

TV Tracking #1038 (Semi-Annual)

1. D RECEIVED IN ENFORCEMENT: 12/30/2024

Altamont Landfill & Resource Recovery Facility

10840 Altamont Pass Road Livermore, CA 94551

December 17, 2024

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Title V Reports

Compliance@baaqmd.gov

Director of the Air Division USEPA, Region IX 75 Hawthorne Street

San Francisco, CA 94105-3901 Attn: Air & Tri-Sec ENF-2-1

r9.aeo@epa.gov

SUBJECT: Combined Title V Semi-Annual Partial 8-34 Annual Report 40 CFR 63

Subpart AAAA Semi-Annual Report

Altamont Landfill and Resource Recovery Facility 10840 Altamont Pass Road, Livermore, CA 94551

Plant Number A2066

Dear Sir or Madam:

The Altamont Landfill and Resource Recovery Facility (ALRRF) is pleased to submit the attached Combined Title V Semi-Annual and Partial 8-34 Annual Report for the period of June 1, 2024, through November 30, 2024, to the Bay Area Air Quality Management District (BAAQMD) and the United States Environmental Protection Agency (USEPA), Region IX. As required by 40 Code of Federal Regulations (CFR) Part 63 Subpart AAAA, the Semi-Annual Startup, Shutdown and Malfunction (SSM) Report is also enclosed. The Combined Title V Semi-Annual and Partial 8-34 Annual Report satisfies the requirements of the Title V Permit listed in Condition Number 19235, Part 23 and Standard Condition I.F.

Based on information and belief formed after reasonable inquiry, I certify under penalty of law that the statements included in this report are true, accurate, and complete.

Sincerely,

Blaine Harrison

Blains F Harrison

District Manager

Attachments:

Combined Title V Semi-Annual and Partial 8-34 Annual Report

Combined Title V Semi-Annual and Partial 8-34 Annual Report

For the

Altamont Landfill & Resource Recovery Facility Livermore, California

June 1, 2024, through November 30, 2024

Prepared for

Waste Management of Alameda County, Inc. A Waste Management Company

December 17, 2024

For submittal to:

Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

United States Environmental Protection Agency, Region IX 75 Hawthorne Street San Francisco, CA 94105

Prepared By

CONTENTS

1		RODUC						1-1
		PURPO						1-1
	1.2				EPORTING			1-1
	1.3	REPOR	RT PREPAI	RATION				1-1
2	SEN	/II-ANN	UAL MON	ITORING	G REPORT			2-1
	2.1	COLLE	ECTION	SYSTEM	OPERATION	(BAAQMD	8-34-50	1.1 &
	§60.	757(f)(4))					2-2
		2.1.1		n System I				2-2
		2.1.2		connection				2-2
		2.1.3			tural Gas Plant			2-2
	2.2			TROL DI	EVICE DOWNT	ΓIME <i>(BAAQM</i>	D 8-34-5	101.2 d
	§60.	757(f)(3)	·					2-2
		2.2.1			tions (§60.757(f)(2-3
		2.2.2			rol Operating Par	ameters (BAAQ)	MD 8-34-	
				: 8-34-509)				2-3
				MONITO!	RING RESULTS	(BAAQMD 8-34	1-501.3, 8-	
		60.757(f)						2-4
	2.4		HLY COV	VER INTE	EGRITY MONI	TORING (BAA)	QMD 8-34	4-5 01.4,
		2-4						
					S OPERATION (2-5
				SIONS MO	ONITORING (BA	4 <i>AQMD 8-34-5</i> 0)1.6, 8 - 34	
	-	757(f)(5)	,					2-5
					TING (BAAQMD		34-503)	2-6
					ECORDS (BAAQI			2-6
			DEGRADA	BLE WAS	STE ACCEPTAN	ICE RECORDS	(BAAQM	
	501.	/						2-6
					IG OPERATION			2-6
	2.11				G DATA (BAAQ)			/
		2.11.1			is (BAAQMD 8-34			2-7
				NITORING	G RESULTS (BA	AQMD 8-34-50.	1.10, 8 - 34	
	U	757(f)(1)	/		7.7.7.(0.(6)			2-8
			LIANCE V		• / . /			2-9
	2.14		FORING I					2-10
		2.14.1			ging System			2-10
		2.14.2	Sulfur M	_	•			2-10
		2.14.3		idensate In		T 111		2-10
		2.14.4			Gasoline Dispensi	ng Facility		2-11
		2.14.5	VOC-Lac		1 '4 G' 1 B			2-11
		2.14.6			k with Siphon Pu	•	225 6	2-11
		2.14.7		_	99, S-200, S-201,	S-231, S-224, S	-225, S-	0.10
			228, S-23	35, and S-2	238			2-12

		2.14.8	Carbon Monoxide Emissions Tracking	2-13
		2.14.9	S-140 SBR 1 and S-141 SBR 2 – Aerated Biological Reac	tors 2-14
		2.14.10	Non-Methane Organic Compound Content in Collected La	andfill
			Gas	2-15
3	PEF	RFORMA	ANCE TEST REPORT	3-16
	3.1	SOURC	CE TEST REPORTS (BAAQMD 8-34-412)	3-16
		3.1.1	A-15 Flare Test Results	3-17
		3.1.2	A-16 Flare Test Results	3-17
		3.1.3	S-6 Gas Turbine Test Results	3-18
		3.1.4	S-7 Gas Turbine Test Results	3-18
	3.2	COMP	LIANCE WITH §60.757(g)(1)	3-18
	3.3	COMP	LIANCE WITH §60.757(g)(2)	3-18
	3.4	COMPL	LIANCE WITH §60.757(g)(3)	3-19
	3.5	COMPL	LIANCE WITH §60.757(g)(4)	3-20
	3.6	COMPL	LIANCE WITH §60.757(g)(5)	3-20
	3.7	COMP	LIANCE WITH §60.757(g)(6)	3-20
4	STA	RTUP. S	SHUTDOWN, AND MALFUNCTION REPORT	4-1
			EPORTS FOR THE GCCS AT ALRRF	4-1

APPENDICES

- APPENDIX A GAS COLLECTION SYSTEM DOWNTIME LOGS
- APPENDIX B WELLFIELD SSM LOG
- APPENDIX C FLARES (A-15 AND A-16) SSM LOGS
- APPENDIX D TURBINES (S-6 AND S-7) SSM LOGS
- APPENDIX E LNG PLANT (S-210) SSM LOGS
- APPENDIX F TURBINES (S-6 AND S-7) COMBUSTION TEMPERATURE REPORTS AND HEAT INPUT LOGS
- APPENDIX G FLARES (A-15 AND A-16) TEMPERATURE DEVIATION REPORTS AND HEAT INPUT LOGS
- APPENDIX H LNG PLANT (S-210) HEAT INPUT LOGS
- APPENDIX I MONTHLY COVER INTEGRITY MONITORING REPORTS
- APPENDIX J SURFACE EMISSIONS MONITORING REPORTS
- APPENDIX K COMPONENT LEAK REPORTS
- APPENDIX L NON-DEGRADABLE WASTE ACCEPTANCE RECORD
- APPENDIX M MONTHLY WELLHEAD MONITORING DATA
- APPENDIX N WELLHEAD DEVIATION REPORT
- APPENDIX O CONTROL DEVICE MONTHLY LANDFILL GAS FLOW RATES AND CO EMISSION CALCULATIONS
- APPENDIX P BAAQMD CORRESPONDENCE
- APPENDIX Q LFG CONDENSATE INJECTION DATA (A-15 AND A-16 FLARES)
- APPENDIX R S-99 GASOLINE DISPENSING FACILITY RECORDS
- APPENDIX S VOC LADEN SOIL RECORDS
- APPENDIX T TRANSFER TANK (S-19) OPERATING RECORDS
- APPENDIX U DIESEL ENGINES RECORDS
- APPENDIX V PORTABLE ENGINES CO EMISSION CALCULATIONS
- APPENDIX W ROLLING 12-MONTH AND MAXIMUM POTENTIAL CO EMISSIONS PERMIT RECORD
- APPENDIX X S-140/S-141 VOC RESULTS AND FLOW RECORDS
- APPENDIX Y SOURCE TEST SUMMARY RESULTS
- APPENDIX Z GCCS MAP
- APPENDIX AA QUARTERLY GAS MIGRATION MONITORING DATA

APPENDIX AB – GREEN WASTE ACCEPTANCE RECORD AND S-31 FUEL USAGE AND HOURS OF OPERATION

APPENDIX AC – NON-METHANE ORGANIC COMPOUNDS PERMIT RECORD

APPENDIX AD – PARAMETRIC MONITOR INOPERATION SUMMARY

1.1 PURPOSE

This document is a Combined Semi-Annual Title V Report and Partial Regulation 8, Rule 34 Annual Report for the Altamont Landfill and Resource Recovery Facility (ALRRF). This report is prepared pursuant to Bay Area Air Quality Management District's (BAAQMD) Regulation 8, Rule 34, Section 411, Title 40 Code of Federal Regulations (CFR) Part 60 Subpart WWW and Cc, New Source Performance Standards (NSPS) Emission Guidelines (EG), respectively, for municipal solid waste (MSW) landfills, and the ALRRF Title V Permit. This Report is being submitted as required by Condition Number 19235, Part 23 in the Title V Permit. The EG are applicable to landfills that have received refuse after 1987 and received no modification of design capacity since May 30, 1991. The BAAQMD Regulation 8-34-411 is applicable to all solid waste landfills that meet the applicability requirements of design capacity and non-methane organic compounds (NMOC) annual emissions rates as listed in the regulations cited above. The ALRRF meets these applicability conditions. This Combined Report meets the requirements of BAAQMD Regulation 8-34-411 and 40 CFR §60.757(f) and covers compliance activities conducted from June 1, 2024, through November 30, 2024. During the timeframe included in this report from June 1, 2024, through November 30, 2024, the site began compliance activities with specific conditions of 40 CFR part 63, Subpart AAAA (effective September 27, 2021) for wellhead temperature and pressure standards. During the timeframe included in this report from June 1, 2024, through November 30, 2024, the site recorded compliance activities with specific conditions of 40 CFR part 62, Subpart OOO for wellhead temperature standards. This Combined Report also includes the Semi-Annual Report of Startup, Shutdown and Malfunction (SSM) Plan activities pursuant to National Emission Standards for Hazardous Air Pollutants (NESHAP), 40 CFR Part 63, Subpart AAAA for Landfills.

1.2 RECORDKEEPING AND REPORTING

Records are maintained and available for inspection in accordance with BAAQMD Regulation 8-34-501.12 and 40 CFR §60.758. The primary location for records storage is at the ALRRF. The records will be maintained at this location for a minimum of five years.

This Combined Report is for the timeframe of June 1, 2024, through November 30, 2024. Section 2 of this report contains the requirements to satisfy both BAAQMD Regulation 8-34-411 and 40 CFR §60.757(f). Section 3 contains the requirements to satisfy both BAAQMD Regulation 8-34-413 and 40 CFR §60.758(g).

1.3 REPORT PREPARATION

This Combined Report has been prepared by Waste Management of Alameda County, Inc. It was prepared based on review of information provided by ALRRF.

2 SEMI-ANNUAL MONITORING REPORT

In accordance with Title V Permit Standard Condition 1.F, BAAQMD Regulation 8-34-411 and §60.757(f) in NSPS, this document is a Combined Semi-Annual Title V Report and Partial 8-34 Annual Report that is required to be submitted by the ALRRF. The report contains monitoring data for the operation of the landfill gas collection and control system (GCCS). The operational records have been reviewed and summarized. The timeframe included in this report is June 1, 2024, through November 30, 2024. Table 2-1 lists the rules and regulations that are required to be included in this Combined Report.

Table 2-1. Semi-Annual Report Requirement

Rule	Requirement	Location in Report
8-34-501.1 §60.757(f)(4)	All collection system downtime, including individual well shutdown times and the reason for the shutdown.	Section 2.1 Appendix B
8-34-501.2 §60.757(f)(3)	All emission control system downtime and the reason for the shutdown.	Section 2.2 Appendices A, C, D, & E
8-34-501.3, 8-34-507, §60.757(f)(1)	Continuous temperature for all operating flares and any enclosed combustor subject to Section 8-34-507.	Section 2.3 Appendices F & G
8-34-501.4, 8-34-505	Testing performed to satisfy any of the recordkeeping requirements of this rule, including wellhead monitoring.	Sections 2.4 & 2.11 Appendices I & M
8-34-501.5	Monthly landfill gas (LFG) flow rates and well concentration readings for facilities subject to 8-34-404.	Sections 2.4 & 2.7 Appendices F, G, H, M & O
8-34-501.6, 8-34-503, 8-34-506, §60.757(f)(5)	For operations subject to Section 8-34-503 and 8-34-506, records of all monitoring dates, leaks in excess of the limits in Section 8-34-301.2 or 8-34-303 that are discovered by the operator, including the location of the leak, leak concentration in parts per million, by volume (ppmv), date of discovery, the action taken to repair the leak, date of the repair, date of any required re-monitoring, and the re-monitored concentration in ppmv.	Sections 2.6 & 2.7 Appendices J & K
8-34-501.7	Annual waste acceptance rate and current amount of waste in-place.	Section 2.8
8-34-501.8	Records of the nature, location, amount, and date of deposition of non-degradable wastes, for any landfill areas excluded from the collection system requirement as documented in the Collection and Control Design Plan.	Section 2.9, Appendix L
8-34-501.9, 8-34-505, §60.757(f)(1)	For operations subject to Section 8-34-505, records of all monitoring dates and any excesses of the limits stated in Section 8-34-305 that are discovered by the operator, including well identification number, the measured excess, the action taken to repair the excess, and the date of repair.	Section 2.11, Appendices M &N
8-34-501.10, 8-34-508, §60.757(f)(1)	Continuous gas flow rate records for any site subject to Section 8-34-508.	Section 2.12, Appendix F,G,H, I, & O
8-34-501.11, 8-34-509	For operations subject to Section 8-34-509, records of key emission control system operating parameters.	Section 2.2.2 Appendices F & G
8-34-501.12	The records required above shall be made available and retained for a period of five years.	Section 1.2
§60.757(f)(2)	Description and duration of all periods when the gas stream is diverted from the control device through a bypass line or the indication of bypass flow as specified under §60.756.	Section 2.2.1
§60.757(f)(6)	The date of installation and the location of each well or collection system expansion added pursuant to paragraphs (a)(3), (b), (c)(4) of §60.755.	Section 2.13, Appendices B & P
§60.10(d)(5)(i)	Startup, Shutdown, and Malfunction Events	Section 4, Appendices B, C, D, & E
§63	Subpart AAAA	Section 2.11

2.1 COLLECTION SYSTEM OPERATION (*BAAQMD 8-34-501.1 & §60.757(f)(4)*)

Appendix A includes collection system downtime logs that list the time, duration, and the reason for each shutdown. Appendix B includes the Wellfield Start-Up, Shutdown, and Malfunction (SSM) events.

2.1.1 Collection System Downtime

During this reporting period, there were four instances in which all emission control devices did not operate. The total GCCS Downtime for the reporting period of June 1, 2024, through November 30, 2024, was 0.8 hours.

The total GCCS downtime for the partial 2024 calendar year is 3.7 hours out of the 240 hours allowed per year by BAAQMD Regulation 8-34-113. Each instance of collection system downtime is described in Appendix A.

2.1.2 Well Disconnection Log

As required by BAAQMD Regulation 8-34-116 and/or 8-34-117, no more than five (5) LFG collection wells or ten percent of the LFG collection wells of the GCCS were shut down at any one time. No LFG collection wells were disconnected from a vacuum source for longer than 24 hours during this reporting period unless fill was actively being placed or compacted in the immediate vicinity of the well pursuant to BAAQMD Regulation 8-34-116.

Appendix B includes the Wellfield SSM Log for the reporting period.

2.1.3 S-210 Liquefied Natural Gas Plant

The daily heat input limit for the S-210 Liquefied Natural Gas (LNG) Plant, pursuant to PTO Condition Number 24255, Part 2 is 1,950 MMBTU/day. As summarized in Table 2-2 below, the LNG Plant did not exceed the permitted daily heat input limit at any time during this reporting period. Appendix H includes heat input logs for the reporting period.

Table 2-2. S-210 LNG Plant Maximum Daily Heat Input Summary

	Month/Year	6/2024	7/2024	8/2024	9/2024	10/2024	11/2024
Ī	LNG Plant*	0.0	0.0	0.0	0.0	0.0	0.0

^{*} Maximum Daily Heat Input (MMBTU/day)

LNG Plant was shut down on June 30, 2023. Please refer to Appendix AD for more details.

2.2 EMISSION CONTROL DEVICE DOWNTIME (BAAQMD 8-34-501.2 & §60.757(f)(3))

The A-15 Flare (back-up flare) and A-16 Flare (LNG Plant Flare) SSM Logs, which list downtimes and the reasons for the shutdowns, are located in Appendix C. Appendix D contains the SSM Logs for Turbine Number 1 (S-6) and Turbine Number 2 (S-7). Appendix E contains the SSM Log for the LNG Plant (S-210).

The total downtime hours for the reporting period are summarized in Table 2-3:

Table 2-3. Emissions Control Device

Emission Control Device	Total Downtime June 1, 2024, through November 30, 2024 (Hours)
A-15 (Back-up Flare) ¹	4037.5
A-16 (LNG Plant Flare)	127.1
S-6 (Turbine Number 1)	51.0
S-7 (Turbine Number 2)	386.1
S-210 (LNG Plant)	4,391.0

^{1 –} Used to control LFG when other device(s) are shut down

2.2.1 LFG Bypass Operations (§60.757(f)(2))

During the period encompassed by this report, LFG was not diverted through a bypass line. No bypass lines have been installed at the ALRRF.

2.2.2 Key Emission Control Operating Parameters (BAAQMD 8-34-501.11 & 8-34-509)

S-6 and S-7 Turbines

The Key Emission Control System Operating Parameter (BAAQMD 8-34-509) for the S-6 and S-7 Turbines was determined to be combustion chamber discharge temperature, based on the Annual Source Test. The combustion temperature of both turbines is monitored on a continuous basis and shall not be less than 700 degrees Fahrenheit (°F) averaged over any three-hour period, pursuant to Title V Permit Condition Number 18773, Part 9.

The normal operating temperature of the turbines is 1,170°F. As required by Title V Permit Condition Number 18773, Part 9, continuous monitoring of the combustion temperature of the S-6 and S-7 Turbines started on December 1, 2003. The combustion temperature of the S-6 and S-7 Turbine was maintained between 700°F and 1,220°F averaged over any three-hour period during this reporting period.

The daily heat input permit limit for each turbine, pursuant to Title V Condition Number 18773, Part 8 is 1,378 MMBTU/day. As summarized in Table 2-4, the turbines did not exceed the permitted daily heat input limit at any time during this reporting period.

Table 2-4. Turbine S-6 and S-7 Maximum Daily Heat Input Summary

Month/Year	6/2024	7/2024	8/2024	9/2024	10/2024	11/2024
Turbine (S-6)*	1,072	1,047	1,013	1,055	1,054	1,083
Turbine (S-7)*	1,071	1,082	1,048	1,073	1,087	1,108

^{*} Maximum Daily Heat Input (MMBTU/day)

Appendix F includes turbine combustion temperature deviation and heat input logs for S-6 and S-7.

Pursuant to BAAQMD Regulation 1 Rule 523, parametric periods of inoperation for the S-6 and S-7 Gas Turbines did not exceed 24 hours or 15 consecutive days. Parametric monitor periods of inoperation for the S-6 and S-7 Gas Turbines also did not exceed 30 calendar days per consecutive 12-month period. Please refer to Appendix AD for more details.

A-15 and A-16 Flares

The Daily Heat Input Permit Limits for the A-15 and A-16 Flares, pursuant to Title V Condition Number 19235, Part 4 are 1,704 MMBTU/day and 3,168 MMBTU/day, respectively. Table 2-5 below shows the maximum daily heat input measured during this reporting period.

The A-15 and A-16 Flares did not exceed the permitted daily heat input limit at any time during this reporting period.

Month/Year 6/2024 7/2024 8/2024 9/2024 10/2024 11/2024 A-15 (Back-up Flare)1 674 12.0 0.0 986 568 0.0 1,858 A-16 Flare¹ 1.795 1,834 1,734 1,742 1,291

Table 2-5. Flares A-15 and A-16 Maximum Daily Heat Input Summary

Appendix G includes A-15 and A-16 Flare temperature deviation and heat input logs for the reporting period.

2.3 TEMPERATURE MONITORING RESULTS (BAAQMD 8-34-501.3, 8-34-507, & §60.757(f)(1))

The combustion zone temperature of the A-15 Flare is continuously monitored using a thermocouple and recorded by a Yokogawa data acquisition system with local digital display. The recorded graphs and tables showing operational data (flow, temperature, operation time) of the flare indicated that the three-hour average combustion zone temperature did not drop below 1,400°F while the flare was in operation during the reporting period. Pursuant to the updated PTO Condition 19235 Part 10(a) issued by the BAAQMD in 2024 PTO, the minimum three-hour average operating temperature for the A-15 Flare is 1,433°F. From June 1, 2024, through November 30, 2024, the A-15 Flare three-hour average operating temperature did not drop below 1,433°F.

The combustion zone temperature of the A-16 Flare is continuously monitored using a thermocouple and recorded by a Yokogawa data acquisition system with local digital display. The recorded graphs and tables showing operational data (flow, temperature, operation time) of the flare indicated that the three-hour average combustion zone temperature did not drop below 1,400°F while the flare was in operation during the reporting period. Pursuant to the updated PTO Condition 19235 Part 10(b) issued by the BAAQMD in 2024 PTO, the minimum three-hour average operating temperature for the A-16 Flare is 1,472°F. From June 1, 2024, through November 30, 2024, the A-16 Flare three-hour average operating temperature did not drop below 1,472°F.

2.4 MONTHLY COVER INTEGRITY MONITORING (BAAQMD 8-34-501.4)

During the June 1, 2024, through November 30, 2024, reporting period, site technicians noted the few locations with leachate seeps. These locations will be remediated after the affected areas have dried out and are safe to conduct remediation using heavy equipment. No other areas of concern were found during the reporting period. The Monthly Cover Integrity Monitoring Reports are included in Appendix I.

• June 28, 2024

^{1 –} Maximum Daily Heat Input (MMBTU/day)

- July 31, 2024
- August 30, 2024
- September 30, 2024
- October 31, 2024
- November 25, 2024

2.5 LESS THAN CONTINUOUS OPERATION (BAAQMD 8-34-501.5)

The ALRRF does not operate under BAAQMD 8-34-404 (Less Than Continuous Operation) and therefore is not required to submit monthly LFG flow rates.

2.6 SURFACE EMISSIONS MONITORING (BAAQMD 8-34-501.6, 8-34-506, & §60.757(f)(5))

The information contained in Appendix J includes the Surface Emissions Monitoring (SEM) data for the quarterly monitoring events performed during this reporting period on the following dates:

- Third Quarter 2024 September 9, 16, 17, 18 2024
- Fourth Quarter 2024 October 29, and 30 and December 5, 2024

A Thermo Scientific Toxic Vapor Analyzer 1000 (TVA1000) and Photovac Micro flame ionization detector (FID) were used to perform the SEM during the Third Quarter 2024 and Fourth Quarter 2024 events. The landfill surface was monitored along the path delineated on the SEM walking path map. Any areas suspected of having emission problems by visible observations were also monitored. Immediately prior to the Third and Fourth Quarter 2024 monitoring events, the monitoring equipment was calibrated using zero air and 500 parts per million by volume (ppmv) methane (CH₄) calibration gas.

- The Third Quarter 2024 SEM was performed on September 9, 16, 17, and 18, 2024, and seven (7) exceedances (FID readings greater than 500 ppm CH₄ above background measurements) were detected on September 17 and 18, 2024. Corrective actions were completed. The ten-day re-monitoring event was conducted on September 19, 2024, and no further exceedances were detected. The thirty-day follow-up monitoring event was conducted on October 14, 2024, and no exceedances were detected.
- The Fourth Quarter 2024 SEM was performed on October 29 and 30, 2024, and December 5, 2024, and twenty-three (23) exceedances (FID readings greater than 500 ppm CH₄ above background measurements) were detected on October 30, 2024, and December 5, 2024. Corrective actions were completed. The ten-day remonitoring event was conducted on November 7 and December 6, 2024, and no further exceedances were detected. The thirty-day follow-up monitoring event was conducted at 19 locations on November 20, 2024, and no exceedances were detected. The thirty-day follow-up monitoring event at 4 locations will be conducted by January 3, 2025.

See Appendix J for Third Quarter 2024 Report. The Fourth Quarter 2024 report will be included in the next semi-annual report.

2.7 COMPONENT LEAK TESTING (BAAQMD 8-34-501.6 & 8-34-503)

"Quarterly tests for operations subject to Sections 8-34-503 and 506, records of all monitoring dates, leaks in excess of the limits in Section 8-34-301.2 or Section 8-34-303 that are discovered by the operator, including the location of the leak, leak concentration in ppm by volume, date of discovery, the action taken to repair the leak, date of repair, date of any required re-monitoring, and the re-monitored concentration in ppm by volume."

The quarterly LFG component leak testing events for this reporting period were performed on:

- Third Quarter 2024 August 15 and September 3, 2024
- Second Quarter 2024 October 10 and November 4, 2024

A Thermo Scientific TVA1000 and Photovac Micro FID was used to perform both the Third and Fourth Quarter 2024 leak testing events. No leaks greater than 500 ppm_v were identified during the Third and Fourth Quarter 2024 monitoring events. See Appendix K for the Component Leak Testing Reports.

2.8 WASTE ACCEPTANCE RECORDS (BAAQMD 8-34-501.7)

The waste acceptance rate for this reporting period and the current waste in-place figures, which include waste placed through November 30, 2024, are as follows:

- Waste Acceptance Rate at Fill Area I and II between June 1, 2024, through November 30, 2024 = 517,853 tons
- Current Waste In-Place at Fill Area I as of November 30, 2024= 50,025,694 tons
- Current Waste In-Place at Fill Area II as of November 30,2024=5,720, 822 tons
- Total Combined Waste-In-Place at Fill Area I and II as of November 30, 2024, =55,746, 516 tons (Limit is 88,00,000 tons).

Pursuant to Permit to Operate Condition 19235 18D, the total cumulative amount of decomposable materials placed in existing Fill Area 1 shall not exceed 51, 020, 000 tons. The total combined cumulative amount of decomposable materials placed in Fill Area I and II shall not exceed 88,00,000 tons.

2.9 NON-DEGRADABLE WASTE ACCEPTANCE RECORDS (BAAQMD 8-34-501.8)

The ALRRF includes an approximately 8-acre landfill area on the eastern side of Unit 2 that has been historically segregated for asbestos disposal, as stated in the June 2003 Amended and Restated Collection and Control System Design Plan.

The amount of non-degradable asbestos waste that was placed in this area during June 1, 2024, through November 30, 2024, reporting period is 3,373 tons (Appendix L).

2.10 GREENWASTE GRINDING OPERATION (BAAQMD 2-1-105.3)

The ALRRF was issued PTO 17215 on July 21, 2008, incorporating the following 3 sources:

S-29 – Green Waste Stockpiles (subject to Condition Number 24061)

S-30 – Portable Green Waste Grinding Operation (subject to Condition Number 24062)

S-31 – Portable Diesel Engine for Green Waste Grinder (subject to Condition Number 24063)

Pursuant to PTO Condition Number 24063 Part 2, the S-31 engine did not use more than 76,205 gallons of fuel during any consecutive 12-month period. Pursuant to PTO 17215 Condition Number 24061 Part 1, the total amount of green waste received at S-29 from off-site locations did not exceed 68,040 tons during any consecutive 12-month period. No food wastes were stored or processed at S-29. Appendix AB details the total waste received and fuel usage data for the Portable Green Waste Operation.

Currently the grinding operation of accepted green waste is done at the site by third party.

2.11 WELLFIELD MONITORING DATA (BAAQMD 8-34-501.4 & 8-34-505)

Wellfield monitoring was conducted monthly pursuant to BAAQMD Regulation 8-34-505. The wellfield concentration readings for June 1, 2024, through November 30, 2024, are included in Appendix M. Effective September 27, 2021, the site began compliance activities with specific conditions of 40 CFR part 63, Subpart AAAA for wellhead temperature and pressure standards. Each well was monitored for the following:

- 8-34-305.1 Each wellhead shall operate under a vacuum; and,
- 8-34-305.2 The LFG temperature in each wellhead shall be less than 55 degrees Celsius (131°F); and,
- 8-34-305.4 The oxygen concentration in each wellhead shall be less than 5 percent by volume.

The wellfield monitoring was performed on the following dates:

- June 3, 5, 6, 7, 10, 12, 13, 14, 17, 18, 19 and 24, 2024
- July 1, 2, 3, 5, 8, 9, 10, 11, 16, 22, 24, and 25, 2024
- August 2, 2, 5, 6, 7, 8, 9, 13, 14 and 19, 2024
- September 4, 5, 6, 9, 11, 12,13 16, 17 and 19, 2024
- October 4, 7, 8,9, 11, 14, 15, 18, 22, 23 and 24, 2024
- November 1, 4, 5, 6, 7, 8, 11, 12, 13, 14, and 26, 2024

2.11.1 Wellfield Deviations (BAAQMD 8-34-501.9 & §60.757(f)(1))

BAAQMD Regulation 8-34-305 (Wellhead Requirements) requires that each wellhead shall operate under a vacuum; wellhead temperature shall be less than 131°F (55 Degrees Celsius); and either the nitrogen concentration shall be less than 20 percent or the oxygen concentration shall be less than 5 percent. During this reporting period, there was one temperature exceedance associated with specific conditions of 40 CFR part 63, Subpart AAAA for wellhead temperature and pressure standards. All exceedances were corrected within 120-days.

