.0 0.75 1.5 1.5 1.1 1.1 1.1 1.0 0.75 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK K-1012 PRV PSV-85 G/4 8FT W TK TK-101 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-711 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/4 SSD TK TK-287 PRV PSV-567 G/4 SSD TK TK-287 PRV PSV-566 G/4 SSD TK TK-287 PRV PSV-566 G/4 SWD TK TK-287 PRV PSV-565 G/4 SSD TK TK-287 PRV PSV-565 G/4 SSD TK TK-287 PRV PSV-575 G/4 SED TK TK-291 PSV-1013 G/4 SE OF TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV-854 G/4 EAST OF TK 292 PSV-854 G/4 EAST OF TK 292 PSV-854 G/4 EAST OF TK 292 PSV-856 G/3 SUTH OF TK 291 PSV-1551 G/3 WEST OF TK 291 PSV-1551 G/4 WSD TK TK-241 PSV-744 G/4 WSD TK TK-241
PSV-744 | | EAST BULK - #80 REF. OIL SHIPG. | ATOM NO RD ATOM NO RD CVS PRESSURE RELIEF VALVE | 1935-000 1949-000 30502-000 30520-000 30524-000 30524-000 30544-000 30616-000 30616-000 30678-000 30681-000 30681-000 30691-000 3891-000 3891-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 3991-000 | 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 | LIGHT LIQUID HEAVY LIQUID LIGHT | G/3 SW OF TK 1012 PSV 581 G/1 SW OF TK 1012 PSV 587 G/3 NWSD TK TK-101 PRV PSV-85 G/4 8FT W TK TK-210 PRV PSV-712 G/3 8FT W TK TK-210 PRV PSV-713 G/5 10FT S TK TK-241 PRV PSV-714 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-784 G/4 8FT W TK TK-243 PRV PSV-785 G/5 10FT SW TK TK-281 PRV PSV-565 G/4 SSD TK TK-287 PRV PSV-565 G/4 SSD TK TK-287 PRV PSV-565 G/4 SWSD TK TK-287 PRV PSV-575 G/4 SE OT TK-291 PSV-1014 G/7 SOUTH OF TK-291 PSV G/4 EAST OF TK-292 PSV-854 G/3 WEST OF TK-291 PSV-1551 G/3 WEST OF TK-291 PSV-1551 G/3 WEST OF TK-291 PSV-1551 G/4 9FT S TK TK-241 PRV PSV-74 | | EAST BULK - #80 REF. OIL SHIPG. | PRESSURE RELIEF VALVE | 81524-000 | 1 | LIGHT LIQUID | G/4 NESD TK TK-242 PSV-460 | |---|--|--|--|---|---| | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 82023-000 | 0.75 | LIGHT LIQUID | G/4 6FT N TK TK-101 PRV PSV-11 | | | CVS NO RD | 82024-000 | | LIGHT LIQUID | G/4 6FT N TK TK-101 PRV PSV-10 | | | | | | | | | | CVS NO RD | 83318-000 | | LIGHT LIQUID | G/5 NWSD TK TK-210 PRV PSV-723 | | EAST BULK - #80 REF. OIL SHIPG. | CVS NO RD | 91566-000 | 0.75 | LIGHT LIQUID | G/4 SWSD TK TK-241 PRV PSV-100 | | HYDROCRACKER - #246 | ATOM NO RD | 0305-000 | 2 | HEAVY LIQUID | G/4 PSV-135 | | HYDROCRACKER - #246 | ATOM NO RD | 0335-000 | 2 | HEAVY LIQUID | G/5 PSV 134 | | | CVS NO RD | 11137-000 | | HEAVY LIQUID | 1/5 30FT NW P 8G-817B PRV | | | | | | | | | | PRESSURE RELIEF VALVE | 11492-000 | | HEAVY LIQUID | G/7 NSD G-828B | | HYDROCRACKER - #246 | PRESSURE RELIEF VALVE | 13849-000 | 0.75 | HEAVY LIQUID | G/7 NSD 8GM-829A | | HYDROCRACKER - #246 | PRESSURE RELIEF VALVE | 13872-000 | 0.75 | HEAVY LIQUID | G/7 NSD 8GM-829B | | HYDROCRACKER - #246 | CVS NO RD | 146875-000 | 2 | GAS / VAPOR | 2/4 34FT NW P 8G-817B PRV | | | ATOM NO RD | 3031-000 | | | 3/5 WSD D-804 | | | | | | - | | | | ATOM NO RD | 3434-000 | | HEAVY LIQUID | G/5 SSD PMP 8GM-877B | | HYDROCRACKER - #246 | ATOM NO RD | 3435-000 | | HEAVY LIQUID | G/12 WSD PMP G-877B | | HYDROCRACKER - #246 | ATOM NO RD | 3436-000 | 2 | HEAVY LIQUID | G/2 NWSD PMP G-877A PSV | | HYDROCRACKER - #246 | ATOM NO RD | 3437-000 | 2 | HEAVY LIQUID | G/5 NSD PMP G-877A PSV | | | CVS NO RD | 50704-000 | | GAS / VAPOR | 2/5 30FT NW P 8G-817B PRV | | | | | | | | | | CVS NO RD | 50943-000 | | GAS / VAPOR | 1/2 13FT W E 8E-804 PRV PSV-121 | | HYDROCRACKER - #246 | CVS NO RD | 6082-000 | 4 | GAS / VAPOR | T/6 ESD V 8F-802 PRV PSV-1 | | HYDROCRACKER - #246 | ATOM NO RD | 140501-000 | 2 | GAS / VAPOR | G/7 ABV PMP G-821 A PSV-71 | | HYDROCRACKER - #246 | ATOM NO RD | 140510-000 | 2 | GAS / VAPOR | G/5 ABV PMP G-821B PSV-72 | | | ATOM NO RD | 140871-000 | | GAS / VAPOR | T/7 ESD FF-DECK PSV-95 | | | | | | | | | | CVS NO RD | 147731-000 | 3 | GAS / VAPOR | 4/6 6FT SW FF 8E-826A PRV PSV-6 | | HYDROCRACKER - #246 | CVS NO RD | 147733-000 | | GAS / VAPOR | 4/7 6FT N FF 8E-828C PRV 8PSV-27A PRV | | HYDROCRACKER - #246 | CVS NO RD | 29922-000 | 0.5 | GAS / VAPOR | G/5 SESD AH 246-AT-003 PRV PSV-300 | | | PRESSURE RELIEF VALVE | 3152-000 | | HEAVY LIQUID | G/7 ABOVE PMP 834A WSD FILTER 8F-868A | | | PRESSURE RELIEF VALVE | 3159-000 | | HEAVY LIQUID | G/7 ABOVE PMP 834B NSD PMP 834A | | | | | | | | | | PRESSURE RELIEF VALVE | 3189-000 | | HEAVY LIQUID | G/7 ABOVE PMP 834C NSD PMP 834B | | | CVS NO RD | 4603-000 | | GAS / VAPOR | G/5 23FT SE V V-806 PRV 8PSV-78 | | HYDROCRACKER - #246 | CVS NO RD | 4631-000 | 1 | GAS / VAPOR | G/5 24FT S V V-806 PRV 8PSV-79 PRV | | HYDROCRACKER - #246 | CVS NO RD | 5116-000 | 6 | GAS / VAPOR | 4/9 6FT S FF 8E-826B PRV PSV-4 | | | CVS NO RD | 5128-000 | | GAS / VAPOR | 4/7 6FT S FF 8E-826C PRV PSV-7 | | | | | | | | | | CVS NO
RD | 5161-000 | | GAS / VAPOR | 4/7 6FT N FF 8E-828C PRV 8PSV-27B PRV | | | CVS NO RD | 5175-000 | | GAS / VAPOR | 4/7 20FT N E 8E-834 PRV 8PSV-30B PRV | | HYDROCRACKER - #246 | CVS NO RD | 5185-000 | 6 | GAS / VAPOR | 4/7 20FT N E 8E-834 PRV 8PSV-30A PRV | | HYDROCRACKER - #246 | CVS NO RD | 5190-000 | 3 | GAS / VAPOR | 4/6 6FT N FF 8E-828A PRV PV-29 PRV | | HYDROCRACKER - #246 | CVS NO RD | 5209-000 | | GAS / VAPOR | 4/7 6FT N FF 8E-826C PRV 8PSV-3 PRV | | | | | | | | | | CVS NO RD | 5217-000 | | GAS / VAPOR | 4/6 6FT N FF 8E-819B PRV 8PSV-5A PRV | | HYDROCRACKER - #246 | CVS NO RD | 5222-000 | | GAS / VAPOR | 4/6 6FT N FF 8E-819B PRV 8PSV-5B PRV | | HYDROCRACKER - #246 | CVS NO RD | 60086-000 | 3 | GAS / VAPOR | 4/6 6FT N FF 8E-826D PRV 8PSV-12 PRV | | HYDROCRACKER - #246 | CVS NO RD | 80331-000 | 1.5 | GAS / VAPOR | 4/4 8FT S FF 8E-818C PRV PSV-42 | | | CVS NO RD | 80397-000 | | GAS / VAPOR | 4/6 6FT N FF 8E-828A PRV 8PSV-31 PRV | | | | | | | | | | ATOM NO RD | 90587-000 | | GAS / VAPOR | 4/7 NESD FF 8E-828C PRV 8PSV-132 | | MP30/SULFUR - #236 SULFUR PLANT | PRESSURE RELIEF VALVE | 147484-000 | 3 | GAS / VAPOR | 2/4 12FT S FF E-934A NESD PRV PSV-935 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 31624-000 | 0.75 | GAS / VAPOR | 2/5 13FT S FF E-934A PRV PSV-935 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 31625-000 | 3 | GAS / VAPOR | 2/6 15FT S FF E-934A PRV PSV-934 | | | CVS NO RD | 31641-000 | | GAS / VAPOR | 3/6 NESD FF E-934A PRV PSV-936 | | | | | | | 1/7 MID V F-10 PRV PSV-811 | | | CVS NO RD | 31675-000 | | GAS / VAPOR | | | | CVS NO RD | 31685-000 | | GAS / VAPOR | T/6 ESD T D-803 PRV PSV-27 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 31694-000 | 2 | GAS / VAPOR | 2/3 9FT S V F-801 PRV PSV-3 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 31699-000 | 3 | GAS / VAPOR | 2/3 7FT SE V F-801 PRV PSV-8 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 31703-000 | 2 | GAS / VAPOR | 3/3 10FT S V F-802 PRV PSV-9 | | | CVS NO RD | 31757-000 | | GAS / VAPOR | 1/2 SSD V F-817 PRV PSV-100 | | | | | | | | | | CVS NO RD | 31760-000 | | GAS / VAPOR | 1/6 9FT NE V F-803 PRV PSV-494C | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 31783-000 | 8 | GAS / VAPOR | 1/4 NWSD V F-803 PRV PSV-12 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 31854-000 | 6 | GAS / VAPOR | T/4 SSD V F-809 PRV PSV-21 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 31857-000 | 6 | GAS / VAPOR | T/4 SSD V F-809 PRV PSV-20 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 43612-000 | 4 | GAS / VAPOR | 3/4 NESD T D-911 PRV PSV-10 | | | CVS NO RD | 43689-000 | | GAS / VAPOR | 1/4 10FT N V F-902 PRV PSV-8 | | | | | _ | | | | | CVS NO RD | 43/65-000 | | GAS / VAPOR | 1/0 SSD V F-107 PRV PSV-10 | | | ATOM NO RD | 43802-000 | | GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 43810-000 | | GAS / VAPOR | 3/6 ESD T D-901 PRV PSV-8 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 43836-000 | 0.75 | GAS / VAPOR | 2/8 5FT NW E E-902 PRV PSV-4 | | | CVS NO RD | 43845-000 | 1.5 | GAS / VAPOR | 2/5 NSD V F-703 PRV PSV2 | | | CVS NO RD | 43985-000 | | GAS / VAPOR | 2/6 TOP V F-921 PRV PSV-517 | | | | | | | | | | CVS NO RD | 43996-000 | | GAS / VAPOR | 2/3 SWSD T D-921 PRV PSV-519 | | | CVS NO RD | 50179-000 | | GAS / VAPOR | 2/4 NSD F-701 PRV PSV-1 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 50219-000 | | | 1/7 MID V F-10 PRV PSV-11 | | MADON (OLU ELID WOOD OLU ELID DI ANIT | | | 3 | GAS / VAPOR | | | MP30/SULFUR - #236 SULFUR PLANT | CVS WITH RD | 50266-000 | | GAS / VAPOR GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1 | | | | | 4 | GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 52740-000 | 4 | GAS / VAPOR
GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1
2/3 10FT SE V F-801 | | MP30/SULFUR - #236 SULFUR PLANT MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD
CVS NO RD | 52740-000
81437-000 | 4
3
3 | GAS/VAPOR
GAS/VAPOR
GAS/VAPOR | 1/5 5FT W V F-903 PRV PSV-1
2/3 10FT SE V F-801
T/1 SSD TK-805 PSV | | MP30/SULFUR - #236 SULFUR PLANT MP30/SULFUR - #236 SULFUR PLANT MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD
CVS NO RD
CVS NO RD | 52740-000
81437-000
81450-000 | 4
3
3
1 | GAS/VAPOR
GAS/VAPOR
GAS/VAPOR
GAS/VAPOR | 1/5 5FT W V F-903 PRV PSV-1
2/3 10FT SE V F-801
T/1 SSD TK-805 PSV
1/3 NSD FF E-922 PRV PSV-518 | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD | 52740-000
81437-000 | 4
3
3
1
4 | GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1
2/3 10FT SE V F-801
T/1 SSD TK-805 PSV | | MP30/SULFUR - #236 SULFUR PLANT | CVS NO RD
CVS NO RD
CVS NO RD | 52740-000
81437-000
81450-000 | 4
3
3
1
4 | GAS/VAPOR
GAS/VAPOR
GAS/VAPOR
GAS/VAPOR | 1/5 5FT W V F-903 PRV PSV-1
2/3 10FT SE V F-801
T/1 SSD TK-805 PSV
1/3 NSD FF E-922 PRV PSV-518 | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD CVS NO RD CVS NO RD CVS NO RD PRESSURE RELIEF VALVE | 52740-000
81437-000
81450-000
31908-000
12508-000 | 4
3
3
1
4 | GAS / VAPOR HEAVY LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 7/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 52740-000
81437-000
81450-000
31908-000
12508-000
12519-000 | 4
3
3
1
4
1
2 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 T/1 SSD TK-805 PSV 1/3 NSD FFE-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD DM-316A G/6 SWSD PMP G-316B NESD PSV-3017 | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA PRETREATMENT UNIT - PTA PRETREATMENT UNIT - PTA | CVS NO RD CVS NO RD CVS NO RD CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD | 52740-000
81437-000
81450-000
31908-000
12508-000
12519-000
143621-000 | 4
3
3
1
4
1
2
3 | GAS / VAPOR HEAVY LIQUID GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PM G-3168 NESD PSV-3017 T/2 CC-7007 W PRV | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD ATOM WITH RD | 52740-000
81437-000
81450-000
31908-000
12508-000
12519-000
143621-000
143622-000 | 4
3
3
1
4
1
2
3
3 | GAS / VAPOR HEAVYLIQUID HEAVYLIQUID GAS / VAPOR GAS / VAPOR GAS / VAPOR GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE VF-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-316B NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE ATOM WITH RD ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000
81437-000
81437-000
31908-000
12508-000
12519-000
143621-000
146210-000 | 4
3
3
1
4
1
2
3
3 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR GAS / VAPOR GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 7/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-3168 NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/6 6FT NW E-365B | | MP30/SULFUR -#236 SULFUR PLANT MP30/SULFUR -#236 SULFUR PLANT MP30/SULFUR -#236 SULFUR PLANT MP30/SULFUR -#236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD ATOM WITH RD | 52740-000
81437-000
81450-000
31908-000
12508-000
12519-000
143621-000
143622-000 | 4
3
3
1
4
1
2
3
3 | GAS / VAPOR HEAVYLIQUID HEAVYLIQUID GAS / VAPOR GAS / VAPOR GAS / VAPOR GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE VF-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-316B NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE ATOM WITH RD | 52740-000 81437-000 81450-000 81450-000 12508-000 12519-000 143621-000 146210-000 146742-000 | 4
3
3
1
4
1
2
3
3
3 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE VF-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-3168 NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/6 6FT NW E-3668 1/2 SWSD GM-371A | | MP30/SULFUR - #236 SULFUR PLANT MPETREATMENT UNIT - PTA PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD ATOM WITH RD PRESSURE RELIEF VALVE ATOM WITH RD | 52740-000 81437-000 81437-000 31908-000 31908-000 12508-000 12519-000 143621-000 143622-000 146742-000 146744-000 | 4
3
3
1
4
1
2
3
3
1
2
2
2
2 | GAS / VAPOR HEAVY LIQUID GAS / VAPOR GAS / VAPOR LIGHT LIQUID GAS / VAPOR LIGHT LIQUID GAS / VAPOR GAS / VAPOR GAS / VAPOR GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD DM-316A G/6 SWSD PMP G-316B NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/6 6FT NW E-365B 1/2 SWSD GM-371A 1/4 SWSD GM-371B | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD | 52740-000 81437-000 81437-000 31908-000 12508-000 12519-000 143621-000 143622-000 146742-000 146744-000 146889-000 | 4
3
3
1
4
1
2
2
3
3
3
1
1
2
2
2
2 | GAS / VAPOR
HEAVY LIQUID HEAVY LIQUID GAS / VAPOR | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-316B NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/6 GFT NW E-365B 1/2 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371A | | MP30/SULFUR -#236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000 81437-000 81437-000 31908-000 12508-000 12519-000 143621-000 146210-000 146742-000 146744-000 146889-000 147535-000 | 4
3
3
1
4
1
2
3
3
3
1
1
2
2
2
10
3
3 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR LIGHT LIQUID GAS / VAPOR GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 1/3 SD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 6/3 S SWSD P HC-3201 PRV PSV-19 6/5 SWSD GM-316A 6/6 SWSD PMP G-3168 NESD PSV-3017 1/2 CC-7007 W PRV 6/5 TOP CC-7007 E PRV 6/6 6FT NW E-3658 1/2 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371A 1/2 WSD F-341 PSV-3507 6/5 5FT W F-3518 ESD GM-352B PSV-3504 | | MP30/SULFUR -#236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD ATOM WITH RD PRESSURE RELIEF VALVE ATOM WITH RD W | 52740-000 81437-000 81437-000 31908-000 12508-000 12508-000 143621-000 143622-000 146210-000 146742-000 146744-000 146789-000 147538-000 | 4
3
3
1
4
1
2
3
3
3
1
1
2
2
2
10
3
6 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR LIGHT LIQUID LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 1/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-3168 NESD PSV-3017 1/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/5 TOP CC-7007 E PRV G/6 FT NW E-365B 1/2 SWSD GM-371A 1/4 SWSD GM-371B 1/2 WSD F-341 PSV-3507 G/5 5FT WF-3518 ESD GM-352B PSV-3504 G/5 9FT SW F-351B WSD GM-352A PSV-3504 | | MP30/SULFUR -#236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000 81437-000 81437-000 31908-000 12508-000 12519-000 143621-000 146210-000 146742-000 146744-000 146889-000 147535-000 | 4
