Attachment I

Causal Analysis Report

Chevron Richmond Refinery
Reportable Flaring Events

February 25, 2022
Flaring Due to Safety System Activation
Refinery Flare Event – Cause Investigation Report

1. Date on which the report was drafted: April 11, 2022

2. The refinery name and site number:
 Refinery: Chevron Richmond Refinery
 Refinery Site Number: A0010

3. The assigned refinery contact name and phone number:
 Contact Name: Brandon Sutter
 Contact Phone Number: (510) 242-5212

Is this a rescission/modification of a previous report: No

Date of initial report: Not Applicable

Reason for rescission/modification: Not Applicable

4. Identification of flare(s) at which the reportable event occurred by reviewing water seal monitoring data to determine which seals were breached during the event

<table>
<thead>
<tr>
<th>Flare</th>
<th>Reportable Event (SO2 or Vent Gas Volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NISO (S-6013)</td>
<td>Vent Gas Volume and SO2</td>
</tr>
</tbody>
</table>

5. The flaring event duration for each affected flare

Flare (Source Number): NISO (S-6013)
 The Date(s) of the event: February 25, 2022
 The start time of the event: 2/25/2022 3:51 AM
 The end time of the event: 2/25/2022 7:42 AM

6. A brief description of the flaring event –

On February 25, 2022, refinery safety systems activated at a process unit in the Hydroprocessing Area Business Unit. This safety activation relieved pressure to the Flare Gas Recovery (FGR) System. Flows to the FGR System exceeded FGR capacity, and visible flaring occurred. Operations investigated and discovered a faulty relief valve in the process unit. In response, valves were closed upstream of the faulty relief valve. This step stopped the flow to the relief valve and ended the flaring event.

7. A process flow diagram showing the equipment and process units that were the primary cause of the event.

See Attachment Ia.

8. The total volume of vent gas flared (MMSCF) throughout the event
9. The emissions associated with the flaring event per calendar day

<table>
<thead>
<tr>
<th>Flare</th>
<th>Calendar Day</th>
<th>CH4 (lbs.)</th>
<th>NMHC (lbs.)</th>
<th>SO2 (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NISO</td>
<td>February 25, 2022</td>
<td>219.5</td>
<td>331.2</td>
<td>9,551.7</td>
</tr>
</tbody>
</table>

Assumptions used to calculate emissions – consistent with the reporting under Reg. 12-11.

10. A statement as to whether or not the gas was scrubbed to eliminate or reduce any entrained compounds and a list of the compounds for which the scrubbing was performed.

The vent gas was not scrubbed to eliminate or reduce any entrained compounds.

11. The primary cause of the flaring event including a detailed description of the cause and all contributing factors. Also identify the upstream process units that contributed vent gas flow to the flare header and provide other flow instrumentation data where available.

Primary causal factor: Valve manufacturer fabricated a defective stem nut.

A hydrocracker in the Hydroprocessing Area Business Unit contributed to vent gas flow.

12. Describe all immediate corrective actions to stabilize the flaring event, and to reduce or eliminate emissions (flare gas recovered or stored to minimize flaring during the event). If a decision was made not to store or recover flare gas, explain why.

Operations investigated and discovered a faulty relief valve in the process unit. In response, valves were closed upstream of the faulty relief valve. This step stopped the flow to the relief valve and ended the flaring event.

13. Was the flaring the result of an emergency? If so, was the flaring necessary to prevent an accident, hazard or release to the atmosphere?

Flaring was not due to an Emergency (defined in Regulation 12-12-201) as interpreted by the BAAQMD.

14. If not the result of an emergency and necessary to prevent an accident, hazard or release to the atmosphere, was the flaring consistent with an approved FMP? If yes, provide a citation to the facility’s FMP and any explanation necessary to understand the basis for this determination.

The flaring was consistent with Chevron’s FMP Section 5.4 Figure 5-1. This event was unplanned. Causes for the flaring were investigated and the corrective actions have already been or will be implemented to reduce the likelihood of a recurrence of flaring resulting from the same causes.

15. If the flaring was due to a regulatory mandate to vent to flare, why couldn’t the gas be recovered, treated, and used as fuel gas?

N/A. Flaring was not due to regulatory mandate.

16. Identify and describe in detail each prevention measure (PM) considered to minimize flaring from the type of reportable flaring event that occurred.
 a) State whether the PM is feasible (and will be implemented), or not feasible
 b) Explain why the PM is not feasible, if applicable

Prevention measures have been considered and have or will be implemented.
1. Work with valve manufacturer and Chevron Corporate Engineering to identify potential fabrication improvements, including quality assurance and/or control actions.
Flaring Due to Safety System Activation

1) Faulty relief valve discovered
2) Upstream valves closed to prevent flow to flare

NISO Flare

Relief flows

Hydrocracker