Please refer to the Wellfield Deviation Log, included in Appendix N, for exceedance records for the reporting period.

2.12 GAS FLOW MONITORING RESULTS (BAAQMD 8-34-501.10, 8-34-508, & §60.757(f)(1))

The LFG flow rate for the A-15 Flare is measured with a Kurz thermal mass flow meter connected to a Yokogawa digital readout and data acquisition system. The Fluid Components International (FCI) flowmeter was replaced with a Kurz Flowmeter.

The LFG flow rate for the A-16 Flare is measured with a Rosemount Annubar flow meter connected to a Yokogawa digital readout and data acquisition system. Pursuant to BAAQMD Regulation 8-34-508 the flow is monitored continuously and recorded digitally at least every 15 minutes.

Both of the turbines (S-6 and S-7) are equipped with a Daniels flow meter. Pursuant to BAAQMD Regulation 8-34-508, the flow is monitored continuously and recorded digitally at least every 15 minutes.

Appendix O contains a summary of the monthly LFG flow rates for the flares, and turbines. Table 2-6, below, summarizes the total LFG flow for the reporting period.

During the reporting period, the source test results at flare A-16 exceeded the 200 ppmv total reduced sulfur (TRS) limit specified in PTO Condition 19235, Part 11. However, these results were inconsistent with prior sample results. Therefore, ALRRF conducted further investigation and performed source retest for TRS at flare A-16 on June 10, 2024. TRS results from the source retest were within permit limits. ALRRF submitted the Title V 10-day letter on May 3, 2024, and Title V 30-day letter on May 23, 2024. Copies of submitted letters are included in Appendix P.

Table 2-6. Control Devices LFG Flow Summary

June 1, 2024, through November 30, 2024

Source	Average Flow (scfm)	CH ₄ (%)	Total LFG Volume (scf)	Total CH4 Volume (scf)	Total Heat Input (MMBTU)
A-15 (Backup Flare) ¹	1,457	45.7	32,554,693	14,861,217	14,827
A-16 (LNG Plant Flare) ²	2,086	49.4	533,594,381	263,462,226	262,856
S-6 (Turbine 1) ³	1,360	48.9	354,093,633	173,147,182	175,398
S-7 (Turbine 2) ³	1,429	48.9	344,104,909	168,291,759	170,479

Source	Average Flow (scfm)	CH ₄ (%)	Total LFG Volume (scf)	Total CH ₄ Volume (scf)	Total Heat Input (MMBTU)
S-210 (LNG Plant)	N/A	NA	0.0	0.0	0.0

 CH_4 – methane N/A – not available

- 1 From Annual Source Test dated February 28, 2024.
- 2 Annual Source Test dated March 6, 2024, average of condensate injection on and off.

3 – Monthly reading

2.13 COMPLIANCE WITH §60.757(f)(6)

"The date of installation and the location of each well or collection system expansion added pursuant to (a)(3), (b), (c)(4) of §60.755."

This section summarizes changes made to the ALRRF GCCS which were permitted by the BAAQMD and implemented for the reporting period. The Wellfield SSM Log listing well decommissions, and start-ups is located in Appendix B. Correspondence detailing the decommissioning and startup of wells can be found in Appendix P.

PTO Condition Number 19235, Part 1, which was assigned Application Number (AN) 30563 issued on November 12, 2020, allows the ALRRF to decommission up to one hundred (100) vertical wells and five (5) horizontal collectors and five (5) leachate collection system cleanout riser (LCRS), and to install up to one hundred and twenty (120) vertical wells and twenty (20) horizontal collectors and five (5) LCRS.

Table 2-7 below summarizes the status of permitted wellfield decommissioning and installations per the PTO Condition Number 19235 Part 1(b), as updated by Application Number (AN) 30563 issued on November 12, 2020.

Table 2-7. Wellfield Decommissioning and Installations per PTO Condition Number 19235, Part 1, Updated by Application Number (AN) 30563

As of November 30, 2024	Decor	nmissioning Actions	Installations	
	Vertical	Horizontal Collectors	Vertical	Horizontal Collectors
	Wells	and LCRS	Wells	and LCRS
Actions permitted under PTO Condition No. 19235 per AN 30563	100	10	120	25
Actions performed by WMAC per PTO Condition No. 19235	35	3	77	3
Remaining actions permitted under PTO Condition No. 19235	65	7	43	22

Per the updated PTO Condition Number 19235, Part 1, as of November 30, 2024, there were one hundred eighty-one (181) vertical wells, two (2) horizontal collector, and two (2) 2 leachate collection system cleanout risers (LCRS) installed at ALRRF.

2.14 MONITORING REPORTS

Section I.F of the Title V Permit requires the ALRRF to submit all monitoring records to the BAAQMD at least once every six months, except where more frequent reporting is required. Monitoring was conducted for the following sources during this reporting period.

2.14.1 A-6 and A-7 – Fogging System

Title V Permit Condition Number 18773, Part 4 allows discretionary operation of the turbines' fogging system (A-6 and A-7). Permit Condition Number 18773, Part 5 requires ALRRF to maintain operational records on the days each of the turbines and the fogging system are operated.

ALRRF did not operate the fogging system during this reporting period. A logbook for the fogging system is maintained at the ALRRF.

2.14.2 Sulfur Monitoring

Title V Permit Condition Number 18773, Part 10 requires that a monthly sulfur (as hydrogen sulfide [H₂S]) sample be collected. The sample must be taken at the main LFG header with a Draeger tube, and the reading shall not exceed 150 ppmv. Table 2-8, below, summarizes all H₂S samples collected during this reporting period.

Date	Location Sample Taken	H ₂ S Concentration
6/4/2024	Inlet to Turbines	90 ppmv
7/1/2024	Inlet to Turbines	80 ppmv
8/1/2024	Inlet to Turbines	75 ppmv
9/3/2024	Inlet to Turbines	80 ppmv
10/1/2024	Inlet to Turbines	70 ppmv
11/1/2024	Inlet to Turbines	60 ppmv

Table 2-8. Monthly H₂S Sampling Results

2.14.3 LFG Condensate Injection

Title V Permit Condition Number 19235, Part 3 allows injection of LFG condensate into Flares A-15 and A-16 providing that the condensate injection rate does not exceed 3,600 and 7,200 gallons during any day, respectively.

Table 2-9 below summarizes the maximum daily LFG condensate injection for every month during this reporting period:

Month/Year	A-15 Flare Maximum Daily LFG Condensate Injection ¹	A-16 Flare Maximum Daily LFG Condensate Injection ¹
June 2024	0.0	3,831
July 2024	0.0	3,498
August 2024	0.0	4,230
September 2024	0.0	4,975
October 2024	0.0	4,522
November 2024	0.0	4,367

Table 2-9. Monthly LFG Condensate Injection

^{1 –} Permit limit for the A-15 Flare is 4,320 gallons per day. Permit limit for the A-16 Flare is 7,200 gallons per day.

As shown in Table 2-9, LFG condensate injection in the A-15 Flare did not exceed 4,320 gallons per day and the A-16 Flare did not exceed 7,200 gallons per day during this reporting period, in compliance with Permit Condition Number 19235, Part 3. Appendix Q contains daily condensate injection rate tables for the reporting period.

2.14.4 S-99 - Non-Retail Gasoline Dispensing Facility

Title V Permit Condition Number 25723 requires that a Static Pressure Performance Test (Leak Test) TP 206.3 be conducted on the S-99 Gasoline Dispensing Facility at least once in each consecutive 12-month period.

S-99 was out of service during the reporting period. ALRRF submitted an application for Authority to Construct Application (Replacement of Existing Above Ground Storage Tank with Split Tank at the Non-Retail Gasoline Dispensing Facility G#7123, Source S-99). BAAQMD approved the permit on August 8, 2023, and assigned ATC AN 31887. ALRRF plans to install the new tank by first quarter of 2025.

The ALRRF maintains monthly records of the gasoline throughput at S-99. Appendix R contains monthly throughput records for this reporting period. S-99 was out of service during the reporting period.

2.14.5 VOC-Laden Soil

Volatile organic compound laden (VOC-laden) soil is defined by the BAAQMD as any soil that contains VOCs, as defined in BAAQMD Regulation 8-40-206, at a concentration of 50 parts per million by weight (ppmw) or less. Condition Number 19235, Part 20 of the Title V Permit requires that ALRRF limit the quantity of low VOC-laden soil handled per day so that no more than 15 pounds of total carbon could be emitted to the atmosphere per day. On June 19, 2024, during routine data review, it was discovered that site exceeded the daily VOC limit on June 15 and 18, 2024. The exceedance was caused due to inadvertent miscommunication between WMAC staff. ALRRF submitted the Title V 10-day and 30-day written reports on June 28, 2024, and July 17, 2024. BAAQMD issued NOV A-59768 dated July 22, 2024. ALRRF submitted the 10-day NOV response letter on July 29, 2024. VOC-laden soil receipts, soil VOC concentrations, and emission calculations for this reporting period are located in Appendix S.

ALRRF accepted high VOC-contaminated soil exceeding 50 ppm volatile organic compounds by weight during this reporting period. All records required by the permit are available onsite.

2.14.6 S-19 - Transfer Tank with Siphon Pump

Title V Permit Condition Number 20774, Parts 1 and 3, limit the wastewater throughput from S-19 to 1,576,800 gallons in any consecutive 12-month period. Table 2-10 compares the actual consecutive 12-month rolling wastewater throughput for the S-19 transfer tank with the permit limit. During the reporting period, no wastewater was directed through S-19 (all wastewater went directly to S-12) and no waste material was collected from the siphon pump during this reporting period.

Table 2-10 Monthly 12-Month Rolling LFG Condensate Throughput

	Consecutive 12-Month S-19 Throughput (Gallons)	Waste Material Collected from the Siphon Pump (Gallons)
PERMIT LIMIT	1,576,800	20,750
June 2024	0	0
July 2024	0	0
August 2024	0	0
September 2024	0	0
October 2024	0	0
November 2024	0	0

The S-19 transfer tank is also subject to the requirements of BAAQMD Regulation 8, Rule 8 (Oil/Water Separators). This regulation requires an inspection and leak check (readings not to exceed 500 ppmv methane) of all gaskets, all flanges, tank condition, and connections of gauges and pipes on a quarterly basis.

The quarterly S-19 Inspection and Leak Checks were conducted on the following dates:

- Third Quarter 2024 August 15, 2024
- Fourth Quarter 2024 November 20, 2024

S-19 was in fair condition and no leaks were detected above the 500-ppmv limit during the Third and Fourth Quarter 2024 inspection.

All of the records for S-19 covering this reporting period are included in Appendices T, and are in full compliance with the terms of Permit Condition Number 20774 and the requirements of BAAQMD Regulation 8, Rule 8.

2.14.7 Diesel Engines S-199, S-200, S-201, S-231, S-224, S-225, S-228, S-235, and S-238

Fuel usage and operating hour records for all the engines are included in Appendix U.

Operating Hours of Diesel Engines S-199, S-200, and S-201

Emergency use diesel engines S-199, S-200 and S-201 commenced operation in March 2008. S-199, S-200, and S-201 operated in compliance pursuant to PTO Condition Number 22850, which limits operation of S-199, S-200, and S-201 to no more than 50 hours per calendar year for maintenance and testing. ALRRF operated these engines in compliance with Title V Permit for the reporting period.

Fuel Usage of Diesel Engines S-193

Title V Permit Condition Number 20801 requires that diesel fuel usage at remaining engine, S-193, not exceed the rates listed in the table below during any consecutive 12-month period.

ALRRF operated these engines in full compliance with Title V Permit Condition Number 20801 during the consecutive 12-month period ending on November 30, 2024, as follows in Table 2-11.

Table 2-11. Diesel Engines Fuel Usage

Engine	December 1 -2023 to November 30, 2024 Estimated Fuel Usage (Gallons)	Permit Limit (Gallons/year)
S-193	3.0	62,196

Operating Hours of Diesel Engines, S-228, S-S-224, S-225, S-231, S-235 and S-238

Pursuant to BAAQMD PTO Condition 26,225, 26734, 27606, and 27888, the total combined operating time for the S-228, S-224, S-225, S-231, S-235and S-238 diesel engines shall not exceed 29,200 hours during any consecutive 12-month period.

Daily operating records for S-231, S-235 S-228, S-238, S-224 and S-225 are maintained onsite at the ALRRF.

ALRRF operated in full compliance with the PTO Condition 26225, 26734, 27606 and 27888 during the 12-month consecutive period ending November 30, 2024. A summary of operating hours are listed below in Table 2-12. As of November 30, 2024, ALRRF, Tippers S-228, S-224 S-225, S-231, S-235 and S-238 were operational.

Table 2-12. Diesel Engines Operating Hours

Tipper Engine	Hours Operated June 1, 2024- November 30, 2024	Hours Operated in 12-Month Period Ending November 30, 2024	Operations Limits
S-231	828	3,537	7,300 Hours 12-Months*
S-228	1,105	2,211	7,300 Hours 12-Months*
S-224	0.0	0.0	14,600 Hours 12-
S-225	0.0	0.0	Months*
S-235	3,059	5,604	7,300 Hours 12-Months*
S-238	2,114	2,185	7,300 Hours 12-Months*
Combined S-228, S-224, S-225, S-231, S-235 and S- 238	7,106	13,537	

^{*} Limits according to BAAQMD 26,225, 26734, 27606, and 27888.

2.14.8 Carbon Monoxide Emissions Tracking

PTO Condition Number 24373 limits the rolling 12-month CO emissions rate for each non-mobile combustion device onsite and for the entire site as a whole.

CO Emissions for the A-15 and A-16 Flares; the S-6 and S-7 Turbines; the S-31, S-193, S-197, S-198, S-199, S-200, S-201, S-206, and S-208, portable diesel-fired engines; and other portable diesel-fired sources under 50 horsepower were calculated using CO emissions factors and monthly operating hours as stipulated in PTO Condition Number 24373. Please refer to Appendices O, U, and V for details. The maximum potential CO emissions for the

portable diesel-fired engines as required by PTO Condition Number 24373 Part 3(b) can also be found in Appendix W.

ALRRF operated in full compliance with PTO Condition Numbers 24373 during the 12-month consecutive period ending November 30, 2024, as follows in Table 2-13.

Table 2-13. Site-Wide CO Emissions

Source	12-Month CO Emissions (Tons)	Rolling 12- Month Permit Limit (Tons)
A-15 (Backup Flare)	1.200	93.268
A-16 (LNG Plant Flare)	4.323	115.632
S-6 (Turbine 1)	19.970	56.064
S-7 (Turbine 2)	16.885	56.064
Portable Engines	3.478	N/A
Total (Site-wide)	45.857	225.0

2.14.9 S-140 SBR 1 and S-141 SBR 2 – Aerated Biological Reactors

Title V Permit Condition Number 20922 was revised on August 3, 2006, to include an alternative compliance demonstration method. Permit Condition Number 20922, Part 1 limits the quarterly average total organic carbon (TOC) concentration in the wastewater to less than 52 ppmw with a maximum daily throughput of 52,400 gallons to each tank. Alternatively, emissions of precursor organic compounds (POC) are limited to 10 pounds per day. Part 2 of the revised permit condition limits either the rolling 12-month wastewater throughput for S-140 and S-141 to 6,460,000 gallons or 12-month total POC emissions to less than 1,230 pounds. The rolling 12-month wastewater throughput for S-140 and S-141 was zero (0) gallons as of the end of this reporting period. See Appendix X for flow records for S-140 and S-141.

Table 2-14 below compares Permit Condition Number 20922 concentration limits for S-140 (SBR 1) and S-141 (SBR 2) followed by the actual analytical results for selected constituents obtained during the Third Quarter 2024 event on August 22, 2024, and Fourth Quarter 2024 event on November 19, 2024. For all Quarters, monitoring was completed by obtaining a sample at the LCRS and at the S-140 Reactor.

Table 2-14 Analytical Results Summary for LCRS and SBR1

Compound	Concentration Limit (ppbw)	Third Quarter 2024 Average (ppbw)	Fourth Quarter 2024 Average (ppbw	Annual Average Results (ppbw)
Benzene	80	2.7	ND	2.1
Chloroform	470	ND	ND	ND
1,4 Dichlorobenzene	1,020	6.1	5.0	5.0
Methylene Chloride	2,530	ND	ND	ND
Naphthalene	3,590	ND	ND	ND
Perchloroethylene (Tetracholoroethylene)	430	ND	ND	ND
Trichloroethylene (Trichloroethene)	1,290	ND	ND	ND
Vinyl Chloride	30	ND	ND	ND

ppbw – parts per billion by weight

ND – Non-Detect (below detection limit)

Table 2-15 presents the results of TOC testing by quarter and by annual average. Pursuant to Permit Condition Number 20922 if the TOC concentration exceeds the permit limit of 52 ppmw, POC emissions must be calculated using the equation in Permit Condition Number 20922, Part 5h.

Table 2-15. Total Organic Compounds Results Summary

Constituents	Concentration Limit (ppmw)	Third Quarter 2024 Average (ppbw)	Fourth Quarter 2024 Average (ppbw)
TOC concentration	52	0.026	0.183
Average Annual TOC Concentration	52	0.039	0.171

Appendix X contains the laboratory VOC analytical results and the monthly throughput records for S-140 and S-141. The monitored quarterly and annual concentrations are within the Permit Condition Number 20922 limits.

2.14.10 Non-Methane Organic Compound Content in Collected Landfill Gas

Pursuant to Permit Condition No. 19235, Part 17a, effective upon the commencement of waste disposal in Fill Area 2, the rolling three-year average NMOC concentration in LFG extracted from the site is limited to 600 ppmv expressed as C6, corrected to 50 percent methane content. Waste disposal operations commenced in Fill Area 2 in March 2019.

During June 2017, ALRRF submitted permit application for a change of condition to address the current NMOC concentrations and proposed a higher Fill Area 2 NMOC concentration as well as requested to revise the Fill Area 1 baseline fugitive POC emissions. Application Number AN 28727 was assigned. During September 2020, ALRRF submitted addendum to the previously submitted permit application for a change of condition to address the current NMOC concentrations and proposed a higher Fill Area 2 NMOC concentration as well as requested to revise the Fill Area 1 baseline fugitive POC emissions. The best estimate of the current NMOC concentration in the ALRRF LFG for FA1 is 1,262 ppmv as methane, based on site test data. ALRRF submitted a follow-up letter on September 20, 2024, to the previous submittals on September 23, 2021, September 21, 2022, and September 27, 2023. BAAQMD issued a new AN Number 32247.

3 PERFORMANCE TEST REPORT

In accordance with BAAQMD Rule 8-34-413 and 40 CFR §60.757(g) in the NSPS, a Performance Test Report is required to be submitted for the ALRRF containing performance and monitoring data for the operation of the GCCS. The following operational records have been reviewed, summarized, and are included in this Performance Test Report.

Requirement **Location in Report** Rule 8-34-412, §60.8, Section 3.1 §60.752(b)(2)(iii)(B), Compliance Demonstration Test Appendix AA §60.754(d) A diagram of the collection system showing collection system positioning including all wells, horizontal collectors, surface collectors, or other gas Section 3.2 $\S60.757(g)(1)$ extraction devices, including the locations of any areas excluded from Appendix Z collection and the proposed sites for future collection system expansion. The data upon which the sufficient density of wells, horizontal collectors, Section 3.3 surface collectors, or other gas extraction devices and the gas mover §60.757(g)(2) Appendices I & Z equipment sizing are based. The documentation of the presence of asbestos or non-degradable material §60.757(g)(3) for each area from which collection wells have been excluded based on the Section 3.4 presence of asbestos or non-degradable material. The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the Section 3.5 §60.757(g)(4) calculations of gas generation flow rate for each excluded area. The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is Section 3.6 §60.757(g)(5) inadequate to move the maximum flow rate expected over the life of the

Table 3-1. Performance Test Requirement

3.1 SOURCE TEST REPORTS (BAAQMD 8-34-412)

§60.757(g)(6)

Compliance demonstration tests (source tests) were performed on the S-6 and S-7 Gas Turbines and A-16 Flare during 2023 and 2024.

landfill.

The provisions for the control of off-site migration.

Section 3.7

Appendix AA

Source tests for the S-6 and S-7 turbines were performed on December 6, 2023, by Blue Sky Environmental, Inc. (Blue Sky) pursuant to BAAQMD Regulation 8-34-412. The S-6 and S-7 Source Test Report was submitted to the BAAQMD on February 2, 2024, within 60 days of the test date.

The source test for the A-15 Flare was performed by Blue Sky on February 28, 2024, pursuant to 8-34-412. The A-15 Source Test Report was submitted to the BAAQMD on April 25, 2024, within 60 days of the test date.

The 2024 annual source test of the A-16 Flare, was performed by Blue Sky on March 6, 2024. The A-16 2024 Source Test Report was submitted to the BAAQMD on May 3, 2024, within 60 days of the test date. The A-16 2024 Source Test Amended Report was submitted to the BAAQMD on August 5, 2024, within 60 days of the TRS retest date.

The results from the source tests performed during this reporting period are summarized in the following sections. For brevity, only the source test summary results pages are included in Appendix Y. The complete source test reports were completed and submitted to the BAAQMD as detailed above and are available upon request.

3.1.1 A-15 Flare Test Results

The February 28, 2024, source test results for the A-15 Flare indicate that the flare is in compliance with 8-34-301.4 and PTO Condition Number 19235. As required by 8-34-301.3 and Condition Number 19235, the flare meets the NMOC emission rate of less than 30 ppmv as methane, corrected to 3 percent O₂. Table 3-2 shows the results of the February 28, 2024, source test. The 2024 source test was conducted without condensate injection. The last time condensate was injected into the A-15 Flare was during the 2011 Source Test. WM does not anticipate injecting any condensate into the system in the future.

February 28, 2024 February 28, 2024 Permit Parameter A-15 Flare Results **A-15 Flare Results** Limit (condensate on) (condensate off) NMOC (ppmv as CH₄ @ 3% O₂) < 2.4 30 NO_x Emission Rate (lb/MMBTU) 0.0348 0.06 CO Emission Rate (lb/MMBTU) 0.053 0.30 SO₂ Emission (ppmv) 9.60 300

Table 3-2. A-15 Source Test Results

3.1.2 A-16 Flare Test Results

The March 6, 2024, source test results for the A-16 Flare indicate that the flare is in compliance with 8-34-301.4 and PTO Condition Number 19235. As required by 8-34-301.3 and Condition Number 19235, the flare meets the NMOC emission rate of less than 30 ppmv as methane, corrected to 3 percent O₂. Table 3-3 shows the results of the source test

The 2024 source test event was completed March 6, 2024. Results of the A-16 Flare 2024 source test event were submitted to the BAAQMD within 60 days of test date and are included in the semi-annual report.

During the reporting period, the source test results at flare A-16 exceeded the 200 ppmv total reduced sulfur (TRS) limit specified in PTO Condition 19235, Part 11. However, these results were inconsistent with prior sample results. Therefore, ALRRF conducted further investigation and performed source retest for TRS at flare A-16 on June 10, 2024. Results from the source retest event were within permit limit. See updated Table 3-3 ALRRF submitted the Title V 10-day letter on May 3, 2024; and Title V 30-day letter on May 23, 2024.

Parameter	March 6, 2024 and June 10, 2024* A-16 Flare Results (condensate on)	March 6, 2024 and June 10, 2024* A-16 Flare Results (condensate off)	Permit Limit
NMOC (ppmv as CH ₄ @ 3% O ₂)	<2.9	<2.3	30
NO _x Emission Rate (lb/MMBTU)	0.0504	0.0387	0.06
CO Emission Rate (lb/MMBTU)	< 0.0171	0.0364	0.20

Table 3-3. A-16 Source Test Results

Parameter	June 10, 2024*	March 6, 2024 and June 10, 2024* A-16 Flare Results (condensate off)	Permit Limit
TRS Content (ppmv)*	97.7	76.4	200
SO ₂ Emission Rate (ppmv)*	8.6	6.2	300

3.1.3 S-6 Gas Turbine Test Results

The December 6, 2023, source test results for the S-6 Gas Turbine indicate that the turbine is in compliance with 8-34-301.4 and Title V Permit Condition Number 18773 and that, as required by 8-34-301.4 and Condition Number 18773, the turbine meets the NMOC emission rate of less than 120 ppmv. The final results of the source test are shown in Table 3-4 below.

Parameter	December 6, 2023 S-6 Gas Turbine Results	Permit Limit
NMOC (ppmv as CH ₄ @ 3% O ₂)	4.6	120
NO _x Emission Rate (lb/MMBTU)	0.0999	0.1567
CO Emission Rate (lb/MMBTU)	0.106	0.2229
TRS Content (ppmy)	56.7	150

Table 3-4. S-6 Source Test Results

3.1.4 S-7 Gas Turbine Test Results

The December 6, 2023, source tests results for the S-7 Gas Turbine indicate that the turbine is in compliance with 8-34-301.4 and Title V Permit Condition Number 18773 and that, as required by 8-34-301.4 and Condition Number 18773, the turbine meets the NMOC emission rate of less than 120 ppmv. The final results of the source test are shown in Table 3-5 below.

Parameter	December 6, 2023 S-7 Gas Turbine Results	Permit Limit
NMOC (ppmv as CH ₄ @ 3% O ₂)	<4.2	120
NO _x Emission Rate (lb/MMBTU)	0.0970	0.1567
CO Emission Rate (lb/MMBTU)	0.0930	0.2229
TRS Content (ppmv)	85.3	150

Table 3-5. S-7 Source Test Results

3.2 **COMPLIANCE WITH §60.757(g)(1)**

"A diagram of the collection system showing collection system positioning including wells, horizontal collectors..."

A map of the LFG collection system updated on September 4, 2024, showing the locations of vertical wells, horizontal collectors, and other LFG extraction devices is included in Appendix Z.

3.3 COMPLIANCE WITH §60.757(g)(2)

"The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based." In general, the sufficient capacities of the GCCS components will be based on establishing, maintaining, and documenting the LFG collection flow rate, as required by Title V Permit

Condition Number 19235, Part 2. Over the initial monitoring period covered by this Partial Annual Report, the sufficiency of the GCCS components was based as follows:

The existing GCCS has historically provided LFG wells and collectors spaced in accordance with standard industry practices. The installed density appears more than adequate for controlling surface emissions, based on continuous compliance and operational experience. This installation density also provides sufficient methane quality and flows to sustain the energy generating control devices. Additional LFG collectors are installed regularly, as required to maintain compliance and provide maximum available LFG extraction for fueling the energy generating control devices.

The total capacity of the LFG mover equipment exceeds the current EPA extraction rates and the historic LFG extraction rates determined to be continuously available from the landfill. Sufficient LFG control device and mover capacity is provided such that the A-15 flare is used as a back-up control device.

The landfill operator will conduct routine monitoring in accordance with NSPS requirements. If the GCCS at the landfill does not meet the measures of performance set forth in the NSPS, the GCCS will be adjusted or modified in accordance with the NSPS requirements.

On March 25, 2020, ALRRF submitted initial change of permit conditions request for future new well actions. On June 8, 2020, ALRRF submitted a revised change of permit conditions request for future new well actions, including the installation of install up to one hundred and twenty (120) vertical wells and twenty (20) horizontal trench collectors and five (5) clean-out risers (LCRS) and decommission up to one hundred (100) vertical wells, fifteen (15) horizontal trench collectors, and five (5) LCRS. The BAAQMD approved the application on November 12, 2020, which was assigned Application Number (AN) 30563.

Four (4) existing wells were decommissioned during the period of June 1, 2024, and November 30, 2024. No new wells were installed or started during the period of June 1, 2024, and November 30, 2024. Appendix B contains the Wellfield SSM Log for the wells that were started and decommissioned during the reporting period. See Appendix P for BAAQMD Correspondence for well start-up and decommissioning notifications and correspondence regarding AN 30563.

Compliance with §60.757(g)(2) is confirmed by performing quarterly SEM events. Refer to Section 2.6, Surface Emissions Monitoring, in this report for information pertaining to the surface emissions monitoring results. New wells will be installed as needed in the future to further control emissions.

3.4 COMPLIANCE WITH §60.757(g)(3)

"The documentation of the presence of asbestos or non-degradable material for each area from which collection wells have been excluded based on the presence of asbestos or non-degradable material."

The GCCS Design Plan dated December 2000 (amended and restated in June 2003, August 2009, December 2010 and July 28, 2020) for ALRRF does not include asbestos or non-

degradable waste areas that are excluded from the collection system. Therefore, §60.757(g)(3) is not applicable.

3.5 **COMPLIANCE WITH §60.757(g)(4)**

"The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on non-productivity and the calculations of gas generation flow rate for each excluded area."

The GCCS Design Plan dated December 2000 (amended and restated in June 2003, August 2009, December 2010 and July 28, 2020) for ALRRF does not include asbestos or non-degradable waste areas that are excluded from the collection system. The current 8-acre area that is segregated for asbestos disposal is covered by the GCCS. Therefore, §60.757(g)(4) is not applicable.

3.6 COMPLIANCE WITH §60.757(g)(5)

"The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill."

The GCCS capacity will be increased as warranted and as required by regulations. See Appendix P for related correspondence.

3.7 **COMPLIANCE WITH §60.757(g)(6)**

"The provisions for the control of off-site migration."

In compliance with §60.752(b)(2)(ii)(A)(3) and (4), the GCCS was, and future expansions will be, designed to extract LFG at a sufficient rate to minimize the subsurface lateral migration and surface emissions of LFG. This is achieved by sizing and installing sufficient collection elements, transmission piping, blower(s), and control devices for the estimated maximum rate of LFG to be generated within the refuse at a given point in time. The GCCS will be operated to collect LFG at a sufficient rate, (per the definition in §60.751) by maintaining a negative gauge pressure at all wellheads sufficient to extract a LFG flow rate exceeding the LFG collection flow rate on a continuous basis, as established by the operator per Title V Permit Condition Number 19235, Part 2.