3
3
1
4
1
2
3
3
3
1
1
2
2
2
10
3
6 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR LIGHT LIQUID GAS / VAPOR GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 1/3 SD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 6/3 S SWSD P HC-3201 PRV PSV-19 6/5 SWSD GM-316A 6/6 SWSD PMP G-3168 NESD PSV-3017 1/2 CC-7007 W PRV 6/5 TOP CC-7007 E PRV 6/6 6FT NW E-3658 1/2 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371A 1/2 WSD F-341 PSV-3507 6/5 5FT W F-351B ESD GM-352B PSV-3504 | | MP30/SULFUR -#236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD ATOM WITH RD PRESSURE RELIEF VALVE ATOM WITH RD W | 52740-000 81437-000 81437-000 31908-000 12508-000 12508-000 143621-000 143622-000 146210-000 146742-000 146744-000 146789-000 147538-000 | 4
3
3
1
4
4
2
2
3
3
3
1
1
2
2
2
10
6
6
6
10 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR LIGHT LIQUID LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 1/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-3168 NESD PSV-3017 1/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/5 TOP CC-7007 E PRV G/6 FT NW E-365B 1/2 SWSD GM-371A 1/4 SWSD GM-371B 1/2 WSD F-341 PSV-3507 G/5 5FT WF-3518 ESD GM-352B PSV-3504 G/5 9FT SW F-351B WSD GM-352A PSV-3504 | | MP30/SULFUR -#236 SULFUR PLANT PRETREATMENT UNIT -PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000 81437-000 81437-000 31908-000 12508-000 12519-000 143621-000 146210-000 146742-000 146889-000 147588-000 147588-000 147588-000 147588-000 | 4
3
3
1
4
4
1
1
2
3
3
3
3
1
2
2
2
10
3
6
6 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR GAS / VAPOR GAS / VAPOR GAS / VAPOR LIGHT LIQUID GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 1/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-316B NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/6 6FT NW E-365B 1/2 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371B 1/2 WSD F-341 PSV-3507 G/5 5FT W F-351B ESD GM-352B PSV-3504 G/6 9FT SW F-351B WSD GM-352A PSV-3503 G/6 NW 7FT E-365A G/6 6FT NW E-365B | | MP30/SULFUR -#236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000 81437-000 81437-000 31908-000 12508-000 12519-000 143621-000 146210-000 146742-000 146742-000 147535-000 147538-000 147584-000 147584-000 1476210-000 | 4
3
3
1
4
1
2
2
3
3
3
1
1
2
2
2
2
10
3
6
6 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-3168 NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/6 FT NW E-3658 1/2 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371A 1/2 WSD F-341 PSV-3507 G/5 5FT W F-351B ESD GM-352B PSV-3504 G/5 9FT SW F-351B WSD GM-352A PSV-3503 G/6 6FT NW F-365B G/6 6FT NW F-365B G/6 SSD GM-322A | | MP30/SULFUR -#236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000 81437-000 81437-000 31908-000 31908-000 12508-000 12519-000 143621-000 143622-000 146742-000 146744-000 146889-000 147535-000 147584-000 147584-000 147584-000 1488132-000 | 4
3
3
1
4
1
1
2
2
2
2
2
10
3
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | GAS / VAPOR HEAVY LIQUID GAS / VAPOR GAS / VAPOR HEAVY LIQUID GAS / VAPOR GAS / VAPOR LIGHT LIQUID GAS / VAPOR LIGHT LIQUID GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-316B NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/6 FT NW E-365B 1/2 SWSD GM-371A 1/4 SWSD GM-371B 1/2 SWSD GM-371B 1/2 SWSD F-341 PSV-3507 G/5 5FT W F-351B ESD GM-352B PSV-3504 G/5 9FT SW F-351B WSD GM-352A PSV-3503 G/6 NW 7FT E-365A G/6 GFT NW E-365B G/6 GFT NW E-365B G/6 SWSD GM-322A | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000 81437-000 81437-000 31908-000 12508-000 12519-000 143621-000 143622-000 146742-000 146742-000 146783-000 147558-000 147584-000 147584-000 147584-000 1476210-000 148110-000 148132-000 12053-000 | 4
33
3
1
1
2
2
2
2
2
2
1
3
3
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | GAS / VAPOR HEAVY LIQUID GAS / VAPOR GAS / VAPOR LIGHT LIQUID GAS / VAPOR GAS / VAPOR LIGHT LIQUID GAS / VAPOR GAS / VAPOR GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-316B NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/6 6FT NW E-365B 1/2 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371B T/2 WSD F-341 PSV-3507 G/5 5FT W F-351B WSD GM-352B PSV-3504 G/6 FT SW F-351B WSD GM-352A PSV-3503 G/6 NW 7FT E-365A G/6 GFT NW E-365B G/5 SSD GM-322A G/6 SWSD GM-322B G/3 WSD E-504 PSV-5307 | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000 81437-000 81437-000 31908-000 12508-000 12519-000 143621-000 143622-000 146742-000 146742-000 147535-000 147535-000 147520-000 147520-000 147520-000 147520-000 147520-000 1476210-000 148110-000 148110-000 12053-000 | 4
3
3
1
4
1
1
2
2
2
2
10
3
3
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-3168 NESD PSV-3017 T/2 CC-7007 W PRV G/5 TDP CC-7007 E PRV G/6 FT NW E-3658 1/2 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371B C/6 FFT WF-351B ESD GM-352B PSV-3504 G/5 9FT SW F-351B WSD GM-352B PSV-3504 G/6 FT SW F-351B WSD GM-352A PSV-3503 G/6 NW 7FTE-355A G/6 STD WE-356B G/5 SSD GM-322A G/6 SWSD GM-322A G/6 SWSD GM-322A G/6 SWSD GM-322A G/3 WSD E-504 PSV-5307 G/3 WSD E-504 PSV-5307 | | MP30/SULFUR - #236 SULFUR PLANT PRETREATMENT UNIT - PTA | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000 81437-000 81437-000 31908-000 12508-000 12519-000 143621-000 143622-000 146742-000 146742-000 146783-000 147558-000 147584-000 147584-000 147584-000 1476210-000 148110-000 148132-000 12053-000 | 4
3
3
1
4
1
1
2
2
2
2
10
3
3
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | GAS / VAPOR HEAVY LIQUID GAS / VAPOR GAS / VAPOR LIGHT LIQUID GAS / VAPOR GAS / VAPOR LIGHT LIQUID GAS / VAPOR GAS / VAPOR GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE V F-801 T/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 G/35 SWSD P HC-3201 PRV PSV-19 G/5 SWSD GM-316A G/6 SWSD PMP G-316B NESD PSV-3017 T/2 CC-7007 W PRV G/5 TOP CC-7007 E PRV G/6 GFT NW E-365B 1/2 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD
GM-371A 1/4 SWSD GM-371B T/2 WSD F-341 PSV-3507 G/5 5FT W F-3518 BSD GM-352B PSV-3504 G/5 9FT SW F-3518 WSD GM-352A PSV-3503 G/6 NW 7FT E-365A G/6 GFT NW E-365B G/5 SSD GM-322A G/6 SWSD GM-322B G/6 SWSD GM-322B G/3 WSD E-504 PSV-5307 | | MP30/SULFUR -#236 SULFUR PLANT | CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE ATOM WITH RD PRESSURE RELIEF VALVE | 52740-000 81437-000 81437-000 31908-000 12508-000 12519-000 143621-000 143622-000 146742-000 146742-000 147535-000 147535-000 147520-000 147520-000 147520-000 147520-000 147520-000 1476210-000 148110-000 148110-000 12053-000 | 4
3
3
1
4
4
1
2
2
3
3
3
3
1
1
2
2
2
10
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | GAS / VAPOR HEAVY LIQUID HEAVY LIQUID GAS / VAPOR LIGHT LIQUID GAS / VAPOR LIGHT LIQUID | 1/5 5FT W V F-903 PRV PSV-1 2/3 10FT SE VF-801 1/1 SSD TK-805 PSV 1/3 NSD FF E-922 PRV PSV-518 6/35 SWSD P HC-3201 PRV PSV-19 6/5 SWSD GM-316A 6/6 SWSD PMP G-3168 NESD PSV-3017 1/2 CC-7007 W PRV 6/5 TDP CC-7007 E PRV 6/6 FT NW F-365B 1/2 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371A 1/4 SWSD GM-371B 1/2 WSD F-341 PSV-3507 6/5 5FT W F-351B ESD GM-352B PSV-3504 6/5 9FT SW F-351B WSD GM-352A PSV-3503 6/6 NW 7FT E-365A 6/6 STN W E-365B 6/5 SSD GM-322A 6/6 SWSD 6/3 WSD E-504 PSV-5307 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12214-000 | 2 | HEAVY LIQUID | G/4 ESD PMP G-513C PSV-5312 | |---|---|---|---|---|--| | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12240-000 | | HEAVY LIQUID | G/3 ESD PMP G-513D PSV-5313 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12251-000 | | HEAVY LIQUID | G/6 SSD PMP G-512A PSV-5305 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12267-000 | | HEAVY LIQUID | G/6 SSD PMP G-512B TX-5304 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12285-000 | | HEAVY LIQUID | G/5 SSD PMP G-512C PSV-5303 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12291-000 | | HEAVY LIQUID | G/6 SSD PMP G-512D PSV-5302 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12471-000 | | HEAVY LIQUID | G/5 ESD PMP G-515B PSV-5309 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12479-000 | | HEAVY LIQUID | G/4 ESD PMP G-515A PSV-5308 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 1381-000 | | HEAVY LIQUID | G/3 4FT E E500B | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 13897-000 | | HEAVY LIQUID | ESD OF GM-520A 5FT TOP OF F-525A PSV 5016 G/30 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | | | HEAVY LIQUID | EAST OF GM 504-B 5FT TOP OF F-501B PSV G/30 | | | | 13898-000 | | | | | PRETREATMENT UNIT - PTA PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 13899-000 | | HEAVY LIQUID | ESD OF GM-504A 5FT TOP OF F-501A PSV-5014 G/30 | | | | 1392-000 | | HEAVY LIQUID | G/4 ESD E-510B | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 1397-000 | | HEAVY LIQUID | G/3 WSD E-510A | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 1470-000 | | HEAVY LIQUID | G/4 ESD E-500A | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 1715-000 | | HEAVY LIQUID | G/3 SSD E-507 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 3021-000 | | HEAVY LIQUID | 1/8 NESD F-506L PSV-5007L | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11050-000 | | HEAVY LIQUID | G/2 PSV-6504 ON E-610A | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11119-000 | | HEAVY LIQUID | G/2 E-610B PSV-6506 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11345-000 | | HEAVY LIQUID | G/2 NW OF F-624 6FT E-607 PSV-6500 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11476-000 | | HEAVY LIQUID | G/3 SWSD ABV G-602 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11494-000 | 0.75 | HEAVY LIQUID | G/3 SSD G-626 A&B | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11572-000 | 0.75 | HEAVY LIQUID | G/3 SSD G-600 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11582-000 | 0.75 | HEAVY LIQUID | G/3 SSD G-600 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11597-000 | | HEAVY LIQUID | G/4 SSD G-613B | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11618-000 | | HEAVY LIQUID | G/4 SSD G-613A | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11663-000 | | HEAVY LIQUID | G/3 ESD PMP G-613C PSV-6312 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11689-000 | | HEAVY LIQUID | G/4 ESD PMP G-613D PSV-613B | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11935-00 | | HEAVY LIQUID | G/3 ESD PMP G-615A WSD PSV-6308 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 11945-000 | | HEAVY LIQUID | G/3 ESD PMP G-615B PSV-6309 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 13895-000 | | HEAVY LIQUID | NESD 5FT OF GM-620A TOP OF F-625A PSV 6012 G/30 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 13896-000 | | HEAVY LIQUID | ESD OF GM-620C 5FT TOP OF F-625B PSV-6013 G/30 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12508-000 | | HEAVY LIQUID | G/6 SWSD PMP G-316A NESD PSV-3013 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12840-000 | | HEAVY LIQUID | G/6 SSD PMP G-612A PSV-6302 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12851-000 | | HEAVY LIQUID | G/6 SSD PMP G-612C PSV-6303 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12861-000 | | HEAVY LIQUID | G/6 SSD PMP G-612B PSV-6304 | | PRETREATMENT UNIT - PTA | PRESSURE RELIEF VALVE | 12871-000 | | HEAVY LIQUID | G/6 SSD PMP G-612D PSV-6305 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15216-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/3 WSD TK-201 PSV-320 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15224-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/-2 20FT SW TK-201 PSV-U322 | | | | | | | | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15227-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/2 WSD TK-202 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15280-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/4 15FT SE TK-270 SESD E-26 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15283-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/5 15FT SE TK-270 SSD E-26 PSV-128 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15291-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/6 5FT SE TK-270 WSD E-26 PSV-129 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15301-000 | | HEAVY LIQUID NON RODEO RE-NEW | 1/7 ESD G-33 PSV-124 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15306-000 | | HEAVY LIQUID NON RODEO RE-NEW | 1/6 NESD G-33 PSV-125 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15308-000 | | HEAVY LIQUID NON RODEO RE-NEW | 1/1 SESD G-33 PSV-130 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15316-000 | | HEAVY LIQUID NON RODEO RE-NEW | 1/-1 SESD G-33 PSV-126 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15328-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/3 ESD TK-203 PSV-79 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15331-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/2 ESD TK-203 PSV-459 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15447-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/15 80FT N TK-187 RD. 8 PW PSV-U30 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15452-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/-1 25FT NW COOLING TOWER RD. 8 PW PSV-U493 | | | PRESSURE RELIEF VALVE | 15458-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | 1/1 50FT N TK-300 RD.7 PW PSV-55 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15528-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/3 40FT S U-76 RD.4 PW PSV-71 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15538-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/-2 40FT N TK-130 RD.4 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15562-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/-1 50FT N TK-105 PW PSV-4 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15564-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/-3 60FT N