Compliance with §60.757(g)(6) is demonstrated by performing quarterly LFG migration monitoring.

The LFG migration monitoring during the reporting period was performed pursuant to the 2011 Landfill Gas Migration Monitoring Plan. The quarterly LFG migration monitoring results for this reporting period are included in Appendix AA.

The LFG migration monitoring and the structure monitoring event for this reporting period were conducted on the following dates:

- Third Quarter 2024– July 9, 12, and 16, 2024
- Fourth Quarter 2024– October 1 and 2, 2024

During the Third Quarter 2024, Probes GP 8C and GP 20C had higher methane values in July 2024. The methane values at Probes GP 8C and GP 20C have been previously shown to be naturally occurring and not related to landfill operations. During the Fourth Quarter

2024, Probes GP 15A had higher methane values in October 2024. ALRRF submitted the initial exceedance notification and the 60-day report to the LEA. No other exceedances of Subtitle D (40 CFR 258.23) and California Code of Regulations (CCR) Title 27, Division 2, Section 20919.5 were detected during the monitoring events. The results of monitoring can be found in Appendix AA.

4 STARTUP, SHUTDOWN, AND MALFUNCTION REPORT

4.1 SSM REPORTS FOR THE GCCS AT ALRRF

The NESHAP contained in 40 CFR part 63, AAAA for Municipal Solid Waste landfills to control hazardous air pollutants include the regulatory requirements for submittal of a semi-annual report (under 40 CFR 63.10(d)(5) of the general provisions) if a Startup, Shutdown, and Malfunction (SSM) event occurred during the reporting period. The reports required by §63.1980(a) of the NESHAP and §60.757(f) of the NSPS summarize the GCCS exceedances. These two semi-annual reports contain similar information and have been combined as allowed by §63.10(d)(5)(i) of the General Provisions.

The following is information covering SSM events that occurred during this reporting period:

- During the reporting period, eight (8) wellfield SSM events occurred. The time and duration of each event is presented in the SSM Log contained in Appendix B.
- During the reporting period, ten (10) Backup Flare (A-15) SSM events occurred. A-15 was shut down to allow for continuous operation of the A-16 Flare. The time and duration of each event is presented in the SSM Log contained in Appendix C.
- During the reporting period, thirty-eight (38) Flare (A-16) SSM events occurred. A-16 was shut down and restarted to allow for construction in the wellfield, for forced utility outages and/or to perform routine maintenance tasks. The time and duration of each event is presented in the SSM Log contained in Appendix C.
- During the reporting period, twenty-one (21) Turbine Number 1 (S-6) SSM events occurred. S-6 was shut down and restarted during the period for forced utility outages and/or to perform routine maintenance tasks. The time and duration of each event is presented in the SSM Log contained in Appendix D.
- During the reporting period, twenty-four (24) Turbine Number 2 (S-7) SSM events occurred. S-7 was shut down and restarted during the period for forced utility outages and/or to perform routine maintenance tasks. The time and duration of each event is presented in the SSM Log contained in Appendix D.
- During the reporting period, no LNG Plant (S-210) SSM events occurred. S-210 was shut down on June 30, 2023. The time and duration of each event is presented in the SSM Log contained in Appendix E.
- During the reporting period forty-one (41) monitoring/recorder equipment SSM events occurred. The time and duration of each event is contained in Appendix AD.
- In all one hundred and forty-two (142) events, automatic systems and operator actions were consistent with the standard operating procedures contained in the SSM Plan and there were no deviations from the SSM Plan.

- No exceedances of any applicable emission limitation in the landfills NESHAP (63.10(d)(5)(i)) occurred during this reporting period.
- Revisions of the SSM Plan to correct deficiencies in the landfill operations or procedures were neither required, nor prepared (§63.6(e)(3)(viii)).

I	certify	the	foll	lowing:
•	ccrify	mc.	jvu	oming.

Based on information and belief formed after reasonable inquiry, information on the startup, shutdown, malfunction forms, all accompanying reports, and other required certifications are true, accurate, and complete.

Blaine F Harrison	12/17/2024
Signature of Responsible Official	Date
Blaine Harrison	<u></u>
Name of Responsible Official	

APPENDIX A GAS COLLECTION SYSTEM DOWNTIME LOGS

ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY, Livermore, CA

June 1, 2024 - November 30, 2024 GCCS DOWNTIME LOG

START DATE & TIME	STOP DATE & TIME	DURATION (Hours)	Total Shutdown due to All Control Devices Shutdown (Hours)		Comments	APPLICABLE 8-34 EXEMPTION
9/1/24 23:32	9/1/24 23:50	0.3	0.3	Backup generator was started. Flare A16 was restarted.	All control devices were shut down during Shutdown during Ralph Substation - 230 kV breaker trip. 6 Control device operators were onsite to inspect and manually restart the control devices. Visual inspection was conducted, checked PLC for any faults and abnormalities, and initiated device startup. See attached startup checklists A and B.	8-34-113, Inspection and Maintenance
9/2/24 1:44	9/2/24 1:50	0.1	0.1	Backup generator and flare shutdown during switchover to utility power.	All control devices were shut down during Shutdown during Ralph Substation - 230 kV breaker trip. Control device operators were onsite to inspect and manually restart the control devices. Visual inspection was conducted, checked PLC for any faults and abnormalities, and initiated device startup. See attached startup checklists A and B.	8-34-113, Inspection and Maintenance
10/21/24 6:42	10/21/24 6:52	0.2	0.2	Backup generator was started. Flare A16		
10/21/24 7:34	10/21/24 7:48	0.2	0.2	during switchover to utility power	All control devices were shut down during Shutdown during 21.5 kv feeder trip. Control device operators were onsite to inspect and manually restart the control devices. Visual inspection was conducted, checked PLC for any faults and abnormalities, and initiated device startup. See attached startup checklists A and B.	8-34-113, Inspection and Maintenance
TOTAL June 1, 2024 to Novemb	ber 30, 2024 (HOURS):	0.8	0.8			
TOTAL January 1, 2024 to Nove	ember 30, 2024 (HOURS):	3.7	3.7			1

APPENDIX B WELLFIELD SSM LOG

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: Wellfield

Completed By:

Dan Sanjose/ Garry Carpenter/Rajan Phadnis

AFFECTED EQUIPMENT: W							Completed By:		Dan Sanjose/ Garry Carpente	r/Rajan Phadhis			
Altamont Landfill and Reso			ore, CA										
SSMP REPORT - From June	e 1, 2024 to Nov	ember 30, 2024											
Identify Well & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed	(St	(8) Type of Event artup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	ibe Emission Standard(s
Well ID Number: ALLC0775		19/24 14:00 6/19/24 14:02	0.03	NA.	Decommissioned pursuant to PTO Condition 19235 Part 1(b)(i) as updated by PTO AN 30563.	113: Inspection and Maintenance	6/19/2024	П	Manual (Go to Section 9)	Procedure No. 1 to 3	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	6/19/24 14:00					117: Gas Collection 118: Construction Activities		П	Automatic (Go to Section 11)		No (Stop)	No (Stop)	
Well ID Number: ALLC0775 Startup Event						113: Inspection and Maintenance 116: Well Raising			Manual (Go to Section 9)	Procedure No. 1 to 4	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)		No (Stop)	No (Stop)	
Well ID Number: ALLC0776 Startup Event	6/19/24 14:10	6/19/24 14:12	0.03	NA NA	Decommissioned pursuant to PTO Condition 19235 Part	113: Inspection and Maintenance 116: Well Raising	6/19/2024		Manual (Go to Section 9)	Procedure No. 1 to 3	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	0/19/24 14:10	0/19/24 14:12				117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)		No (Stop)	No (Stop)	
Well ID Number: ALLC0776 Startup Event					1(b)(i) as updated by PTO AN 30563.	113: Inspection and Maintenance 116: Well Raising			Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities		Ш	Automatic (Go to Section 11)	1 to 4	No (Stop)	No (Stop)	
Well ID Number: ALLC0828 Startup Event	6/19/24 14:24	6/19/24 14:26	0.03	NA NA	Decommissioned pursuant to PTO Condition 19235 Part	113: Inspection and Maintenance 116: Well Raising	6/19/2024		Manual (Go to Section 9)	Procedure No. 1 to 3	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event Well ID Number: ALLC0828						117: Gas Collection 118: Construction Activities 113: Inspection and Maintenance		Ш	Automatic (Go to Section 11)		No (Stop)	No (Stop)	
Startup Event Shutdown Event					1(b)(i) as updated by PTO AN 30563.	116: Well Raising 117: Gas Collection		Ц	Manual (Go to Section 9)	Procedure No. 1 to 4	Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number: ALLC0703						118: Construction Activities 113: Inspection and Maintenance		Н	Automatic (Go to Section 11)	1 10 4	No (Stop)	No (Stop)	
Startup Event X Shutdown Event	9/23/24 13:32	9/23/24 13:34	0.03	NA NA	Decommissioned pursuant to PTO Condition 19235 Part	116: Well Raising 117: Gas Collection	9/23/2024		Manual (Go to Section 9)	Procedure No. 1 to 3	Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number: ALLC0703						118: Construction Activities 113: Inspection and Maintenance			Automatic (Go to Section 11)		No (Stop)	No (Stop)	
Startup Event Shutdown Event					1(b)(i) as updated by PTO AN 30563.	116: Well Raising 117: Gas Collection		\vdash	Manual (Go to Section 9)	Procedure No. 1 to 4	Yes (Go to Section 11)	Yes (Go to Section 12)	
Malfunction Event Well ID Number: ALT0851						118: Construction Activities 113: Inspection and Maintenance		_	Automatic (Go to Section 11) Manual (Go to Section 9)		No (Stop) Yes (Go to Section 11)	No (Stop) Yes (Go to Section 12)	
Startup Event X Shutdown Event	10/17/24 8:00	10/17/24 8:02	0.03	6 hours	Well offline during repairs.	116: Well Raising X 117: Gas Collection	10/17/2024	Ĥ	Automatic (Go to Section 11)	Procedure No. 1 to 3	X No (Stop)	No (Stop)	
Malfunction Event Well ID Number: ALT0851						118: Construction Activities 113: Inspection and Maintenance	10/17/2024	x	Manual (Go to Section 9)	Procedure No. 1 to 4	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Startup Event Shutdown Event	10/17/24 13:40	10/17/24 13:42	0.03			116: Well Raising 117: Gas Collection		^	Automatic (Go to Section 11)		X No (Stop)	No (Stop)	
Malfunction Event Well ID Number: ALT0814						118: Construction Activities 113: Inspection and Maintenance		х	Manual (Go to Section 9)	December No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Startup Event X Shutdown Event	10/17/24 8:00	10/17/24 8:02	0.03			116: Well Raising X 117: Gas Collection	10/17/2024	\vdash	Automatic (Go to Section 11)	Procedure No. 1 to 3	X No (Stop)	No (Stop)	
Malfunction Event Well ID Number: ALT0814 X Startup Event				6 hours	Well offline during repairs.	118: Construction Activities 113: Inspection and Maintenance 116: Well Raising		х	Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	10/17/24 13:40	10/17/24 13:42	0.03			117: Well Raising 117: Gas Collection 118: Construction Activities	10/17/2024	H	Automatic (Go to Section 11)		X No (Stop)	No (Stop)	
Well ID Number: ALT20021 Startup Event						113: Inspection and Maintenance		x	Manual (Go to Section 9)	Procedure No.	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	10/21/24 8:00	10/21/24 8:02	8:02 0.03	1 hours	Well offline during	X 117: Gas Collection 118: Construction Activities	10/21/2024	П	Automatic (Go to Section 11)	1 to 3	X No (Stop)	No (Stop)	j
Well ID Number: ALT20021 X Startup Event	10/21/24 9:00	10/21/24 9:02	0.03	Triodis	repairs.	113: Inspection and Maintenance 116: Well Raising	10/21/2024	x	Manual (Go to Section 9)	Procedure No. 1 to 4	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event	10/21/24 9:00					117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)		X No (Stop)	No (Stop)	
Well ID Number: ALT20027 Startup Event	11/18/24 17:00	11/18/24 17:02	0.03	21 hours	Well offline during repairs.	113: Inspection and Maintenance 116: Well Raising	11/18/2024	х	Manual (Go to Section 9)	Procedure No. 1 to 3	Yes (Go to Section 11)	Yes (Go to Section 12)	
X Shutdown Event Malfunction Event	11/10/24 17.00					X 117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)		X No (Stop)	No (Stop)	
Well ID Number: ALT20027 X Startup Event	11/19/24 13:59	11/19/24 14:01	0.03			113: Inspection and Maintenance 116: Well Raising	11/19/2024	х	Manual (Go to Section 9)	Procedure No. 1 to 4	Yes (Go to Section 11)	Yes (Go to Section 12)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 11)		X No (Stop)	No (Stop)	

| Maltunction Event
| Wells Offline-Pending
| PTO - Permit to Operate | ATC - Authority to Construct

Total SSM Count for June 1, 2024 to November 30, 2024 8

(a) STANDARD OPERATING PROCEDURES

Shutdown Procedure No.

- Procedure

 Ensure that there are no unsafe conditions present, contact manager immediately
 Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
 Press Emergency Stop if necessary
 Close On/Off switch(e) or Push On/Off button(s)
 Close adjacent valves if necessary
 Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above) 3

Startup Procedure No.

- Procedure

 Ensure that there are no unsafe conditions present
 Ensure that the system is ready to start by one of the following:
 Valves are in correct position
 Levels, pressures, and temperatures are within normal starting range
 Alarms are cleared
 Power is on and available to control panel and ready to energize equipment.
 Emergency stop is de-energized
 Initiate start sequence (Note time and date in section 1 of form above)
- Observe that system achieves normal startup ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

Malfunction

EQUIPMENT	PURPOSE	MALFUNCTION EVENT	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS		
LFG Collection and Control						
Blower or Other Gas Mover	Applies vacuum to wellfield to extract LFG and transport to control device	Loss of LFG Flow/Blower Malfunction	- Flame arrestor fouling/deterioration - Automatic valve problems - Blower failure (e.g., belt, motor, impeller, coupling, setzing, etc.) - Loss of power - Extraction piping failure - Condensate knock-out problems - Extraction piping blockages	1. Repair breakages in extraction piping 2. Clean flame arrestor 3. Repair blockages in extraction piping 4. Verify automatic valve operation, compressed air/introgen supply 5. Notify power utility, if appropriate 6. Provide/utilize auxiliary power source, if necessary 7. Repair Settlement in Collection Piping 8. Repair Blower 9. Activate back-up blower, if available 10. Clean knock-up pot/demister		
				11. Drain knock-out pot		
Extraction Wells and Collection Piping	Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral piping -Leaks at wellheads, valves, flanges, Test ports, seals, couplings, etc.	Repair leaks or breaks in lines or wellheads Sellow procedures for loss of LFG flow/blower malfunction		
			-Collection piping blockages	14. Repair blockages in collection piping		
			-Problems due to settlement (e.g. pipe separation, deformation, development of low points)	15. Repair settlement in collection piping		
				16. Re-install, repair, or replace piping		
Blower or Other Gas Mover Equipment	Collection and control of LFG	Loss of electrical power	Force majeure/Act of God (e.g., lightning, flood, earthquake, etc.)	17. Check/reset breaker		
And			-Area-wide or local blackout or brown-	18. Check/repair electrical panel components		
Control Device			out -Interruption in service (e.g. blown service fuse)	19. Check/repair transformer		
			-Electrical line failure	20. Check/repair motor starter		
			-Breaker trip	21. Check/repair electrical line		
			-Transformer failure	22. Test amperage to various equipment		
			-Motor starter failure/trip	23. Contact electricity supplier		
			-Overdraw of power	24. Contact/contract electrician		
			-Problems in electrical panel	25.Provide auxiliary power (if necessary)		
			-Damage to electrical equipment from on-site operations			
LFG Control Device	Combusts LFG	Low temperature conditions at	-Problems with temperature -	26. Check/repair temperature monitoring equipment		
		control device	monitoring equipment			
			-Problems/failure of -thermocouple and/or thermocouple wiring	27. Check/repair thermocouple and/or wiring		
			-Change of LFG flow	28. Follow procedures for loss of flow/blower malfunction		
			-Change of LFG quality	29. Check/adjust louvers		
			-Problems with air louvers	30. Check/adjust air/fuel controls		
			-Problems with air/fuel controls			
			-Change in atmospheric conditions			
LFG Control Device	Combusts LFG	Loss of Flame	-Problems/failure of thermocouple	31. Check/repair temperature monitoring equipment		
			-Loss/change of LFG flow	32. Check/repair thermocouple		
			-Loss/change of LFG quality	33. Follow procedures for loss of flow/blower malfunction		
			-Problems with air/fuel controls	34. Check/adjust air/fuel controls		
			-Problems/failure of flame sensor	35. Check/adjust/repair flame sensor		
			-Problems with temperature monitoring equipment	36. Check/adjust LFG collectors		

Flow Monitoring/	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	-Problems with orifice plate, pitot tube, or other in-line flow measuring device	37. Check/adjust/repair flow measuring device and/or wiring
Recording Device			-Problems with device controls and/or wiring -Problems with chart recorder	38. Check/repair chart recorder 39. Replace paper in chart recorder
Temperature Monitoring/ Recording Device	Monitors and records combustion temperature of enclosed combustion device	Malfunctions of Temperature Monitoring/Recording Device	-Problems with thermocouple -Problems with device controls and/or wiring	40. Check/adjust/repair thermocouple 41. Check/adjust/repair controller and/or wiring
			-Problems with chart recorder	Check/adjust/repair electrical panel components Check/repair chart recorder
				44. Replace paper in chart recorder
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions)	45. Site-specific diagnosis procedures
			-Problems with flare insulation -Problems with pilot light system	Site-specific responses actions based on diagnosis Open manual louvers
			-Problems with air louvers	48. Clean pitot orifice
			-Problems with air/fuel controllers	49. Clean/drain flame arrestor
			-Problems with thermocouple	50. Refill propane supply
			-Problems with burners	51. Check/repair pilot sparking system
			-Problems with flame arrester	
			-Alarmed malfunction conditions not covered above	
			-Unalarmed conditions discovered during inspection not covered above	

(b) For each permit limit exceedance complete an "SSM Plan Departure Form". Notify BAAQMD verbally or by fax within 2 working days after commencing the actions that an event inconsistent with the SSM Plan and which resulted in an exceedance of an applicable emission permit has occured. Follow up in writing to the agency within 7 working days after the end of the event.

APPENDIX C FLARES (A-15 AND A-16) SSM LOGS

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-15 Landfill Gas Flare (Standby)

Altamont Landfill and Re			ore, CA		·							
SSMP REPORT - From Ju												
Identify Flare & Check	(1) Start of Event		(3) Duration	(4) Duration	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed	(8) Type of Event	(9) Procedures Used	(10) Did Steps Taken	(11) Did Event Cause	(12) Describe
Applicable Event	Date and Time	Date and Time	of Event (Hours)	Downtime (Hours	(1)		(*) =====	(Startup and Shutdown Events Only)	(-7	Vary From Section 9?	Any Emission Limit	Emission
Component: A-15 Flare Startup Event x Shutdown Event	6/1/24 0:00	6/1/24 0:02	0.03			X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/1/2024	X Manual (Go to Section 8)	Procedure 1 to 3	Yes (Go to Section 10)	Yes (Go to Section 11	
Malfunction Event				88.6	Flare was shutdown. Flare	118: Construction Activities		Automatic (Go to Section 10)	. 10 0	X No (Stop)	No (Stop)	
Component: A-15 Flare x Startup Event	6/4/24 16:34	6/4/24 16:44	0.17	88.6	was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	6/4/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Shutdown Event Malfunction Event	37.11.21					117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-15 Flare Startup Event	6/5/24 15:14	6/5/24 15:16	0.03			X 113: Inspection and Maintenance 116: Well Raising	6/5/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
x Shutdown Event Malfunction Event				497.0	Flare was started during VFD overheating issues at flare	117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Component: A-15 Flare x Startup Event	6/26/24 8:12	6/26/24 8:22	0.17		A16. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/26/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Shutdown Event Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-15 Flare Startup Event	6/26/24 8:16	6/26/24 8:18	0.03			X 113: Inspection and Maintenance 116: Well Raising	6/26/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
x Shutdown Event Malfunction Event				0.2	Flare was started during maintenance on flare A16	117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Component: A-15 Flare x Startup Event	6/26/24 8:30	6/26/24 8:40	0.17		VFD. Flare was inspected and restarted.	116: Well Raising	6/26/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-15 Flare Startup Event	6/26/24 13:42	6/26/24 13:44	0.03		Flare was shutdown to operate	X 113: Inspection and Maintenance 116: Well Raising	6/26/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
x Shutdown Event Malfunction Event				1.197.6	other control devices. Flare restarted during PG&E outage	117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Component: A-15 Flare x Startup Event	8/15/24 11:16	8/15/24 11:26	0.17	1,121.0	issues. Flare was inspected	X 113: Inspection and Maintenance 116: Well Raising	8/15/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Shutdown Event Malfunction Event		0.00-1.1.0			and restarted.	117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-15 Flare Startup Event	8/16/24 4:02	8/16/24 4:04	0.03			X 113: Inspection and Maintenance 116: Well Raising	8/16/2024	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11	
x Shutdown Event Malfunction Event		0.1021.1101		1.8	Flare shutdown due to KOP alarm. Flare was inspected	117: Gas Collection 118: Construction Activities	:	X Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Component: A-15 Flare x Startup Event	8/16/24 5:50	8/16/24 6:00	0.17	1.0	and restarted.	X 113: Inspection and Maintenance 116: Well Raising	8/16/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Shutdown Event Malfunction Event	0/10/210:00	0/10/21 0:00	0			117: Gas Collection 118: Construction Activities	37.03.202.	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-15 Flare Startup Event	8/19/24 7:20	8/19/24 7:22	0.03			X 113: Inspection and Maintenance 116: Well Raising	8/19/2024	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11	
x Shutdown Event Malfunction Event	0/13/24 7.20	0/13/24 7.22	0.03	0.3	Flare shutdown due to KOP alarm. Flare was inspected	117: Gas Collection 118: Construction Activities	3,10,2021	X Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Component: A-15 Flare x Startup Event	8/19/24 7:36	8/19/24 7:46	0.17	0.0	and restarted.	X 113: Inspection and Maintenance 116: Well Raising	8/19/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Shutdown Event Malfunction Event	5, 15,24 7.50	5, 15,24 7.40	0.17			117: Gas Collection 118: Construction Activities	2.13.2021	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-15 Flare Startup Event	8/26/24 7:58	8/26/24 8:00	0.03			X 113: Inspection and Maintenance 116: Well Raising	8/26/2024	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11	
x Shutdown Event Malfunction Event	0,20,217.00	5/20/2 1 0:00	0.00	0.7	Flare shutdown due to KOP alarm. Flare was inspected	117: Gas Collection 118: Construction Activities		X Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Component: A-15 Flare x Startup Event	8/26/24 8:40	8/26/24 8:50	0.17		and restarted.	X 113: Inspection and Maintenance 116: Well Raising	8/26/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Shutdown Event Malfunction Event			*****			117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-15 Flare Startup Event	8/28/24 12:42	8/28/24 12:44	0.03		Flare was shutdown to operate	X 113: Inspection and Maintenance 116: Well Raising	8/28/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
x Shutdown Event Malfunction Event	3,23,21,12,72	2.20/21 12.11	0.00	697.6	other control devices. Flare restarted during CPU	117: Gas Collection 118: Construction Activities	3,23,232	Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Component: A-15 Flare x Startup Event	9/26/24 14:20	9/26/24 14:30	0.17	007.0	upgrades. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	9/26/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Shutdown Event Malfunction Event	3,20,2111.20	5.20,2111.00	· · · ·			117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-15 Landfill Gas Flare (Standby)

Completed By: Dan Sanjose/ Garry Carpenter/Rajan Phadnis

Altamont Landfill and Re	source Recovery F	acility - Livermo	ore, CA										
SSMP REPORT - From J	une1, 2024 to Nove	mber 30, 2024											
Identify Flare & Check	(1) Start of Event	(2) End of Event	(3) Duration	(4) Duration	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form Completed		(8) Type of Event	(9) Procedures Used		(11) Did Event Cause	(12) Describe
Applicable Event	Date and Time	Date and Time	of Event (Hours)	Downtime (Hours)	(0) 00000 01 11000011	(o) Applicable of 54 Exemption	(1) Bate 1 offit completed	(-	Startup and Shutdown Events Only)	(0) 1 1000041100 0004	Vary From Section 9?	Any Emission Limit	Emission
Component: A-15 Flare						X 113: Inspection and Maintenance		x	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11	
Startup Event	9/26/24 14:52	9/26/24 14:54	0.03		Flare was shutdown to operate		9/26/2024		manda (55 to 555ton 5)	Procedure	100 (00 to 0000011 10)	100 (00 to 0001011 11	
x Shutdown Event	0/20/21 11:02	0,20,21101	0.00		other control devices. Flare	117: Gas Collection			Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Malfunction Event				317.0	restarted during	118: Construction Activities		\perp	.,		` ''	(17	
Component: A-15 Flare						X 113: Inspection and Maintenance		x	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
x Startup Event	10/9/24 19:54	10/9/24 20:04	0.17		program at flare A16. Flare	116: Well Raising	10/9/2024	\vdash					
Shutdown Event					was inspected and restarted.	117: Gas Collection			Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities	1	+					
Component: A-15 Flare						X 113: Inspection and Maintenance		X	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Startup Event	10/10/24 12:16	10/10/24 12:18	0.03			116: Well Raising	10/10/2024	\vdash					
x Shutdown Event Malfunction Event	1				l <u>-</u>	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
				1,236.7	Flare was shutdown to operate								
Component: A-15 Flare	-				other control devices.	X 113: Inspection and Maintenance		X	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11	
Startup Event Shutdown Event	11/30/24 23:59	12/1/24 0:09	0.17			116: Well Raising 117: Gas Collection	11/30/2024	\vdash		1 to 4			
Malfunction Event	4					117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 10 4	X No (Stop)	No (Stop)	
ivianunction Event				1		110. Construction Activities							

Notes: The A-15 SSM Log is maintained pursuant to Permit Condition No. 19235, Parts 2(b) and 15(a).

The A-15 Flare is a standby flare and is shut down to allow for continuous operation of the A-16 Flare and Turbines.
There were 721 hours available for the A-15 Flare in November 2024 due to Dayleft Saving Time.