TK-105 PW PSV-38 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15631-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/-3 60FT NE U-100 PW PSV-654 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15741-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/3 100FT SW U-234 PW PSV-541 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15759-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/3 60FT SW F-809 PW PSV-634 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15761-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/-1 60FT SW F-809 PW PSV-446 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 14840-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/-3 110ft SOUTH TK-1001 RD 9 PSV-501 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 14842-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/-3 112ft SSD TK-1001 RD 9 PSV-504 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 14844-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/-3 145ft SOUTH TK-1001 10FT S RD 9 PSV-50 | | | PRESSURE RELIEF VALVE | 14864-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/-2 20FT N T ST & RD 9 PSV-679 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 14868 -000 | | HEAVY LIQUID NON RODEO RE-NEW | G/-2 20FT N T ST & RD 9 PSV-39 | | REFINERY INTERCONNECT PIPING SYSTEM | | 14873-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/3 20FT N T ST & RD 9 PSV-56 | | | PRESSURE RELIEF VALVE | 14957-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/2 30FT NE P-407 PSV-678 | | REFINERY INTERCONNECT PIPING SYSTEM | | 14958-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/2 30FT NE P-407 PSV-509 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 14960-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/2 30FT NE P-407 PSV-522 | | REFINERY INTERCONNECT PIPING SYSTEM | | 14963-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/3 30FT NE P-407 PSV-675 | | | PRESSURE RELIEF VALVE | 14971-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/2 20FT NW P-407 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 14974-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/3 30FT NW P-407 PSV-510 | | REFINERY INTERCONNECT PIPING SYSTEM | | 14976-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/3 30FT NW P-407 PSV-527 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 14978-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/3 30FT NW P-407 PSV-506 | | REFINERY INTERCONNECT PIPING SYSTEM | | 14981-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/5 40FT NW P-407 PSV-674 | | | PRESSURE RELIEF VALVE | 15031-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/5 WSD TK-224 | | REFINERY INTERCONNECT PIPING SYSTEM | | 15034-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/5 WSD TK-224
G/5 WSD TK-224 | | REFINERY INTERCONNECT PIPING SYSTEM | | 15039-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/4 30FT W TK-224 | | REFINERY INTERCONNECT PIPING SYSTEM | CVS NO RD | | | HEAVY LIQUID NON RODEO RE-NEW | G/5 NWSD TK-224 | | | CVS NO RD PRESSURE RELIEF VALVE | | | | 0.0 110D TK 224 | | REEINERY INTERCONNECT DIDING EVETEN | PRESSURE RELIEF VALVE | 15049-000 | | | G/6 60FT NIW TK-200 ONI DD 9 DSV 67 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD | 15049-000
15139-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/6 60FT NW TK-200 ON RD 8 PSV-67 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE | 15049-000
15139-000
15180-000 | 0.75
1 | HEAVY LIQUID NON RODEO RE-NEW
HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699 | | REFINERY INTERCONNECT PIPING SYSTEM REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD | 15049-000
15139-000
15180-000
15207-000 | 0.75
1
0.75 | HEAVY LIQUID NON RODEO RE-NEW
HEAVY LIQUID NON RODEO RE-NEW
HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699
G/5 60FT NE TK-201 ON RD 8 PSV-597 | | REFINERY INTERCONNECT PIPING SYSTEM
REFINERY INTERCONNECT PIPING SYSTEM
REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE | 15049-000
15139-000
15180-000
15207-000
15209-000 | 0.75
1
0.75
0.75 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699
G/5 60FT NE TK-201 ON RD 8 PSV-597
G/5 60FT NE TK-201 ON RD 8 PSV-598 | | REFINERY INTERCONNECT PIPING SYSTEM
REFINERY INTERCONNECT PIPING SYSTEM
REFINERY INTERCONNECT PIPING SYSTEM
REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 15049-000
15139-000
15180-000
15207-000
15209-000
15712-000 | 0.75
1
0.75
0.75 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699
G/5 60FT NE TK-201 ON RD 8 PSV-597
G/5 60FT NE TK-201 ON RD 8 PSV-598
G/1 50FT NE TK-187 RD.8 PW PSV-740 | | REFINERY INTERCONNECT PIPING SYSTEM
REFINERY INTERCONNECT PIPING SYSTEM
REFINERY INTERCONNECT PIPING SYSTEM
REFINERY INTERCONNECT PIPING SYSTEM
REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 15049-000
15139-000
15180-000
15207-000
15209-000
15712-000
15722-000 | 0.75
1
0.75
0.75
1 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699
G/5 60FT NE TK-201 ON RD 8 PSV-597
G/5 60FT NE TK-201 ON RD 8 PSV-598
G/1 50FT NE TK-187 RD.8 PW PSV-740
G/4 50FT NE TK-187 RD.8 PSV-45 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 15049-000
15139-000
15180-000
15207-000
15209-000
15712-000
15722-000
15740-000 | 0.75
1
0.75
0.75
1
1 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699
G/5 60FT NE TK-201 ON RD 8 PSV-597
G/5 60FT NE TK-201 ON RD 8 PSV-598
G/1 50FT NE TK-187 RD.8 PW PSV-740
G/4 50FT NE TK-187 RD.8 PSV-45
G/12 5FT N RD.7 I ST PW PSV-46 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE | 15049-000
15139-000
15207-000
15207-000
15712-000
15712-000
15740-000
15339-000 | 0.75
1
0.75
0.75
1
1
1 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699 G/5 60FT NE TK-201 ON RD 8 PSV-597 G/5 60FT NE TK-201 ON RD 8 PSV-598 G/1 50FT NE TK-187 RD.8 PW PSV-740 G/4 50FT NE TK-187 RD.8 PSV-45 G/12 5FT N RD.7 I ST PW PSV-46 G/4 SSD TK-67 PSV-681 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 15049-000
15139-000
15180-000
15207-000
15209-000
15712-000
15722-000
15740-000 | 0.75
1
0.75
0.75
1
1
1 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699
G/5 60FT NE TK-201 ON RD 8 PSV-597
G/5 60FT NE TK-201 ON RD 8 PSV-598
G/1 50FT NE TK-187 RD.8 PW PSV-740
G/4 50FT NE TK-187 RD.8 PSV-45
G/12 5FT N RD.7 I ST PW PSV-46 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE | 15049-000
15139-000
15207-000
15207-000
15712-000
15712-000
15740-000
15339-000 | 0.75
1
0.75
0.75
1
1
1
1 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699 G/5 60FT NE TK-201 ON RD 8 PSV-597 G/5 60FT NE TK-201 ON RD 8 PSV-598 G/1 50FT NE TK-187 RD.8 PW PSV-740 G/4 50FT NE TK-187 RD.8 PSV-45 G/12 5FT N RD.7 I ST PW PSV-46 G/4 SSD TK-67 PSV-681 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE | 15049-000
15139-000
15180-000
15207-000
15209-000
15712-000
15722-000
15740-000
15339-000
15341-000 | 0.75
1
0.75
0.75
1
1
1
1 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699 G/5 60FT NE TK-201 ON RD 8 PSV-597 G/5 60FT NE TK-201 ON RD 8 PSV-598 G/1 50FT NE TK-201 ON RD 8 PSV-740 G/4 50FT NE TK-187 RD.8 PSV-740 G/4 50FT NE TK-187 RD.8 PSV-45 G/12 5FT N RD.71 ST PW PSV-46 G/12 5FT N RD.71 ST PW PSV-46 G/4 SSD TK-67 PSV-681 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE | 15049-000
15139-000
15180-000
15207-000
15209-000
15712-000
15722-000
15740-000
15339-000
15341-000
15341-000 | 0.75
1
0.75
0.75
1
1
1
1
1 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699 G/5 60FT NE TK-201 ON RD 8 PSV-597 G/5 60FT NE TK-201 ON RD 8 PSV-598 G/15 60FT NE TK-201 ON RD 8 PSV-598 G/15 60FT NE TK-187 RD.8 PW PSV-740 G/4 50FT NE TK-187 RD.8 PW PSV-45 G/12 5FT N RD.7 I ST PW PSV-46 G/4 SST TK-67 PSV-681 G/4 SSD TK-67 PSV-680 G/5 SESD TK-67 PSV-684 | | REFINERY INTERCONNECT PIPING SYSTEM | PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE CVS NO RD PRESSURE RELIEF VALVE | 15049-000
15139-000
15180-000
15207-000
15209-000
15712-000
15740-000
15339-000
15341-000
15380-000 | 0.75
1
0.75
0.75
1
1
1
1
1
1 | HEAVY LIQUID NON RODEO RE-NEW | G/10 60FT NE TK-201 RD 8 PSV-699 G/5 60FT NE TK-201 ON RD 8 PSV-597 G/5 60FT NE TK-201 ON RD 8 PSV-598 G/15 60FT NE TK-211 ON RD 8 PSV-598 G/15 60FT NE TK-187 RD.8 PW PSV-740 G/4 50FT NE TK-187 RD.8 PW PSV-45 G/12 5FT N RD.7 I ST PW PSV-46 G/4 SSD TK-67 PSV-681 G/4 SSD TK-67 PSV-680 G/5 SESD TK-67 PSV-684 1/-1 90FT NW TK-67 C ST PSV-572 | | REFINERY INTERCONN | | PRESSURE RELIEF VALVE | 15401-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/-1 50FT N PUMPHOUSE PSV-U61 |
--|---|---|---|-----------------------|---|---| | REFINERY INTERCONN | NECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15402-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/-1 50FT N PUMPHOUSE PSV-U59 | | REFINERY INTERCONN | NECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15406-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/1 30FT E U-110 PIPEWAY PSV-202 | | REFINERY INTERCONN | NECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15407-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | 1/-1 30FT E U-110 PIPEWAY PSV-206 | | REFINERY INTERCONN | NECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15412-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | 1/-1 30FT E U-110 PIPEWAY PSV-208 | | REFINERY INTERCONN | NECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15415-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | 1/-1 30FT E U-110 PIPEWAY PSV-209 | | REFINERY INTERCONN | | PRESSURE RELIEF VALVE | 15472-000 | | HEAVY LIQUID NON RODEO RE-NEW | 1/-1 30FT NW F-102 PW PSV-217 | | REFINERY INTERCONN | | PRESSURE RELIEF VALVE | 15482-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/12 50FT NE TK-187 PW PSV-31 | | REFINERY INTERCONN | | | | | | | | | | PRESSURE RELIEF VALVE | 15638-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/12 10FT NE G-246 | | REFINERY INTERCONN | | PRESSURE RELIEF VALVE | 15667-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/2 50FT SW TK-531 PW PSV-223 | | REFINERY INTERCONN | NECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15671-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/4 50FT SW TK-531 PW PSV-139 | | REFINERY INTERCONN | NECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15674-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/5 50FT SW TK-531 PW PSV-433 | | REFINERY INTERCONN | NECT PIPING SYSTEM | PRESSURE RELIEF VALVE | 15676-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/6 50FT SW TK-531 PW PSV-180 | | UNICRACKER - #240 U | INICRACKER | CVS NO RD | 13069-000 | 2 | HEAVY LIQUID | G/20 ABV G-103A PSV-83 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 5267-000 | | HEAVY LIQUID | 4/5 BLW FF-122B PSV-0041 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 5271-000 | | HEAVY LIQUID | 4/2 BLW FF-122B ESD PSV-0040 | | | | | | | - | | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 5274-000 | | HEAVY LIQUID | 4/5 BLW FF-122B WSD PSV-0040 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 5275-000 | | HEAVY LIQUID | 4/5 BLW FF-122B ESD PSV-0044 | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 5282-000 | 2 | HEAVY LIQUID | 4/4 BLW FF-122B WSD PSV-0043 | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 5283-000 | 2 | HEAVY LIQUID | 4/5 BLW FF-122B ESD PSV-0042 | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 6042-000 | 2 | HEAVY LIQUID | G/22 WSD G-104A | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 6052-000 | | HEAVY LIQUID | G/22 WSD G-106 | | UNICRACKER - #240 U | | CVS NO RD | 07105-000 | | GAS / VAPOR | 3/3 12FT W C GB-203A PRV 2PSV-5 | | | | | | | † | | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 140121-000 | | | 1/6 TOP 8F-822 | | UNICRACKER - #240 U | | CVS NO RD | 140418-000 | | GAS / VAPOR | G/9 NESD E 2E-216 PRV PSV-12 | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 140573-000 | 6 | GAS / VAPOR | 2/9 28FT NE V 2F-201 BLW PRV PSV-31 | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 140581-000 | 6 | GAS / VAPOR | 2/9 28FT NE V 2F-201 BLW PRV PSV-31 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 142879-000 | | GAS / VAPOR | 2/5 5FT SW G-803A | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 142880-000 | | GAS / VAPOR | 2/5 5FT SW G-803A | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | | | GAS / VAPOR | | | | | | 142881-000 | | | 2/5 5FT SW G-803A | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 142882-000 | | GAS / VAPOR | 2/5 5FT SW G-803A | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 142883-000 | | GAS / VAPOR | 2/5 5FT SW G-803A | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 142884-000 | 10 | GAS / VAPOR | 2/5 5FT SW G-803A | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 142885-000 | 6 | GAS / VAPOR | 2/5 5FT SW G-803A | | UNICRACKER - #240 U | | CVS NO RD | 38114-000 | | GAS / VAPOR | 3/4 13FT W C GB-203A PRV 2PSV-3 | | UNICRACKER - #240 U | | CVS WITH RD | 38115-000 | | GAS / VAPOR | 3/4 15FT W C GB-203A PRV 2PSV-7 | | | | | | | | | | UNICRACKER - #240 U | | CVS NO RD | 38208-000 | | GAS / VAPOR | 1/5 SESD E 3FF-335 PRV PSV-69 | | UNICRACKER - #240 U | | CVS NO RD | 38412-000 | | | T/7 NESD V 2F-201 PRV 2PSV-54 | | UNICRACKER - #240 U | INICRACKER | CVS NO RD | 38465-000 | 3 | GAS / VAPOR | 2/6 25FT NE V 2F-201 PRV PSV-30 | | UNICRACKER - #240 U | INICRACKER | CVS NO RD | 38470-000 | 3 | GAS / VAPOR | 2/7 28FT NE V 2F-201 PRV PSV-31 | | UNICRACKER - #240 U | | CVS NO RD | 53505-000 | | GAS / VAPOR | T/5 MID T 2F-202 PRV PSV-29 | | UNICRACKER - #240 U | | CVS NO RD | 53510-000 | | GAS / VAPOR | 3/4 15FT W C GB-203B PRV PSV-9 | | | | | | | | | | UNICRACKER - #240 U | | CVS NO RD | 53800-000 | | GAS / VAPOR | 3/5 7FT NE V 2F-203 WSD PRV | | UNICRACKER - #240 U | INICRACKER | CVS NO RD | 53844-000 | 3 | GAS / VAPOR | 3/4 15FT W C GB-203B PRV PSV-11 | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 60270-000 | 4 | GAS / VAPOR | G/7 SESD E 2E-214A PSV 78 | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 6709-000 | 1 | HEAVY LIQUID | G/3 WSD GM-218 NSD G-201 | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 7077-000 | 1 | HEAVY LIQUID | 1/1 WSD GM-322B | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 7083-000 | | HEAVY LIQUID | 1/3 WSD 3G-317 | | | | | | | HEAVY LIQUID | 1/2 WSD GM-211B | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 7109-000 | | | | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 7142-000 | | HEAVY LIQUID | 1/2 WSD GM-212B | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 7151-000 | | HEAVY LIQUID | 1/4 WSD GM-203B | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 7174-000 | 2 | HEAVY LIQUID | 1/4 WSD GM-211B WSD C G-203A | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 9018-000 | 2 | HEAVY LIQUID | G/8 ABV G-824B | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 9086-000 | 0.75 | HEAVY LIQUID | G/7 NSD G-824A | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 9240-000 | 0.75 | HEAVY LIQUID | G/2 PSV-2 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 9301-000 | | HEAVY LIQUID | G/3 PSV-38 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 9312-000 | | | G/6 NSD PSV-8 | | | | | | | - | | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 9325-000 | | | G/3 PSV-93 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 9394-000 | | HEAVY LIQUID | G/10 PSV-57 | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 9397-000 | 1.5 | HEAVY LIQUID | G/7 PSV-42 | | UNICRACKER - #240 U | INICRACKER | CVS NO RD | 39014-000 | 3 | GAS / VAPOR | G/20 WSD E 2E-212A PRV | | UNICRACKER - #240 U | INICRACKER | PRESSURE RELIEF VALVE | 80031-000 | | GAS / VAPOR | G/20 NWSD E 2E-212A PRV | | UNICRACKER - #240 U | | CVS NO RD | 09700-000 | | GAS / VAPOR | 3/4 ESD T 3D-301 PRV PSV-34 | | UNICRACKER - #240 U | | CVS NO RD | 09800-000 | | GAS / VAPOR | 3/4 ESD T 3D-301 PRV PSV-34 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 147030-000 | | LIGHT LIQUID | G/4 NESD F-312 BTM | | | | | | | | | | UNICRACKER - #240 U | | CVS NO RD | 39614-000 | | GAS / VAPOR | T/7 MID T 3D-301 PRV PSV-96 | | UNICRACKER - #240 U | | CVS NO RD | 39811-000 | | GAS / VAPOR | 2/7 WSD V 3F-304 PRV PSV-23 | | UNICRACKER - #240 U | | CVS NO RD | 40789-000 | | GAS / VAPOR | 2/-5 12FT W T 2F-202 PRV PSV-4 | | UNICRACKER - #240 U | INICRACKER | CVS NO RD | 40816-000 | 1.5 | GAS / VAPOR | 1/5 SSD FF 3E-310 PRV PSV-68 | | UNICRACKER - #240 U | INICRACKER | CVS NO RD | 40832-000 | 6 | GAS / VAPOR | 2/5 NSD FF 3E-310 PRV PSV-46 | | UNICRACKER - #240 U | | CVS NO RD | 40836-000 | | GAS / VAPOR | 3/2 NSD FF 3E-310 PRV PSV-8E | | UNICRACKER - #240 U | | CVS NO RD | 40838-000 | | GAS / VAPOR | 3/2 NSD FF 3E-310 PRV PSV-8D | | UNICRACKER - #240 U | | CVS NO RD | 40839-000 | | GAS / VAPOR | 3/2 NSD FF 3E-310 PRV PSV-8C | | | | | | | | | | UNICRACKER - #240 U | | CVS NO RD | 40841-000 | | GAS / VAPOR | 3/2 NSD FF 3E-310 PRV PSV-8B | | UNICRACKER - #240 U | | CVS NO RD | 40842-000 | | GAS / VAPOR | 3/2 NSD FF 3E-310 PRV PSV-8A | | UNICRACKER - #240 U | | CVS NO RD | 53165-000 | | GAS / VAPOR | T/5 CENTER OF 3F-306 PSV | | UNICRACKER - #240 U | INICRACKER | CVS NO RD | 53166-000 | 10 | GAS / VAPOR | T/5 CENTER OF 3F-306 | | UNICRACKER - #240 U | | CVS NO RD | 53550-000 | | GAS / VAPOR | 2/4 WSD T 3D-303 PRV PSV-6 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 6945-000 | | HEAVY LIQUID | 1/4 SSD FF 3E-310 ESD PSV-7 | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 7858-000 | | HEAVY LIQUID | G/25 12FT E E-329 | | | | | | | | | | UNICRACKER - #240 U | | PRESSURE RELIEF VALVE | 7859-000 | | HEAVY LIQUID | G/25 12FT E E-329 | | UNICRACKER - #240 U | | CVS NO RD | 40859-000 | | GAS / VAPOR | G/30 10FT S E 3E-302 PRV | | UNICRACKER - #240 U | | CVS NO RD | 50411-000 | | GAS / VAPOR | G/20 ESD V 3F-305 | | UNICRACKER - #240 U | NUODAOVED | CVS NO RD | 50412-000 | 1 | GAS / VAPOR | G/20 ESD V 3F-305 | | ONIONACKEN #240 0 | INICRACKER | | 32706-000 | | GAS / VAPOR | 1/4 8FT SE V 31F-45 PRV 31PSV-39 | | | | CVS NO RD | | | | T/8 CTR F-343 PRV | | UNICRACKER - #240 U | INICRACKER | | 130092-000 | | | | | UNICRACKER - #240 U
UNICRACKER - #240 U | INICRACKER
INICRACKER
| ATOM NO RD | 130092-000 | | GAS / VAPOR | | | UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U | INICRACKER
INICRACKER
INICRACKER | ATOM NO RD
ATOM NO RD | 130232-000 | 6 | GAS / VAPOR | T/8 CTR F-241 PRV-123 | | UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U | INICRACKER INICRACKER INICRACKER INICRACKER | ATOM NO RD
ATOM NO RD
PRESSURE RELIEF VALVE | 130232-000
143269-000 | 6 | GAS / VAPOR
GAS / VAPOR | T/8 CTR F-241 PRV-123
1/6 NWSD FF 405 | | UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U | INICRACKER INICRACKER INICRACKER INICRACKER INICRACKER | ATOM NO RD ATOM NO RD PRESSURE RELIEF VALVE CVS NO RD | 130232-000
143269-000
147404-000 | 6
3
1 | GAS/VAPOR
GAS/VAPOR
GAS/VAPOR | T/8 CTR F-241 PRV-123
1/6 NWSD FF 405
G/4 20FT NE C 4G-425 INSIDE AH ATO-437/438 PRV | | UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U | INICRACKER INICRACKER INICRACKER INICRACKER INICRACKER | ATOM NO RD
ATOM NO RD
PRESSURE RELIEF VALVE | 130232-000
143269-000 | 6
3
1
4 | GAS/VAPOR GAS/VAPOR GAS/VAPOR GAS/VAPOR | T/8 CTR F-241 PRV-123
1/6 NWSD FF 405 | | UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U
UNICRACKER - #240 U | INICRACKER INICRACKER INICRACKER INICRACKER INICRACKER INICRACKER INICRACKER | ATOM NO RD ATOM NO RD PRESSURE RELIEF VALVE CVS NO RD | 130232-000
143269-000
147404-000 | 6
3
1
4 | GAS/VAPOR
GAS/VAPOR
GAS/VAPOR | T/8 CTR F-241 PRV-123
1/6 NWSD FF 405
G/4 20FT NE C 4G-425 INSIDE AH ATO-437/438 PRV | | UNICRACKER - #240 U
UNICRACKER - #240 U | Inicracker Inicracker Inicracker Inicracker Inicracker Inicracker Inicracker Inicracker | ATOM NO RD ATOM NO RD PRESSURE RELIEF VALVE CVS NO RD CVS NO RD | 130232-000
143269-000
147404-000
42565-000 | 6
3
1
4
3 | GAS/VAPOR GAS/VAPOR GAS/VAPOR GAS/VAPOR | T/8 CTR F-241 PRV-123
1/6 NWSD FF 405
G/4 20FT NE C 4G-425 INSIDE AH ATO-437/438 PRV
2/4 6FT NESE T 4D-401 PRV PSV-1 | | | | | | 1 | | |--|--|---|---|---|---| | UNICRACKER - #240 UNICRACKER | CVS NO RD | 51535-000 | 6 | GAS / VAPOR | T/4 TOP T 4D-411 PRV PSV-77 | | | PRESSURE RELIEF VALVE | 8064-000 | 1 | HEAVY LIQUID | 1/1 SSD G-408A | | UNICRACKER - #240 UNICRACKER | PRESSURE RELIEF VALVE | 8098-000 | | HEAVY LIQUID | 1/1 SSD G-408B | | | | | | | | | | PRESSURE RELIEF VALVE | 8263-000 | | HEAVY LIQUID | G/5 ESD P G-349 PSV-139 | | UNICRACKER - #240 UNICRACKER | PRESSURE RELIEF VALVE | 8264-000 | 0.75 | HEAVY LIQUID | G/5 NESD P G-348 PSV-139 | | UNICRACKER - #240 UNICRACKER | PRESSURE RELIEF VALVE | 8370-000 | 2 | HEAVY LIQUID | G/5 NSD P G-430B PSV-61 | | UNICRACKER - #240 UNICRACKER | PRESSURE RELIEF VALVE | 8377-000 | 2 | HEAVY LIQUID | G/5 NSD P G-430A PSV-61 | | | CVS NO RD | 84226-000 | | GAS / VAPOR | 2/4 SESD T 4D-402 PRV PSV-2 | | | | | | | | | | PRESSURE RELIEF VALVE | 8497-000 | | HEAVY LIQUID | 1/1 SESD TK 430 | | UNICRACKER - #240 UNICRACKER | PRESSURE RELIEF VALVE | 90921-000 | 2 | GAS / VAPOR | 1/4 25FT S V 4F-401 ON PFRM | | UNICRACKER - #240 UNICRACKER | PRESSURE RELIEF VALVE | 90923-000 | 2 | GAS / VAPOR | 1/4 25FT S V 4F-401 ON PFRM | | UNICRACKER - #244 REFORMING | CVS NO RD | 35362-000 | 1 | GAS / VAPOR | 2/3 20FT N H 5B-505 PRV PSV-15 | | | CVS NO RD | 35585-000 | | GAS / VAPOR | 2/4 NSD FF 5E-505 PRV PSV-29 | | | | | | | | | | CVS NO RD | 35659-000 | 4 | GAS / VAPOR | 2/3 TOP V 5F-502 PRV PSV-3 | | UNICRACKER - #244 REFORMING | CVS NO RD | 35928-000 | 1 | GAS / VAPOR | 1/6 TOP V 5F-526 PRV PSV-526 | | UNICRACKER - #244 REFORMING | CVS NO RD | 35950-000 | 1.5 | GAS / VAPOR | 1/7 WSD V 5F-527 PRV PSV-527 | | UNICRACKER - #244 REFORMING | CVS NO RD | 36268-000 | 2 | GAS / VAPOR | 2/4 48FT N H 5B-507 PRV PSV-33 | | | CVS NO RD | 53769-000 | | | 2/3 SSD FF 5E-505 PRV PSV-34 | | | | | | | l | | | CVS NO RD | 60395-000 | | GAS / VAPOR | 1/5 WSD V 5F-503 PRV PSV-6 | | UNICRACKER - #244 REFORMING | CVS NO RD | 80340-000 | 0.5 | LIGHT LIQUID | G/4 5FT N V 5F-506 PRV PSV-9 | | UNICRACKER - #244 REFORMING | CVS NO RD | 91573-000 | 0.25 | GAS / VAPOR | 1/6 7FT NW V 5F-503 NSD INST | | UNICRACKER - #248 UNISAR | CVS NO RD | 36568-000 | 4 | GAS / VAPOR | 2/7 TOP V 6F-602 | | |
CVS NO RD | 36594-000 | | | 2/7 SWSD V 6F-602 | | | | | | 1 | | | | CVS NO RD | 36738-000 | | | 2/7 10FT E V 6F-605 PRV PSV-8 | | UNICRACKER - #248 UNISAR | CVS NO RD | 36902-000 | 1 | GAS / VAPOR | G/12 NSD P 6G-606B | | UNICRACKER - #248 UNISAR | CVS NO RD | 36972-000 | 6 | GAS / VAPOR | 2/7 NESD V 6F-606 PRV 6PSV-18 | | | CVS NO RD | 37027-000 | | GAS / VAPOR | 1/3 NWSD FF E-502A PRV PRV-9 | | | CVS NO RD | 50191-000 | | GAS / VAPOR | 2/6 WSD V 6F-601 PRV PSV-12 | | | | | | | | | | PRESSURE RELIEF VALVE | 50226-000 | | GAS / VAPOR | 6/5 TOP T 6D-604 | | | CVS NO RD | 53526-000 | | GAS / VAPOR | 2/7 10FT W V 6F-605 PRV PSV-7 | | UNICRACKER - #248 UNISAR | CVS NO RD | 37117-000 | - 6 | GAS / VAPOR | G/30 15FT SW E 6E-603 PRV | | | PRESSURE RELIEF VALVE | 0095-000 | | HEAVY LIQUID | G/13 ESD P G-701B | | | ATOM NO RD | 0181-000 | | HEAVY LIQUID | G/4 NSD PMP G-742B PSV-286 | | | | | | | | | | ATOM NO RD | 0212-000 | | HEAVY LIQUID | G/3 NSD PMP G-742A ESD PSV-285 | | | ATOM NO RD | 140018-000 | | GAS / VAPOR | T/4 MID F-741 PSV-283 | | UNICRACKER- #250 ULSD | CVS NO RD | 1965-000 | 3 | GAS / VAPOR | 1/6 60FT S C GB-701 PSV-11 PRV | | UNICRACKER- #250 ULSD | CVS NO RD | 1968-000 | 1.5 | GAS / VAPOR | 1/6 50FT S C GB-701 PSV-23 PRV | | | CVS NO RD | 1971-000 | | | 1/6 45FT S C GB-701 PSV-45 PRV | | | | | | | | | | CVS NO RD | 1976-000 | | GAS / VAPOR | 1/6 35FT S C GB-701 PSV-22 PRV | | UNICRACKER- #250 ULSD | CVS NO RD | 1992-000 | | | 1/6 40FT S C GB-701 PSV-46 PRV | | UNICRACKER- #250 ULSD | CVS NO RD | 2119-000 | 0.75 | GAS / VAPOR | 1/7 8FT S C GB-701 N PRV | | UNICRACKER- #250 ULSD | CVS NO RD | 2415-000 | 1.5 | LIGHT LIQUID | 1/5 25FT NET D-711 PRV PSV-1 PRV | | | CVS NO RD | 2416-000 | | LIGHT LIQUID | 1/5 25FT NE T D-711 PRV PSV-2 PRV | | | | | | | | | | CVS NO RD | 2588-000 | | GAS / VAPOR | G/3 ESD AH AIT-281 PRV PSV-2800 | | UNICRACKER- #250 ULSD | CVS NO RD | 2594-000 | | GAS / VAPOR | G/3 ESD AH AIT-281 PRV PSV-280A | | UNICRACKER- #250 ULSD | CVS NO RD | 3797-000 | 0.25 | GAS / VAPOR | G/5 ESD AH AIT-281 PRV PSV-281A | | UNICRACKER- #250 ULSD | CVS NO RD | 91747-000 | 4 | GAS / VAPOR | T/6 SESD T D-711 PRV | | | ATOM NO RD | 90786-000 | | LIGHT LIQUID | G/20 18FT E P G-701A ESD ORF IN PW ON PSV 94 | | | | | | | | | | CVS NO RD | 1286-000 | | | 2/5 8FT E V D-714 PRV PSV-34 | | UNICRACKER- #250 ULSD | CVS NO RD | 1289-000 | | GAS / VAPOR | 2/5 10FT NE V D-714 PRV PSV-41 | | UNICRACKER- #250 ULSD | CVS NO RD | 1296-000 | 2 | GAS / VAPOR | 2/10 ESD V D-714 PRV PSV-40 | | UNICRACKER- #250 ULSD | CVS NO RD | 1479-000 | 4 | GAS / VAPOR | 1/4 SSD V D-702 PRV PSV-4 | | | CVS NO RD | 1486-000 | | GAS / VAPOR | 1/4 WSD FF EF-704D PRV PSV-9 | | | CVS NO RD | 1690-000 | | GAS / VAPOR | 1/5 5FT NE RX D-703 PRV PSV-6 | | | | | | | | | | CVS NO RD | 50086-000 | | GAS / VAPOR | 3/5 22FT NW E E-708 PRV PSV-3 | | UNICRACKER- #250 ULSD | CVS NO RD | 50088-000 | 4 | GAS / VAPOR | G/30 9FT E E E-703A PRV PSV-93 | | UNICRACKER- #250 ULSD | CVS NO RD | 80867-000 | 8 | GAS / VAPOR | T/7 SWSD T D-710 PRV PSV-15 | | UNICRACKER-#250 ULSD | CVS NO RD | 84220-000 | | | 0/4 4FTNI//D 740 DDI//DOI//OF | | | PRESSURE RELIEF VALVE | F | 1.5 | LIGHTLIOUID | 12/1 4FT N V D-/13 PRV PSV-25 | | | | 00671 000 | | LIGHT LIQUID | 2/1 4FT N V D-713 PRV PSV-25 | | | | 90671-000 | 4 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B | | | PRESSURE RELIEF VALVE | 90695-000 | 4 | | | | UNICRACKER- #250 ULSD
WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE
ATOM NO RD | 90695-000
130300-000 | 4
3
2 | GAS / VAPOR
GAS / VAPOR
GAS / VAPOR | 1/4 SWSD FF DECK E-704B
1/10 SWSD U-250 IN BOUNDARY ON DECK
G/9 NWSD E-420 PSV-400 | | UNICRACKER- #250 ULSD
WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE | 90695-000 | 4
3
2 | GAS / VAPOR
GAS / VAPOR | 1/4 SWSD FF DECK E-704B
1/10 SWSD U-250 IN BOUNDARY ON DECK | | UNICRACKER- #250 ULSD
WEST BULK - #110 HYDROGEN PLANT
WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE
ATOM NO RD | 90695-000
130300-000 | 4
3
2
1.5 | GAS/VAPOR
GAS/VAPOR
GAS/VAPOR
GAS/VAPOR | 1/4 SWSD FF DECK E-704B
1/10 SWSD U-250 IN BOUNDARY ON DECK
G/9 NWSD E-420 PSV-400 | | UNICRACKER- #250 ULSD WEST BULK - #110 HYDROGEN PLANT WEST BULK - #110 HYDROGEN PLANT WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS NO RD CVS NO RD | 90695-000
130300-000
7467-000
7485-000 | 4
3
2
1.5
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B
1/10 SWSD U-250 IN BOUNDARY ON DECK
G/9 NWSD E-420 PSV-400
G/8 NWSD V-1 PRV
G/6 SSD V ME-103 PRV | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS NO RD CVS NO RD CVS NO RD CVS NO RD | 90695-000
130300-000
7467-000
7485-000
7510-000 | 4
3
2
1.5
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B
1/10 SWSD U-250 IN BOUNDARY ON DECK
G/9 NWSD E-420 PSV-400
G/8 NWSD V-1 PRV
G/6 SSD V ME-103 PRV
G/6 12FT SE V ME-103 PRV | | UNICRACKER-#250 ULSD WEST BULK -#110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS NO RD | 90695-000
130300-000
7467-000
7485-000
7510-000
7640-000 | 4
3
2
1.5
2
2
1 | GAS / VAPOR LIGHT LIQUID | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 12FT SEV ME-103 PRV 1/9 30FT N E E-5 PRV | | UNICRACKER-#250 ULSD WEST BULK -#110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS NO RD | 90695-000
130300-000
7467-000
7485-000
7510-000
7640-000
7750-000 | 4
3
2
1.5
2
2
1
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N EE-5 PRV G/4 6FT S V V-22 PRV PSV-72 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000
130300-000
7467-000
7485-000
7510-000
7640-000
7750-000
7753-000 | 4
3
2
1.5
2
2
1
2
2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 12FT SEV ME-103 PRV 1/9 30FT N E E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS NO RD | 90695-000
130300-000
7467-000
7485-000
7510-000
7640-000
7750-000 | 4
3
2
1.5
2
2
1
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N EE-5 PRV G/4 6FT S V V-22 PRV PSV-72 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000
130300-000
7467-000
7485-000
7510-000
7540-000
7750-000
7753-000
7756-000 | 4
3
2
1.5
2
2
1
2
2
2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/6 SWD VV-1 PRV G/6 SSD V ME-103 PRV G/6 12FT SEV ME-103 PRV 1/9 30FT N E E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-24 PRV PSV-74 G/4 6FT S V V-26 PRV PSV-76 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000
130300-000
7467-000
7485-000
7510-000
7510-000
7750-000
7753-000
7756-000
7759-000 | 4
3
2
1.5
2
2
1
2
2
2
2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD L-240 PSV-400 G/8 NWSD V V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N EE-5 PRV G/4 GFT S V V-22 PRV PSV-72 G/4 GFT S V V-22 PRV PSV-74 G/4 GFT S V V-29 PRV PSV-76 G/4 GFT S V V-29 PRV PSV-76 G/4 GFT S V V-29 PRV PSV-76 | | UNICRACKER. #250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000
130300-000
7487-000
7485-000
7510-000
7640-000
7750-000
7753-000
7756-000
7759-000
7762-000 | 4
3
2
1.5
2
2
1
1
2
2
2
2
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V WE-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-26 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-78 G/4 6FT S V V-30 PRV PSV-78 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000
130300-000
7467-000
7485-000
7510-000
7640-000
7753-000
7753-000
7759-000
7759-000
7762-000
7769-000 | 4
3
2
1.5
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 12FT SEV ME-103 PRV 1/9 30FT N E E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-25 PRV PSV-76 G/4 6FT S V V-25 PRV PSV-76 G/4 6FT S V V-25 PRV PSV-78 G/4 6FT S V V-26 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-80 G/4 6FT N V V-29 PRV PSV-80 G/4 6FT N V V-29 PRV PSV-79 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000
130300-000
7487-000
7485-000
7510-000
7640-000
7750-000
7753-000
7756-000
7759-000
7762-000 | 4
3
2
1.5
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V WE-103 PRV G/6
SSD V ME-103 PRV 1/9 30FT N E E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-26 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-78 G/4 6FT S V V-30 PRV PSV-78 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000