Total Downtime for June 1, 2024 to November 30, 2024 (Hours)*	4,037.5
Total Runtime for June 1, 2024 to November 30, 2024 (Hours)*	355.5
Total Count for June 1, 2024 to November 30, 2024	10

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-16 Landfill Gas Flare Altamont Landfill and Resource Recovery Facility - Livermore, CA

	Altamont Landfill and Resource Recovery Facility - Livermore, CA											
SSMP REPORT - From				(A) D: "	I		(m) = :	(0) Time of Free t			/// Bile :- '	
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form	(8) Type of Event (Startup and Shutdown Events Only	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	(12) Describe Emission
Component: A-16 Flare Startup Event x Shutdown Event	6/4/24 12:24	6/4/24 12:26	0.03		Flare shutdown caused due to	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/4/2024	Manual (Go to Section 8) X Automatic (Go to Section 10)		Yes (Go to Section 10) No (Stop)	Yes (Go to Section 11) X No (Stop)	
Malfunction Event x Startup Event Shutdown Event	6/4/24 12:58	6/4/24 13:08	0.17	0.57	overheating of VFD. Flare was inspected and restarted.	118: Construction Activities 116: Well Raising 117: Gas Collection	6/4/2024	X Manual (Go to Section 8) Automatic (Go to Section 8)	Procedure 1 to 4	Yes (Go to Section 10) X No (Stop)	Yes (Go to Section 11) No (Stop)	
Malfunction Event Component: A-16 Flare Startup Event						118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising	0/4/0004	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event Malfunction Event Component: A-15 Flare	6/4/24 13:36	6/4/24 13:38	0.03	0.47	Flare shutdown caused due to overheating of VFD.	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance	6/4/2024	X Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
x Startup Event Shutdown Event Malfunction Event	6/4/24 14:04	6/4/24 14:14	0.17		Flare was inspected and restarted.	116: Well Raising 117: Gas Collection 118: Construction Activities	6/4/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	Yes (Go to Section 10) X No (Stop)	Yes (Go to Section 11) No (Stop)	
Component: A-16 Flare Startup Event x Shutdown Event	6/4/24 14:36	6/4/24 14:38	0.03		Flare shutdown	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/4/2024	Manual (Go to Section 8) X Automatic (Go to Section 10)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event Component: A-15 Flare x Startup Event	6/4/24 14:50	6/4/24 15:00	0.17	0.23	caused due to overheating of VFD. Flare was inspected and restarted.	118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising	6/4/2024	X Automatic (Go to Section 10) X Manual (Go to Section 8)	Procedure	No (Stop) Yes (Go to Section 10)	X No (Stop) Yes (Go to Section 11)	
Shutdown Event Malfunction Event Component: A-16 Flare	5, ,,2,, 14.50	5, 1,2 1 10.00	0.17			117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance		Automatic (Go to Section 10) Manual (Go to Section 8)	1 to 4	X No (Stop) Yes (Go to Section 10)	No (Stop) Yes (Go to Section 11)	
Startup Event x Shutdown Event Malfunction Event	6/4/24 15:16	6/4/24 15:18	0.03	0.57	Flare shutdown caused due to overheating of VFD.	116: Well Raising 117: Gas Collection 118: Construction Activities	6/4/2024	X Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Component: A-15 Flare x Startup Event Shutdown Event Malfunction Event	6/4/24 15:50	6/4/24 16:00	0.17		Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/4/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	Yes (Go to Section 10) X No (Stop)	Yes (Go to Section 11) No (Stop)	
Component: A-16 Flare Startup Event x Shutdown Event Malfunction Event	6/4/24 16:18	6/4/24 16:20	0.03		Flare shutdown caused due to	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/4/2024	Manual (Go to Section 8) X Automatic (Go to Section 10)		Yes (Go to Section 10) No (Stop)	Yes (Go to Section 11) X No (Stop)	
Component: A-15 Flare x Startup Event Shutdown Event	6/5/24 8:26	6/5/24 8:36	0.17	16.13	overheating of VFD. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/5/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	Yes (Go to Section 10) X No (Stop)	Yes (Go to Section 11) No (Stop)	
Malfunction Event Component: A-16 Flare Startup Event x Shutdown Event	6/5/24 11:24	6/5/24 11:26	0.03		Flare shutdown caused due to	118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/5/2024	Manual (Go to Section 8) X Automatic (Go to Section 10)		Yes (Go to Section 10) No (Stop)	Yes (Go to Section 11) X No (Stop)	
Malfunction Event Component: A-15 Flare x Startup Event Shutdown Event	6/5/24 11:58	6/5/24 12:08	0.17	0.57	overheating of VFD. Flare was inspected and restarted.	118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/5/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event Component: A-16 Flare Startup Event						118: Construction Activities X 113: Inspection and Maintenance 116: Well Raising	0/5/0004	Automatic (Go to Section 10) Manual (Go to Section 8)	1 10 4	X No (Stop) Yes (Go to Section 10)	No (Stop) Yes (Go to Section 11)	
x Shutdown Event Malfunction Event Component: A-15 Flare	6/5/24 12:26	6/5/24 12:28	0.03	1.60	Flare shutdown caused due to overheating of VFD. Flare was inspected	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance	6/5/2024	X Automatic (Go to Section 10) X Manual (Go to Section 8)		No (Stop) Yes (Go to Section 10)	X No (Stop) Yes (Go to Section 11)	
x Startup Event Shutdown Event Malfunction Event	6/5/24 14:02	6/5/24 14:12	0.17		and restarted.	116: Well Raising 117: Gas Collection 118: Construction Activities	6/5/2024	Automatic (Go to Section 10)	Procedure 1 to 4	X No (Stop)	No (Stop)	
Component: A-16 Flare Startup Event x Shutdown Event Malfunction Event	6/11/24 11:16	6/11/24 11:18	0.03		Flare shutdown during maintenance on check valve.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/11/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 3	Yes (Go to Section 10) X No (Stop)	Yes (Go to Section 11) No (Stop)	
Component: A-15 Flare x Startup Event Shutdown Event Malfunction Event	6/11/24 12:22	6/11/24 12:32	0.17	1.10	Gasket was replaced. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/11/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	Yes (Go to Section 10) X No (Stop)	Yes (Go to Section 11) No (Stop)	
Component: A-16 Flare Startup Event x Shutdown Event Malfunction Event	6/26/24 7:54	6/26/24 7:56	0.03		Flare shutdown during maintenance	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection 118: Construction Activities	6/26/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 3	Yes (Go to Section 10) X No (Stop)	Yes (Go to Section 11) No (Stop)	
Component: A-15 Flare x Startup Event Shutdown Event	6/26/24 13:42	6/26/24 13:52	0.17	5.80	and cleaning on VFD. Flare was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	6/26/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	Yes (Go to Section 10) X No (Stop)	Yes (Go to Section 11) No (Stop)	
Malfunction Event						118: Construction Activities				(· · · · (- · · · · · /	

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-16 Landfill Gas Flare

Altamont Landfill and Resource Recovery Facility - Livermore, CA												
SSMP REPORT - From								(A) T				
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form	(8) Type of Event (Startup and Shutdown Events Only	(9) Procedures Used		(11) Did Event Cause Any mission Limit Exceedance	(12) Describe Emission
Component: A-16 Flare	Date and Time	Date and Time	or Event (Hours)	Chalacown (Hours)		X 113: Inspection and Maintenance	1 OIIII		1			Lillission
Startup Event	7/14/24 6:52	7/14/24 6:54	0.03		Flare shutdown due	116: Well Raising	7/14/2024	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event Malfunction Event	1714/24 0.02	1114/24 0.04	0.00		to low temperature	117: Gas Collection 118: Construction Activities	771172021	X Automatic (Go to Section 10)		No (Stop)	(No (Stop)	
Component: A-15 Flare				1.50	alarm. Adjusted louvers. Flare was	X 113: Inspection and Maintenance						
x Startup Event	7/14/24 8:22	7/14/24 8:32	0.17		inspected and	116: Well Raising	7/14/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	7/14/24 8:22	7/14/24 8:32	0.17		restarted.	117: Gas Collection	1/14/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event Component: A-16 Flare						118: Construction Activities X 113: Inspection and Maintenance						
Startup Event	7/45/04 5:44	7/45/04 5:40	0.00		Flare shutdown due	116: Well Raising	7/15/2024	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	7/15/24 5:14	7/15/24 5:16	0.03		to low temperature	117: Gas Collection	7/15/2024	X Automatic (Go to Section 10)	1	No (Stop)	(No (Stop)	
Malfunction Event Component: A-15 Flare				0.77	alarm. Adjusted	118: Construction Activities X 113: Inspection and Maintenance				((===p)	
x Startup Event					louvers. Flare was inspected and	116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	7/15/24 6:00	7/15/24 6:10	0.17		restarted.	117: Gas Collection	7/15/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities		, tatomatic (Se to content to)		л но (окор)	110 (0.04)	
Component: A-16 Flare Startup Event					Flare shutdown due	X 113: Inspection and Maintenance 116: Well Raising		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	8/7/24 13:06	8/7/24 13:08	0.03		to overheating of	117: Gas Collection	8/7/2024	X Automatic (Go to Section 10)	1	No (Stop)	(No (Stop)	
Malfunction Event				0.37	VFD. Blower was	118: Construction Activities		Automatic (Go to occasii 10)		No (otop)	140 (0109)	
Component: A-15 Flare x Startup Event					switched. Flare was inspected and	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	8/7/24 13:28	8/7/24 13:38	0.17		restarted.	117: Gas Collection	8/7/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities		Automatic (Go to occurr 10)		х (оюр)	140 (010p)	
Component: A-16 Flare Startup Event						X 113: Inspection and Maintenance 116: Well Raising		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	8/12/24 3:36	8/12/24 3:38	0.03		Flare shutdown due to low temperature	117: Gas Collection	8/12/2024	X Automatic (Go to Section 10)	1	No (Stop)	(No (Stop)	
Malfunction Event				3.37	alarm. Flare was	118: Construction Activities		Automatic (Go to Section 10)		140 (Stop) 7	((Stop)	
Component: A-15 Flare x Startup Event					inspected and	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	8/12/24 6:58	8/12/24 7:08	0.17		restarted.	117: Gas Collection	8/12/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		Α Νο (σιορ)	140 (Stop)	
Component: A-16 Flare Startup Event						X 113: Inspection and Maintenance 116: Well Raising		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	8/18/24 13:28	8/18/24 13:30	0.03		Flare shutdown due	117: Gas Collection	8/18/2024	X Automatic (Go to Section 10)	1	No (Stop)	(No (Stop)	
Malfunction Event				2.60	to low temperature alarm. Flare was	118: Construction Activities		Automatic (Go to Section 10)		No (Stop)	(No (Stop)	
Component: A-15 Flare x Startup Event					inspected and	X 113: Inspection and Maintenance		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	8/18/24 16:04	8/18/24 16:14	0.17		restarted.	117: Gas Collection	8/18/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		Α Νο (σιορ)	140 (Stop)	
Component: A-16 Flare Startup Event						X 113: Inspection and Maintenance 116: Well Raising		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	8/28/24 21:18	8/28/24 21:20	0.03		Flare shutdown due	117: Gas Collection	8/28/2024	X Automatic (Go to Section 10)		No (Stop)	(No (Stop)	
Malfunction Event				9.37	to low temperature alarm. Flare was	118: Construction Activities		Automatic (Go to Section 10)		140 (Stop) 7	((Stop)	
Component: A-15 Flare x Startup Event					inspected and	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	8/29/24 6:40	8/29/24 6:50	0.17		restarted.	117: Gas Collection	8/29/2024	Automotic (Co to Section 10)	1 to 4	X No (Stop)	No (Cton)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: A-16 Flare Startup Event					Flare shutdown	X 113: Inspection and Maintenance 116: Well Raising		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	9/1/24 23:36	9/1/24 23:38	0.03		during utility trip event. Generator	117: Gas Collection	9/1/2024	X Automatic (Go to Section 10)		No (Stop)	(No (Stop)	
Malfunction Event				0.17	restarted and flare	118: Construction Activities		Automatic (Go to Section 10)		ινο (οιορ)	No (Stop)	
Component: A-15 Flare x Startup Event					was online. Flare	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	9/1/24 23:46	9/1/24 23:56	0.17		was inspected and restarted.	117: Gas Collection	9/1/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Ston)	
Malfunction Event					residiteu.	118: Construction Activities		Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: A-16 Flare Startup Event					Flare shutdown	X 113: Inspection and Maintenance 116: Well Raising		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	9/2/24 1:44	9/2/24 1:46	0.03		during switching over	117: Gas Collection	9/2/2024	X Automatic (Go to Section 10)	1	No (Stop)	(No (Stop)	
Malfunction Event				1.27	of power from generator to utility	118: Construction Activities		Automatic (Go to Section 10)		ινο (οιορ)	No (Stop)	
Component: A-15 Flare x Startup Event					power. Flare was	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	9/2/24 3:00	9/2/24 3:10	0.17		inspected and restarted.	117: Gas Collection	9/2/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Sten)	
Malfunction Event					residiteu.	118: Construction Activities		Automatic (Go to Section 10)		v inn (prob)	No (Stop)	
Component: A-16 Flare Startup Event						X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	9/6/24 8:22	9/6/24 8:24	0.03		Flare was shutdown	117: Gas Collection	9/6/2024	Automatia (Ca ta Castia - 10)	1 to 3	X No (Stop)	No (Sten)	
Malfunction Event				0.73	during blower maintenance. Flare	118: Construction Activities		Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: A-15 Flare x Startup Event					was inspected and	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	9/6/24 9:06	9/6/24 9:16	0.17		restarted.	117: Gas Collection	9/6/2024	Automatia (Ca ta Castia - 10)	1 to 4	X No (Stop)	No (Sten)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
			-									

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-16 Landfill Gas Flare

Altamont Landfill and Resource Recovery Facility - Livermore, CA												
SSMP REPORT - From								(8) 7				
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form	(8) Type of Event Startup and Shutdown Events Only	(9) Procedures Used		(11) Did Event Cause Any mission Limit Exceedance	(12) Describe Emission
Component: A-16 Flare	Date and Time	Date and Time	or Everit (Hours)	Silutuowii (Hours)		X 113: Inspection and Maintenance	FOIII		1			EIIIISSIOII
Startup Event		0.0.04.0.40				116: Well Raising	9/6/2024	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	9/6/24 9:10	9/6/24 9:12	0.03		Flare shutdown during startup	117: Gas Collection	9/6/2024	X Automatic (Go to Section 10)	1	No (Stop)	(No (Stop)	
Malfunction Event				0.30	sequence. Flare was	118: Construction Activities		A Automatic (Go to Geodori 16)		140 (OtOp) 7	140 (0109)	
Component: A-15 Flare x Startup Event					inspected and	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	9/6/24 9:28	9/6/24 9:38	0.17		restarted.	117: Gas Collection	9/6/2024	<u> </u>	1 to 4			
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event x Shutdown Event	9/6/24 13:20	9/6/24 13:22	0.03		Flare shutdown due	116: Well Raising 117: Gas Collection	9/6/2024		-	-		
Malfunction Event					to low temperature	118: Construction Activities		X Automatic (Go to Section 10)		No (Stop)	No (Stop)	
Component: A-15 Flare				0.57	alarm. Flare was inspected and	X 113: Inspection and Maintenance		X Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Startup Event	9/6/24 13:54	9/6/24 14:04	0.17		restarted.	116: Well Raising	9/6/2024	X Ivianual (Go to occion o)	Procedure	163 (00 to occitori 10)	res (do to occitori 11)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance		<u> </u>				
Startup Event	9/9/24 21:10	9/9/24 21:12	0.03		Flore should over done	116: Well Raising	9/9/2024	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	9/9/24 21.10	9/9/24 21.12	0.03		Flare shutdown due to low temperature	117: Gas Collection	3/3/2024	X Automatic (Go to Section 10)		No (Stop)	(No (Stop)	
Malfunction Event Component: A-15 Flare				0.37	alarm. Flare was	118: Construction Activities X 113: Inspection and Maintenance						
x Startup Event					inspected and	116: Well Raising	01010001	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	9/9/24 21:32	9/9/24 21:42	0.17		restarted.	117: Gas Collection	9/9/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities		/ taternatio (Se to cooler 10)		л не (окор)	110 (010P)	
Component: A-16 Flare Startup Event						X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	9/24/24 9:30	9/24/24 9:32	0.03		Flare was shutdown	117: Gas Collection	9/24/2024	Automatic (Go to Section 10)	1 to 3	X No (Stop)	N = (04==)	
Malfunction Event				31.90	to install new louvers.	118: Construction Activities		Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: A-15 Flare				31.30	Flare was inspected and restarted.	X 113: Inspection and Maintenance		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
x Startup Event Shutdown Event	9/25/24 17:24	9/25/24 17:34	0.17		and restarted.	116: Well Raising 117: Gas Collection	9/25/2024		1 to 4			
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)	' ''	X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event	9/25/24 17:30	9/25/24 17:32	0.03			116: Well Raising	9/25/2024	manual (co to cocton o)	1	100 (00 to 0001011 10)	100 (00 to 0001011 11)	
x Shutdown Event Malfunction Event					Flare shutdown during pilot error.	117: Gas Collection 118: Construction Activities		X Automatic (Go to Section 10)		No (Stop)	(No (Stop)	
Component: A-15 Flare				0.20	Flare was inspected	X 113: Inspection and Maintenance		X Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Startup Event	9/25/24 17:42	9/25/24 17:52	0.17		and restarted.	116: Well Raising	9/25/2024	x Ivianuai (Go to Section 6)	Procedure	res (Go to Section 10)	res (Go to Section 11)	
Shutdown Event Malfunction Event	0/20/21 11:12	0/20/21 17:02	0			117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance		 				
Startup Event	9/25/24 17:52	9/25/24 17:54	0.03		Flare shutdown	116: Well Raising	9/25/2024	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	9/25/24 17.52	9/23/24 17:34	0.03		during pilot error.	117: Gas Collection	3/20/2024	X Automatic (Go to Section 10)		No (Stop)	(No (Stop)	
Malfunction Event Component: A-15 Flare				0.10	Adjustments were made. Flare was	118: Construction Activities X 113: Inspection and Maintenance						
x Startup Event	0.05.04.43.50	0.05.04.40.00			inspected and	116: Well Raising	9/25/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	9/25/24 17:58	9/25/24 18:08	0.17		restarted.	117: Gas Collection	9/23/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event Component: A-16 Flare						118: Construction Activities X 113: Inspection and Maintenance						
Startup Event						116: Well Raising		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	9/30/24 13:30	9/30/24 13:32	0.03		Flare shutdown due to low temperature	117: Gas Collection	9/30/2024	X Automatic (Go to Section 10)	1	No (Stop)	(No (Stop)	l
Malfunction Event				0.10	alarm. Flare was	118: Construction Activities		Automatic (Go to Section 10)		ivo (Stop)	(Stop)	
Component: A-15 Flare x Startup Event					inspected and	X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	l
Shutdown Event	9/30/24 13:36	9/30/24 13:46	0.17		restarted.	117: Gas Collection	9/30/2024	A. da dia (O - da O 11 - 12)	1 to 4	X No (Stop)	No (Otern)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance		X Manual (Go to Section 8)	Dree - dree	Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event x Shutdown Event	10/9/24 10:16	10/9/24 10:18	0.03		Flare shutdown	116: Well Raising 117: Gas Collection	10/9/2024		Procedure 1 to 3			
Malfunction Event					during repair on flame	118: Construction Activities		Automatic (Go to Section 10)	1 10 3	X No (Stop)	No (Stop)	
Component: A-15 Flare				0.77	eye. Flare was inspected and	X 113: Inspection and Maintenance		X Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Startup Event	10/9/24 11:02	10/9/24 11:12	0.17		restarted.	116: Well Raising	10/9/2024		Procedure	. 30 (00 10 00010/1 10)	(60 to 600001111)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance		Manual (Co to Soction 9)	1	Yes (Go to Section 10)	Voc (Go to Section 11)	
Startup Event	10/9/24 11:10	10/9/24 11:12	0.03		Flare shutdown due	116: Well Raising	10/9/2024	Manual (Go to Section 8)	1	res (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	10,0,2 7 11.10	10/0/2711.12	0.00		to low temperature	117: Gas Collection		X Automatic (Go to Section 10)		No (Stop)	(No (Stop)	
Malfunction Event Component: A-15 Flare				0.13	alarm. Flare was	118: Construction Activities X 113: Inspection and Maintenance			-			
x Startup Event	10/9/24 11:18	10/9/24 11:28	0.17		inspected and restarted.	116: Well Raising	10/9/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	10/9/24 11:18	10/9/24 11:28	0.17		restarteu.	117: Gas Collection	10/9/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities				(/	(

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-16 Landfill Gas Flare

AFFECTED EQUIPMENT. A-16 Landini Gas Flate
Altamont Landfill and Resource Recovery Facility - Livermore CA

Altamont Landfill and												
SSMP REPORT - From		November 30, 20										
Identify Flare & Check	(1) Start of Event	(2) End of Event	(3) Duration	(4) Duration	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date	(8) Type of Event	(9) Procedures Used	(10) Did Steps Taken Vary	(11) Did Event Cause Any	(12) Describe
Applicable Event	Date and Time	Date and Time	of Event (Hours)	Shutdown (Hours)	(b) baabb or reason		Form	(Startup and Shutdown Events Only	(0)1100000000	From Section 9?	Emission Limit Exceedance	Emission
Component: A-16 Flare						X 113: Inspection and Maintenance		X Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event	10/9/24 11:22	10/9/24 11:24	0.03		Flare shutdown due	116: Well Raising	10/9/2024	(4 .,	Procedure	(,	
x Shutdown Event					to low temperature	117: Gas Collection		Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Malfunction Event Component: A-15 Flare				0.07	alarm. Flare was	118: Construction Activities X 113: Inspection and Maintenance						
x Startup Event					inspected and	116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	10/9/24 11:26	10/9/24 11:36	0.17		restarted.	117: Gas Collection	10/9/2024		1 to 4			
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)	1 10 4	X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance		Y		V (0 1 0 11 10)	V (0 1 0 1 11)	
Startup Event	40/0/04 44:04	40/0/04 44-00	0.00			116: Well Raising	10/9/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	10/9/24 11:34	10/9/24 11:36	0.03		Flare shutdown due	117: Gas Collection	10/9/2024	Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Malfunction Event				0.27	to low temperature alarm. Flare was	118: Construction Activities		Automatic (Go to Section 10)		A (Gtop)	140 (Stop)	
Component: A-15 Flare				0.27	inspected and	X 113: Inspection and Maintenance		X Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Startup Event	10/9/24 11:50	10/9/24 12:00	0.17		restarted.	116: Well Raising	10/9/2024	(4 .,	Procedure	(,	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance						
Startup Event						116: Well Raising		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	10/9/24 14:24	10/9/24 14:26	0.03		Flare shutdown due	117: Gas Collection	10/9/2024	W 4	†	11 12 1	N 10 1	
Malfunction Event					to low temperature	118: Construction Activities		X Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Component: A-15 Flare				0.50	alarm. Flare was	X 113: Inspection and Maintenance		X Manual (Go to Section 8)		Vac (Ca to Section 10)	Vec (Ce to Section 11)	
x Startup Event	10/9/24 14:54	10/9/24 15:04	0.17		inspected and restarted	116: Well Raising	10/9/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	10/9/24 14.54	10/9/24 15.04	0.17		restarted.	117: Gas Collection	10/5/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities		Filatoritatio (Go to occitori 10)		/ No (otop)	110 (0.05)	
Component: A-16 Flare						X 113: Inspection and Maintenance		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event	10/9/24 17:26	10/9/24 17:28	0.03		Flare shutdown	116: Well Raising	10/9/2024	, ,		` ` `	` `	
x Shutdown Event Malfunction Event					during vendor-APTIM	117: Gas Collection 118: Construction Activities		X Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Component: A-15 Flare				18.90	program upgrade.	X 113: Inspection and Maintenance						
x Startup Event					Flare was inspected	116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	10/10/24 12:20	10/10/24 12:30	0.17		and restarted.	117: Gas Collection	10/10/2024	1	1 to 4	V 11 /0/ \	11 (01)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance	İ	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event	10/10/24 12:24	10/10/24 12:26	0.03		Flare shutdown due	116: Well Raising	10/10/2024	Maridai (Go to Section 6)		res (Go to Section 10)	res (Go to Section 11)	
x Shutdown Event	10/10/24 12.24	10/10/24 12.20	0.03		to low temperature	117: Gas Collection	10/10/2024	X Automatic (Go to Section 10)]	No (Stop)	X No (Stop)	
Malfunction Event				0.27	alarm. Flare was	118: Construction Activities		A Flaterialia (Ga ta additori 10)		no (otop)	Λ (διορ)	
Component: A-15 Flare					inspected and	X 113: Inspection and Maintenance		X Manual (Go to Section 8)	D d	Yes (Go to Section 10)	Yes (Go to Section 11)	
x Startup Event Shutdown Event	10/10/24 12:40	10/10/24 12:50	0.17		restarted.	116: Well Raising 117: Gas Collection	10/10/2024	` ` `	Procedure 1 to 4	,	<u> </u>	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)	1 10 4	X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance	1					
Startup Event					Flare shutdown	116: Well Raising		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	10/21/24 6:42	10/21/24 6:44	0.03		during utility trip	117: Gas Collection	10/21/2024	X Automatic (Go to Section 10)	1	No (Sten)	V No (Stan)	
Malfunction Event				0.17	event. Generator	118: Construction Activities		Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Component: A-15 Flare				0.17	restarted. Flare was	X 113: Inspection and Maintenance		X Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Startup Event	10/21/24 6:52	10/21/24 7:02	0.17		inspected and	116: Well Raising	10/21/2024	A manaa (Co to Coston C)	Procedure	100 (00 to 000.011 10)	100 (00 to 0001011 11)	
Shutdown Event	10/2 1/2 1 0:02	10/21/21/1.02	0		restarted.	117: Gas Collection		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities	<u> </u>	` '		` ''	,	
Component: A-16 Flare Startup Event						X 113: Inspection and Maintenance 116: Well Raising	1	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event	10/21/24 7:34	10/21/24 7:36	0.03		Flare shutdown	117: Gas Collection	10/21/2024		1 to 3			
Malfunction Event				l	during to switchover	118: Construction Activities	1	Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: A-15 Flare				0.43	to utility power. Flare	X 113: Inspection and Maintenance		V Manual (Ca ta Seating C)		Ves (Ce to Ceeti 40)	Vac (Ca to Castis - 44)	
x Startup Event	10/21/24 8:00	10/21/24 8:10	0.17		was inspected and restarted.	116: Well Raising	10/21/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	10/21/24 0.00	10/21/24 0.10	0.17		restarteu.	117: Gas Collection	10/2 1/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities		7.00.00.00.00.00.00.00.00.00.00.00.00.00		(Otop)	(0:00)	
Component: A-16 Flare						X 113: Inspection and Maintenance	1	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event	11/15/24 10:32	11/15/24 10:34	0.03		Flare shutdown	116: Well Raising	11/15/2024	` '/	1		<u> </u>	
x Shutdown Event Malfunction Event					caused due to blower bearing high	117: Gas Collection 118: Construction Activities		X Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Component: A-15 Flare				0.63	temperature alarm.	X 113: Inspection and Maintenance	1					
x Startup Event					Flare was inspected	116: Well Raising		X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	11/15/24 11:10	11/15/24 11:20	0.17		and restarted.	117: Gas Collection	11/15/2024	A. t ti- (O. t. O	1 to 4	X No (Stop)	N - (O+)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: A-16 Flare						X 113: Inspection and Maintenance		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event	11/23/24 5:54	11/23/24 5:56	0.03		Flare shutdown	116: Well Raising	11/23/2024	manual (Go to Geetlon 6)]	. 63 (50 10 5001011 10)	. 55 (50 to 500ti01111)	
x Shutdown Event	, 20, 27 0.07	, 20, 24 0.00	0.00		caused due to blower	117: Gas Collection	0,2024	X Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Malfunction Event				0.97	bearing high	118: Construction Activities	1	(22 12 22 23 26 17 10)		(/	(
Component: A-15 Flare					temperature alarm.	X 113: Inspection and Maintenance	1	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
x Startup Event Shutdown Event	11/23/24 6:52	11/23/24 7:02	0.17		Flare was inspected and restarted.	116: Well Raising 117: Gas Collection	11/23/2024		Procedure 1 to 4			
Malfunction Event					and restarted.	117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 10 4	X No (Stop)	No (Stop)	
I-Manufiction Event				1	l	11.10. Constituction Activides	1					

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: A-16 Landfill Gas Flare Altamont Landfill and Resource Recovery Facility - Livermore, CA

Completed By: Dan Sanjose/ Garry Carpenter/Rajan Phadnis

Altamont Lanami and	itesource itecov	cry r denity - Live	illioic, oa											
SSMP REPORT - From	June 1, 2024 to	November 30, 20	24											
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form	(Star	(8) Type of Event tup and Shutdown Events Only	(9) Procedures Used	(10	0) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	(12) Describe Emission
Component: A-16 Flare Startup Event	11/23/24 10:36	11/23/24 10:38	0.03		Flare shutdown	X 113: Inspection and Maintenance 116: Well Raising	11/23/2024		Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event Malfunction Event	11/23/24 10.30	11/23/24 10:30	0.03	21.43	caused due to blower bearing high	118: Construction Activities	11/20/2024	х	Automatic (Go to Section 10)			No (Stop)	X No (Stop)	
Component: A-15 Flare x Startup Event	11/24/24 8:02	11/24/24 8:12	0.17	21.40	temperature alarm. Flare was inspected	X 113: Inspection and Maintenance 116: Well Raising	11/24/2024	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	1 1/2 1/2 1 0:02	1020210.12	6.11		and restarted.	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: A-16 Flare Startup Event	11/24/24 11:04	11/24/24 11:06	0.03			X 113: Inspection and Maintenance 116: Well Raising	11/24/2024	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
x Shutdown Event Malfunction Event	11/24/24 11:04	11124124 11.00	0.00	1.83	Flare shutdown to switch blowers. Flare		1 1/2 1/2021		Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: A-15 Flare x Startup Event	11/24/24 12:54	11/24/24 13:04	0.17	1.00	was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	11/24/2024	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	11/24/24 12:04	11124124 10.04	0.17			117: Gas Collection 118: Construction Activities	11/24/2024		Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	

Note The A-16 SSM Log is maintained pursuant to Permit Condition No. 19235, Part 2.

There were 721 hours available for the A-15 Flare in November 2024 due to Daylight Saving Time.

Total Downtime for January 1, 2024 to November 30, 2024 (Hours)*	231.1
Total Downtime for June 1, 2024 to November 30, 2024 (Hours)*	127.1
Total Runtime for June 1, 2024 to November 30, 2024 (Hours)*	4,265.9
Total Count for June 1, 2024 to November 30, 2024	38

(a) STANDARD OPERATING PROCEDURES

Shutdown Procedure No.

- Procedure

 Ensure that there are no unsafe conditions present, contact manager immediately
 Initiate shutdown sequence below by one or more of the following (Note date and time in Section 1 of form above)
 Press Emergency Stop if necessary
 Close On/Off switch(e) or Push On/Off button(s)
 Close adjacent valves if necessary
 Observe that system achieves normal shutdown ranges for levels, pressures, and temperatures (Note date and time in Section 2 of form above) 3

Startup Procedure No.