130300-000
7467-000
7485-000
7510-000
7640-000
7753-000
7753-000
7759-000
7759-000
7762-000
7769-000 | 4
3
2
1.5
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 12FT SEV ME-103 PRV 1/9 30FT N E E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-25 PRV PSV-76 G/4 6FT S V V-25 PRV PSV-76 G/4 6FT S V V-25 PRV PSV-78 G/4 6FT S V V-26 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-80 G/4 6FT N V V-29 PRV PSV-80 G/4 6FT N V V-29 PRV PSV-79 | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7510-000 7640-000 7753-000 7756-000 7756-000 7769-000 7769-000 7769-000 77769-000 77774-000 77775-000 | 4
3
2
1.5
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-Y-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-25 PRV PSV-76 G/4 6FT S V V-25 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-25 PRV PSV-77 G/4 6FT N V V-25 PRV PSV-77 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7467-000 7485-000 7510-000 7640-000 7750-000 7753-000 7756-000 7759-000 7769-000 7769-000 7769-000 77740-000 77775-000 77775-000 77775-000 | 4
3
2
1.5
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/6 NWSD U-Y-1 PRV G/6 SSD V WE-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT NE E-5 PRV G/4 6FT SV V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-22 PRV PSV-75 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V-25 PRV PSV-75 G/4 6FT N V-25 PRV PSV-75 G/4 6FT N V V-25 PRV PSV-75 G/4 6FT N V V-25 PRV PSV-75 G/4 6FT N V V-25 PRV PSV-75 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7467-000 7485-000 7510-000 7540-000 7753-000 7758-000 7758-000 7769-000 7769-000 7775-000 77778-000 77778-000 77778-000 77778-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 | 4
3
2
1.5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-22 PRV PSV-76 G/4 6FT S V V-22 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-75 G/4 6FT N V V-29 PRV PSV-73 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7467-000 7488-000 7510-000 7540-000 7750-000 7753-000 7756-000 7759-000 7762-000 7775-000 7775-000 7778-000 7778-000 7778-000 7778-000 | 4
3
2
1.5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD U-250 IN BOUNDARY ON DECK G/9 NWSD V-420 PSV-400 G/8 SSD V ME-103 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-26 PRV PSV-76 G/4 6FT S V V-28 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-27 PRV PSV-77 G/4 6FT N V V-27 PRV PSV-77 G/4 6FT N V V-27 PRV PSV-75 G/4 6FT N V V-27 PRV PSV-71 I/12 8FT N C CM-1110-PSV-100 | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7756-000 7759-000 7762-000 7769-000 7775-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 7788-000 | 4
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-22 PRV PSV-76 G/4 6FT S V V-25 PRV PSV-76 G/4 6FT S V V-26 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-25 PRV PSV-79 G/4 6FT N V V-25 PRV PSV-77 G/4 6FT N V V-25 PRV PSV-77 G/4 6FT N V V-25 PRV PSV-75 C C M-110-PSV-100 1/4 3FT S VV-1 PRV | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7467-000 7488-000 7510-000 7540-000 7750-000 7753-000 7756-000 7759-000 7762-000 7775-000 7775-000 7778-000 7778-000 7778-000 7778-000 | 4
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD U-250 IN BOUNDARY ON DECK G/9 NWSD V-420 PSV-400 G/8 SSD V ME-103 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-26 PRV PSV-76 G/4 6FT S V V-28 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-27 PRV PSV-77 G/4 6FT N V V-27 PRV PSV-77 G/4 6FT N V V-27 PRV PSV-75 G/4 6FT N V V-27 PRV PSV-71 I/12 8FT N C CM-1110-PSV-100 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7756-000 7759-000 7762-000 7769-000 7775-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 7788-000 | 4 3 3 2 2 1.5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-22 PRV PSV-76 G/4 6FT S V V-25 PRV PSV-76 G/4 6FT S V V-26 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-25 PRV PSV-79 G/4 6FT N V V-25 PRV PSV-77 G/4 6FT N V V-25 PRV PSV-77 G/4 6FT N V V-25 PRV PSV-75 C C M-110-PSV-100 1/4 3FT S VV-1 PRV | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7467-000 7485-000 7510-000 7510-000 7750-000 7750-000 7758-000 7769-000 7776-000 77778-000 77778-000 7778-000 7778-000 7778-000 7778-000 7783-000 130505-000 130505-000 | 4 3 3 2 2 1.5 5 2 2 2 2 2 2 2 2 2 4 4 3 3 2 6 6 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD L-260 IN BOUNDARY ON DECK G/9 NWSD L-240 PSV-400 G/8 SWSD V V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-29 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-27 PRV PSV-77 G/4 6FT N V V-27 PRV PSV-77 G/4 6FT N V V-27 PRV PSV-75 G/4 6FT N V V-27 PRV PSV-71 1/12 8FT N C CM-1 110-PSV-100 T/4 3FT S V V-1 PRV G/6 17FT N V V-2 PRV G/6 17FT N V V-2 PRV PSV-71 I/10 18 NSD V-2 PRV G/6 17FT N V V-2 PRV G/6 17FT N V V-2 PRV PSV-101-1 | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7756-000 7759-000 7769-000 7769-000 7778-000 7778-000 7778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1783-000 130505-000 130505-000 7883-000 | 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD U-250 IN BOUNDARY ON DECK G/9 NWSD U-420 PSV-400 G/8 SWSD V W-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-26 PRV PSV-76 G/4 6FT S V V-26 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-77 G/4 6FT N V V-25 PRV PSV-77 G/4 6FT N V V-25 PRV PSV-77 G/4 6FT N V V-21 PRV PSV-71 1/12 8FT N C CM-1 110-PSV-100 T/4 3FT S VV-1 PRV 1/6 1/FT N EV V-1 PRV PSV-71 1/6 1/FT N SV V-2 PRV PSV-70 1/6 1/FT N SV V-1 PRV PSV-70 1/5 CTR V V-8 PRV PSV-7 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7756-000 7756-000 7762-000 7768-000 7778-000 7778-000 7778-000 7778-000 7778-000 7783-000 130505-000 130505-000 7883-000 7883-000 7883-000 7988-000 7988-000 | 4
3
2
1.5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD U-4 PRV G/6 SSD V WE-103 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV U-9 SWF WE-103 PRV U-9 SWF WE-103 PRV G/4 GFT S V W-22 PRV PSV-72 G/4 GFT S V V-22 PRV PSV-74 G/4 GFT S V V-22 PRV PSV-74
G/4 GFT S V V-29 PRV PSV-76 G/4 GFT S V V-29 PRV PSV-78 G/4 GFT S V V-29 PRV PSV-79 G/4 GFT N V V-29 PRV PSV-79 G/4 GFT N V V-29 PRV PSV-77 G/4 GFT N V V-25 PRV PSV-75 G/4 GFT N V V-25 PRV PSV-75 G/4 GFT N V V-25 PRV PSV-75 G/4 GFT N V V-25 PRV PSV-71 1/12 BFT N C CM-1110-PSV-100 T/4 3FT S VV-1 PRV 1/6 1ft NSD V V-2 PRV PSV-71 1/6 1ft NSD V V-2 PRV PSV-71 1/6 1ft NSD V V-2 PRV PSV-71 1/5 CTR V V-8 PRV PSV-71 2/5 NESD FF E-7 PRV | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7467-000 7485-000 7510-000 7510-000 7753-000 7753-000 7758-000 7758-000 7769-000 7769-000 7778-000 7778-000 7778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1783-000 180849-000 130505-000 130505-000 7883-000 7883-000 7883-000 7988-000 | 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD L-260 IN BOUNDARY ON DECK G/9 NWSD L-240 PSV-400 G/8 SWSD V V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 GFT S V V-22 PRV PSV-72 G/4 GFT S V V-22 PRV PSV-74 G/4 GFT S V V-29 PRV PSV-76 G/4 GFT S V V-29 PRV PSV-76 G/4 GFT S V V-29 PRV PSV-79 G/4 GFT S V V-29 PRV PSV-79 G/4 GFT N V V-27 PRV PSV-79 G/4 GFT N V V-27 PRV PSV-79 G/4 GFT N V V-27 PRV PSV-71 1/12 BFT N C CM-1110-PSV-100 1/4 3FT S V V-1 PRV 1/6 1 TN SD V-2 PRV PSV-71 1/12 BFT N C CM-1110-PSV-100 1/4 3FT S V V-1 PRV 1/6 1 TN SD V-2 PRV PSV-71 1/17 STT N V-4 PRV PSV-71 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7756-000 7756-000 7762-000 7768-000 7778-000 7778-000 7778-000 7778-000 7778-000 7783-000 130505-000 130505-000 7883-000 7883-000 7883-000 7988-000 7988-000 | 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD U-4 PRV G/6 SSD V WE-103 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV U-9 SWF WE-103 PRV U-9 SWF WE-103 PRV G/4 GFT S V W-22 PRV PSV-72 G/4 GFT S V V-22 PRV PSV-74 G/4 GFT S V V-22 PRV PSV-74 G/4 GFT S V V-29 PRV PSV-76 G/4 GFT S V V-29 PRV PSV-78 G/4 GFT S V V-29 PRV PSV-79 G/4 GFT N V V-29 PRV PSV-79 G/4 GFT N V V-29 PRV PSV-77 G/4 GFT N V V-25 PRV PSV-75 G/4 GFT N V V-25 PRV PSV-75 G/4 GFT N V V-25 PRV PSV-75 G/4 GFT N V V-25 PRV PSV-71 1/12 BFT N C CM-1110-PSV-100 T/4 3FT S VV-1 PRV 1/6 1ft NSD V V-2 PRV PSV-71 1/6 1ft NSD V V-2 PRV PSV-71 1/6 1ft NSD V V-2 PRV PSV-71 1/5 CTR V V-8 PRV PSV-71 2/5 NESD FF E-7 PRV | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7467-000 7485-000 7510-000 7510-000 7753-000 7753-000 7758-000 7758-000 7769-000 7769-000 7778-000 7778-000 7778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1778-000 1783-000 180849-000 130505-000 130505-000 7883-000 7883-000 7883-000 7988-000 | 4 4 3 3 2 2 1.5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD L-250 IN BOUNDARY ON DECK G/9 NWSD L-240 PSV-400 G/8 SWSD V V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 GFT S V V-22 PRV PSV-72 G/4 GFT S V V-22 PRV PSV-74 G/4 GFT S V V-29 PRV PSV-76 G/4 GFT S V V-29 PRV PSV-76 G/4 GFT S V V-29 PRV PSV-79 G/4 GFT S V V-29 PRV PSV-79 G/4 GFT N V V-27 PRV PSV-79 G/4 GFT N V V-27 PRV PSV-79 G/4 GFT N V V-27 PRV PSV-71 1/12 BFT N C CM-1110-PSV-100 1/4 3FT S V-1 PRV 1/6 1 TR S V V-1 PRV PSV-71 1/17 S TR V V-1 PRV PSV-101-1 1/5 CTR V V-8 PRV PSV-72 2/5 NESD FF E-7 PRV 3/5 GFT N V V-4 PRV PSV-115 | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7753-000 7762-000 7762-000 77750-000 77750-000 7778-000 7778-000 7778-000 7788-000 7788-000 7788-000 7788-000 7788-000 7788-000 7788-000 130505-000 7883-000 7883-000 7988-000 101300000 1013000000 | 4
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD U-42 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-22 PRV PSV-76 G/4 6FT S V V-22 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-78 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-25 PRV PSV-77 G/4 6FT N V V-25 PRV PSV-75 PSV-71 1/12 8FT N C CM-1 110-PSV-100 1/4 3FT S V V-1 PRV 1/6 1ft NSD V V-2 PRV J/5 NSD FF F-7 PRV 3/5 6FT N V V-4 PRV PSV-71 2/5 NSSD FF F-7 PRV 3/5 6FT N V V-4 PRV PSV-115 G/2 10FT E SUB STATION 8B PRV PSV-590 G/8 WSD E-420 PSV-400 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT | PRESSURE RELIEF VALVE ATOM NO RD CVS PRESSURE RELIEF VALVE PRESSURE RELIEF VALVE | 90695-000 130300-000 7485-000 7485-000 7510-000 7510-000 7753-000 7753-000 7756-000 7756-000 7769-000 77769-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 7788-000 7788-000 130505-000 7881-000 7883-000 130505-000 7883-000 130505-000 7883-000 130505-000 7883-000 130505-000 7883-000 130505-000 7883-000 130505-000 7883-000 | 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD U-24 PRV G/6 SSD V WE-103 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV G/6 12FT SEV ME-103 PRV 1/9 30FT N E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-26 PRV PSV-74 G/4 6FT S V V-26 PRV PSV-76 G/4 6FT S V V-28 PRV PSV-78 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-25 PRV PSV-75 G/4 6FT N V V-25 PRV PSV-71 1/12 8FT N C CM-1 110-PSV-100 1/4 3FT S V V-1 PRV 1/6 1ft NSD V V-2 PRV PSV-70 G/6 1/9 TFT NE V V-1 PRV PSV-71 2/5 NESD FF E-7 PRV 3/5 6FT N V V-4 PRV PSV-71 2/5 NESD FF E-7 PRV 3/5 6FT N V V-4 PRV PSV-71 2/5 NESD FF E-7 PRV 3/5 6FT N V V-4 PRV PSV-71 1/6 SWSD E-420 PSV-400 G/5 12FT SW E E-01A ESD TX | | UNICRACKER-#250 ULSD WEST BULK. #110 HYDROGEN PLANT #310 HYDROGEN PLANT WEST BULK. #310 HYDROGEN PLANT WEST BULK. #310 HYDROGEN PLANT WEST BULK. #35TM. POWER PLT. | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7758-000 7759-000 7769-000 77759-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 1010-000 1010-000 1010-000 1010-000 1010-000 10110-000 10130-000 10130-000 10130-000 10130-000 | 4 4 3 3 2 2 1.5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-2420 PSV-400 G/8 NWSD V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV C/4 6FT S V-22 PRV PSV-72 G/4 6FT S V-22 PRV PSV-74 G/4 6FT S V-22 PRV PSV-75 G/4 6FT S V-22 PRV PSV-76 G/4 6FT S V-28 PRV PSV-76 G/4 6FT S V-29 PRV PSV-79 G/4 6FT S V-29 PRV PSV-79 G/4 6FT S V-29 PRV PSV-79 G/4 6FT N V-27 PRV PSV-77 G/4 6FT N V-27 PRV PSV-75 G/4 6FT N V-27 PRV PSV-75 G/4 6FT N V-27 PRV PSV-75 G/4 6FT N V-27 PRV PSV-71 1/12 8FT N C CM-1110-PSV-100 T/4 3FT S V-1 PRV 1/6 1ft NSD V-2 PRV G/6 17FT NEV V-12 PRV PSV-11 1/15 CTR V-8 PRV PSV-7 2/5 NESD FF E-7 PRV 3/5 6FT N V-4 PRV PSV-115 G/2 10FT E SUB STATION 8B PRV PSV-590 G/8 WSD E-420 PSV-400 G/5 12FT SW E-014 ESD TX T/4 ESD V F-17 PRV PSV-154 | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT #30 | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7753-000 7762-000 7769-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 7788-000 7788-000 130505-000 7883-000 7883-000 130505-000 130300-000 151426-000 9335-000 9335-000 | 4 4 3 3 2 2 1.5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD U-42 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N EE-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-22 PRV PSV-75 G/4 6FT S V V-29 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-77 G/4 6FT N V V-29 PRV PSV-71 1/12 8FT N C CM-1 110-PSV-100 T/4 3FT S V V-1 PRV 1/6 1ft NSD V V-2 PRV G/6 1/FT N EV V-12 PRV PSV-101-1 T/5 CTR V V-8 PRV PSV-7 2/5 NESD FF E-7 PRV 3/5 6FT N V V-4 PRV PSV-115 G/2 10FT E SUB STATION 88 PRV PSV-590 G/8 WSD E-420 PSV-400 G/5 12FT SW E-014 ESD TX T/4 ESD V F I PRV PSV-154 G/6 ABV V F-39 PRV PSV-164 | | UNICRACKER-#250 ULSD WEST BULK. #110 HYDROGEN PLANT #310 HYDROGEN PLANT WEST BULK. #35TM. POWER PLT. | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7758-000 7759-000 7769-000 77759-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 1010-000 1010-000 1010-000 1010-000 1010-000 10110-000 10130-000 10130-000 10130-000 10130-000 | 4 4 3 3 2 2 1.5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD L-260 IN BOUNDARY ON DECK G/9 NWSD L-240 PSV-400 G/8 NWSD VV-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV C/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-29 PRV PSV-75 G/4 6FT S V V-29 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-27 PRV PSV-77 G/4 6FT N V V-27 PRV PSV-75 G/4 6FT N V V-27 PRV PSV-75 G/4 6FT N V V-27 PRV PSV-75 G/4 6FT N V V-27 PRV PSV-71 1/12 8FT N C CM-1110-PSV-100 T/4 3FT S VV-1 PRV G/6 17FT N EV V-12 PRV PSV-11 1/15 CTR V V-8 PRV PSV-7 2/5 NESD FF E-7 PRV 3/5 6FT N V V-4 PRV PSV-15 G/2 10FT E SUB STATION 8B PRV PSV-590 G/8 WSD E-420 PSV-400 G/5 12FT SW
E-014 ESD TX T/4 ESD V F-17 PRV PSV-154 | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT PLT. WEST BULK. #110 HYDROGEN PLT. | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7753-000 7762-000 7769-000 7778-000 7778-000 7778-000 7778-000 7778-000 7778-000 7788-000 7788-000 130505-000 7883-000 7883-000 130505-000 130300-000 151426-000 9335-000 9335-000 | 4
3
2
1.5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD U-42 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N EE-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-74 G/4 6FT S V V-22 PRV PSV-75 G/4 6FT S V V-29 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-77 G/4 6FT N V V-29 PRV PSV-71 1/12 8FT N C CM-1 110-PSV-100 T/4 3FT S V V-1 PRV 1/6 1ft NSD V V-2 PRV G/6 1/FT N EV V-12 PRV PSV-101-1 T/5 CTR V V-8 PRV PSV-7 2/5 NESD FF E-7 PRV 3/5 6FT N V V-4 PRV PSV-115 G/2 10FT E SUB STATION 88 PRV PSV-590 G/8 WSD E-420 PSV-400 G/5 12FT SW E-014 ESD TX T/4 ESD V F I PRV PSV-154 G/6 ABV V F-39 PRV PSV-164 | | UNICRACKER-#250 ULSD WEST BULK - #110 HYDROGEN PLANT #3 STM. POWER PLT. | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7510-000 7510-000 7753-000 7753-000 7753-000 7756-000 7762-000 7769-000 7778-000 7778-000 7778-000 7788-000 130505-000 130505-000 7881-000 7883-000 130505-000 | 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR LIGHT LIQUID | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD L-250 IN BOUNDARY ON DECK G/9 NWSD L-240 PSV-400 G/8 SWSD VV-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 6FT S V-22 PRV PSV-72 G/4 6FT S V-22 PRV PSV-72 G/4 6FT S V-22 PRV PSV-76 G/4 6FT S V-22 PRV PSV-76 G/4 6FT S V-29 PRV PSV-76 G/4 6FT S V-29 PRV PSV-79 G/4 6FT S V-29 PRV PSV-77 G/4 6FT N V-29 PRV PSV-77 G/4 6FT N V-29 PRV PSV-77 G/4 6FT N V-21 PRV PSV-77 G/4 6FT N V-21 PRV PSV-71 1/12 8FT N C CM-1 110-PSV-100 T/4 3FT S V-1 PRV G/6 17FT NE V-12 PRV PSV-101-1 T/5 CTR V-8 PRV PSV-7 G/7 SFT N V-2 PRV PSV-71 G/7 SFT N SV-1 PRV PSV-101-1 T/5 CTR V-8 PRV PSV-7 G/7 SFT N SV-1 PRV PSV-101-1 T/5 CTR V-8 PRV PSV-7 G/7 SFT N SV-1 PRV PSV-105 G/7 SFT N SV-1 PRV PSV-115 G/7 SFT N SV-1 PRV PSV-115 G/7 SFT N SV-1 PRV PSV-154 G/7 SFT N SW E-01A ESD TX T/4 ESD V F-17 PRV PSV-154 G/6 ASD V F-39 PRV PSV-154 G/6 ASD V F-39 PRV PSV-311 PRV 1/4 13FT SW C G-176 PRV PSV-311 PRV | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT #30 HYDROGEN PLANT WEST BULK. #30 HYDROGEN PLANT WEST BULK. #30 HYDROGEN PLANT WEST BULK. #30 STM. POWER PLT. | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7485-000 7485-000 7510-000 7640-000 7753-000 7753-000 7756-000 7759-000 7769-000 7778-000 7778-000 7778-000 7778-000 7778-000 7788-000 130505-000 7883-000 130505-000 7883-000 151426-000 151426-000 151426-000 19385-000 19442-000 19472-000 19472-000 1950000 19777-000 19778-000 | 4 4 3 3 2 2 1.5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD E-420 PSV-400 G/8 NWSD U-V-1 PRV G/6 SSD V ME-103 PRV U-3 90FT N E-5 PRV G/4 6FT S V-22 PRV PSV-72 G/4 6FT S V-22 PRV PSV-74 G/4 6FT S V-22 PRV PSV-76 G/4 6FT S V-22 PRV PSV-76 G/4 6FT S V-29 PRV PSV-76 G/4 6FT S V-29 PRV PSV-77 G/4 6FT N V-27 PRV PSV-71 1/12 8FT N C CM-1110-PSV-100 1/4 3FT S V-1 PRV 1/6 1ft NSD V-2 1/7 SFT E-7 PRV 1/7 SFT E-8 U-1 SSD TX 1/4 SSD V-4 PRV PSV-115 G/2 10FT SW E-01A ESD TX 1/4 SSD V-17 PRV PSV-154 G/6 ABV V-39 PRV PSV-164 1/4 10FT SW C-1-7 PRV PSV-151 PRV 1/4 13FT SW C-1-7 PRV PSV-115 PRV PSV-154 1/4 13FT SW C-1-7 PRV PSV-119 PRV 1/7 8FT E E-01B PRV PSV-179 PRV | | UNICRACKER. #250 ULSD WEST BULK. #110 HYDROGEN PLANT #310 #35 TM. POWER PLT. WEST BULK. #35 TM. POWER PLT. WEST BULK. #35 TM. POWER PLT. WEST BULK. #35 TM. POWER PLT. | PRESSURE RELIEF VALVE ATOM NO RD CVS | 90695-000 130300-000 7485-000 7485-000 7510-000 7510-000 7753-000 7753-000 7753-000 7756-000 7762-000 7769-000 7778-000 7778-000 7778-000 7788-000 130505-000 130505-000 7881-000 7883-000 130505-000 | 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GAS / VAPOR LIGHT LIQUID GAS / VAPOR LIGHT LIQUID | 1/4 SWSD FF DECK E-704B 1/10 SWSD U-250 IN BOUNDARY ON DECK G/9 NWSD L-250 IN BOUNDARY ON DECK G/9 NWSD L-240 PSV-400 G/8 SWSD V V-1 PRV G/6 SSD V ME-103 PRV G/6 SSD V ME-103 PRV 1/9 30FT N E-5 PRV G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-72 G/4 6FT S V V-22 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-76 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT S V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-79 G/4 6FT N V V-29 PRV PSV-77 G/4 6FT N V V-29 PRV PSV-77 G/4 6FT N V V-21 PRV PSV-77 G/4 6FT N V V-21 PRV PSV-71 1/12 8FT N C CM-1110-PSV-100 T/4 3FT S VV-1 PRV G/6 17FT NE V V-12 PRV PSV-11 1/15 CTR VV-8 PRV PSV-72 G/6 17FT NE V V-12 PRV PSV-10-1 T/5 CTR VV-8 PRV PSV-73 G/8 GFT N V V-4 PRV PSV-115 G/2 10FT E SUB STATION 8B PRV PSV-590 G/8 WSD E-420 PSV-400 G/5 12FT SW E E-01A ESD TX T/4 ESD V F-17 PRV PSV-154 G/6 ASD V F-39 PRV PSV-311 PRV 1/4 13FT SW C G-178 PRV PSV-311 PRV | | WEST BULK - #3 STM. POWER PLT. | CVS NO RD | 10109-000 | 0.75 | LIGHT LIQUID | G/2 186FT SW H B-3A PRV PSV-216 | |---|-------------------------|-----------------------|-----------|--|--| | WEST BULK - MARINE TERMINAL | CVS NO RD | 80367-000 | 1.5 | LIGHT LIQUID | 1/4 NSD P G-16 PRV | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 83772-000 | 1 | LIGHT LIQUID | G/6 53FT N CONTROL ROOM 10FT NE P G-15 | | WEST BULK - MARINE TERMINAL | ATOM NO RD | 8503-000 | | GAS / VAPOR | 1/10 SESD V F-1 PRV PSV-750 | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8608-000 | | LIGHT LIQUID | G/4 ESD P G-15 PRV | | WEST BULK - MARINE TERMINAL | ATOM NO RD | 8782-000 | | GAS / VAPOR | 1/4 8FT S V SP-2 PRV PSV-752 | | | | | | | | | WEST BULK - MARINE TERMINAL | ATOM NO RD | 8912-000 | | GAS / VAPOR | 1/5 8FT N V SP-3 PRV PSV-751 | | WEST BULK - MARINE TERMINAL | ATOM NO RD | 2633-000 | | HEAVY LIQUID | G/6 20FT NW PMP G-582 PSV-1378 | | WEST BULK - MARINE TERMINAL | ATOM NO RD | 2669-000 | | HEAVY LIQUID | G/7 NESD PMP G-62A | | WEST BULK - MARINE TERMINAL | ATOM NO RD | 2675-000 | | HEAVY LIQUID | G/3 ESD PMP G-62A PSV-1370A | | WEST BULK - MARINE TERMINAL | ATOM NO RD | 2708-000 | 1 | HEAVY LIQUID | G/4 NWSD PMP G-62B PSV-1370B | | WEST BULK - MARINE TERMINAL | ATOM NO RD | 2714-000 | 2 | HEAVY LIQUID | G/7 SSD PMP G-62B | | WEST BULK - MARINE TERMINAL | CVS NO RD | 34586-000 | 0.75 | LIGHT LIQUID | 1/4 49FT W TCLR 23ME-3 PRV PSV-6 LN BUTANE | | WEST BULK - MARINE TERMINAL | CVS NO RD | 34590-000 | | LIGHT LIQUID | 1/3 49FT W TCLR 23ME-3 PRV PSV-7 | | WEST BULK - MARINE TERMINAL | CVS NO RD | 34832-000 | | LIGHT LIQUID | 1/6 BTM TK F-302 PRV PSV-3 | | WEST BULK - MARINE TERMINAL | CVS NO RD | 50024-000 | | GAS / VAPOR | T/3 SWSD TK TK-302 PRV PSV-1 | | | | | | | | | WEST BULK - MARINE TERMINAL | CVS NO RD | 50025-000 | 1 | | T/3 SWSD TK TK-302 PRV PSV-1A | | WEST BULK - MARINE TERMINAL | CVS NO RD | 50028-000 | 1 | GAS / VAPOR | T/3 SSD TK TK-302 PRV PSV-2A | | WEST BULK - MARINE TERMINAL | CVS NO RD | 50029-000 | 6 | GAS / VAPOR | T/3 SSD TK TK-302 PRV PSV-2 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14457-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/5 5FT S G-144 PSV U-299 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14470-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/4 5FT SE G-144 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14532-000 | 2 | · | G/12 15FT NESD G-71 PSV U-98 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14563-000 | 2 | | G/12 ESD E-308 PSV-364 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14641-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/10 10FT SW G-28 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14650-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/10 101 1 SW 0-20
G/10 15FT SE G-28 PSV-293 | | | | | | - | | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14652-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/10 15FT SE G-28 PSV-241 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14653-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/10 20FT SE G-28 PSV-297 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14655-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/10 20FT SE G-28 PSV-294 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14806-000 | | HEAVY LIQUID NON RODEO RE-NEW | G/3 SESD G-140 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 14829-000 | 1 | HEAVY LIQUID NON RODEO RE-NEW | G/6 30FT W E-308 PSV-U666 | | WEST BULK - MARINE TERMINAL | CVS NO RD | 83304-000 | 1 | LIGHT LIQUID | G/1 14FT S P G-182 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 83305-000 | 1 | LIGHT LIQUID | G/4 29FT SE P G-182 PRV PSV-118 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 9029-000 | 1.5 | LIGHT LIQUID | G/5 NESD P GM-2 PRV PSV-606 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 9101-000 | | | G/5 19FT S P G-870 PRV PSV-96 PRV | | WEST BULK -
MARINE TERMINAL | CVS NO RD | 9117-000 | 0.75 | - | G/5 18FT S P G-870 PRV PSV-99 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 9121-000 | 0.75 | | G/7 22FT S P G-870 PRV PSV-88 PRV | | | | | | | | | WEST BULK - MARINE TERMINAL | CVS NO RD | 9132-000 | | 1 21 | G/4 36FT S P G-181 W PRV PSV-130 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 9182-000 | 0.75 | | G/5 36FT S P G-181 E PRV PSV-128 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 9188-000 | 1 | LIGHT LIQUID | G/2 36FT S P G-181 PRV PSV-102 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 9223-000 | 1 | LIGHT LIQUID | G/3 14FT S P G-182 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8374-000 | 0.75 | LIGHT LIQUID | G/14 10FT SW P G-28 PRV PRV-81 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8376-000 | 1 | LIGHT LIQUID | G/14 15FT SE P G-28 PRV RV-300 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8378-000 | 1 | LIGHT LIQUID | G/14 16FT SE P G-28 PRV RV-307 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8380-000 | 1 | LIGHT LIQUID | G/14 17FT SE P G-28 PRV RV-299 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8382-000 | | LIGHT LIQUID | G/14 18FT SE P G-28 PRV RV-304 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8384-000 | | LIGHT LIQUID | G/14 19FT SE P G-28 PRV RV-303 PRV | | | | | | - | | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8386-000 | | LIGHT LIQUID | G/14 25FT SE P G-28 PRV RV-308 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8388-000 | | LIGHT LIQUID | G/14 26FT SE P G-28 PRV RV-297 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8390-000 | | LIGHT LIQUID | G/14 30FT SE P G-28 PRV RV-694 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8392-000 | 0.75 | LIGHT LIQUID | G/14 35FT SE P G-28 PRV RV-296 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 8394-000 | 0.75 | LIGHT LIQUID | G/14 40FT SE P G-28 PRV RV-695 PRV | | WEST BULK - MARINE TERMINAL | CVS NO RD | 34933-000 | | LIGHT LIQUID | G/3 60FT E TK TK-531 PRV PSV-7-65 | | WEST BULK - MARINE TERMINAL | CVS NO RD | 34937-000 | | LIGHT LIQUID | G/2 40FT E TK TK-531 PRV PSV-226 | | WEST BULK - MARINE TERMINAL | CVS NO RD | 34942-000 | | GAS / VAPOR | G/2 11FT W TK TK-531 PRV PSV-746 | | WEST BULK - MARINE TERMINAL | ATOM NO RD | 0165-000 | | HEAVY LIQUID | G/6 NESD TK-100 PSV-908 | | | | | | | | | WEST BULK - MARINE TERMINAL | CVS NO RD | 13404-000 | | HEAVY LIQUID | G/1 40FT W TK-529 WSD PV-903 PSV-138 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 13435-000 | 1.5 | - | G/3 NESD OF TK 529 (PSV-137) | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 13502-000 | 0.75 | | G/6 NESD OF TK528 PSV-619 | | WEST BULK - MARINE TERMINAL | PRESSURE RELIEF VALVE | 13507-000 | 0.75 | | G/6 NESD OF TK528 PSV-620 | | WEST BUILD MADINE TERMINIAL | PRESSURE RELIEF VALVE | 13510-000 | 0.75 | HEAVY LIQUID | G/6 NESD OF TK528 PSV-618 | | WEST BULK - MARINE TERMINAL | | | 0.75 | | G/5 SWSD TK TK-100 PRV PSV-6 | | WEST BULK - MARINE TERMINAL | CVS NO RD | 16669-000 | 0.75 | LIGHT LIQUID | 10/2 24/2D 1K 1K-100 FRV F2V-0 | | | CVS NO RD
ATOM NO RD | | 0.75 | HEAVY LIQUID | G/7 15FT NE TK-100 PSV-907 | | WEST BULK - MARINE TERMINAL WEST BULK - MARINE TERMINAL | ATOM NO RD | 3333-000 | 1 | HEAVY LIQUID | G/7 15FT NE TK-100 PSV-907 | | WEST BULK - MARINE TERMINAL WEST BULK - MARINE TERMINAL WEST BULK - MARINE TERMINAL | ATOM NO RD
CVS NO RD | 3333-000
34876-000 | 1
0.75 | HEAVY LIQUID
LIGHT LIQUID | G/7 15FT NE TK-100 PSV-907
G/4 SWSD TK TK-100 PRV | | WEST BULK - MARINE TERMINAL WEST BULK - MARINE TERMINAL | ATOM NO RD | 3333-000 | 1 | HEAVY LIQUID
LIGHT LIQUID
LIGHT LIQUID | G/7 15FT NE TK-100 PSV-907 | ## **Attachment J** # **Flare Construction** | Flare | Main Flare | MP30 Flare | |--|--|--| | | (S-296) | (S-398) | | Flare Type | Elevated | Elevated | | Type of Assist System | Steam | Steam | | Emergency or Non-Emergency | Emergency | Emergency | | | (SU/SD, emergency) | (SU/SD, emergency) | | Equipped with Flare Gas Recovery | Yes | Yes | | Flare Height | 250' – See Att. C | 225' – See Att C | | Pipe Diameter | 5' – See Att C | 4' – See Att C | | Tip Diameter, ft | | | | Outside | 5′ | 5.75′ | | Effective | 5′ | 4.13′ | | Number of Pilots | 4 – See Section 2.2.3.1 | 4 – See Section 2.2.3.2 | | Ignition System | Automatic | Automatic | | Number of Steam Injection Nozzles | 2 steam injection headers (2" & 6") and a Callidus BTZ-US upper steam flare tip. | 2 steam injection headers (3" & 6") and a
Callidus BTZ-IS3 multiple internal steam
injection system. | | Capacity ¹ (i.e. Max Vent Gas Flow) | 689 ton/hr | 488 ton/hr | | Smokeless Capacity (15 min avg) | 412,850 lb./hr | 317,000 lb./hr | | Maximum Supplemental Gas Flow | 102 MSCFH | 130 MSCFH | | Minimum Total Steam Rate | 4,000 lb./hr | 2,500 lb./hr | | Maximum Total Steam Rate | 90,000 lb./hr | 80,000 lb./hr | | Date of Construction ³ | 1970 approx. , Tip Replaced 1996 | 2000 | | Location of Purge Gas Insertion | See Attachment B, Section titled "Main Flare
Purge Gas Requirements" for details. See also