- Procedure

 Ensure that there are no unsafe conditions present
 Ensure that the system is ready to start by one of the following:
 Valves are in correct position
 Levels, pressures, and temperatures are within normal starting range
 Alarms are cleared
 Power is on and available to control panel and ready to energize equipment.
 Emergency stop is de-energized
 Initiate start sequence (Note time and date in section 1 of form above)
- Observe that system achieves normal startup ranges for levels, pressures, and temperatures (Note time and date in Section 2 of form above)

Malfunction

PURPOSE	MALFUNCTION EVENT	COMMON CAUSES	PROCEDURE NOTYPICAL RESPONSE ACTIONS
System			
		-Flame arrestor fouling/deterioration	Repair breakages in extraction piping
	Malfunction	-Automatic valve problems	Clean flame arrestor
control device			Repair blockages in extraction piping
			437.50
		-Loss or power	Verify automatic valve operation, compressed air/nitrogen supply
		-Extraction piping failure	Notify power utility, if appropriate
			Provide/utilize auxiliary power source, if necessary
		*	7. Repair Settlement in Collection Piping
			8. Repair Blower
			Repair Blower Activate back-up blower, if available Clean knock-up pot/demister
			11. Drain knock-out pot
Conduits for extractions and movement of LFG flow	Collection well and pipe failures	-Break/crack in header or lateral piping	12. Repair leaks or breaks in lines or wellheads
		-Leaks at wellheads, valves, flanges, Test ports, seals, couplings, etc.	13. Follow procedures for loss of LFG flow/blower malfunction
		-Collection piping blockages	14. Repair blockages in collection piping
		-Problems due to settlement (e.g. pipe separation, deformation, development of low points)	15. Repair settlement in collection piping
			16. Re-install, repair, or replace piping
Collection and control of LFG	Loss of electrical power	- Force majeure/Act of God (e.g.,	17. Check/reset breaker
	,	lightning, flood, earthquake, etc.)	·
		-Area-wide or local blackout or brown-	18. Check/repair electrical panel components
		-Interruption in service (e.g. blown service fuse)	19. Check/repair transformer
		-Electrical line failure	20. Check/repair motor starter
		-Breaker trip	21. Check/repair electrical line
		-	22. Test amperage to various equipment
		-	23. Contact electricity supplier
		-Overdraw of power	24. Contact/contract electrician
		-Problems in electrical panel	25.Provide auxiliary power (if necessary)
		-Damage to electrical equipment from	
		on-site operations	
Combusts LFG	Low temperature conditions at	-Problems with temperature -	26. Check/repair temperature monitoring equipment
	control device	monitoring equipment	, , , , , , , , , , , , , , , , , , , ,
		-Problems/failure of -thermocouple and/or thermocouple wiring	27. Check/repair thermocouple and/or wiring
		-Change of LFG flow	28. Follow procedures for loss of flow/blower
		-Change of LFG quality	29. Check/adjust louvers
		-Problems with air louvers	30. Check/adjust air/fuel controls
		-Problems with air/firel controls	
Combusts LFG	Loss of Flame		31. Check/repair temperature monitoring equipment
		-Loss/change of LFG flow	32. Check/repair thermocouple
		-Loss/change of LFG quality	33. Follow procedures for loss of flow/blower malfunction
		-Problems with air/fuel controls	34. Check/adjust air/fuel controls
	1	-Problems/failure of flame sensor	35. Check/adjust/repair flame sensor
	System Applies vacuum to wellfield to extract LFG and transport to control device Conduits for extractions and movement of LFG flow Collection and control of LFG Combusts LFG	System Applies vacuum to wellfield to extract LFG and transport to control device Conduits for extractions and movement of LFG flow Collection and control of LFG Loss of electrical power Collection and control of LFG Loss of electrical power Loss of electrical power	EVENT

Flow Monitoring/	Measures and records gas flow from collection system to control	Malfunctions of Flow Monitoring/Recording Device	-Problems with orifice plate, pitot tube, or other in-line flow measuring device	37. Check/adjust/repair flow measuring device and/or wiring
Recording Device			-Problems with device controls and/or wiring -Problems with chart recorder	38. Check/repair chart recorder 39. Replace paper in chart recorder
Temperature Monitoring/ Recording Device	Monitors and records combustion temperature of enclosed combustion device	Malfunctions of Temperature Monitoring/Recording Device	-Problems with thermocouple -Problems with device controls and/or wiring	40. Check/adjust/repair thermocouple 41. Check/adjust/repair controller and/or wiring
			-Problems with chart recorder	Check/adjust/repair electrical panel components Check/repair chart recorder
				44. Replace paper in chart recorder
Control Device	Combusts LFG	Other Control Device Malfunctions	-Control device smoking (i.e. visible emissions)	45. Site-specific diagnosis procedures
			-Problems with flare insulation -Problems with pilot light system	Site-specific responses actions based on diagnosis Open manual louvers
			-Problems with air louvers	48. Clean pitot orifice
			-Problems with air/fuel controllers	49. Clean/drain flame arrestor
			-Problems with thermocouple	50. Refill propane supply
			-Problems with burners	51. Check/repair pilot sparking system
			-Problems with flame arrester	
			-Alarmed malfunction conditions not covered above	
			-Unalarmed conditions discovered during inspection not covered above	

(b) For each permit limit exceedance complete an "SSM Plan Departure Form". Notify BAAQMD verbally or by fax within 2 working days after commencing the actions that an event inconsistent with the SSM Plan and which resulted in an exceedance of an applicable emission permit has occured. Follow up in writing to the agency within 7 working days after the end of the event.

APPENDIX D TURBINES (S-6 AND S-7) SSM LOGS

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: S-6 Turbine Number 1

Completed By: Larry Lacerra/Rajan Phadnis

AFFECTED EQUIPMENT: 5-5 Turbine number 1 Altamont Resource Recovery Facility - Livermore, CA													
SSMP REPORT - From													
Identify Flare & Check	(1) Start of Event		(3) Duration	(4) Duration		T	(7) Data		(8) Type of Event		(10) Did Ctone Teles Ven	(11) Did Event Cours Any	(12) Describe
Applicable Event	Date and Time	Date and Time	of Event (Hours)	Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form	(Sta	rtup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	(12) Describe Emission
Component: S-6 Turbine	Date and Time	Date and Time	or Evolit (Flodio)	Ondidown (nodio)		X 113: Inspection and Maintenance							
Startup Event	†I					116: Well Raising	=::::::::::::::::::::::::::::::::::::::	×	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event	7/10/24 8:08	7/10/24 8:12	0.07		Shutdown during water	117: Gas Collection	7/10/2024		Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Malfunction Event				2.63	wash. Changed desiccant.	118: Construction Activities			Automatic (Go to Section 10)		A NO (Stop)	No (Stop)	
Component: S-6 Turbine				2.00		X 113: Inspection and Maintenance		x	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Startup Event Shutdown Event	7/10/24 10:46	7/10/24 10:50	0.07		restarted.	116: Well Raising 117: Gas Collection	7/10/2024		,	Procedure	(-	,	
Malfunction Event	- 1					117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: S-6 Turbine						X 113: Inspection and Maintenance					14 40 4 0 4 40	V 10 1 0 1 10	
Startup Event	7/17/24 8:38	7/17/24 8:42	0.07			116: Well Raising	7/17/2024	^	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event	1/11/24 0.30	1/11/24 0.42	0.07		Shutdown to change	117: Gas Collection	7/17/2024		Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Malfunction Event				1.13	Duplex oil filters. Turbine	118: Construction Activities					(==============================	(=)	
Component: S-6 Turbine X Startup Event	- 1				was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising		х	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	7/17/24 9:46	7/17/24 9:50	0.07		restarted.	117: Gas Collection	7/17/2024			1 to 4			
Malfunction Event	i l					118: Construction Activities			Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: S-6 Turbine						X 113: Inspection and Maintenance		x	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event	7/31/24 10:14	7/31/24 10:18	0.07			116: Well Raising	7/31/2024	^`	manda (Go to Godani o)	Procedure	100 (00 to 0001011 10)	100 (00 to 0000011 11)	
X Shutdown Event Malfunction Event					Shutdown during water	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Component: S-6 Turbine				1.50	wash. Turbine was	X 113: Inspection and Maintenance							
X Startup Event					inspected and restarted.	116: Well Raising	=:0.1:000.1	×	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	7/31/24 11:44	7/31/24 11:48	0.07			117: Gas Collection	7/31/2024		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities			Automatic (Go to Section 10)		A NO (Stop)	No (Stop)	
Component: S-6 Turbine						X 113: Inspection and Maintenance		х	Manual (Go to Section 8)	D d	Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event X Shutdown Event	8/8/24 9:48	8/8/24 9:52	0.07		Object description of the control of	116: Well Raising 117: Gas Collection	8/8/2024		,	Procedure	.,	, ,	
Malfunction Event	 				Shutdown to change Oil/Gas and final filters.	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Component: S-6 Turbine				1.37		X 113: Inspection and Maintenance		V	Managed (Oa to Oa et an O)		V (0- t- 0t 40)	V (0- t- 0t 44)	
X Startup Event	8/8/24 11:10	8/8/24 11:14	0.07		restarted.	116: Well Raising	8/8/2024	^	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	0/0/24 11.10	0/0/24 11.14	0.07			117: Gas Collection	0/0/2024		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Malfunction Event						118: Construction Activities					(=	(=)	
Component: S-6 Turbine Startup Event	-					X 113: Inspection and Maintenance 116: Well Raising		X	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event	8/8/24 21:02	8/8/24 21:06	0.07		Shutdown during 230 KV	117: Gas Collection	8/8/2024			1 to 3			
Malfunction Event	1			2.30	trip. Turbine #2 operating on island mode. Turbine	118: Construction Activities			Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: S-6 Turbine				2.30	was inspected and	X 113: Inspection and Maintenance		x	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Startup Event	8/8/24 23:20	8/8/24 23:24	0.07		restarted.	116: Well Raising	8/8/2024			Procedure	(**	(0	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: S-6 Turbine						X 113: Inspection and Maintenance							
Startup Event	9/1/24 23:32	9/1/24 23:36	0.07			116: Well Raising	9/1/2024		Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event	9/1/24 23:32	9/1/24 23:36	0.07		Shutdown during Ralph	117: Gas Collection	9/1/2024	х	Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Malfunction Event				2.30	Substation - 230 kV breaker			^	Adicinate (Go to Geetion 10)		140 (010p)	х но (оюр)	
Component: S-6 Turbine X Startup Event					trip. Turbine was inspected and restarted.	X 113: Inspection and Maintenance		х	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	9/2/24 1:50	9/2/24 1:54	0.07		and restaited.	117: Well Raising 117: Gas Collection	9/2/2024			1 to 4			
Malfunction Event	1					118: Construction Activities			Automatic (Go to Section 10)	1 10 4	X No (Stop)	No (Stop)	
Component: S-6 Turbine						X 113: Inspection and Maintenance		Y	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event	9/4/24 8:24	9/4/24 8:28	0.07		Shutdown during water	116: Well Raising	9/4/2024		Maridal (GO to Section 6)	Procedure	res (Go to Section 10)	res (GO to Section 11)	
X Shutdown Event	0/1/2/0.2/	0/ 1/2 / 0.20	0.01		wash, Roots oil & filter	117: Gas Collection			Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Malfunction Event Component: S-6 Turbine				4.40	changed. Duplex oil filters	X 113: Inspection and Maintenance							
X Startup Event	1				changed. Turbine was	116: Well Raising		X	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event	9/4/24 12:48	9/4/24 12:52	0.07		inspected and restarted.	117: Gas Collection	9/4/2024		Automatic (Go to Section 10)	1 to 4	V Na (Ctan)	No (Cton)	
Malfunction Event	1					118: Construction Activities			Automatic (Go to Section 10)		X No (Stop)	No (Stop)	
Component: S-6 Turbine					Shutdown during Howden	X 113: Inspection and Maintenance		х	Manual (Go to Section 8)	D	Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event	9/7/24 9:34	9/7/24 9:38	0.07		Lube Oil Differential	116: Well Raising	9/7/2024			Procedure			
X Shutdown Event Malfunction Event	 				Pressure Low. Lube oil	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	l
Component: S-6 Turbine				6.20	pump failed. Replaced	V 440 been die een ditteleten een ee		.,			14 40 4 0 4 40	V 40 1 0 1 40	
X Startup Event	9/7/24 15:46	9/7/24 15:50	0.07		gearbox (seal leaking, noisy bearings). Turbine was	116: Well Raising	9/7/2024	X	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	l
Shutdown Event	311124 13.40	311124 13.30	0.07		inspected and restarted.	117: Gas Collection	51112024		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	l
Malfunction Event					,	118: Construction Activities		H	(10 0001011 10)		(0.04)	(0.00)	
Component: S-6 Turbine Startup Event	4 l					X 113: Inspection and Maintenance 116: Well Raising		Х	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	l
X Shutdown Event	9/12/24 6:46	9/12/24 6:50	0.07		Shutdown during skid lube	116: Well Raising 117: Gas Collection	9/12/2024	\vdash	· · · · · · · · · · · · · · · · · · ·	1 to 3	H		l
Malfunction Event	†				oil pump gearbox mounts	118: Construction Activities			Automatic (Go to Section 10)		X No (Stop)	No (Stop)	l
Component: S-6 Turbine				2.57	welding. Turbine was	X 113: Inspection and Maintenance		х	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Startup Event	9/12/24 9:20	9/12/24 9:24	0.07		inspected and restarted.	116: Well Raising	9/12/2024	^		Procedure	. 33 (30 10 0001011 10)	.63 (00 to 0001011 11)	l
Shutdown Event	-7.22.0.20		0.01			117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	l
Malfunction Event				I		1118: Construction Activities			· · · · · · · · · · · · · · · · · · ·				

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: S-6 Turbine Number 1

Completed By: Larry Lacerra/Rajan Phadnis

Afrecies Equipment: 3-6 furbile Number 1 Altamont Landfill and Resource Recovery Facility - Livermore, CA													
SSMP REPORT - From													
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form	(Sta	(8) Type of Event rtup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	(12) Describe Emission
Component: S-6 Turbine Startup Event	9/26/24 8:14	9/26/24 8:18	0.07			X 113: Inspection and Maintenance 116: Well Raising	9/26/2024	х	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	3/20/24 0.14	3/20/24 0.10	0.07	1.77	Shutdown during water wash. Radiator flushed,	117: Gas Collection 118: Construction Activities	0/20/2021		Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Component: S-6 Turbine X Startup Event	9/26/24 10:00	9/26/24 10:04	0.07		belts changed. Turbine was inspected and restarted.	X 113: Inspection and Maintenance	9/26/2024	х	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event Component: S-6 Turbine						117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Startup Event X Shutdown Event	10/15/24 8:26	10/15/24 8:30	0.07		Shutdown during water	116: Well Raising	10/15/2024	X	Manual (Go to Section 8)	Procedure 1 to 3	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event Component: S-6 Turbine				2.0	wash, and maintenance on Turbine oil and final filters. Turbine was inspected and	118: Construction Activities		v	Automatic (Go to Section 10) Manual (Go to Section 8)	1 10 0	X No (Stop) Yes (Go to Section 10)	No (Stop) Yes (Go to Section 11)	
X Startup Event Shutdown Event	10/15/24 10:28	10/15/24 10:32	0.07		restarted.	116: Well Raising 117: Gas Collection	10/15/2024	_	Automatic (Go to Section 10)	Procedure 1 to 4	X No (Stop)	No (Stop)	
Malfunction Event Component: S-6 Turbine						118: Construction Activities X 113: Inspection and Maintenance			Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	10/21/24 6:40	10/21/24 6:44	0.07		Shutdown during 21.5 kv	116: Well Raising 117: Gas Collection 118: Construction Activities	10/21/2024	х	Automatic (Go to Section 10)	_	No (Stop)	X No (Stop)	
Component: S-6 Turbine X Startup Event				1.1	feeder trip. Turbine was inspected and restarted.	X 113: Inspection and Maintenance		х	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	10/21/24 7:48	10/21/24 7:52	0.07			117: Gas Collection 118: Construction Activities	10/21/2024		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: S-6 Turbine Startup Event	10/21/24 9:12	10/21/24 9:16	0.07			X 113: Inspection and Maintenance 116: Well Raising	10/21/2024	х	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event Component: S-6 Turbine				1.2	Shutdown to shimm and adjust lube oil pump. Turbine was inspected and	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
X Startup Event Shutdown Event	10/21/24 10:26	10/21/24 10:30	0.07		restarted.	116: Well Raising 117: Gas Collection	10/21/2024	X	Manual (Go to Section 8)	Procedure 1 to 4	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event Component: S-6 Turbine						118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 10 1	X No (Stop)	No (Stop)	
Startup Event X Shutdown Event	10/31/24 3:40	10/31/24 3:44	0.07		Shutdown during Ralph Substation - 230 kV breaker	116: Well Raising 117: Gas Collection	10/31/2024	¥	Manual (Go to Section 8) Automatic (Go to Section 10)	_	Yes (Go to Section 10) No (Stop)	Yes (Go to Section 11) X No (Stop)	
Malfunction Event Component: S-6 Turbine				2.8	trip. Turbine #2 on island mode. Turbine was	118: Construction Activities X 113: Inspection and Maintenance		X	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Startup Event Shutdown Event Malfunction Event	10/31/24 6:30	10/31/24 6:34	0.07		inspected and restarted.	116: Well Raising 117: Gas Collection 118: Construction Activities	10/31/2024		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Component: S-6 Turbine Startup Event						X 113: Inspection and Maintenance			Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	11/1/24 23:40	11/1/24 23:44	0.07	3.2	Shutdown during Ralph Substation - 230 kV breaker trip. Turbine #2 on island	117: Gas Collection 118: Construction Activities	11/1/2024	х	Automatic (Go to Section 10)		No (Stop)	X No (Stop)	
Component: S-6 Turbine X Startup Event	11/2/24 2:50	11/2/24 2:54	0.07	3.2	mode. Turbine was inspected and restarted.	X 113: Inspection and Maintenance	11/2/2024	х	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event Component: S-6 Turbine						117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	
Startup Event X Shutdown Event	11/5/24 8:14	11/5/24 8:18	0.07		Shutdown to water wash.	116: Well Raising	11/5/2024	X	Manual (Go to Section 8)	Procedure 1 to 3	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event Component: S-6 Turbine				2.9	Duplex oil filters changed. Replaced lube oil pump. Turbine was inspected and	118: Construction Activities X 113: Inspection and Maintenance		_	Automatic (Go to Section 10) Manual (Go to Section 8)		X No (Stop) Yes (Go to Section 10)	No (Stop) Yes (Go to Section 11)	
X Startup Event Shutdown Event	11/5/24 11:06	11/5/24 11:10	0.07		restarted.	116: Well Raising 117: Gas Collection	11/5/2024	<u> </u>	Automatic (Go to Section 10)	Procedure 1 to 4	X No (Stop)	No (Stop)	
Malfunction Event Component: S-6 Turbine						118: Construction Activities X 113: Inspection and Maintenance			Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	11/13/24 21:56	11/13/24 22:00	0.07		Shutdown due to Howden Lube Oil Level Low.	116: Well Raising 117: Gas Collection 118: Construction Activities	11/13/2024	х	Automatic (Go to Section 10)	-	No (Stop)	X No (Stop)	
Component: S-6 Turbine X Startup Event	44/42/24 22.54	44/42/24 22,52	0.07	2.0	Turbine was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	11/12/2021	х	Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	11/13/24 23:54	11/13/24 23:58	0.07			117: Gas Collection 118: Construction Activities	11/13/2024		Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: S-6 Turbine Number 1

Completed By: Larry Lacerra/Rajan Phadnis

Altamont Landfill and F	Resource Recove	ry Facility - Liver	more, CA									
SSMP REPORT - From	June 1, 2024 to I	November 30, 202	24									
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form	(8) Type of Event (Startup and Shutdown Events Only)	(9) Procedures Used	(10) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	(12) Describe Emission
Component: S-6 Turbine Startup Event	11/15/24 10:02	11/15/24 10:06	0.07			X 113: Inspection and Maintenance 116: Well Raising	11/15/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	11/13/24 10:02	11/13/24 10:00	0.07	1.0	Shutdown during water wash, Turbine was	117: Gas Collection 118: Construction Activities	11/13/2024	Automatic (Go to Section 10)	1 to 3	X No (Stop)	No (Stop)	
Component: S-6 Turbine X Startup Event	11/15/24 11:02	11/15/24 11:06	0.07	1.0	inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	11/15/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	11/10/24 11:02	11/13/24 11:00	5.07			117: Gas Collection 118: Construction Activities	1.1,13/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)	

Notes: The S-6 SSM Log is maintained pursuant to Permit Condition No. 18773, Part 8
There were 721 hours available for the Turbine S-7 in November 2024 due to Daylight Saving Time.

Total Downtime for January 1, 2024 to November 30, 2024 (Hours)*	83.6
Total Downtime for June 1, 2024 to November 30, 2024 (Hours)*	51.0
Total Runtime for June 1, 2024 to November 30, 2024 (Hours)*	4,342.0
Total Count for June 1, 2024 to November 30, 2024	21

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: S-7 Turbine Number 2

Completed By: Larry Lacerra/Rajan Phadnis

	Altamont Landfill and Resource Recovery Facility - Livermore, CA SSMP REPORT - From June 1, 2024 to November 30, 2024													
Identify Flare & Check	(1) Start of Event	(2) End of Event	(3) Duration	(4) Duration		T	(7) Date	_	(8) Type of Event		/1	0) Did Steps Taken Vary	(11) Did Event Cause Any	(12) Describe Emission
Applicable Event	Date and Time	Date and Time	of Event (Hours)	Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	Form	(Starti	up and Shutdown Events Only)	(9) Procedures Used	('	From Section 9?	Emission Limit Exceedance	Standard(s) Exceeded
Component: S-7 Turbine Startup Event	6/9/24 4:40	6/9/24 4:44	0.07		Shutdown during	X 113: Inspection and Maintenance 116: Well Raising	6/9/2024		Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	0/3/24 4.40	0/3/24 4.44	0.07	2.30	Emergency Fire Detection (malfunctioning heat probe)	117: Gas Collection 118: Construction Activities	0/3/2024		Automatic (Go to Section 10)			No (Stop)	X No (Stop)	
X Startup Event	6/9/24 6:58	6/9/24 7:02	0.07		Turbine was inspected and restarted		6/9/2024	X	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	6/9/24 6:58	6/9/24 7:02	0.07		restarted.	117: Gas Collection 118: Construction Activities	6/9/2024		Automatic (Go to Section 10)	1 to 4	Х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	6/10/24 6:40	6/10/24 6:44	0.07		Shutdown during	X 113: Inspection and Maintenance 116: Well Raising	6/10/2024		Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event		37.57.2.5		0.73	Emergency Fire Detection (malfunctioning heat probe)	117: Gas Collection 118: Construction Activities		x .	Automatic (Go to Section 10)			No (Stop)	X No (Stop)	
Component: S-7 Turbine X Startup Event	6/10/24 7:24	6/10/24 7:28	0.07		Failed Z2084 Flex I/O replaced. Turbine was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	6/10/2024	x	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event					inspected and restarted.	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	6/10/24 9:56	6/10/24 10:00	0.07		Shutdown during	X 113: Inspection and Maintenance 116: Well Raising	6/10/2024		Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				3.47	Emergency Fire Detected (malfunctioning heat probe	117: Gas Collection 118: Construction Activities		x .	Automatic (Go to Section 10)			No (Stop)	X No (Stop)	
Component: S-7 Turbine X Startup Event	6/10/24 13:24	6/10/24 13:28	0.07		removed from circuit). Turbine was inspected and restarted		6/10/2024	X	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event					restation.	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	X	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	6/11/24 8:16	6/11/24 8:20	0.07		0	X 113: Inspection and Maintenance 116: Well Raising	6/11/2024	x	Manual (Go to Section 8)	Procedure	Щ	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				2.17	Shutdown during water wash. Duplex oil filters	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 to 3	Х	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event	6/11/24 10:26	6/11/24 10:30	0.07		changed. Turbine was inspected and restarted.	116: Well Raising	6/11/2024	×	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event Component: S-7 Turbine						117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Startup Event	7/9/24 8:12	7/9/24 8:16	0.07		Shutdown during water	116: Well Raising	7/9/2024	X	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				4.30	wash. Changed desiccant Shimmed lube oil pump.	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance		<u> </u>	Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event	7/9/24 12:30	7/9/24 12:34	0.07		Turbine was inspected and restarted.	116: Well Raising	7/9/2024	×	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event Component: S-7 Turbine						118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 to 4	Х	No (Stop)	No (Stop)	
Startup Event	7/31/24 8:14	7/31/24 8:18	0.07			116: Well Raising	7/31/2024	×	Manual (Go to Section 8)	Procedure	Ш	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				1.53	Shutdown during water wash. Turbine was	118: Construction Activities		<u> </u>	Automatic (Go to Section 10)	1 to 3	Х	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event	7/31/24 9:46	7/31/24 9:50	0.07		inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	7/31/2024	X	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	Х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event X Shutdown Event	8/7/24 8:14	8/7/24 8:18	0.07		Shutdown to change Duples	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	8/7/2024	X	Manual (Go to Section 8)	Procedure 1 to 3	Щ	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event Component: S-7 Turbine				3.60	oil filters and Oil/Gas and final filters. Changed	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance			Automatic (Go to Section 10)	1 10 3	×	No (Stop)	No (Stop)	
X Startup Event Shutdown Event	8/7/24 11:50	8/7/24 11:54	0.07		radiator belts. Turbine was inspected and restarted.	113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	8/7/2024	X	Manual (Go to Section 8)	Procedure 1 to 4	Щ	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event						118: Construction Activities			Automatic (Go to Section 10)	1 to 4	×	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	8/14/24 13:36	8/14/24 13:40	0.07		Shutdown during PG&E	X 113: Inspection and Maintenance 116: Well Raising	8/14/2024	×	Manual (Go to Section 8)	Procedure	Ц	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				335.53	forced outage. DTT line not communicating . Turbine #1	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	×	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event	8/28/24 13:08	8/28/24 13:12	0.07		on island mode. Turbine was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	8/28/2024	×	Manual (Go to Section 8)	Procedure	Щ	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event					restation.	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	X	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	9/1/24 23:32	9/1/24 23:36	0.07			X 113: Inspection and Maintenance 116: Well Raising	9/1/2024		Manual (Go to Section 8)		Ц	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				2.60	Shutdown during Ralph Substation - 230 kV breake			X .	Automatic (Go to Section 10)			No (Stop)	X No (Stop)	
Component: S-7 Turbine X Startup Event	9/2/24 2:08	9/2/24 2:12	0.07		trip. Turbine was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	9/2/2024	×	Manual (Go to Section 8)	Procedure	Ц	Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: S-7 Turbine Number 2

Completed By: Larry Lacerra/Rajan Phadnis

Altamont Landfill and R													
SSMP REPORT - From . Identify Flare & Check	(1) Start of Event	(2) End of Event	(3) Duration	(4) Duration	1	T	(7) Date	(8) Type of Event		- (*	0) Did Steps Taken Vary	(11) Did Event Cause Any	(12) Describe Emission
Applicable Event	Date and Time	Date and Time	of Event (Hours)	Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	Form	(Startup and Shutdown Events Only)	(9) Procedures Used	(From Section 9?	Emission Limit Exceedance	Standard(s) Exceeded
Component: S-7 Turbine Startup Event	9/5/24 8:28	9/5/24 8:32	0.07			X 113: Inspection and Maintenance 116: Well Raising	9/5/2024	X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				1.97	Shutdown during water wash, Roots oil & filter	117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event Shutdown Event	9/5/24 10:26	9/5/24 10:30	0.07	1.97	change. Turbine was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	9/5/2024	X Manual (Go to Section 8)	Procedure 1 to 4		Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		Х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event X Shutdown Event	9/13/24 7:42	9/13/24 7:46	0.07		Shutdown to replace	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	9/13/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 3	¥	Yes (Go to Section 10) No (Stop)	Yes (Go to Section 11) No (Stop)	
Malfunction Event Component: S-7 Turbine				3.23	radiator shaft bearings. Turbine was inspected and	118: Construction Activities X 113: Inspection and Maintenance				Ĥ			
X Startup Event Shutdown Event	9/13/24 10:56	9/13/24 11:00	0.07		restarted.	116: Well Raising 117: Gas Collection	9/13/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	x	Yes (Go to Section 10) No (Stop)	Yes (Go to Section 11) No (Stop)	
Malfunction Event Component: S-7 Turbine						118: Construction Activities X 113: Inspection and Maintenance		X Manual (Go to Section 8)		Н	Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event X Shutdown Event Malfunction Event	9/20/24 13:00	9/20/24 13:04	0.07		Shutdown to replace radiator belts (fan# 1).	116: Well Raising 117: Gas Collection 118: Construction Activities	9/20/2024	Automatic (Go to Section 10)	Procedure 1 to 3	х	No (Stop)	No (Stop)	
Component: S-7 Turbine				0.47	Turbine was inspected and	X 113: Inspection and Maintenance		X Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)	
X Startup Event Shutdown Event Malfunction Event	9/20/24 13:28	9/20/24 13:32	0.07		restarted.	116: Well Raising 117: Gas Collection 118: Construction Activities	9/20/2024	Automatic (Go to Section 10)	Procedure 1 to 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	9/23/24 20:18	9/23/24 20:22	0.07			X 113: Inspection and Maintenance 116: Well Raising	9/23/2024	Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	3/20/24 20:10	3/20/24 20:22	0.07	1.87	Shutdown during Howden Lube Oil Temp High Alarm	117: Gas Collection 118: Construction Activities	0/20/2021	X Automatic (Go to Section 10)			No (Stop)	X No (Stop)	
Component: S-7 Turbine X Startup Event Shutdown Event	9/23/24 22:10	9/23/24 22:14	0.07		TAHH-445. Turbine was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	9/23/2024	X Manual (Go to Section 8)	Procedure 1 to 4		Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)	1 10 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	9/25/24 8:06	9/25/24 8:10	0.07		Shutdown during water	X 113: Inspection and Maintenance 116: Well Raising	9/25/2024	X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event Component: S-7 Turbine				2.90	wash. Radiators flushed, lube oil pump shimmed and	117: Gas Collection 118: Construction Activities X 113: Inspection and Maintenance		Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
X Startup Event Shutdown Event	9/25/24 11:00	9/25/24 11:04	0.07		adjusted. Turbine was inspected and restarted.	116: Well Raising 117: Gas Collection	9/25/2024	X Manual (Go to Section 8)	Procedure 1 to 4		Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)	1 10 4	Х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event X Shutdown Event	10/2/24 8:24	10/2/24 8:28	0.07		Shutdown to install new lub	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	10/2/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 3	¥	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event Component: S-7 Turbine				4.23	oil pump and sprocket and chain. Turbine was			` '		^	No (Stop)	No (Stop)	
X Startup Event Shutdown Event	10/2/24 12:38	10/2/24 12:42	0.07		inspected and restarted.	116: Well Raising 117: Gas Collection	10/2/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 4	_	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event Component: S-7 Turbine						118: Construction Activities X 113: Inspection and Maintenance		· · · · · · · · · · · · · · · · · · ·		^	No (Stop)	No (Stop)	
Startup Event X Shutdown Event	10/3/24 7:26	10/3/24 7:30	0.07		Shutdown to replace relief	116: Well Raising 117: Gas Collection	10/3/2024	X Manual (Go to Section 8) Automatic (Go to Section 10)	Procedure 1 to 3	_	Yes (Go to Section 10) No (Stop)	Yes (Go to Section 11) No (Stop)	
Malfunction Event Component: S-7 Turbine				1.27	valve gasket, shaft seal leaking when pump started Turbine was inspected and	118: Construction Activities X 113: Inspection and Maintenance		X Manual (Go to Section 8)		_	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Startup Event Shutdown Event Malfunction Event	10/3/24 8:42	10/3/24 8:46	0.07		restarted.	116: Well Raising 117: Gas Collection 118: Construction Activities	10/3/2024	Automatic (Go to Section 10)	Procedure 1 to 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event						X 113: Inspection and Maintenance 116: Well Raising		X Manual (Go to Section 8)	Procedure	Н	Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	10/4/24 7:16	10/4/24 7:20	0.07	1.40	Shutdown to install reworked pump. Turbine	117: Gas Collection 118: Construction Activities	10/4/2024	Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event	10/4/24 8:40	10/4/24 8:44	0.07	1.40	was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	10/4/2024	X Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event			****			117: Gas Collection 118: Construction Activities		Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event X Shutdown Event	10/8/24 8:12	10/8/24 8:16	0.07		Shutdown to change duple	X 113: Inspection and Maintenance 116: Well Raising 117: Gas Collection	10/8/2024	X Manual (Go to Section 8)	Procedure 1 to 3	Ц	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event Component: S-7 Turbine				2.43	and 8 plex oil filters. Turbine was inspected and			Automatic (Go to Section 10)	1 10 3	Х	No (Stop)	No (Stop)	
X Startup Event Shutdown Event	10/8/24 10:38	10/8/24 10:42	0.07		restarted.	116: Well Raising 117: Gas Collection	10/8/2024	X Manual (Go to Section 8)	Procedure 1 to 4	Ļ	Yes (Go to Section 10)	Yes (Go to Section 11)	
Malfunction Event						118: Construction Activities		Automatic (Go to Section 10)		X	No (Stop)	No (Stop)	