Att C for placement on PFD. | See Attachment B, Section titled "MP-30 Flare Operation" for details. See also Att C for placement on PFD. | ¹ Capacity provided is based on expected flow from total power failure. Flare system likely able to handle larger flow. Main design factor for flare tip diameter is gas exit velocity. Generally, flares are sized to permit a velocity of up to 0.5 Mach for short-term, peak, conditions with 0.2 Mach for normal conditions. $^{^{\}rm 2}$ Based on $3^{\rm rd}$ party flare tip vendor analysis. ³ Per email correspondence on October 28, 2015 between an industry representative and the designated NSPS Ja Rule Contact, EPA has indicated that Confidential Business Information should not be included in Flare Management Plans. Consequently, the facility is not submitting the confidential flare tip schematic and P&IDs with this flare management plan. The flare tip schematic and P&IDs are available on site for EPA review. Flare Minimization Plan, BAAD 12-12 Phillips 66, Rodeo Renewable Energy Complex BAAD Plant 16 #### **Attachment M** Cost Effectiveness Calculation Background Material Flare Minimization Plan, BAAD 12-12 Phillips 66, Rodeo Renewable Energy Complex BAAD Plant 16 Cost Curves for Major Equipment Flare Gas Storage Options Flare Gas Compressor System Costs **Fuel Gas Amine Treater Costs** ENSR 2 Technology Park Drive, Westford, Massachusetts, 01886-3140 T 978,589.3000 F 978,589.3100 www.ensr.aecom.com # Telephone Call Summary By: Tom Sudol Date: 5/11/06 Talked with: Ken Petro Project number: 07230-018 From (company): Chicago Bridge & Iron Project name: Flare Minimization Plan Phone number: 302-325-8407 Subject: Spherical Storage Tank Costs Distribution: #### Message Ken Petro called to respond to my budgetary price quote request. A 60-ft diameter sphere operating at 40 psig would cost \$1,550,000. Another \$60,000 can be added for painting, and another \$200,000 can be added for the foundation (foundation was estimated based on the general locations of the refineries, and the earthquake zone that they are located in). This tank would be a Div. I tank. The total installed cost of this tank is \$1,810,000. A 60-ft diameter sphere operating at 120 psig would cost \$2,100,000. The painting and foundation costs would remain the same, bringing the total installed cost of the tank to \$2,360,000. This tank would be a Div. II tank. All prices quoted over the phone are +/- 25%. To stress relieve (heat treat) the spheres, costs would increase as follows: 40 psi sphere, 60 ft diameter \$1,790,000 installed cost (up from \$1,550,000), not including: \$200,000 foundation (unchanged) \$60,000 painting (unchanged) 60 psi sphere, 60 ft diameter \$2,325,000 installed cost (up from \$2,100,000), not including: \$200,000 foundation (unchanged) \$60,000 painting (unchanged) Signature Flare Minimization Plan, BAAD 12-12 Phillips 66, Rodeo Renewable Energy Complex BAAD Plant 16 $\label{lem:cost_cost} \mbox{Cost Effective \& Emission Calculations for} \\ \mbox{Storage, Treatment, and Recovery Cases 1 - 4} \\$ Storage, Treatment, & Recovery Scenario - Emission Reduction & Cost Effective Analysis | | Esti | mated Pote | ential Rédu | ictions (tor | ns/yr) | Cost
Effective
Basis
(tons) | PARKET THE | et of Control
(\$) | of | nualized Cost
Abatement
System (\$) | HISTORY. | Cost
fectiveness
asis (\$/ton) | |------|-------|------------|-------------|--------------|--------|--------------------------------------|------------|-----------------------|----|---|----------|--------------------------------------| | Case | voc | SO2 | Nox | CO | PM | 10.00 | | | | 1 | | | | 1 | -0.15 | -0.62 | -0.02 | -0.19 | 0.00 | -0.98 | \$ | 3,250,000 | \$ | 1,061,000 | \$ | (1,084,092) | | 2 | -1.12 | -4,51 | -0.13 | -1.38 | -0.01 | -7.16 | \$ | 7,500,000 | \$ | 2,508,000 | \$ | (350,420) | | 3 | -1.57 | -6.35 | -0.19 | -1.94 | -0.02 | -10.07 | \$ | 23,400,000 | \$ | 6,195,000 | \$ | (615,476) | | 4 | -2.02 | -8.18 | -0.24 | -2.51 | -0.02 | -12.97 | \$ | 23,400,000 | \$ | 6,195,000 | \$ | (477,509) | Case: Installation of Small Compressor to Capture Brief Peak Loads 1.5 MMSCFD Compressor - Eliminate Brief Peak Loading (100% of 2005) Basis is BAAQMD Guidelines for calculation of cost-effectiveness for BACT using the "levelized cash flow method" Cost Effectiveness = (Annualized Cost of Abatement System (\$/yr)) / (Reduction in Annual Pollutant Emissions (ton/yr)) Reduction in Annual Pollutant Emissions = Baseline Uncontrolled Emissions - Control Option Emissions Reduction in Annual Pollutant Emissions = 1,954 lb/yr emissions of POG, NOx, CO, & SO2 0.98
tons/yr Total Capital Cost \$3,250,000 CRF = Capital Recovery Factor (to annualize capital cost) $CRF = [i(1+i)^n]/[(1+i)^n-1]$ i = interest rate, at 0.06 n = lifetime of abatement system, at 10 yrs CRF = 0.1359 Utilities Power 400 bhp for flare gas compressor 0.85 efficiency at design 351.1 kw 0.10 S/kw 8,760 operating hours per year \$307,528 /yr Annual Costs = Direct Costs + Indirect Costs | Direct Costs | | \$/year | |----------------------|---------------------|---------| | Labor | 2 % of capital cost | 65,000 | | Raw Materials | | 0 | | Replacement Parts at | 2 % of capital cost | 65,000 | | Reprisedition 1 at a | | 307.528 | Utilities (power) Total 307,528 \$437,528 Indirect Costs S/year 52,000 Overhead at 80 % of Labor costs 52,000 Property Tax at 1 % of Total Capital Cost 32,500 Insurance at 1 % of Total Capital Cost 32,500 General and Admin. at 2 % of Total Capital Cost 65,000 Control Property to CPE's Total Capital Cost 441,571 Capital Recovery at CRF x Total Capital Cost Total \$623,571 \$1,061,000 Annualized Cost of Abatement System = Cost Effectiveness = \$1,086,000 per ton | Case No | - al- | English Problem | - ile -mi = i | with the same | - I - I - I - I | | |---|---|-------------------------------|--------------------------|-------------------------------|------------------------------------|------------------------| | Case Tile | Add Small fi.5 h | MMSQF/D Gol | npressor | | Back to the state of the | Charles Service | | Berefits Description | Allamal peak to
Emission basis
will be captured | s 2005 actua | levent. Rat | ier han vent g | reedance) to be
as being rouled | Ho the flare, I | | | (MMSCF(yr) | POC (TPY) | SO2
(TPY) | NoX
(∏PY) | (TPY) | | | Baseline: Total Flow to Flare | 58.46 | 9.59 | 39.75 | 2.19 | 11.90 | 0,32 | | Flow Captured, Rouled to Htr
Remaining Flow to Flare
Total Emissions - Post Control | (0.946)
57.516 | 0.003
<u>9.433</u>
9.44 | 0.026
39.111
39.14 | 0.017
<u>2.151</u>
2.17 | 0.003
11.705
11.71 | 0.004
0.318
0.32 | | Emission Reduction | (0.98) | (0.15) | (0.62) | (0.02) | (0.19) | (0.00) | **Total Pollutants** | | 2005 Baseline Flaring | Proposed
Flow to
Control | E | Emission Eva
Baseline -
Rerouted
Flow | Controlled
at Heater
Emissions | Total
Emissions | Emission
Reduction | |--|--|--------------------------------|---------|--|--------------------------------------|--------------------|-----------------------| | Control Method) | Flare - Actual | | | Flare | Heater | | | | Total Volume to Flare (MMSCF/d) Total Volume to Flare (MMSCF/y) | 0.25
<u>58.462</u> | 0.003
0.946 | 0.074 | 0.158
57.516 | 0.003
0.946 | | | | lb non-methane hydrocarbon (POC) to flare/scf flared gas 1 | 0.0164 | 0.0164 | | 0.0164 | 0.0164 | | | | lb/yr non-methane hydrocarbon (POC) to flare | 958,777 | 15,514 | | 943,262 | 15,514 | | | | Emissions from the Flare | | | | of England and the | de sua e de | NE 194 - 19 - 19 | | | % Destruction of hydrocarbon in flare | 98 | | | 98 | | | | | Ib non-methene hydrocarbon (POC) emitted / scf flare ges
lb sulfur dioxide (SO2) emission / scf flare gas | 0.00033
0.00136 | | | 0.00033
0.00136 | | | | | POC: lb/yr non-methane hydrocarbon emissions from flare POC: ton/yr non-methane hydrocarbon emissions from flare. | 19,176
9.59 | | | 18,865
9.43 | | | | | SO2: lb/yr sulfur dioxide hydrocarbon emissions from flare SO2: ton/yr sulfur dioxide hydrocarbon emissions from flare | 79,508
39.75 | | | 78,222
39.11 | | | | | NOX: Nox Emission Factor
Flare Gase Heating Value
Ib/yr Nox Emissions from Flare
tons/yr Nox from Flare | 0.068 lb/MMBtu
1,100 Btu/scf
4,373
2,19 | | | 4,302
2.15 | | | | | CO Emission Factor
Flare Gase Heating Value
Ib/yr CO Emissions from Flare
tons/yr CO from Flare | 0,370 lb/MMBlu
1,100 Btu/scf
23,794
11,90 | | | 23,409
11.70 | | | | | PM Emission Factor
Ib/yr PM Emissions from Flare
tons/yr PM from Flare | 0.01 lb/MMBtu p
643
0.32 | er BAAQMD emai | 2/27/07 | 63
0,3 | | | | | Emissions/from/Healer. | | | WARDED STATE | | SCHOOL COME ON | | |--|-----------------|------------------|-----------------|------------------|----------------|------------------------| | % Destruction of hydrocarbon in heater | n/a | 99.50% | п/а | 99.50% | | | | non-methane hydrocarbon (POC) emitted heater / scf flare gas | n/a | 0.0000055 | n/a | 0.0000055 | | | | Total sulfur (TS) (ppmv) content of scrubbed fuel gas | | 325 | | 325 | | | | POC: lb/yr non-methane hydrocarbon emissions from heater | n/a | 5 | n/a | 5 | | | | POC: ton/yr non-methane hydrocarbon emissions from heater | n/a | 0.00 | n/a | 0.00 | | | | SO2: lb/yr sulfur dioxide emissions from heater | | 51.92 | | 51.92 | | | | SO2: ton/yr sulfur dioxide emissions from heater | | 0.03 | | 0.03 | | | | NOX: Nox Emission Factor | | | | 0.033 lb/ | | | | Flare Gase Heating Value | | | | 1,100 Bt | | | | lb/yr Nox Emissions from Flare
tons/yr Nox from Flare | | | | 0.02 tp | | | | | | | | 100 pp | APPEND OF | | | CO Emission Factor | | | | 6,99 lb/ | | | | lb/yr CO Emissions from Flare
tons/yr CO from Flare | | | | 0.0035 tp | | | | PM Emission Factor | | | | 7.60 lb | MMScf, AP-42 | | | 1b/yr PM Emissions from Flare | | | | 7,19 lb | | | | tons/yr PM from Flare | | | | | | | | Emissions to the Almosphere | | 三个三人员工,但是 | | THE THE PARTY OF | Total | | | POC; lb/yr | 19,176 | | 18,865 | 5 | 18,870 | -305.08 | | POC: lpy | 9.59 | | 9.43 | 0 | 9.4 | -0,15 | | SO2: lb/yr | 79,506 | | 78,222 | 52 | 78,274 | -1,234.64 | | SO2: tpy | 39.75 | | 39.11 | 0 | 39,1 | -0.62 | | NOX: lb/yr | 4,373 | | 4,302 | 34 | 4,337 | -36.42 | | NOX: tpy | 2.19 | | 2.15 | 0.02 | 2.17 | -0.02 | | MOX (P) | | | 23,409 | 7 | 23,416 | -378.03 | | | 23 794 | | | | | | | CO: Iblyr
CO: tpy | 23,794
11.90 | | 11.70 | 0.003 | 11.71 | -0.19 | | CO: lb/yr | | | 11.70
632.68 | 0.003
7.19 | 640
0.320 | -0.19
-3.22
0.00 | POC & SO2 levels based on historical sampling data. Case: Installation of Larger Compressor to Capture Brief Peak Loads & G-503 Maintenance 6.0 MMSCFD Compressor - Eliminate Brief Peak Loading & G-503 PM (100% of 2005) Basis is BAAQMD Guidelines for calculation of cost-effectiveness for BACT using the "levelized cash flow method" Reduction in Annual Pollutant Emissions = -11,475 lb/yr emissions of POG, NOx, CO, & SO2 -5.74 tons/yr Total Capital Cost CRF = Capital Recovery Factor (to annualize capital cost) CRF = [i (1+i)^n]/[(1+i)^n-1] i = interest rate, at 0.06 n = lifetime of abatement system, at 10 yrs CRF = 0.1359 Utilities Power 1,000 bhp for flare gas compressor 30.200 0.85 efficiency at design 877.6 kw 0.10 \$/kw 8,760 operating hours per year \$768,819 /yr Annual Costs = Direct Costs + Indirect Costs | Direct Costs | | \$/year | |----------------------|---------------------|-------------| | Labor | 2 % of capital cost | 150,000 | | Raw Materials | | 0 | | Replacement Parts at | 2 % of capital cost | 150,000 | | Utilities (power) | | 768,819 | | Total | | \$1,068,819 | | Indirect Costs | | \$/year | |-------------------------------|---------------------------|-------------| | Overhead at | 80 % of Labor costs | 120,000 | | Property Tax at | 1 % of Total Capital Cost | 75,000 | | Insurance at | 1 % of Total Capital Cost | 75,000 | | General and Admin. at | 2 % of Total Capital Cost | 150,000 | | Capital Recovery at CRF x To | | 1,019,010 | | Capital Receivery at Clark 10 | and Outplant of the | \$1,439,010 | Total Annualized Cost of Abatement System = Cost Effectiveness = -\$437,000 per ton \$2,508,000 | Case No. | 2 | | 1 | | | | | | | | |---|--|------------------------|--------------------------|------------------------|--------------------------|-------------------------------|--|--|--|--| | Case Tile | Adullamer 6 MMSCFID compressor. | | | | | | | | | | | .01 | Eliminate Brief Peak Loading (C 503 Capach), Exceedance) 3: G:503 PM (100% of 2005) Emission basis is 2005 actual event. Rather than yent gas being muted to the fare, it will be captured and utilized as fire. | | | | | | | | | | | | Flow
(MMSOF/vr) | POC
(TPY) | SO2
(TPY) | Nox
(TPY) | CO
(TPY) | PM
(TIPY) | | | | | | Baseline: Total Flow to Flare | 58.46 | 9.59 | 39.75 | 2.19 | 11,90 | 0.32 | | | | | | Flow Captured, Routed to Htr
Remaining Flow to Flare
Total Emissions - Post Control | (6,918)
51,544 | 0.019
8.453
8,47 | 0.190
35.050
35.24 | 0,126
1,928
2,05 | 0.026
10.489
10.51 | 0,026
<u>0.283</u>
0,31 | | | | | | Emission Reduction | (7.15) | (1.12) | (4.51) | (0.13) | (1.38) | (0.01) | | | | | Total Pollutants | | 2005 Baseline Flaring | Proposed
Flow to
Control | Emission Eva
Baseline -
Rerouted
Flow | Controlled
at Heater
Emissions | Total
Emissions | Emission
Reduction | |---
--|--------------------------------|--|--------------------------------------|--------------------|-----------------------| | ControllWethod | Flare -Actual | | Flare | Heater | 700、世里 | | | Total Volume to Flare (MMSCF/d) Total Volume to Flare (MMSCF/y) | 0.25
58.462 | 0.019
6.918 | 0.141
51.544 | 0.019
6.918 | | | | lo non-methane hydrocarbon (POC) to flare/scf flared gas 1 | 0.0164 | 0,0164 | 0.0164 | 0.0164 | | | | (b/yr non-methane hydrocarbon (POC) to flare | 958,777 | 113,455 | 845,322 | 113,455 | | | | Emissions from the Flare | the second secon | | | و تسریل است | | | | % Destruction of hydrocarbon in flare | 98 | | 98 | | | | | lb non-methane hydrocarbon (POC) emitted / scf flare gas
lb sulfur dioxide (SO2) emission / scf flare gas | 0.00033
0.00136 | | 0.00033
0.00136 | | | | | POC: lb/yr non-methane hydrocarbon emissions from flare POC: lon/yr non-methane hydrocarbon emissions from flare | 19,176
9,59 | | 16,906
8.45 | | | | | SO2: lb/yr sulfur dioxide hydrocarbon emissions from flare
SO2: ton/yr sulfur dioxide hydrocarbon emissions from flare | 79,508
39.75 | | 70,100
35.05 | | | | | NOX: Nox Emission Factor
Flare Gase Heating Value
lb/yr Nox Emissions from Flare
tons/yr Nox from Flare | 0.068 lb/MMBtu
1,100 Btu/scf
4,373
2.19 | | 3,856
1.93 | | | | | CO Emission Factor
Flare Gase Heating Value
lb/yr CO Emissions from Flare
tons/yr CO from Flare | 0.370 lb/MMBtu
1,100 Btu/scf
23,794
11.90 | | 20,976
10.49 | | | | | PM Emission Factor
Ib/yr PM Emissions from Flare
tons/yr PM from Flare | 0.01 lb/MMBlu p
643
0.32 | er BAAQMD email 2/2 | 27/07
56
0.20 | | | | | Emissions from Heater | Experience to the control of | | NOTE OF STREET | Section 1 | The second second |) (pre- | |--|------------------------------|-------------------------------|----------------|-----------------------|-------------------|--------------------| | % Destruction of hydrocarbon in heater | n/a | 99,50% | n/a | 99,50% | | | | o non-methane hydrocarbon (POC) emitted heater / scf flare gas | n/a | 0,0000055 | n/a | 0.0000055 | | | | Total sulfur (TS) (ppmv) content of scrubbed fuel gas | | 325 | | 325 | | | | POC: lb/yr non-methane hydrocarbon emissions from heater | n/a | 38 | n/a | 38 | | | | POC; ton/yr non-methane hydrocarbon emissions from heater | n/a | 0.02 | n/a | 0.02 | | | | SO2: lb/yr sulfur dioxide emissions from heater | | 379.67 | | 379.67 | | | | SO2: ton/yr sulfur dioxide emissions from heater | | 0.19 | | 0.19 | | | | NOX: Nox Emission Factor | | | | 0,033 lb | | | | Flare Gase Heating Value | | | | 1,100 Bt | | | | ib/yr Nox Emissions from Flare
tons/yr Nox from Flare | | | | 0.13 tp | | | | | | | | 100 pt | nmv | | | CO Emission Factor
lb/yr CO Emissions from Flare | | | | 51.11 lb | | | | tons/yr CO from Flare | | | | 0.0256 tp | | | | PM Emission Factor | | | | 7.60 lb | /MMScf, AP-42 | | | lb/yr PM Emissions from Flare
tons/yr PM from Flare | | | | 52.58 lb
0.0263 lp | | | | | | | | | Total | | | Emissions to the Atmosphere | Ave and a second | The same of the same state of | | | | | | POC: lb/yr | 19,1 | | 16,906 | 38 | 16,944 | -2,231.06
-1.12 | | POC: tpy | .9 | 59 | 8.45 | 0 | 8.5 | -1.12 | | SO2: lb/yr | 79,5 | 08 | 70,100 | 380 | 70,480 | -9,028.81 | | SO2: tpy | 39 | | 35.05 | 0 | 35.2 | -4.51 | | NOX: lb/yr | 4,3 | 73 | 3,855 | 251 | 4,107 | -266.34 | | NOX: tpy | 2 | 19. | 1.93 | 0.13 | 2.05 | -0.13 | | CO: lb/yr | 23,7 | 94 | 20,978 | 51 | 21,030 | -2,764.52 | | CO: tpy | 11 | 90 | 10.49 | 0.026 | 10.51 | -1.38 | | PM: lb/yr | 643 | | 566.98 | 52.58 | 620 | -23.52 | | PM: tpy | 0 | .32 | 0.28 | 0.0263 | 0.310 | -0.01 | | | | | | | | | Case: Installation of Larger Compressor to Capture Brief Peak Loads & G-503 Maintenance Range 1 - Conservative Estimate of Gasses to be Recovered Basis is BAAQMD Guidelines for calculation of cost-effectiveness for BACT using the "levelized cash flow method" Cost Effectiveness = (Annualized Cost of Abatement System (\$/yr)) / (Reduction in Annual Pollutant Emissions (ton/yr)) Reduction in Annual Pollutant Emissions = -20,098 lb/yr non-methane hydrocarbon emissions (POC) & SO2 -10.05 tons/yr Total Capital Cost CRF = Capital Recovery Factor (to annualize capital cost) $CRF = [i (1 + i)^n]/[(1 + i)^n - 1]$ i = interest rate, at n = lifetime of abatement system, at 10 yrs CRF = 0.1359 Utilities Power 1,000 bhp for flare gas compressor 0.85 efficiency at design 877.6 kw 0.10 \$/kw 8,760 operating hours per year \$768,819 /yr Annual Costs = Direct Costs + Indirect Costs | Direct Costs | | \$/year | |----------------------|---------------------|-------------| | Labor | 2 % of capital cost | 468,000 | | Raw Materials | | 0 | | Replacement Parts at | 2 % of capital cost | 468,000 | | Utilities (power) | | 768,819 | | Total | | \$1,704,819 | | Indirect Costs | | 5/year | |------------------------------|---------------------------|-------------| | Overhead at | 80 % of Labor costs | 374,400 | | Property Tax at | 1 % of Total Capital Cost | 234,000 | | Insurance at | 1 % of Total Capital Cost | 234,000 | | General and Admin. at | 2 % of Total Capital Cost | 468,000 | | Capital Recovery at CRF x To | | 3,179,310 | | Total | | \$4,489,710 | Annualized Cost of Abatement System = \$6,195,000 \$23,400,000 Cost Effectiveness = -\$616,000 per ton | Case No. | 3 | in the same of the | | The state of | e = 1 | 33-25-1-2 | |---|--|--------------------------------|--------------------------|------------------------|------------------------|-------------------------------| | Case Tills | Addicompresso | and storage | vessel | | | | | Benefits Description | E. minate Brief I
2005) portion o
Emission basis
Will be captured | umaintenance
is 2005 actual | & some em
event: Rath | ergencylevents | to be e im pate | d (5 = 10%) | | | Flaw
(MMSGF/yr) | POC. | SOZ
(TPY) | Nex
(TPVI) | ĈO
(TPY) | PM
(TPY) | | Baseline: Total Flow to Flare | 58.46 | 9,59 | 39,75 | 2.19 | 11.90 | 0.32 | | Flow Captured, Routed to Htr
Remaining Flow to Flare
Total Emissions - Post Control | (9.729)
48.733 | 0.027
7.992
8.02 | 0.267
33.138
33.41 | 0.177
1.823
2.00 | 0,036
9,917
9,95 | 0,037
<u>0.268</u>
0.31 | | Emission Reduction | (10.05) | (1.57) | (6.35) | (0.19) | (1.94) | (0.02) | Total Pollutants | | 2005 Baseline Flaring | Proposed
Flow to
Control | I | Emission Eva
Baseline -
Rerouted
Flow | luation
Controlled
at Heater
Emissions | Total
Emissions | Emission
Reduction | |--|--|--------------------------------|-----------|--|---|--------------------|-----------------------| | (Centrel/Melhoo | Flare Actual | | Section 1 | Flare | Heater | | Sugar Time | | Total Volume to Flare (MMSCF/d) Total Volume to Flare (MMSCF/y) | 0.25
58.462 | 0.027
9.73 | 0.074 | 0.134
48.733 | 0.027
9.729 | | | | lb non-methane hydrocarbon (POC) to flare/scf flared gas.1 | 0.0164 | 0.0164 | | 0.0164 | 0.0164 | | | | lb/yr non-methane hydrocarbon (POC) to flare | 956,777 | 159,557 | | 799,220 | 159,557 | | | | Emissions from the Flare | | 3-3-194 | | - 1 de | | the said | | | % Destruction of hydrocarbon in flare | 98 | | | .98 | | | | | Ib non-methane hydrocarbon (POC) emitted / scf flare gas Ib sulfur dioxide (SO2) emission / scf flare gas | 0,00033
0.00136 | | | 0.00033
0.00136 | | |
| | POC: lb/yr non-methane hydrocarbon emissions from flare POC: ton/yr non-methane hydrocarbon emissions from flare | 19,176
9.59 | | | 15,984
7.99 | | | | | SO2: lb/yr sulfur dioxide hydrocarbon emissions from flare SO2: ton/yr sulfur dioxide hydrocarbon emissions from flare | 79,508
39.75 | | | 66,277
33.14 | | | | | NOX: Nox Emission Factor
Flare Gase Heating Value
Ib/yr Nox Emissions from Flare
tons/yr Nox from Flare | 0.068 lb/MMBtu
1,100 Btu/scf
4,373
2,19 | | | 3,645
1.82 | | | | | CO Emission Factor
Flare Gase Healing Value
Ib/yr CO Emissions from Flare
tons/yr CO from Flare | 0.370 lb/MMBlu
1,100 Btu/scf
23,794
11.90 | | | 19,834
9.92 | | | | | PM Emission Factor
lb/yr PM Emissions from Flare
tons/yr PM from Flare | 0.01 lb/MMBlu pt
643
0,32 | er BAAQMD email | 2/27/07 | 536
0.27 | | | | | | · · · · · · · · · · · · · · · · · · · | 100 mm 161 181 161 161 161 161 161 161 161 161 | 1 11 1 | | | | |--|---------------------------------------|--|--------|-----------------------|---------------|---| | % Destruction of hydrocarbon in heater | n/a | 99.50% | n/a | 99,50% | | | | non-methane hydrocarbon (POC) emitted heater / scf flare gas | n/a | 0.0000055 | n/a | 0.0000055 | | | | Total sulfur (TS) (ppmv) content of scrubbed fuel gas | 7.0 | 325 | | 325 | | | | POC: lb/yr non-methane hydrocarbon emissions from heater | n/a | 54 | n/a | 54
0.03 | | | | POC: lon/yr non-methana hydrocarbon emissions from healer | n/a | 0.03 | n/a | 0.03 | | | | SO2: 1b/yr sulfur dloxide emissions from heater | | 533.94 | | 533.94 | | | | SO2; ton/yr sulfur dloxide emissions from heater | | 0,27 | | 0.27 | | | | NOX: Nox Emission Factor | | | | 0.033 lb | | | | Flare Gase Heating Value | | | | 1,100 BI | | | | lb/yr Nox Emissions from Flare
lons/yr Nox from Flare | | | | 353 lb
0.18 tp | | | | CO Emission Factor | | | | 100 pp | omv | | | ib/yr CO Emissions from Flare | | | | 71.88 lb | | | | tons/yr CO from Flare | | | | 0.0359 tp | У | | | PM Emission Factor | | | | | /MMScf, AP-42 | | | fb/yr PM Emissions from Flare
tons/yr PM from Flare | | | | 73.94 lb
0.0370 lp | | | | | | | | 0,0010 1 | | CONTRACTOR | | Emissions to the Almosphere | 建国的现在分词形式的基础 | | | 会是是 | Total | 以上, | | POC: lb/yr | 19,176 | | 15,984 | 54 | 16,038 | -3,137.63 | | POC: tpy | 9.59 | | 7.99 | 0 | 8.0 | -1.57 | | SO2: Ib/vr | 79,508 | | 66,277 | 534 | 66,811 | -12,697.82 | | SO2: Ipy | 39.75 | | 33.14 | 0 | 33.4 | -6.35 | | NOX: lb/yr | 4,373 | | 3,645 | 353 | 3,998 | -374.57 | | NOX: tpy | 2.19 | | 1.82 | 0.18 | 2.00 | -0.15 | | CO: lb/yr | 23,794 | | 19,834 | 72 | 19,906 | -3,887,86 | | CO: tpy | 11.90 | | 9,92 | 0.036 | 9,95 | -1.94 | | PM: lb/yr | 643,08 | | 536.06 | 73.94 | 610 | -33,0 | | PM: tpy | 0,32 | | 0.27 | 0,0370 | 0,305 | -0,02 | | | | | | | | | Case: Installation of High Pressure Spheres, Compressor, & Amine Treatment Range 2 - More Aggressive Estimate of Gasses to be Recovered Basis is BAAQMD Guidelines for calculation of cost-effectiveness for BACT using the "levelized cash flow method" Cost Effectiveness = (Annualized Cost of Abatement System (\$/yr)) / (Reduction in Annual Pollutant Emissions (ton/yr)) Reduction in Annual Pollutant Emissions = Baseline Uncontrolled Emissions - Control Option Emissions Reduction in Annual Pollutant Emissions = -25,905 lb/yr non-methane hydrocarbon emissions (POC) & SO2 -12.95 tons/yr Total Capital Cost \$23,400,000 CRF = Capital Recovery Factor (to annualize capital cost) $CRF = [i (1+i)^n]/[(1+i)^n-1]$ i = interest rate, at 0.06 n = lifetime of abatement system, at 10 yrs CRF = 0.1359 Utilities Power 1,000 bhp for flare gas compressor 0.85 efficiency at design 877.6 kw 0.10 \$/kw 8,760 operating hours per year \$768,819 /yr Annual Costs = Direct Costs + Indirect Costs Direct Costs 5/year Labor 2 % of capital cost 468,000 Raw Materials 0 Replacement Parts at Utilities (power) 2 % of capital cost 468,000 Total \$1,704,819 \$/year Indirect Costs 80 % of Labor costs 374,400 Overhead at 1 % of Total Capital Cost 234,000 Property Tax at 1 % of Total Capital Cost 234,000 Insurance at 2 % of Total Capital Cost 468,000 General and Admin. at 3,179,310 Capital Recovery at CRF x Total Capital Cost \$4,489,710 Total Annualized Cost of Abatement System = \$6,195,000 Cost Effectiveness = -\$478,000 per ton | Case/No. | 4 | | | | te
La servicio | | |--------------------------------|---|--------------|--------------|-------------------|-------------------|-----------------| | Case Title | Add dampresso | rand storage | vessel | * 10 5 + 11 VIEWS | TO THE PARTY OF | | | Benefils Description | Elimir ete Brief i
2005), podlon o
Emies on basis | f maintenanc | e & some en | nergency even | is to be elmina | ited (10 - 30%) | | | (MMSGF\right) | POC. | S02
(TPY) | (TIPY) | GO | (TPY) | | Baseline: Total Flow to Flare | 58.46 | 9,59 | 39.75 | 2,19 | 11.90 | 0.32 | | Flow Captured, Routed to Htr | (12.540) | 0.034 | 0.344 | 0.228 | 0.046 | 0.048 | | Remaining Flow to Flare | 45.922 | 7.531 | 31.227 | 1.717 | 9.345 | 0.253 | | Total Emissions - Post Control | 1 | 7.57 | 31.57 | 1.95 | 9.39 | 0.30 | | Emission Reduction | (12.95) | (2.02) | (8.18) | (0.24) | (2.51) | (0.02) | Total Pollutants | | 2005 Baseline Flaring | Proposed
Flow to
Control | | Emission Eva
Baseline -
Rerouted
Flow | duation
Controlled
at Heater
Emissions
Heater | Total
Emissions | Emission
Reduction | |---|-----------------------|--------------------------------|---------|--|---|--|-----------------------| | Gontroll Method | Hiare Actual | | 1.00 | riare | neater | The Bridge of the | N. J. Pag | | Total Volume to Flare (MMSCF/d) Total Volume to Flare (MMSCF/y) | 0.25
58.452 | 0.034
12.54 | 0,074 | 0.126
45.922 | | | | | lb non-methane hydrocarbon (POC) to flare/scf flared gas 1 | 0.0164 | 0.0164 | | 0.0154 | 0.0164 | | | | lb/yr non-methane hydrocarbon (POC) to flare | 958,777 | 205,658 | | 753,119 | 205,658 | | | | Emissions from the Flare | | the first of supple | | o - 1, a e minerale
o - 1 e fosto - 1 | | CORNEL CONTRACTOR DE LA C
CONTRACTOR DE LA CONTRACTOR DE LA CONTRACT | to the second of | | % Destruction of hydrocerbon in flare | 98 | | | 98 | | | | | Ib non-methane hydrocarbon (POC) emitted / scf flare gas | 0.00033 | | | 0.00033 | | | | | ib sulfur dioxide (SOZ) emission / scf flare gas | 0.00136 | | | 0.00136 | | | | | POC: lb/yr non-methane hydrocarbon emissions from flare | 19,176 | | | 15,062 | | | | | POC: lon/yr non-methane hydrocarbon emissions from flare | 9.59 | | | 7.53 | | | | | SO2: lb/yr sulfur dioxide hydrocarbon emissions from flare | 79,508 | | | 62,454 | | | | | SO2: ton/yr sulfur dioxide hydrocarbon emissions from flare | 39,75 | | | 31.23 | | | | | NOX: Nox Emission Factor | 0.068 lb/MMBtu | | 4 | | | | | | Flare Gase Heating Value | 1,100 Btu/scf | | | | | | | | lb/yr Nox Emissions from Flare | 4,373 | | | 3,435 | | | | | tons/yr Nox from Flare | 2,19 | | | 1.72 | | | | | CO Emission Factor | 0.370 lb/MMBtu | | | | | | | | Flare Gase Heating Value | 1,100 Btu/scf | | | | | | | | lb/yr CO Emissions from Flare | 23,794 | | | 18,690 | | | | | tons/yr CO from Flare | 11.90 | | | 9.35 | | | | | PM Emission Factor | 0.01 lb/MMBtu pa | er BAAQMD email | 2/27/07 | | | | | | lb/yr PM Emissions from Flare | 643 | | | 508 | | | |
| tons/yr PM from Flare | 0.32 | | | 0.25 | 1 | | | | Emissions from Heater | | The property of the second | | | | and the contract of the contract of | |---|-----------------|--|-----------------|--|----------------|-------------------------------------| | % Destruction of hydrocarbon in heater | n/a | 99.50% | n/a | 99.50% | | | | non-methane hydrocarbon (POC) emitted heater / sof flare gas
Total sulfur (TS) (ppmv) content of scrubbed fuel gas | n/a | 0.0000055
325 | n/a | 0.0000055
325 | | | | POC: lb/yr non-methane hydrocarbon emissions from heater
POC: ton/yr non-methane hydrocarbon emissions from heater | n/a
n/a | 69
0.03 | n/a
n/a | 69
0.03 | | | | SO2: lb/yr sulfur dloxide emissions from heater
SO2: ton/yr sulfur dloxide emissions from heater | | 688.22
0.34 | | 688.22
0.34 | | | | NOX: Nox Emission Factor
Flare Gase Heating Value
Ib/yr Nox Emissions from Flare
tons/yr Nox from Flare | | | | 0.033 lb
1,100 B
455 lb
0.23 tp | tu/scf
/yr | | | CO Emission Factor
lb/yr CO Emissions from Flare
tons/yr CO from Flare | | | | 92,64 lb
0.0463 tp | lyr | | | PM Emission Factor
lb/yr PM Emissions from Flare
tons/yr PM from Flare | | | | 7,60 lb
95,30 lb
0,0477 tp | | | | Emissions to the Almosphere | | and the state of t | | | Total | San Established | | POC: lb/yr
POC: tpy | 19,176
9.59 | | 15,062
7,53 | 69
0 | 15,131
7.6 | -4,044.19
-2.03 | | SO2: lb/yr
SO2: tpy | 79,508
39.75 | | 62,454
31.23 | 688
0 | 63,142
31.6 | -16,366.3
-8.1 | | NOX: lb/yr
NOX: tpy | 4,373
2.19 | | 3,435
1.72 | 455
0.23 | 3,890
1.95 | -482.79
-0.24 | | CO: lb/yr
CO: tpy | 23,794
11.90 | | 18,690
9.35 | 93
0.046 | 18,783
9,39 | -5,011.19
-2.5 | | PM: lo/yr
PM: tpy | 643.08
0.32 | | 505.14
0.25 | 95.30
0.0477 | 600
0.300 | -42.6
-0.0 | | | | | | | | | # **Attachment N** #### **Executive Summary Graph** # **Attachment O** ## **Document Revision Log** | Revision
No. | Revision
Date | Revision Author
(Name, Company) | Reason for Revision | Requires Re-
Submission to
USEPA?
(Re:Section 1.5) | |-----------------|--------------------------|---------------------------------------|---|---| | 0 | | J. Ahlskog | Initial FMP per BAAQMD 12-12 (ESDR-319-06) | n/a | | 0-3 | Various Years (Annually) | Various Authors See past submittals | Annual FMP updates to BAAQMD | n/a | | 4 | 7/16/18 | J. Ahlskog | Annual FMP update and installation of new Liquid Ring Flare Gas Recovery Compressor (ESDR-313-08) | n/a | | 5-16 | Various Years (Annually) | Various Authors (See past submittals) | Annual FMP updates to BAAQMD | n/a | | 16 | 10/1/18 | J. Ahlskog | Annual FMP update to BAAQMD (ESDR-273-18) | n/a | | 17 | 1/29/19 | J. Ahlskog | Incorporation of EPA RSR requirements and corresponding compliance items across various sections of the FMP for all applicable flares. (ESDR-40-19) | Yes | | 18 | 10/1/19 | J. Ahlskog | Annual FMP update to BAAQMD | n/a | | 19 | 10/1/20 | J. Ahlskog | Annual FMP update to BAAQMD | n/a | | 20 | 10/1/2021 | A.Fabio | Annual FMP update to BAAQMD | n/a | | 21 | 10/1/2022 | B. Ghosh | Annual FMP update to BAAQMD | n/a | | 22 | 10/1/2023 | M. Zellers | Annual FMP Update to BAAQMD | n/a | | 23 | 10/1/2024 | M. Zellers | Annual FMP Update to BAAQMD | n/a | | 24 | 10/1/2025 | M. Zellers
N. Thomas | Annual FMP Update to BAAD | n/a |