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: S-7 Turbine Number 2

Completed By: Larry Lacerra/Rajan Phadnis

Altamont Landfill and R	esource Recover	/ Facility - Liver	nore. CA		p	by: Early Edocrita/Rajan i madnis								
SSMP REPORT - From .														
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Applicable 8-34 Exemption	(7) Date Form	(Star	(8) Type of Event rtup and Shutdown Events Only)	(9) Procedures Used	(1	0) Did Steps Taken Vary From Section 9?	(11) Did Event Cause Any Emission Limit Exceedance	(12) Describe Emission Standard(s) Exceeded
Component: S-7 Turbine						X 113: Inspection and Maintenance 116: Well Raising		x	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Startup Event X Shutdown Event Malfunction Event	10/14/24 8:10	10/14/24 8:14	0.07	3.40	Shutdown during water wash, and maintenance on Turbine oil and final filters.	116: Well Raising 117: Gas Collection 118: Construction Activities	10/14/2024	H	Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event	10/14/24 11:34	10/14/24 11:38	0.07	3.40	BUOS tested. Turbine was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	10/14/2024	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	10/14/24 11:38	10/14/24 11:42	0.07			X 113: Inspection and Maintenance 116: Well Raising	10/14/2024		Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	10/11/21/11:00	10/11/21 11:12	0.07	0.07	Shutdown during startup sequence. Turbine was	117: Gas Collection 118: Construction Activities		x	Automatic (Go to Section 10)			No (Stop)	X No (Stop)	
Component: S-7 Turbine X Startup Event	10/14/24 11:42	10/14/24 11:46	0.07	0.07	inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	10/14/2024	x	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	10/21/24 6:40	10/21/24 6:44	0.07			X 113: Inspection and Maintenance 116: Well Raising	10/21/2024	Ш	Manual (Go to Section 8)			Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				1.43	Shutdown during 21.5 kv feeder trip. Turbine was	117: Gas Collection 118: Construction Activities	10/21/2024	x	Automatic (Go to Section 10)			No (Stop)	X No (Stop)	
Component: S-7 Turbine X Startup Event	10/21/24 8:06	10/21/24 8:10	0.07	1.10	inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	10/21/2024	x	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	10/21/21 0:00	10/2 //21 0:10	0.07			117: Gas Collection 118: Construction Activities	10/2 1/2021		Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	11/6/24 8:16	11/6/24 8:20	0.07		Shutdown to Water wash.	X 113: Inspection and Maintenance 116: Well Raising	11/6/2024	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event	170/21 0:10	1170/21 0.20	0.07	2.33	Changed oil/gas filters. Replaced leaking o-ring on	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event	11/6/24 10:36	11/6/24 10:40	0.07	2.55	turbine oil pump. Turbine was inspected and	X 113: Inspection and Maintenance 116: Well Raising	11/6/2024	x	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event	11/0/21 10:00	1702110.10	0.07		restarted.	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	11/7/24 8:42	11/7/24 8:46	0.07		Shutdown to change lube oil	X 113: Inspection and Maintenance 116: Well Raising	11/7/2024	x	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				1.50	pump, sprocket & chain (leaking mechanical seal).	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event	11/7/24 10:12	11/7/24 10:16	0.07		Turbine was inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	11/7/2024	х	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event						117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	
Component: S-7 Turbine Startup Event	11/15/24 8:06	11/15/24 8:10	0.07			X 113: Inspection and Maintenance 116: Well Raising	11/15/2024	×	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
X Shutdown Event Malfunction Event				1.37	Shutdown during water wash. Turbine was	117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 3	х	No (Stop)	No (Stop)	
Component: S-7 Turbine X Startup Event	11/15/24 9:28	11/15/24 9:32	0.07	1.5.	inspected and restarted.	X 113: Inspection and Maintenance 116: Well Raising	11/15/2024	×	Manual (Go to Section 8)	Procedure		Yes (Go to Section 10)	Yes (Go to Section 11)	
Shutdown Event Malfunction Event			2.07			117: Gas Collection 118: Construction Activities			Automatic (Go to Section 10)	1 to 4	х	No (Stop)	No (Stop)	

Notes The S-7 SSM Log is maintained pursuant to Permit Condition No. 18773, Part 8
There were 721 hours available for the Turbine S-7 in November 2024 due to Daylight Saving Time.

Total Downtime for January 1, 2024 to November 30, 2024 (Hours)*	475.5
Total Downtime for June 1, 2024 to November 30, 2024 (Hours)*	386.1
Total Runtime for June 1, 2024 to November 30, 2024 (Hours)*	4,006.9
Total Count for June 1, 2024 to November 30, 2024	2/

A. ALRRF FLARE INSPECTION, MAINTENANCE AND STARTUP CHECKLIST

After each shutdown event technicians go through the following checklist and restart the flares.

1	Alarms and investigate
2	PLC and Yokogawa controls
3	Louver Operation
4	Blower Skid
5	Condensate Injection system
6	Compressor Operation
7	Temperature and flow on the PLC

B. ALRRF TURBINE INSPECTION, MAINTENANCE AND STARTUP CHECKLIST

After each shutdown event Turbine plant managers go through the following checklist prior to restart of control devices.

1	Compressor controls
2	Turbine Controls
3	Compressor skids and turbines
4	Fire pump, controls and alarm panel
5	Air Compressor
6	Temperature and flow on the PLC

APPENDIX E LNG PLANT (S-210) SSM LOGS

CONTROL DEVICE AND LFG COLLECTION SYSTEM DOWNTIME LOG AFFECTED EQUIPMENT: S-210 Liquefied Natural Gas (LNG) Plant

Completed By: Steven Shurtz

ATTECTED EQUIPMENT. 3	- Lio Liquenca Hate	irai ous (Eivo) i iai				Compicted E	y. Oleven Onunz						
Altamont Landfill and Reso	urce Recovery Faci	ility - Livermore, Ca	A										
SSMP REPORT - From	SSMP REPORT - From June 1, 2024 to November 30, 2024												
Identify Flare & Check Applicable Event	(1) Start of Event Date and Time	(2) End of Event Date and Time	(3) Duration of Event (Hours)	(4) Duration Shutdown (Hours)	(5) Cause or Reason	(6) Date Form Completed	(7) Type of Event (Startup and Shutdown Events Only)	(8) Procedures Used	(9) Did Steps Taken Vary From Section 8?	(10) Did Event Cause Any Emission Limit Exceedance	(11) Describe Emission Standard(s) Exceeded		
Component: S-210 LNG Plant Startup Event	6/1/24 0:00	6/1/24 0:02	0.03			6/1/2024	Manual (Go to Section 8)		Yes (Go to Section 10)	Yes (Go to Section 11)			
X Shutdown Event Malfunction Event	G 1/2 1 0.00	0,1721 0.02	0.00	4.391.0 LNG Plant was shutdown		X Automatic (Go to Section 10)		No (Stop)	X No (Stop)				
Component: S-210 LNG Plant Startup Event	11/30/24 23:59	12/1/24 0:01	0.03	4,001.0	ENOTIAL Was Stitutown.	11/30/2024	X Manual (Go to Section 8)	Procedure	Yes (Go to Section 10)	Yes (Go to Section 11)			
Shutdown Event Malfunction Event	11/30/24 23:33	12/1124 0.01	0.03			11100/2024	Automatic (Go to Section 10)	1 to 4	X No (Stop)	No (Stop)			

Total Downtime for June 1, 2024 to November 30, 2024 (Hours)*	4,391.0
Total Runtime for June 1, 2024 to November 30, 2024 (Hours)*	0.0
Total Count for June 1, 2024 to November 30, 2024	NA NA

Note: S-210 SSM Log compiled pursuant to the ALRRF SSM Plan (June 2009).

APPENDIX F TURBINES (S-6 AND S-7) COMBUSTION TEMPERATURE REPORTS AND HEAT INPUT LOGS

S-6 Turbine

Heat Input Rate

MONTH: June-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU/Day)
6/1/2024	24.00	51.1	1,332	1,918,793	980,562	1,013.0	993
6/2/2024	24.00	50.6	1,339	1,928,434	975,624	1,013.0	988
6/3/2024	24.00	50.8	1,347	1,939,246	985,573	1,013.0	998
6/4/2024	24.00	51.7	1,302	1,875,257	969,593	1,013.0	982
6/5/2024	24.00	51.9	1,266	1,823,388	947,242	1,013.0	960
6/6/2024	22.90	51.8	1,279	1,758,018	911,366	1,013.0	923
6/7/2024	24.00	52.0	1,325	1,907,335	992,438	1,013.0	1,005
6/8/2024	24.00	52.4	1,353	1,948,847	1,021,572	1,013.0	1,035
6/9/2024	22.03	52.6	1,349	1,783,628	938,673	1,013.0	951
6/10/2024	20.60	52.3	1,315	1,625,656	850,656	1,013.0	862
6/11/2024	24.00	52.1	1,305	1,879,061	979,282	1,013.0	992
6/12/2024	21.90	52.2	1,341	1,761,729	920,030	1,013.0	932
6/13/2024	24.00	52.7	1,378	1,985,011	1,046,088	1,013.0	1,060
6/14/2024	24.00	53.2	1,382	1,990,532	1,058,138	1,013.0	1,072
6/15/2024	24.00	52.8	1,381	1,988,069	1,050,073	1,013.0	1,064
6/16/2024	24.00	52.3	1,369	1,971,570	1,030,924	1,013.0	1,044
6/17/2024	24.00	52.3	1,365	1,965,164	1,026,969	1,013.0	1,040
6/18/2024	24.00	52.2	1,345	1,936,286	1,011,601	1,013.0	1,025
6/19/2024	24.00	52.0	1,383	1,991,593	1,035,952	1,013.0	1,049
6/20/2024	24.00	52.3	1,387	1,997,865	1,044,921	1,013.0	1,059
6/21/2024	24.00	52.6	1,360	1,958,195	1,030,420	1,013.0	1,044
6/22/2024	24.00	52.6	1,326	1,909,965	1,003,887	1,013.0	1,017
6/23/2024	24.00	52.9	1,320	1,901,387	1,005,502	1,013.0	1,019
6/24/2024	24.00	52.9	1,334	1,920,343	1,016,634	1,013.0	1,030
6/25/2024	24.00	52.7	1,336	1,923,348	1,013,615	1,013.0	1,027
6/26/2024	24.00	51.1	1,396	2,010,114	1,027,008	1,013.0	1,040
6/27/2024	24.00	51.7	1,383	1,992,087	1,030,015	1,013.0	1,043
6/28/2024	24.00	42.5	1,350	1,944,223	826,762	1,013.0	838
6/29/2024	24.00	43.9	1,344	1,935,419	849,960	1,013.0	861
6/30/2024	24.00	49.7	1,346	1,938,576	962,851	1,013.0	975
otals/ Average	711.43	51.5	1,345	57,409,139	29,543,932	1,013.0	29,928
	•		· · · ·			Max	1,072

¹⁾ The S-6 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-6 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent CH_4 - methane scfm - standard cubic feet per minute scf - standard cubic feet

S-6 Turbine

Heat Input Rate

MONTH: July-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH ₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU/Day)
7/1/2024	24.00	49.8	1,322	1,904,238	948,972	1,013.0	961
7/2/2024	24.00	50.0	1,275	1,836,041	918,579	1,013.0	931
7/3/2024	24.00	50.1	1,279	1,841,381	923,136	1,013.0	935
7/4/2024	24.00	50.1	1,294	1,864,021	933,106	1,013.0	945
7/5/2024	24.00	49.8	1,314	1,892,375	942,593	1,013.0	955
7/6/2024	24.00	49.8	1,305	1,878,983	935,175	1,013.0	947
7/7/2024	24.00	49.9	1,318	1,898,017	946,482	1,013.0	959
7/8/2024	24.00	49.9	1,335	1,922,077	959,606	1,013.0	972
7/9/2024	24.00	49.9	1,362	1,961,295	978,734	1,013.0	991
7/10/2024	21.37	49.8	1,350	1,730,935	862,478	1,013.0	874
7/11/2024	24.00	49.7	1,335	1,921,707	955,046	1,013.0	967
7/12/2024	24.00	49.7	1,338	1,926,948	957,202	1,013.0	970
7/13/2024	24.00	49.7	1,359	1,957,609	973,218	1,013.0	986
7/14/2024	24.00	49.9	1,384	1,993,546	995,098	1,013.0	1,008
7/15/2024	24.00	49.9	1,406	2,024,593	1,009,336	1,013.0	1,022
7/16/2024	24.00	49.9	1,438	2,070,547	1,033,896	1,013.0	1,047
7/17/2024	22.87	49.2	1,430	1,961,404	964,534	1,013.0	977
7/18/2024	24.00	48.4	1,415	2,037,041	986,243	1,013.0	999
7/19/2024	24.00	47.9	1,427	2,055,414	983,616	1,013.0	996
7/20/2024	24.00	46.6	1,455	2,095,804	977,426	1,013.0	990
7/21/2024	24.00	45.2	1,471	2,118,688	957,689	1,013.0	970
7/22/2024	24.00	45.2	1,423	2,049,604	927,246	1,013.0	939
7/23/2024	24.00	45.5	1,354	1,950,031	887,996	1,013.0	900
7/24/2024	24.00	46.5	1,366	1,966,553	914,020	1,013.0	926
7/25/2024	24.00	47.1	1,355	1,951,694	919,275	1,013.0	931
7/26/2024	24.00	47.9	1,356	1,953,216	934,928	1,013.0	947
7/27/2024	24.00	48.4	1,413	2,034,693	983,894	1,013.0	997
7/28/2024	24.00	48.4	1,397	2,011,747	973,666	1,013.0	986
7/29/2024	24.00	48.1	1,406	2,025,061	973,452	1,013.0	986
7/30/2024	24.00	47.9	1,398	2,013,248	963,658	1,013.0	976
7/31/2024	22.50	47.9	1,381	1,864,775	892,901	1,013.0	905
Totals/ Average	738.73	48.6	1,370	60,713,286	29,513,204	1,013.0	29,897
						Max	1,047

¹⁾ The S-6 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-6 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet

S-6 Turbine

Heat Input Rate

MONTH: August-24

Date	Runtime (Hours)	CH ₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU/Day)
8/1/2024	24.00	48.0	1,377	1,982,510	952,443	1,013.0	965
8/2/2024	24.00	48.1	1,384	1,992,880	959,201	1,013.0	972
8/3/2024	24.00	47.7	1,363	1,963,372	936,889	1,013.0	949
8/4/2024	24.00	47.8	1,385	1,994,857	953,837	1,013.0	966
8/5/2024	24.00	48.4	1,401	2,017,724	977,099	1,013.0	990
8/6/2024	24.00	48.2	1,368	1,969,568	949,805	1,013.0	962
8/7/2024	24.00	48.0	1,334	1,920,268	922,531	1,013.0	935
8/8/2024	20.33	48.8	1,352	1,649,744	805,097	1,013.0	816
8/9/2024	24.00	49.4	1,381	1,989,163	983,277	1,013.0	996
8/10/2024	24.00	49.9	1,378	1,984,401	991,097	1,013.0	1,004
8/11/2024	24.00	49.8	1,385	1,993,935	993,435	1,013.0	1,006
8/12/2024	24.00	50.0	1,391	2,002,736	1,000,417	1,013.0	1,013
8/13/2024	24.00	50.1	1,379	1,986,177	995,982	1,013.0	1,009
8/14/2024	24.00	50.2	1,132	1,630,605	817,848	1,013.0	828
8/15/2024	24.00	49.3	748	1,077,410	531,357	1,013.0	538
8/16/2024	24.00	48.1	736	1,059,159	509,633	1,013.0	516
8/17/2024	24.00	48.8	715	1,029,834	502,647	1,013.0	509
8/18/2024	24.00	49.4	710	1,022,284	504,867	1,013.0	511
8/19/2024	24.00	49.2	737	1,061,284	522,353	1,013.0	529
8/20/2024	24.00	49.0	735	1,058,735	519,086	1,013.0	526
8/21/2024	24.00	48.7	732	1,054,102	513,805	1,013.0	520
8/22/2024	24.00	48.8	731	1,052,035	513,035	1,013.0	520
8/23/2024	24.00	48.7	735	1,058,935	516,101	1,013.0	523
8/24/2024	24.00	48.2	733	1,055,027	508,896	1,013.0	516
8/25/2024	24.00	47.8	739	1,063,611	507,980	1,013.0	515
8/26/2024	24.00	47.3	750	1,079,672	510,784	1,013.0	517
8/27/2024	24.00	47.0	752	1,083,238	508,588	1,013.0	515
8/28/2024	24.00	47.2	1,019	1,467,456	692,490	1,013.0	701
8/29/2024	24.00	48.8	1,368	1,969,832	960,625	1,013.0	973
8/30/2024	24.00	49.7	1,377	1,983,175	984,773	1,013.0	998
8/31/2024	24.00	49.5	1,377	1,982,854	980,961	1,013.0	994
otals/ Average	740.33	48.7	1,087	48,236,583	23,526,941	1,013.0	23,833
						Max	1,013

¹⁾ The S-6 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-6 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent CH_4 - methane scfm - standard cubic feet per minute scf - standard cubic feet

S-6 Turbine

Heat Input Rate

MONTH: September-24

Date	Runtime (Hours)	CH ₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU/Day)
9/1/2024	23.53	49.5	1,389	1,960,879	971,609	1,013.0	984
9/2/2024	22.17	49.5	1,389	1,847,966	914,878	1,013.0	927
9/3/2024	24.00	49.5	1,360	1,958,826	968,796	1,013.0	981
9/4/2024	19.60	49.3	1,345	1,582,115	780,514	1,013.0	791
9/5/2024	24.00	49.4	1,380	1,986,806	981,890	1,013.0	995
9/6/2024	24.00	49.3	1,361	1,959,505	966,851	1,013.0	979
9/7/2024	17.80	49.3	1,351	1,442,951	711,932	1,013.0	721
9/8/2024	24.00	49.5	1,353	1,948,596	964,822	1,013.0	977
9/9/2024	24.00	49.5	1,377	1,982,409	980,966	1,013.0	994
9/10/2024	24.00	49.4	1,430	2,059,236	1,017,461	1,013.0	1,031
9/11/2024	24.00	49.4	1,426	2,053,306	1,015,065	1,013.0	1,028
9/12/2024	21.43	49.2	1,394	1,792,826	882,750	1,013.0	894
9/13/2024	24.00	49.1	1,378	1,984,683	974,536	1,013.0	987
9/14/2024	24.00	49.2	1,412	2,032,856	999,212	1,013.0	1,012
9/15/2024	24.00	48.7	1,439	2,071,987	1,009,403	1,013.0	1,023
9/16/2024	24.00	49.3	1,467	2,112,539	1,041,573	1,013.0	1,055
9/17/2024	24.00	48.4	1,465	2,109,730	1,020,746	1,013.0	1,034
9/18/2024	24.00	48.4	1,435	2,066,610	1,000,390	1,013.0	1,013
9/19/2024	24.00	48.9	1,427	2,054,903	1,004,537	1,013.0	1,018
9/20/2024	24.00	49.0	1,428	2,056,758	1,008,027	1,013.0	1,021
9/21/2024	24.00	48.8	1,422	2,047,999	999,852	1,013.0	1,013
9/22/2024	24.00	48.7	1,412	2,033,438	990,081	1,013.0	1,003
9/23/2024	24.00	48.7	1,376	1,980,850	964,047	1,013.0	977
9/24/2024	24.00	48.6	1,378	1,984,833	965,087	1,013.0	978
9/25/2024	24.00	48.3	1,387	1,997,429	964,440	1,013.0	977
9/26/2024	22.23	50.1	1,380	1,841,481	922,540	1,013.0	935
9/27/2024	24.00	49.6	1,385	1,994,439	988,714	1,013.0	1,002
9/28/2024	24.00	49.0	1,414	2,035,509	997,782	1,013.0	1,011
9/29/2024	24.00	48.7	1,458	2,099,890	1,023,220	1,013.0	1,037
9/30/2024	24.00	48.2	1,423	2,049,556	988,686	1,013.0	1,002
otals/ Average	702.77	49.1	1,401	59,130,911	29,020,408	1,013.0	29,398
	1				, , , , , , , , , , , , , , , , , , , ,	Max	1,055

¹⁾ The S-6 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-6 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent CH_4 - methane scfm - standard cubic feet per minute scf - standard cubic feet

S-6 Turbine

Heat Input Rate

MONTH: October-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU/Day)
10/1/2024	24.00	48.2	1,394	2,007,228	966,603	1,013.0	979
10/2/2024	24.00	47.7	1,375	1,979,671	944,983	1,013.0	957
10/3/2024	24.00	47.8	1,375	1,980,029	946,517	1,013.0	959
10/4/2024	24.00	47.9	1,395	2,009,400	963,317	1,013.0	976
10/5/2024	24.00	47.7	1,402	2,018,526	963,049	1,013.0	976
10/6/2024	24.00	47.6	1,394	2,006,950	955,092	1,013.0	968
10/7/2024	24.00	47.6	1,388	1,998,641	950,567	1,013.0	963
10/8/2024	24.00	47.7	1,406	2,023,948	964,517	1,013.0	977
10/9/2024	24.00	47.8	1,456	2,096,763	1,001,265	1,013.0	1,014
10/10/2024	24.00	47.6	1,456	2,097,193	997,493	1,013.0	1,010
10/11/2024	24.00	47.9	1,469	2,115,911	1,013,401	1,013.0	1,027
10/12/2024	24.00	48.0	1,476	2,124,807	1,019,096	1,013.0	1,032
10/13/2024	24.00	47.8	1,449	2,086,976	997,592	1,013.0	1,011
10/14/2024	24.00	48.0	1,469	2,114,759	1,015,151	1,013.0	1,028
10/15/2024	21.97	47.9	1,461	1,925,118	923,069	1,013.0	935
10/16/2024	24.00	48.0	1,474	2,122,802	1,019,262	1,013.0	1,033
10/17/2024	24.00	47.9	1,476	2,125,064	1,017,310	1,013.0	1,031
10/18/2024	24.00	48.0	1,486	2,139,209	1,027,191	1,013.0	1,041
10/19/2024	24.00	47.8	1,490	2,145,671	1,024,724	1,013.0	1,038
10/20/2024	24.00	47.3	1,493	2,150,074	1,016,614	1,013.0	1,030
10/21/2024	21.63	47.0	1,453	1,886,489	886,517	1,013.0	898
10/22/2024	24.00	47.8	1,474	2,122,446	1,014,479	1,013.0	1,028
10/23/2024	24.00	48.0	1,456	2,096,378	1,005,328	1,013.0	1,018
10/24/2024	24.00	48.0	1,456	2,097,101	1,007,508	1,013.0	1,021
10/25/2024	24.00	48.2	1,452	2,091,543	1,008,417	1,013.0	1,022
10/26/2024	24.00	48.2	1,459	2,100,949	1,012,875	1,013.0	1,026
10/27/2024	24.00	48.5	1,470	2,117,431	1,026,230	1,013.0	1,040
10/28/2024	24.00	48.2	1,489	2,144,802	1,033,255	1,013.0	1,047
10/29/2024	24.00	48.2	1,496	2,154,282	1,038,751	1,013.0	1,052
10/30/2024	24.00	48.1	1,503	2,164,254	1,040,402	1,013.0	1,054
10/31/2024	21.17	48.0	1,483	1,883,623	903,712	1,013.0	915
Totals/ Average	736.77	47.9	1,451	64,128,038	30,704,288	1,013.0	31,103
	'		- '			Max	1,054

¹⁾ The S-6 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-6 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent CH_4 - methane scfm - standard cubic feet per minute scf - standard cubic feet

S-6 Turbine

Heat Input Rate

MONTH: November-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU/Day)
11/1/2024	23.67	48.1	1,491	2,117,341	1,018,220	1,013.0	1,031
11/2/2024	21.17	48.1	1,479	1,878,807	904,615	1,013.0	916
11/3/2024	25.00	45.1	1,503	2,254,584	1,016,166	1,013.0	1,029
11/4/2024	24.00	47.8	1,494	2,151,347	1,029,010	1,013.0	1,042
11/5/2024	21.13	47.9	1,472	1,866,606	893,959	1,013.0	906
11/6/2024	24.00	48.2	1,499	2,158,759	1,041,222	1,013.0	1,055
11/7/2024	24.00	48.0	1,507	2,170,459	1,040,990	1,013.0	1,055
11/8/2024	24.00	47.8	1,503	2,163,990	1,033,769	1,013.0	1,047
11/9/2024	24.00	47.9	1,493	2,149,800	1,029,913	1,013.0	1,043
11/10/2024	24.00	48.1	1,499	2,159,076	1,038,132	1,013.0	1,052
11/11/2024	24.00	48.0	1,521	2,190,172	1,050,773	1,013.0	1,064
11/12/2024	24.00	47.9	1,535	2,211,050	1,059,154	1,013.0	1,073
11/13/2024	22.03	47.6	1,518	2,006,326	955,746	1,013.0	968
11/14/2024	24.00	47.9	1,508	2,171,796	1,039,768	1,013.0	1,053
11/15/2024	23.00	48.0	1,513	2,088,105	1,002,571	1,013.0	1,016
11/16/2024	24.00	47.9	1,532	2,205,811	1,057,362	1,013.0	1,071
11/17/2024	24.00	47.7	1,522	2,192,347	1,044,699	1,013.0	1,058
11/18/2024	24.00	47.8	1,553	2,237,001	1,068,885	1,013.0	1,083
11/19/2024	24.00	47.2	1,541	2,219,260	1,047,776	1,013.0	1,061
11/20/2024	24.00	47.6	1,485	2,138,378	1,016,989	1,013.0	1,030
11/21/2024	24.00	47.9	1,475	2,123,800	1,017,345	1,013.0	1,031
11/22/2024	24.00	47.9	1,470	2,116,941	1,014,746	1,013.0	1,028
11/23/2024	24.00	48.2	1,522	2,191,190	1,056,690	1,013.0	1,070
11/24/2024	24.00	47.7	1,493	2,150,598	1,025,040	1,013.0	1,038
11/25/2024	24.00	48.5	1,498	2,157,029	1,046,694	1,013.0	1,060
11/26/2024	24.00	48.4	1,510	2,175,112	1,053,531	1,013.0	1,067
11/27/2024	24.00	48.2	1,527	2,199,407	1,060,620	1,013.0	1,074
11/28/2024	24.00	48.0	1,535	2,210,878	1,061,224	1,013.0	1,075
11/29/2024	24.00	47.8	1,533	2,207,270	1,055,405	1,013.0	1,069
11/30/2024	24.00	47.8	1,536	2,212,437	1,057,396	1,013.0	1,071
Totals/ Average	712.00	47.8	1,509	64,475,677	30,838,410	1,013.0	31,239
	1		. , .			Max	1,083

¹⁾ The S-6 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-6 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent CH_4 - methane scfm - standard cubic feet per minute scf - standard cubic feet

S-7 Turbine

Heat Input Rate

MONTH: June-24

6/1/2024 24.00 51.1 1,318 1,897,224 969,539 1,013.0 6/2/2024 24.00 50.6 1,322 1,904,108 963,317 1,013.0 6/3/2024 24.00 50.8 1,330 1,915,260 973,383 1,013.0 6/3/2024 24.00 51.7 1,287 1,853,193 958,185 1,013.0 6/5/2024 24.00 51.9 1,252 1,802,420 936,349 1,013.0 6/6/2024 24.00 51.8 1,267 1,824,740 945,955 1,013.0 6/6/2024 24.00 52.0 1,303 1,875,930 976,097 1,013.0 6/8/2024 24.00 52.4 1,334 1,920,972 1,006,960 1,013.0 6/9/2024 21.70 52.6 1,343 1,749,014 920,456 1,013.0 6/10/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/11/2024 21.83 52.1 1,300 1,702,416 <t< th=""><th>Date</th><th>Runtime (Hours)</th><th>CH₄ (%)</th><th>Average Flow (scfm)</th><th>Total LFG Volume (scf)</th><th>Total CH₄ Volume (scf)</th><th>Heating Value of CH₄ (btu/scf)</th><th>Heat Input (MMBTU/Day)</th></t<>	Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU/Day)
6/3/2024 24.00 50.8 1,330 1,915,260 973,383 1,013.0 6/4/2024 24.00 51.7 1,287 1,853,193 958,185 1,013.0 6/5/2024 24.00 51.9 1,252 1,802,420 936,349 1,013.0 6/6/2024 24.00 51.8 1,267 1,824,740 945,955 1,013.0 6/6/2024 24.00 52.0 1,303 1,875,930 976,097 1,013.0 6/8/2024 24.00 52.4 1,334 1,920,972 1,006,960 1,013.0 6/9/2024 21.70 52.6 1,343 1,749,014 920,456 1,013.0 6/10/2024 19.80 52.3 1,322 1,570,871 821,989 1,013.0 6/12/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/13/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/14/2024 24.00 52.7 1,351 1,945,129	6/1/2024	24.00	51.1	1,318	1,897,224	969,539	1,013.0	982
6/4/2024 24.00 51.7 1,287 1,853,193 958,185 1,013.0 6/5/2024 24.00 51.9 1,252 1,802,420 936,349 1,013.0 6/6/2024 24.00 51.8 1,267 1,824,740 945,955 1,013.0 6/7/2024 24.00 52.0 1,303 1,875,930 976,097 1,013.0 6/8/2024 24.00 52.4 1,334 1,920,972 1,006,960 1,013.0 6/9/2024 21.70 52.6 1,343 1,749,014 920,456 1,013.0 6/10/2024 19.80 52.3 1,322 1,570,871 821,989 1,013.0 6/11/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/13/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/14/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/14/2024 24.00 53.2 1,363 1,962,136	6/2/2024	24.00	50.6	1,322	1,904,108	963,317	1,013.0	976
6/5/2024 24.00 51.9 1,252 1,802,420 936,349 1,013.0 6/6/2024 24.00 51.8 1,267 1,824,740 945,955 1,013.0 6/7/2024 24.00 52.0 1,303 1,875,930 976,097 1,013.0 6/8/2024 24.00 52.4 1,334 1,920,972 1,006,960 1,013.0 6/9/2024 21.70 52.6 1,343 1,749,014 920,456 1,013.0 6/10/2024 19.80 52.3 1,322 1,570,871 821,989 1,013.0 6/11/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/12/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/13/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/14/2024 24.00 53.2 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,966,119	6/3/2024	24.00	50.8	1,330	1,915,260	973,383	1,013.0	986
6/6/2024 24.00 51.8 1,267 1,824,740 945,955 1,013.0 6/7/2024 24.00 52.0 1,303 1,875,930 976,097 1,013.0 6/8/2024 24.00 52.4 1,334 1,920,972 1,006,960 1,013.0 6/9/2024 21.70 52.6 1,343 1,749,014 920,456 1,013.0 6/10/2024 19.80 52.3 1,322 1,570,871 821,989 1,013.0 6/11/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/12/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/13/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/14/2024 24.00 53.2 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,966,119 1,038,479 1,013.0 6/16/2024 24.00 52.3 1,346 1,937,767 <td>6/4/2024</td> <td>24.00</td> <td>51.7</td> <td>1,287</td> <td>1,853,193</td> <td>958,185</td> <td>1,013.0</td> <td>971</td>	6/4/2024	24.00	51.7	1,287	1,853,193	958,185	1,013.0	971
6/7/2024 24.00 52.0 1,303 1,875,930 976,097 1,013.0 6/8/2024 24.00 52.4 1,334 1,920,972 1,006,960 1,013.0 6/9/2024 21.70 52.6 1,343 1,749,014 920,456 1,013.0 6/10/2024 19.80 52.3 1,322 1,570,871 821,989 1,013.0 6/11/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/12/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/13/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/14/2024 24.00 52.7 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,966,119 1,038,479 1,013.0 6/16/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/18/2024 24.00 52.3 1,364 1,937,767	6/5/2024	24.00	51.9	1,252	1,802,420	936,349	1,013.0	949
6/8/2024 24.00 52.4 1,334 1,920,972 1,006,960 1,013.0 6/9/2024 21.70 52.6 1,343 1,749,014 920,456 1,013.0 6/10/2024 19.80 52.3 1,322 1,570,871 821,989 1,013.0 6/11/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/12/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/13/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/13/2024 24.00 53.2 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,966,119 1,038,479 1,013.0 6/16/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/18/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/19/2024 24.00 52.2 1,325 1,908,	6/6/2024	24.00	51.8	1,267	1,824,740	945,955	1,013.0	958
6/9/2024 21.70 52.6 1,343 1,749,014 920,456 1,013.0 6/10/2024 19.80 52.3 1,322 1,570,871 821,989 1,013.0 6/11/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/12/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/13/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/14/2024 24.00 53.2 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,966,119 1,038,479 1,013.0 6/16/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/16/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/18/2024 24.00 52.2 1,325 1,998,253 996,955 1,013.0 6/19/2024 24.00 52.0 1,364 1,964,3	6/7/2024	24.00	52.0	1,303	1,875,930	976,097	1,013.0	989
6/10/2024 19.80 52.3 1,322 1,570,871 821,989 1,013.0 6/11/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/12/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/13/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/14/2024 24.00 53.2 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,961,119 1,038,479 1,013.0 6/16/2024 24.00 52.8 1,365 1,961,119 1,038,479 1,013.0 6/17/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/18/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/19/2024 24.00 52.2 1,325 1,908,253 996,955 1,013.0 6/29/2024 24.00 52.0 1,364 1,96	6/8/2024	24.00	52.4	1,334	1,920,972	1,006,960	1,013.0	1,020
6/11/2024 21.83 52.1 1,300 1,702,416 887,223 1,013.0 6/12/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/13/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/14/2024 24.00 53.2 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,966,119 1,038,479 1,013.0 6/16/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/16/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/18/2024 24.00 52.2 1,325 1,908,253 996,955 1,013.0 6/19/2024 24.00 52.0 1,364 1,964,192 1,027,309 1,013.0 6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.3 1,364 1,	6/9/2024	21.70	52.6	1,343	1,749,014	920,456	1,013.0	932
6/12/2024 24.00 52.2 1,342 1,932,699 1,009,316 1,013.0 6/13/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/14/2024 24.00 53.2 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,966,119 1,038,479 1,013.0 6/16/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/17/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/18/2024 24.00 52.2 1,325 1,908,253 996,955 1,013.0 6/19/2024 24.00 52.0 1,364 1,964,353 1,021,783 1,013.0 6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/22/2024 24.00 52.6 1,338	6/10/2024	19.80	52.3	1,322	1,570,871	821,989	1,013.0	833
6/13/2024 24.00 52.7 1,351 1,945,129 1,025,070 1,013.0 6/14/2024 24.00 53.2 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,966,119 1,038,479 1,013.0 6/16/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/17/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/18/2024 24.00 52.2 1,325 1,908,253 996,955 1,013.0 6/19/2024 24.00 52.0 1,364 1,964,353 1,021,783 1,013.0 6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/22/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/23/2024 24.00 52.9 1,337 1,	6/11/2024	21.83	52.1	1,300	1,702,416	887,223	1,013.0	899
6/14/2024 24.00 53.2 1,363 1,962,136 1,043,043 1,013.0 6/15/2024 24.00 52.8 1,365 1,966,119 1,038,479 1,013.0 6/16/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/17/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/18/2024 24.00 52.2 1,325 1,908,253 996,955 1,013.0 6/19/2024 24.00 52.0 1,364 1,964,353 1,021,783 1,013.0 6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/22/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/23/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/25/2024 24.00 52.7 1,377 1,	6/12/2024	24.00	52.2	1,342	1,932,699	1,009,316	1,013.0	1,022
6/15/2024 24.00 52.8 1,365 1,966,119 1,038,479 1,013.0 6/16/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/17/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/18/2024 24.00 52.2 1,325 1,908,253 996,955 1,013.0 6/19/2024 24.00 52.0 1,364 1,964,353 1,021,783 1,013.0 6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/22/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/23/2024 24.00 52.9 1,307 1,882,531 995,530 1,013.0 6/25/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/26/2024 24.00 52.7 1,377 1,98	6/13/2024	24.00	52.7	1,351	1,945,129	1,025,070	1,013.0	1,038
6/16/2024 24.00 52.3 1,349 1,942,932 1,015,949 1,013.0 6/17/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/18/2024 24.00 52.2 1,325 1,908,253 996,955 1,013.0 6/19/2024 24.00 52.0 1,364 1,964,353 1,021,783 1,013.0 6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/22/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/23/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/24/2024 24.00 52.9 1,307 1,882,531 995,530 1,013.0 6/25/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/26/2024 24.00 51.1 1,436 2,06	6/14/2024	24.00	53.2	1,363	1,962,136	1,043,043	1,013.0	1,057
6/17/2024 24.00 52.3 1,346 1,937,767 1,012,652 1,013.0 6/18/2024 24.00 52.2 1,325 1,908,253 996,955 1,013.0 6/19/2024 24.00 52.0 1,364 1,964,353 1,021,783 1,013.0 6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/22/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/23/2024 24.00 52.9 1,307 1,882,531 995,530 1,013.0 6/24/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/25/2024 24.00 52.7 1,377 1,983,067 1,045,087 1,013.0 6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/28/2024 24.00 51.7 1,420 2,04	6/15/2024	24.00	52.8	1,365	1,966,119	1,038,479	1,013.0	1,052
6/18/2024 24.00 52.2 1,325 1,908,253 996,955 1,013.0 6/19/2024 24.00 52.0 1,364 1,964,353 1,021,783 1,013.0 6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/22/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/23/2024 24.00 52.9 1,307 1,882,531 995,530 1,013.0 6/24/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/25/2024 24.00 52.7 1,377 1,983,067 1,045,087 1,013.0 6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,00	6/16/2024	24.00	52.3	1,349	1,942,932	1,015,949	1,013.0	1,029
6/19/2024 24.00 52.0 1,364 1,964,353 1,021,783 1,013.0 6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/22/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/23/2024 24.00 52.9 1,307 1,882,531 995,530 1,013.0 6/24/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/25/2024 24.00 52.7 1,377 1,983,067 1,045,087 1,013.0 6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,00	6/17/2024	24.00	52.3	1,346	1,937,767	1,012,652	1,013.0	1,026
6/20/2024 24.00 52.3 1,364 1,964,192 1,027,309 1,013.0 6/21/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/22/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/23/2024 24.00 52.9 1,307 1,882,531 995,530 1,013.0 6/24/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/25/2024 24.00 52.7 1,377 1,983,067 1,045,087 1,013.0 6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,	6/18/2024	24.00	52.2	1,325	1,908,253	996,955	1,013.0	1,010
6/21/2024 24.00 52.6 1,338 1,926,218 1,013,593 1,013.0 6/22/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/23/2024 24.00 52.9 1,307 1,882,531 995,530 1,013.0 6/24/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/25/2024 24.00 52.7 1,377 1,983,067 1,045,087 1,013.0 6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/19/2024	24.00	52.0	1,364	1,964,353	1,021,783	1,013.0	1,035
6/22/2024 24.00 52.6 1,297 1,868,078 981,871 1,013.0 6/23/2024 24.00 52.9 1,307 1,882,531 995,530 1,013.0 6/24/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/25/2024 24.00 52.7 1,377 1,983,067 1,045,087 1,013.0 6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/20/2024	24.00	52.3	1,364	1,964,192	1,027,309	1,013.0	1,041
6/23/2024 24.00 52.9 1,307 1,882,531 995,530 1,013.0 6/24/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/25/2024 24.00 52.7 1,377 1,983,067 1,045,087 1,013.0 6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/21/2024	24.00	52.6	1,338	1,926,218	1,013,593	1,013.0	1,027
6/24/2024 24.00 52.9 1,337 1,925,792 1,019,519 1,013.0 6/25/2024 24.00 52.7 1,377 1,983,067 1,045,087 1,013.0 6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/22/2024	24.00	52.6	1,297	1,868,078	981,871	1,013.0	995
6/25/2024 24.00 52.7 1,377 1,983,067 1,045,087 1,013.0 6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/23/2024	24.00	52.9	1,307	1,882,531	995,530	1,013.0	1,008
6/26/2024 24.00 51.1 1,436 2,068,038 1,056,603 1,013.0 6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/24/2024	24.00	52.9	1,337	1,925,792	1,019,519	1,013.0	1,033
6/27/2024 24.00 51.7 1,420 2,044,581 1,057,157 1,013.0 6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/25/2024	24.00	52.7	1,377	1,983,067	1,045,087	1,013.0	1,059
6/28/2024 24.00 42.5 1,394 2,007,497 853,669 1,013.0 6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/26/2024	24.00	51.1	1,436	2,068,038	1,056,603	1,013.0	1,070
6/29/2024 24.00 43.9 1,394 2,007,973 881,822 1,013.0 6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/27/2024	24.00	51.7	1,420	2,044,581	1,057,157	1,013.0	1,071
6/30/2024 24.00 49.7 1,396 2,010,098 998,374 1,013.0	6/28/2024	24.00	42.5	1,394	2,007,497	853,669	1,013.0	865
	6/29/2024	24.00	43.9	1,394	2,007,973	881,822	1,013.0	893
Totals/ Average 711 33 51 5 1 341 57 263 601 29 453 238 1 013 0	6/30/2024	24.00	49.7	1,396	2,010,098	998,374	1,013.0	1,011
10tals/Average 111.00 01.0 1,041 01,200,001 25,400,200 1,010.0	Totals/ Average	711.33	51.5	1,341	57,263,601	29,453,238	1,013.0	29,836
Max							Max	1,071

¹⁾ The S-7 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-7 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent $\ \ CH_4$ - methane $\ \ scfm$ - standard cubic feet per minute $\ \ scf$ - standard cubic feet

S-7 Turbine

Heat Input Rate

MONTH: July-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU/Day)
7/1/2024	24.00	49.8	1,376	1,982,020	987,735	1,013.0	1,001
7/2/2024	24.00	50.0	1,332	1,918,040	959,603	1,013.0	972
7/3/2024	24.00	50.1	1,307	1,881,582	943,290	1,013.0	956
7/4/2024	24.00	50.1	1,344	1,935,653	968,964	1,013.0	982
7/5/2024	24.00	49.8	1,337	1,925,526	959,105	1,013.0	972
7/6/2024	24.00	49.8	1,298	1,868,782	930,098	1,013.0	942
7/7/2024	24.00	49.9	1,356	1,952,431	973,617	1,013.0	986
7/8/2024	24.00	49.9	1,369	1,970,795	983,928	1,013.0	997
7/9/2024	19.70	49.9	1,406	1,662,221	829,489	1,013.0	840
7/10/2024	24.00	49.8	1,416	2,038,895	1,015,926	1,013.0	1,029
7/11/2024	24.00	49.7	1,366	1,967,099	977,605	1,013.0	990
7/12/2024	24.00	49.7	1,372	1,975,522	981,331	1,013.0	994
7/13/2024	24.00	49.7	1,393	2,005,714	997,134	1,013.0	1,010
7/14/2024	24.00	49.9	1,423	2,048,620	1,022,589	1,013.0	1,036
7/15/2024	24.00	49.9	1,454	2,093,947	1,043,911	1,013.0	1,057
7/16/2024	24.00	49.9	1,486	2,140,062	1,068,607	1,013.0	1,082
7/17/2024	24.00	49.2	1,495	2,152,136	1,058,328	1,013.0	1,072
7/18/2024	24.00	48.4	1,461	2,103,227	1,018,287	1,013.0	1,032
7/19/2024	24.00	47.9	1,474	2,122,576	1,015,757	1,013.0	1,029
7/20/2024	24.00	46.6	1,503	2,164,381	1,009,409	1,013.0	1,023
7/21/2024	24.00	45.2	1,527	2,198,467	993,751	1,013.0	1,007
7/22/2024	24.00	45.2	1,388	1,999,379	904,524	1,013.0	916
7/23/2024	24.00	45.5	1,367	1,967,942	896,153	1,013.0	908
7/24/2024	24.00	46.5	1,419	2,043,106	949,601	1,013.0	962
7/25/2024	24.00	47.1	1,349	1,943,245	915,296	1,013.0	927
7/26/2024	24.00	47.9	1,405	2,022,992	968,327	1,013.0	981
7/27/2024	24.00	48.4	1,448	2,085,105	1,008,271	1,013.0	1,021
7/28/2024	24.00	48.4	1,448	2,085,763	1,009,489	1,013.0	1,023
7/29/2024	24.00	48.1	1,455	2,095,438	1,007,282	1,013.0	1,020
7/30/2024	24.00	47.9	1,452	2,090,402	1,000,589	1,013.0	1,014
7/31/2024	22.47	47.9	1,434	1,933,425	925,772	1,013.0	938
Totals/ Average	738.17	48.6	1,408	62,374,493	30,323,767	1,013.0	30,718
	· · · · · · · · · · · · · · · · · · ·					Max	1,082

¹⁾ The S-7 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-7 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent CH_4 - methane scfm - standard cubic feet per minute scf - standard cubic feet

S-7 Turbine

Heat Input Rate

MONTH: August-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU/Day)
8/1/2024	24.00	48.0	1,442	2,076,699	997,694	1,013.0	1,011
8/2/2024	24.00	48.1	1,454	2,094,356	1,008,043	1,013.0	1,021
8/3/2024	24.00	47.7	1,422	2,047,657	977,108	1,013.0	990
8/4/2024	24.00	47.8	1,442	2,076,840	993,037	1,013.0	1,006
8/5/2024	24.00	48.4	1,455	2,095,109	1,014,573	1,013.0	1,028
8/6/2024	24.00	48.2	1,377	1,983,250	956,403	1,013.0	969
8/7/2024	20.40	48.0	1,324	1,620,793	778,658	1,013.0	789
8/8/2024	24.00	48.8	1,353	1,947,829	950,567	1,013.0	963
8/9/2024	24.00	49.4	1,430	2,058,868	1,017,733	1,013.0	1,031
8/10/2024	24.00	49.9	1,425	2,052,457	1,025,087	1,013.0	1,038
8/11/2024	24.00	49.8	1,432	2,062,261	1,027,477	1,013.0	1,041
8/12/2024	24.00	50.0	1,416	2,039,297	1,018,680	1,013.0	1,032
8/13/2024	24.00	50.1	1,432	2,062,299	1,034,154	1,013.0	1,048
8/14/2024	13.60	50.2	1,443	1,177,346	590,511	1,013.0	598
8/15/2024	0.00	49.3	N/A	-	0	1,013.0	0
8/16/2024	0.00	48.1	N/A	-	0	1,013.0	0
8/17/2024	0.00	48.8	N/A	-	0	1,013.0	0
8/18/2024	0.00	49.4	N/A	-	0	1,013.0	0
8/19/2024	0.00	49.2	N/A	-	0	1,013.0	0
8/20/2024	0.00	49.0	N/A	-	0	1,013.0	0
8/21/2024	0.00	48.7	N/A	-	0	1,013.0	0
8/22/2024	0.00	48.8	N/A	-	0	1,013.0	0
8/23/2024	0.00	48.7	N/A	-	0	1,013.0	0
8/24/2024	0.00	48.2	N/A	-	0	1,013.0	0
8/25/2024	0.00	47.8	N/A	-	0	1,013.0	0
8/26/2024	0.00	47.3	N/A	-	0	1,013.0	0
8/27/2024	0.00	47.0	N/A	-	0	1,013.0	0
8/28/2024	10.87	47.2	1,347	878,175	414,409	1,013.0	420
8/29/2024	24.00	48.8	1,388	1,998,037	974,380	1,013.0	987
8/30/2024	24.00	49.7	1,389	2,000,700	993,476	1,013.0	1,006
8/31/2024	24.00	49.5	1,391	2,003,555	991,202	1,013.0	1,004
Totals/ Average	404.87	48.7	1,409	34,275,528	16,763,193	1,013.0	16,981
J -	1			, , , , , , , , , , , , , , , , , , , ,	, , ,	Max	1,048

¹⁾ The S-7 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-7 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent CH_4 - methane scfm - standard cubic feet per minute scf - standard cubic feet

S-7 Turbine

Heat Input Rate

MONTH: September-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU/Day)
9/1/2024	23.53	49.5	1,402	1,979,873	981,020	1,013.0	994
9/2/2024	21.87	49.5	1,389	1,822,231	902,137	1,013.0	914
9/3/2024	24.00	49.5	1,379	1,985,789	982,132	1,013.0	995
9/4/2024	24.00	49.3	1,375	1,980,408	977,007	1,013.0	990
9/5/2024	22.03	49.4	1,401	1,852,672	915,601	1,013.0	928
9/6/2024	24.00	49.3	1,400	2,016,312	994,881	1,013.0	1,008
9/7/2024	24.00	49.3	1,395	2,008,190	990,813	1,013.0	1,004
9/8/2024	24.00	49.5	1,402	2,019,538	999,948	1,013.0	1,013
9/9/2024	24.00	49.5	1,396	2,010,646	994,939	1,013.0	1,008
9/10/2024	24.00	49.4	1,446	2,082,304	1,028,859	1,013.0	1,042
9/11/2024	24.00	49.4	1,458	2,099,851	1,038,075	1,013.0	1,052
9/12/2024	24.00	49.2	1,429	2,057,320	1,012,981	1,013.0	1,026
9/13/2024	20.77	49.1	1,352	1,684,363	827,070	1,013.0	838
9/14/2024	24.00	49.2	1,327	1,910,429	939,035	1,013.0	951
9/15/2024	24.00	48.7	1,452	2,090,613	1,018,477	1,013.0	1,032
9/16/2024	24.00	49.3	1,487	2,140,954	1,055,582	1,013.0	1,069
9/17/2024	24.00	48.4	1,468	2,114,072	1,022,847	1,013.0	1,036
9/18/2024	24.00	48.4	1,427	2,054,562	994,558	1,013.0	1,007
9/19/2024	24.00	48.9	1,387	1,997,581	976,515	1,013.0	989
9/20/2024	23.53	49.0	1,406	1,984,949	972,833	1,013.0	985
9/21/2024	24.00	48.8	1,337	1,925,518	940,055	1,013.0	952
9/22/2024	24.00	48.7	1,142	1,644,541	800,727	1,013.0	811
9/23/2024	22.13	48.7	1,252	1,662,292	809,010	1,013.0	820
9/24/2024	24.00	48.6	1,360	1,958,825	952,441	1,013.0	965
9/25/2024	21.10	48.3	1,416	1,792,437	865,461	1,013.0	877
9/26/2024	24.00	50.1	1,406	2,024,195	1,014,075	1,013.0	1,027
9/27/2024	24.00	49.6	1,431	2,060,619	1,021,522	1,013.0	1,035
9/28/2024	24.00	49.0	1,454	2,094,201	1,026,552	1,013.0	1,040
9/29/2024	24.00	48.7	1,510	2,173,933	1,059,299	1,013.0	1,073
9/30/2024	24.00	48.2	1,477	2,126,673	1,025,887	1,013.0	1,039
Totals/ Average	706.97	49.1	1,399	59,355,891	29,140,340	1,013.0	29,519
						Max	1,073

¹⁾ The S-7 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-7 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent $\ \ CH_4$ - methane $\ \ scfm$ - standard cubic feet per minute $\ \ scf$ - standard cubic feet

S-7 Turbine

Heat Input Rate

MONTH: October-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU/Day)
10/1/2024	24.00	48.2	1,423	2,048,924	986,682	1,013.0	1,000
10/2/2024	19.77	47.7	1,409	1,670,994	797,638	1,013.0	808
10/3/2024	22.73	47.8	1,426	1,945,704	930,109	1,013.0	942
10/4/2024	22.60	47.9	1,453	1,970,254	944,551	1,013.0	957
10/5/2024	24.00	47.7	1,470	2,116,342	1,009,717	1,013.0	1,023
10/6/2024	24.00	47.6	1,460	2,101,971	1,000,312	1,013.0	1,013
10/7/2024	24.00	47.6	1,457	2,098,332	997,980	1,013.0	1,011
10/8/2024	21.57	47.7	1,454	1,881,588	896,675	1,013.0	908
10/9/2024	24.00	47.8	1,509	2,173,180	1,037,756	1,013.0	1,051
10/10/2024	24.00	47.6	1,508	2,172,127	1,033,134	1,013.0	1,047
10/11/2024	24.00	47.9	1,515	2,181,113	1,044,629	1,013.0	1,058
10/12/2024	24.00	48.0	1,525	2,196,558	1,053,509	1,013.0	1,067
10/13/2024	24.00	47.8	1,494	2,151,824	1,028,590	1,013.0	1,042
10/14/2024	20.53	48.0	1,507	1,857,066	891,450	1,013.0	903
10/15/2024	24.00	47.9	1,524	2,194,524	1,052,246	1,013.0	1,066
10/16/2024	24.00	48.0	1,530	2,203,827	1,058,166	1,013.0	1,072
10/17/2024	24.00	47.9	1,528	2,199,746	1,053,061	1,013.0	1,067
10/18/2024	24.00	48.0	1,530	2,203,339	1,057,985	1,013.0	1,072
10/19/2024	24.00	47.8	1,530	2,203,394	1,052,291	1,013.0	1,066
10/20/2024	24.00	47.3	1,546	2,226,746	1,052,867	1,013.0	1,067
10/21/2024	22.57	47.0	1,530	2,072,210	973,793	1,013.0	986
10/22/2024	24.00	47.8	1,533	2,207,375	1,055,073	1,013.0	1,069
10/23/2024	24.00	48.0	1,516	2,182,702	1,046,725	1,013.0	1,060
10/24/2024	24.00	48.0	1,507	2,170,235	1,042,644	1,013.0	1,056
10/25/2024	24.00	48.2	1,501	2,161,058	1,041,933	1,013.0	1,055
10/26/2024	24.00	48.2	1,513	2,178,907	1,050,459	1,013.0	1,064
10/27/2024	24.00	48.5	1,522	2,191,364	1,062,062	1,013.0	1,076
10/28/2024	24.00	48.2	1,539	2,216,455	1,067,774	1,013.0	1,082
10/29/2024	24.00	48.2	1,543	2,222,003	1,071,404	1,013.0	1,085
10/30/2024	24.00	48.1	1,550	2,232,613	1,073,264	1,013.0	1,087
10/31/2024	24.00	48.0	1,459	2,100,413	1,007,722	1,013.0	1,021
Totals/ Average	729.77	47.9	1,500	65,732,888	31,472,202	1,013.0	31,881
				, ,		Max	1,087

¹⁾ The S-7 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-7 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent CH_4 - methane scfm - standard cubic feet per minute scf - standard cubic feet

S-7 Turbine

Heat Input Rate

MONTH: November-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU/Day)
11/1/2024	24.00	48.1	1,526	2,197,637	1,056,834	1,013.0	1,071
11/2/2024	24.00	48.1	1,425	2,052,618	988,302	1,013.0	1,001
11/3/2024	25.00	45.1	1,480	2,219,477	1,000,343	1,013.0	1,013
11/4/2024	24.00	47.8	1,473	2,120,586	1,014,296	1,013.0	1,027
11/5/2024	24.00	47.9	1,458	2,098,924	1,005,221	1,013.0	1,018
11/6/2024	21.67	48.2	1,463	1,902,320	917,536	1,013.0	929
11/7/2024	22.50	48.0	1,486	2,006,281	962,247	1,013.0	975
11/8/2024	24.00	47.8	1,496	2,154,280	1,029,131	1,013.0	1,043
11/9/2024	24.00	47.9	1,546	2,226,876	1,066,838	1,013.0	1,081
11/10/2024	24.00	48.1	1,549	2,229,919	1,072,195	1,013.0	1,086
11/11/2024	24.00	48.0	1,572	2,263,333	1,085,874	1,013.0	1,100
11/12/2024	24.00	47.9	1,586	2,283,124	1,093,679	1,013.0	1,108
11/13/2024	24.00	47.6	1,573	2,265,419	1,079,170	1,013.0	1,093
11/14/2024	24.00	47.9	1,563	2,251,298	1,077,830	1,013.0	1,092
11/15/2024	22.63	48.0	1,565	2,124,869	1,020,223	1,013.0	1,033
11/16/2024	24.00	47.9	1,536	2,211,163	1,059,928	1,013.0	1,074
11/17/2024	24.00	47.7	1,523	2,192,523	1,044,783	1,013.0	1,058
11/18/2024	24.00	47.8	1,543	2,222,364	1,061,891	1,013.0	1,076
11/19/2024	24.00	47.2	1,526	2,197,468	1,037,487	1,013.0	1,051
11/20/2024	24.00	47.6	1,468	2,114,037	1,005,413	1,013.0	1,018
11/21/2024	24.00	47.9	1,488	2,142,957	1,026,521	1,013.0	1,040
11/22/2024	24.00	47.9	1,512	2,177,549	1,043,798	1,013.0	1,057
11/23/2024	24.00	48.2	1,563	2,250,244	1,085,169	1,013.0	1,099
11/24/2024	24.00	47.7	1,528	2,200,937	1,049,033	1,013.0	1,063
11/25/2024	24.00	48.5	1,504	2,166,120	1,051,105	1,013.0	1,065
11/26/2024	24.00	48.4	1,492	2,148,482	1,040,632	1,013.0	1,054
11/27/2024	24.00	48.2	1,503	2,164,208	1,043,646	1,013.0	1,057
11/28/2024	24.00	48.0	1,510	2,174,948	1,043,977	1,013.0	1,058
11/29/2024	24.00	47.8	1,507	2,169,622	1,037,404	1,013.0	1,051
11/30/2024	24.00	47.8	1,509	2,172,927	1,038,512	1,013.0	1,052
Totals/ Average	715.80	47.8	1,516	65,102,510	31,139,019	1,013.0	31,544
	•		•			Max	1,108

¹⁾ The S-7 heat input log is maintained pursuant to Permit Condition No. 18773, Part 8.

²⁾ The daily heat input limit for S-7 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBtu/Day.

[%] - Percent $\ \ CH_4$ - methane $\ \ scfm$ - standard cubic feet per minute $\ \ scf$ - standard cubic feet

ALTAMONT LANDFILL & RESOURCE RECOVERY FACILITY, Livermore, CA S-6 TEMPERATURE REPORT From June 1, 2024 THROUGH November 30, 2024

KEY EMISSION CONTROL SYSTEM OPERATING PARAMETERS (BAAQMD Reg 8, Rule 34, Section 509)

REPORT PREPARED BY: Rajan Phadnis DATE: 12/01/24

TEMPERATURE SENSING DEVICE: Thermocouple

	DATE/TIME	TEMPERATURE (°F)	EXPLANATION (If below 700°F)	CAUSE	EXPLANATION	DURATION OF DEVIATION (Hours)	ACTION TAKEN
C	COMMENTS:						

No temperature deviations occurred during June 2024

No temperature deviations occurred during July 2024

No temperature deviations occurred during August 2024

No temperature deviations occurred during September 2024

No temperature deviations occurred during October 2024

No temperature deviations occurred during November 2024

Notes: The S-6 temperature report is maintained pursuant to Permit Condition No. 18773, Part 9.

The combustion chamber discharge temperature for each Gas Turbine shall be maintained between 700°F and 1220°F, averaged over any 3-hour period.

ALTAMONT LANDFILL & RESOURCE RECOVERY FACILITY, Livermore, CA S-7 TEMPERATURE REPORT From June 1, 2024 THROUGH November 30, 2024

KEY EMISSION CONTROL SYSTEM OPERATING PARAMETERS (BAAQMD Reg 8, Rule 34, Section 509)

REPORT PREPARED BY: Rajan Phadnis DATE: 12/01/24

TEMPERATURE SENSING DEVICE: Thermocouple

No temperature deviations occurred during November 2024

DATE/TIME	TEMPERATURE (°F)	EXPLANATION (If below 700°F)	CAUSE	EXPLANATION	DURATION OF DEVIATION (Hours)	ACTION TAKEN	
COMMENTS:							
No temperature deviations occurred during June 2024							
No temperature deviations occurred during July 2024							
No temperature deviations occurred during August 2024							
No temperature deviations occurred during September 2024							
No temperature deviations occurred during October 2024							

Not The S-7 temperature report is maintained pursuant to Permit Condition No. 18773, Part 9.

The combustion chamber discharge temperature for each Gas Turbine shall be maintained between 700°F and 1220°F, averaged over any 3-hour period.

APPENDIX G FLARES (A-15 AND A-16) TEMPERATURE DEVIATION REPORTS AND HEAT INPUT LOGS

A-15 Landfill Gas Flare

Heat Input Rate

MONTH: June-24

Date	Runtime (Hours)	CH ₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
6/1/2024	0.00	45.7	N/A	0	0	997.7	0
6/2/2024	0.00	45.7	N/A	0	0	997.7	0
6/3/2024	0.00	45.7	N/A	0	0	997.7	0
6/4/2024	7.43	45.7	1,772	790,107	360,684	997.7	360
6/5/2024	15.23	45.7	1,619	1,479,440	675,364	997.7	674
6/6/2024	0.00	45.7	N/A	0	0	997.7	0
6/7/2024	0.00	45.7	N/A	0	0	997.7	0
6/8/2024	0.00	45.7	N/A	0	0	997.7	0
6/9/2024	0.00	45.7	N/A	0	0	997.7	0
6/10/2024	0.00	45.7	N/A	0	0	997.7	0
6/11/2024	0.00	45.7	N/A	0	0	997.7	0
6/12/2024	0.00	45.7	N/A	0	0	997.7	0
6/13/2024	0.00	45.7	N/A	0	0	997.7	0
6/14/2024	0.00	45.7	N/A	0	0	997.7	0
6/15/2024	0.00	45.7	N/A	0	0	997.7	0
6/16/2024	0.00	45.7	N/A	0	0	997.7	0
6/17/2024	0.00	45.7	N/A	0	0	997.7	0
6/18/2024	0.00	45.7	N/A	0	0	997.7	0
6/19/2024	0.00	45.7	N/A	0	0	997.7	0
6/20/2024	0.00	45.7	N/A	0	0	997.7	0
6/21/2024	0.00	45.7	N/A	0	0	997.7	0
6/22/2024	0.00	45.7	N/A	0	0	997.7	0
6/23/2024	0.00	45.7	N/A	0	0	997.7	0
6/24/2024	0.00	45.7	N/A	0	0	997.7	0
6/25/2024	0.00	45.7	N/A	0	0	997.7	0
6/26/2024	5.27	45.7	1,787	564,585	257,733	997.7	257
6/27/2024	0.00	45.7	N/A	0	0	997.7	0
6/28/2024	0.00	45.7	N/A	0	0	997.7	0
6/29/2024	0.00	45.7	N/A	0	0	997.7	0
6/30/2024	0.00	45.7	N/A	0	0	997.7	0
Totals/ Average	27.93	45.7	1,726	2,834,132	1,293,781	997.7	1,291
						Max	674

NOTES: 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-15 flare is 1,704 MMBtu.

2) Starting May 2021, the average methane percentage from the March 4, 2021 source test will be used. It is an average of the methane percentages taken during the test.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet btu - British thermal units

A-15 Landfill Gas Flare

Heat Input Rate

MONTH: July-24

Date	Runtime (Hours)	CH ₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
7/1/2024	0.00	45.7	N/A	0	0	997.7	0
7/2/2024	0.00	45.7	N/A	0	0	997.7	0
7/3/2024	0.00	45.7	N/A	0	0	997.7	0
7/4/2024	0.00	45.7	N/A	0	0	997.7	0
7/5/2024	0.00	45.7	N/A	0	0	997.7	0
7/6/2024	0.00	45.7	N/A	0	0	997.7	0
7/7/2024	0.00	45.7	N/A	0	0	997.7	0
7/8/2024	0.00	45.7	N/A	0	0	997.7	0
7/9/2024	0.00	45.7	N/A	0	0	997.7	0
7/10/2024	0.00	45.7	N/A	0	0	997.7	0
7/11/2024	0.00	45.7	N/A	0	0	997.7	0
7/12/2024	0.00	45.7	N/A	0	0	997.7	0
7/13/2024	0.00	45.7	N/A	0	0	997.7	0
7/14/2024	0.00	45.7	N/A	0	0	997.7	0
7/15/2024	0.00	45.7	N/A	0	0	997.7	0
7/16/2024	0.00	45.7	N/A	0	0	997.7	0
7/17/2024	0.00	45.7	N/A	0	0	997.7	0
7/18/2024	0.00	45.7	N/A	0	0	997.7	0
7/19/2024	0.00	45.7	N/A	0	0	997.7	0
7/20/2024	0.00	45.7	N/A	0	0	997.7	0
7/21/2024	0.00	45.7	N/A	0	0	997.7	0
7/22/2024	0.00	45.7	N/A	0	0	997.7	0
7/23/2024	0.00	45.7	N/A	0	0	997.7	0
7/24/2024	0.00	45.7	N/A	0	0	997.7	0
7/25/2024	0.00	45.7	N/A	0	0	997.7	0
7/26/2024	0.00	45.7	N/A	0	0	997.7	0
7/27/2024	0.00	45.7	N/A	0	0	997.7	0
7/28/2024	0.00	45.7	N/A	0	0	997.7	0
7/29/2024	0.00	45.7	N/A	0	0	997.7	0
7/30/2024	0.00	45.7	N/A	0	0	997.7	0
7/31/2024	0.00	45.7	N/A	0	0	997.7	0
Totals/ Average	0.00	45.7	0	0	0	997.7	0
J		•		1		Max	0

NOTES: 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-15 flare is 1,704 MMBtu.

²⁾ Starting May 2021, the average methane percentage from the March 4, 2021 source test will be used. It is an average of the methane percentages taken during the test.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet btu - British thermal units

A-15 Landfill Gas Flare

Heat Input Rate

MONTH: August-24

Date	Runtime (Hours)	CH ₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH₄ (btu/scf)	Heat Input (MMBTU)/Day
8/1/2024	0.00	45.7	N/A	0	0	997.7	0
8/2/2024	0.00	45.7	N/A	0	0	997.7	0
8/3/2024	0.00	45.7	N/A	0	0	997.7	0
8/4/2024	0.00	45.7	N/A	0	0	997.7	0
8/5/2024	0.00	45.7	N/A	0	0	997.7	0
8/6/2024	0.00	45.7	N/A	0	0	997.7	0
8/7/2024	0.00	45.7	N/A	0	0	997.7	0
8/8/2024	0.00	45.7	N/A	0	0	997.7	0
8/9/2024	0.00	45.7	N/A	0	0	997.7	0
8/10/2024	0.00	45.7	N/A	0	0	997.7	0
8/11/2024	0.00	45.7	N/A	0	0	997.7	0
8/12/2024	0.00	45.7	N/A	0	0	997.7	0
8/13/2024	0.00	45.7	N/A	0	0	997.7	0
8/14/2024	0.00	45.7	N/A	0	0	997.7	0
8/15/2024	12.73	45.7	1,502	1,147,739	523,943	997.7	523
8/16/2024	22.20	45.7	1,501	1,999,048	912,565	997.7	910
8/17/2024	24.00	45.7	1,502	2,162,487	987,175	997.7	985
8/18/2024	24.00	45.7	1,502	2,162,804	987,320	997.7	985
8/19/2024	23.73	45.7	1,500	2,135,953	975,063	997.7	973
8/20/2024	24.00	45.7	1,502	2,162,799	987,318	997.7	985
8/21/2024	24.00	45.7	1,502	2,162,685	987,266	997.7	985
8/22/2024	24.00	45.7	1,502	2,162,332	987,105	997.7	985
8/23/2024	24.00	45.7	1,502	2,162,511	987,186	997.7	985
8/24/2024	24.00	45.7	1,502	2,162,392	987,132	997.7	985
8/25/2024	24.00	45.7	1,502	2,162,667	987,257	997.7	985
8/26/2024	23.30	45.7	1,506	2,105,374	961,103	997.7	959
8/27/2024	24.00	45.7	1,503	2,164,298	988,002	997.7	986
8/28/2024	12.70	45.7	1,510	1,150,324	525,123	997.7	524
8/29/2024	0.00	45.7	N/A	0	0	997.7	0
8/30/2024	0.00	45.7	N/A	0	0	997.7	0
8/31/2024	0.00	45.7	N/A	0	0	997.7	0
Totals/ Average	310.67	45.7	1,503	28,003,414	12,783,558	997.7	12,754
-		•			, ,	Max	986

NOTES: 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-15 flare is 1,704 MMBtu.

²⁾ Starting May 2021, the average methane percentage from the March 4, 2021 source test will be used. It is an average of the methane percentages taken during the test.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet btu - British thermal units

A-15 Landfill Gas Flare

Heat Input Rate

MONTH: September-24

Date	Runtime (Hours)	CH ₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
9/1/2024	0.00	45.7	N/A	0	0	997.7	0
9/2/2024	0.00	45.7	N/A	0	0	997.7	0
9/3/2024	0.00	45.7	N/A	0	0	997.7	0
9/4/2024	0.00	45.7	N/A	0	0	997.7	0
9/5/2024	0.00	45.7	N/A	0	0	997.7	0
9/6/2024	0.00	45.7	N/A	0	0	997.7	0
9/7/2024	0.00	45.7	N/A	0	0	997.7	0
9/8/2024	0.00	45.7	N/A	0	0	997.7	0
9/9/2024	0.00	45.7	N/A	0	0	997.7	0
9/10/2024	0.00	45.7	N/A	0	0	997.7	0
9/11/2024	0.00	45.7	N/A	0	0	997.7	0
9/12/2024	0.00	45.7	N/A	0	0	997.7	0
9/13/2024	0.00	45.7	N/A	0	0	997.7	0
9/14/2024	0.00	45.7	N/A	0	0	997.7	0
9/15/2024	0.00	45.7	N/A	0	0	997.7	0
9/16/2024	0.00	45.7	N/A	0	0	997.7	0
9/17/2024	0.00	45.7	N/A	0	0	997.7	0
9/18/2024	0.00	45.7	N/A	0	0	997.7	0
9/19/2024	0.00	45.7	N/A	0	0	997.7	0
9/20/2024	0.00	45.7	N/A	0	0	997.7	0
9/21/2024	0.00	45.7	N/A	0	0	997.7	0
9/22/2024	0.00	45.7	N/A	0	0	997.7	0
9/23/2024	0.00	45.7	N/A	0	0	997.7	0
9/24/2024	0.00	45.7	N/A	0	0	997.7	0
9/25/2024	0.00	45.7	N/A	0	0	997.7	0
9/26/2024	0.53	45.7	853	27,286	12,456	997.7	12
9/27/2024	0.00	45.7	N/A	0	0	997.7	0
9/28/2024	0.00	45.7	N/A	0	0	997.7	0
9/29/2024	0.00	45.7	N/A	0	0	997.7	0
9/30/2024	0.00	45.7	N/A	0	0	997.7	0
Totals/ Average	0.53	45.7	853	27,286	12,456	997.7	12
						Max	12

NOTES: 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-15 flare is 1,704 MMBtu.

2) Starting May 2021, the average methane percentage from the March 4, 2021 source test will be used. It is an average of the methane percentages taken during the test.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet btu - British thermal units

A-15 Landfill Gas Flare

Heat Input Rate

MONTH: October-24

Date	Runtime (Hours)	CH ₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH ₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
10/1/2024	0.00	45.7	N/A	0	0	997.7	0
10/2/2024	0.00	45.7	N/A	0	0	997.7	0
10/3/2024	0.00	45.7	N/A	0	0	997.7	0
10/4/2024	0.00	45.7	N/A	0	0	997.7	0
10/5/2024	0.00	45.7	N/A	0	0	997.7	0
10/6/2024	0.00	45.7	N/A	0	0	997.7	0
10/7/2024	0.00	45.7	N/A	0	0	997.7	0
10/8/2024	0.00	45.7	N/A	0	0	997.7	0
10/9/2024	4.10	45.7	1,801	443,097	202,274	997.7	202
10/10/2024	12.27	45.7	1,694	1,246,764	569,148	997.7	568
10/11/2024	0.00	45.7	N/A	0	0	997.7	0
10/12/2024	0.00	45.7	N/A	0	0	997.7	0
10/13/2024	0.00	45.7	N/A	0	0	997.7	0
10/14/2024	0.00	45.7	N/A	0	0	997.7	0
10/15/2024	0.00	45.7	N/A	0	0	997.7	0
10/16/2024	0.00	45.7	N/A	0	0	997.7	0
10/17/2024	0.00	45.7	N/A	0	0	997.7	0
10/18/2024	0.00	45.7	N/A	0	0	997.7	0
10/19/2024	0.00	45.7	N/A	0	0	997.7	0
10/20/2024	0.00	45.7	N/A	0	0	997.7	0
10/21/2024	0.00	45.7	N/A	0	0	997.7	0
10/22/2024	0.00	45.7	N/A	0	0	997.7	0
10/23/2024	0.00	45.7	N/A	0	0	997.7	0
10/24/2024	0.00	45.7	N/A	0	0	997.7	0
10/25/2024	0.00	45.7	N/A	0	0	997.7	0
10/26/2024	0.00	45.7	N/A	0	0	997.7	0
10/27/2024	0.00	45.7	N/A	0	0	997.7	0
10/28/2024	0.00	45.7	N/A	0	0	997.7	0
10/29/2024	0.00	45.7	N/A	0	0	997.7	0
10/30/2024	0.00	45.7	N/A	0	0	997.7	0
10/31/2024	0.00	45.7	N/A	0	0	997.7	0
Totals/ Average	16.37	45.7	1,748	1,689,861	771,422	997.7	770
				•		Max	568

NOTES: 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-15 flare is 1,704 MMBtu.

²⁾ Starting May 2021, the average methane percentage from the March 4, 2021 source test will be used. It is an average of the methane percentages taken during the test.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet btu - British thermal units

A-15 Landfill Gas Flare

Heat Input Rate

MONTH: November-24

Date	Runtime (Hours)	CH ₄ (%)	Average Flow (scfm)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
11/1/2024	0.00	45.7	N/A	0	0	997.7	0
11/2/2024	0.00	45.7	N/A	0	0	997.7	0
11/3/2024	0.00	45.7	N/A	0	0	997.7	0
11/4/2024	0.00	45.7	N/A	0	0	997.7	0
11/5/2024	0.00	45.7	N/A	0	0	997.7	0
11/6/2024	0.00	45.7	N/A	0	0	997.7	0
11/7/2024	0.00	45.7	N/A	0	0	997.7	0
11/8/2024	0.00	45.7	N/A	0	0	997.7	0
11/9/2024	0.00	45.7	N/A	0	0	997.7	0
11/10/2024	0.00	45.7	N/A	0	0	997.7	0
11/11/2024	0.00	45.7	N/A	0	0	997.7	0
11/12/2024	0.00	45.7	N/A	0	0	997.7	0
11/13/2024	0.00	45.7	N/A	0	0	997.7	0
11/14/2024	0.00	45.7	N/A	0	0	997.7	0
11/15/2024	0.00	45.7	N/A	0	0	997.7	0
11/16/2024	0.00	45.7	N/A	0	0	997.7	0
11/17/2024	0.00	45.7	N/A	0	0	997.7	0
11/18/2024	0.00	45.7	N/A	0	0	997.7	0
11/19/2024	0.00	45.7	N/A	0	0	997.7	0
11/20/2024	0.00	45.7	N/A	0	0	997.7	0
11/21/2024	0.00	45.7	N/A	0	0	997.7	0
11/22/2024	0.00	45.7	N/A	0	0	997.7	0
11/23/2024	0.00	45.7	N/A	0	0	997.7	0
11/24/2024	0.00	45.7	N/A	0	0	997.7	0
11/25/2024	0.00	45.7	N/A	0	0	997.7	0
11/26/2024	0.00	45.7	N/A	0	0	997.7	0
11/27/2024	0.00	45.7	N/A	0	0	997.7	0
11/28/2024	0.00	45.7	N/A	0	0	997.7	0
11/29/2024	0.00	45.7	N/A	0	0	997.7	0
11/30/2024	0.00	45.7	N/A	0	0	997.7	0
Totals/ Average	0.00	45.7	0	0	0	997.7	0
	-			•		Max	0

NOTES: 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-15 flare is 1,704 MMBtu.

2) Starting May 2021, the average methane percentage from the March 4, 2021 source test will be used. It is an average of the methane percentages taken during the test.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet btu - British thermal units

A-16 Landfill Gas Flare

Heat Input Rate

MONTH: June-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Landfill Gas Volume (scf)	Byproduct Gas (BPG) Volume (scf)	Total Throughput (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
6/1/2024	24.00	49.4	2,260	3,254,484	0	3,254,484	1,606,901	997.7	1,603
6/2/2024	24.00	49.4	2,226	3,205,453	0	3,205,453	1,582,692	997.7	1,579
6/3/2024	24.00	49.4	2,233	3,216,106	0	3,216,106	1,587,952	997.7	1,584
6/4/2024	14.47	49.4	2,255	1,957,402	0	1,957,402	966,467	997.7	964
6/5/2024	13.40	49.4	2,291	1,842,343	0	1,842,343	909,657	997.7	908
6/6/2024	24.00	49.4	2,397	3,451,095	0	3,451,095	1,703,978	997.7	1,700
6/7/2024	24.00	49.4	2,347	3,379,238	0	3,379,238	1,668,499	997.7	1,665
6/8/2024	24.00	49.4	2,277	3,279,398	0	3,279,398	1,619,203	997.7	1,615
6/9/2024	24.00	49.4	2,336	3,363,527	0	3,363,527	1,660,741	997.7	1,657
6/10/2024	24.00	49.4	2,337	3,365,873	0	3,365,873	1,661,900	997.7	1,658
6/11/2024	22.90	49.4	2,585	3,551,193	0	3,551,193	1,753,402	997.7	1,749
6/12/2024	24.00	49.4	2,530	3,643,641	0	3,643,641	1,799,048	997.7	1,795
6/13/2024	24.00	49.4	2,359	3,397,030	0	3,397,030	1,677,284	997.7	1,673
6/14/2024	24.00	49.4	2,387	3,436,634	0	3,436,634	1,696,838	997.7	1,693
6/15/2024	24.00	49.4	2,392	3,443,790	0	3,443,790	1,700,371	997.7	1,696
6/16/2024	24.00	49.4	2,392	3,444,222	0	3,444,222	1,700,585	997.7	1,697
6/17/2024	24.00	49.4	2,396	3,449,960	0	3,449,960	1,703,418	997.7	1,699
6/18/2024	24.00	49.4	2,415	3,477,374	0	3,477,374	1,716,953	997.7	1,713
6/19/2024	24.00	49.4	2,315	3,334,041	0	3,334,041	1,646,183	997.7	1,642
6/20/2024	24.00	49.4	2,308	3,323,173	0	3,323,173	1,640,817	997.7	1,637
6/21/2024	24.00	49.4	2,312	3,329,752	0	3,329,752	1,644,065	997.7	1,640
6/22/2024	24.00	49.4	2,360	3,399,019	0	3,399,019	1,678,266	997.7	1,674
6/23/2024	24.00	49.4	2,371	3,413,841	0	3,413,841	1,685,584	997.7	1,682
6/24/2024	24.00	49.4	2,482	3,573,725	0	3,573,725	1,764,527	997.7	1,760
6/25/2024	24.00	49.4	2,492	3,588,131	0	3,588,131	1,771,640	997.7	1,768
6/26/2024	18.20	49.4	2,350	2,566,163	0	2,566,163	1,267,043	997.7	1,264
6/27/2024	24.00	49.4	2,326	3,348,807	0	3,348,807	1,653,473	997.7	1,650
6/28/2024	24.00	49.4	2,331	3,356,652	0	3,356,652	1,657,347	997.7	1,654
6/29/2024	24.00	49.4	2,348	3,380,682	0	3,380,682	1,669,212	997.7	1,665
6/30/2024	24.00	49.4	2,359	3,397,195	0	3,397,195	1,677,365	997.7	1,674
Totals/ Average	692.97	49.4	2,359	98,169,944	0	98,169,944	48,471,410	997.7	48,360
								Max	1,795

NOTE 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-16 flare is 3,168 MMBtu.

²⁾ Starting May 2023, the average methane percentage from the March 8, 9, and 13, 2023 source test will be used. Starting May 2024, the average methane percentage from the March 6, 2024 source test will be used.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet btu - British thermal units MMBTU - million British thermal units

A-16 Landfill Gas Flare

Heat Input Rate

MONTH: July-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Landfill Gas Volume (scf)	Byproduct Gas (BPG) Volume (scf)	Total Throughput (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
7/1/2024	24.00	49.4	2,337	3,364,895	0	3,364,895	1,661,417	997.7	1,658
7/2/2024	24.00	49.4	2,570	3,700,831	0	3,700,831	1,827,285	997.7	1,823
7/3/2024	24.00	49.4	2,524	3,633,892	0	3,633,892	1,794,234	997.7	1,790
7/4/2024	24.00	49.4	2,619	3,771,656	0	3,771,656	1,862,255	997.7	1,858
7/5/2024	24.00	49.4	2,521	3,630,456	0	3,630,456	1,792,538	997.7	1,788
7/6/2024	24.00	49.4	2,492	3,587,884	0	3,587,884	1,771,518	997.7	1,767
7/7/2024	24.00	49.4	2,403	3,460,818	0	3,460,818	1,708,779	997.7	1,705
7/8/2024	24.00	49.4	2,355	3,390,497	0	3,390,497	1,674,058	997.7	1,670
7/9/2024	24.00	49.4	2,374	3,418,772	0	3,418,772	1,688,019	997.7	1,684
7/10/2024	24.00	49.4	2,423	3,489,815	0	3,489,815	1,723,096	997.7	1,719
7/11/2024	24.00	49.4	2,471	3,557,626	0	3,557,626	1,756,578	997.7	1,753
7/12/2024	24.00	49.4	2,378	3,425,008	0	3,425,008	1,691,098	997.7	1,687
7/13/2024	24.00	49.4	2,124	3,058,609	0	3,058,609	1,510,188	997.7	1,507
7/14/2024	22.50	49.4	2,080	2,807,459	0	2,807,459	1,386,183	997.7	1,383
7/15/2024	23.23	49.4	2,145	2,990,474	0	2,990,474	1,476,547	997.7	1,473
7/16/2024	24.00	49.4	2,537	3,652,762	0	3,652,762	1,803,551	997.7	1,799
7/17/2024	24.00	49.4	2,614	3,764,862	0	3,764,862	1,858,901	997.7	1,855
7/18/2024	24.00	49.4	2,611	3,760,300	0	3,760,300	1,856,648	997.7	1,852
7/19/2024	24.00	49.4	2,612	3,761,032	0	3,761,032	1,857,010	997.7	1,853
7/20/2024	24.00	49.4	2,537	3,652,853	0	3,652,853	1,803,596	997.7	1,799
7/21/2024	24.00	49.4	2,410	3,470,040	0	3,470,040	1,713,332	997.7	1,709
7/22/2024	24.00	49.4	2,386	3,435,512	0	3,435,512	1,696,284	997.7	1,692
7/23/2024	24.00	49.4	2,401	3,457,415	0	3,457,415	1,707,099	997.7	1,703
7/24/2024	24.00	49.4	2,249	3,238,285	0	3,238,285	1,598,903	997.7	1,595
7/25/2024	24.00	49.4	2,193	3,158,467	0	3,158,467	1,559,493	997.7	1,556
7/26/2024	24.00	49.4	2,128	3,064,849	0	3,064,849	1,513,269	997.7	1,510
7/27/2024	24.00	49.4	1,925	2,772,644	0	2,772,644	1,368,993	997.7	1,366
7/28/2024	24.00	49.4	1,961	2,823,773	0	2,823,773	1,394,238	997.7	1,391
7/29/2024	24.00	49.4	1,899	2,734,015	0	2,734,015	1,349,920	997.7	1,347
7/30/2024	24.00	49.4	1,989	2,864,040	0	2,864,040	1,414,120	997.7	1,411
7/31/2024	24.00	49.4	2,154	3,101,557	0	3,101,557	1,531,394	997.7	1,528
Totals/ Average	741.73	49.4	2,336	104,001,098	0	104,001,098	51,350,542	997.7	51,232
<u> </u>	<u> </u>							Max	1,858

NOTE 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-16 flare is 3,168 MMBtu.

²⁾ Starting May 2023, the average methane percentage from the March 8, 9, and 13, 2023 source test will be used. Starting May 2024, the average methane percentage from the March 6, 2024 source test will be used.

A-16 Landfill Gas Flare

Heat Input Rate

MONTH: August-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Landfill Gas Volume (scf)	Byproduct Gas (BPG) Volume (scf)	Total Throughput (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
8/1/2024	24.00	49.4	2,015	2,901,863	0	2,901,863	1,432,795	997.7	1,429
8/2/2024	24.00	49.4	2,039	2,936,302	0	2,936,302	1,449,799	997.7	1,446
8/3/2024	24.00	49.4	2,070	2,981,449	0	2,981,449	1,472,090	997.7	1,469
8/4/2024	24.00	49.4	1,918	2,761,612	0	2,761,612	1,363,546	997.7	1,360
8/5/2024	24.00	49.4	1,913	2,754,768	0	2,754,768	1,360,167	997.7	1,357
8/6/2024	24.00	49.4	2,038	2,935,314	0	2,935,314	1,449,311	997.7	1,446
8/7/2024	23.63	49.4	2,222	3,151,423	0	3,151,423	1,556,015	997.7	1,552
8/8/2024	24.00	49.4	2,182	3,142,547	0	3,142,547	1,551,633	997.7	1,548
8/9/2024	24.00	49.4	2,055	2,959,711	0	2,959,711	1,461,357	997.7	1,458
8/10/2024	24.00	49.4	1,981	2,852,884	0	2,852,884	1,408,611	997.7	1,405
8/11/2024	24.00	49.4	1,806	2,600,737	0	2,600,737	1,284,114	997.7	1,281
8/12/2024	20.63	49.4	1,994	2,467,995	0	2,467,995	1,218,573	997.7	1,216
8/13/2024	24.00	49.4	1,977	2,847,151	0	2,847,151	1,405,781	997.7	1,403
8/14/2024	24.00	49.4	2,252	3,243,214	0	3,243,214	1,601,337	997.7	1,598
8/15/2024	24.00	49.4	2,586	3,723,460	0	3,723,460	1,838,458	997.7	1,834
8/16/2024	24.00	49.4	2,445	3,521,215	0	3,521,215	1,738,600	997.7	1,735
8/17/2024	24.00	49.4	2,321	3,341,659	0	3,341,659	1,649,944	997.7	1,646
8/18/2024	21.40	49.4	2,179	2,797,715	0	2,797,715	1,381,372	997.7	1,378
8/19/2024	24.00	49.4	2,367	3,408,197	0	3,408,197	1,682,797	997.7	1,679
8/20/2024	24.00	49.4	2,336	3,364,082	0	3,364,082	1,661,015	997.7	1,657
8/21/2024	24.00	49.4	2,301	3,314,051	0	3,314,051	1,636,313	997.7	1,633
8/22/2024	24.00	49.4	2,244	3,230,772	0	3,230,772	1,595,194	997.7	1,592
8/23/2024	24.00	49.4	2,231	3,212,026	0	3,212,026	1,585,938	997.7	1,582
8/24/2024	24.00	49.4	2,240	3,224,905	0	3,224,905	1,592,297	997.7	1,589
8/25/2024	24.00	49.4	2,273	3,273,522	0	3,273,522	1,616,301	997.7	1,613
8/26/2024	24.00	49.4	2,181	3,140,351	0	3,140,351	1,550,548	997.7	1,547
8/27/2024	24.00	49.4	2,154	3,101,321	0	3,101,321	1,531,277	997.7	1,528
8/28/2024	21.30	49.4	2,049	2,618,631	0	2,618,631	1,292,949	997.7	1,290
8/29/2024	17.33	49.4	1,943	2,020,352	0	2,020,352	997,549	997.7	995
8/30/2024	24.00	49.4	1,722	2,479,755	0	2,479,755	1,224,379	997.7	1,222
8/31/2024	24.00	49.4	1,692	2,436,546	0	2,436,546	1,203,045	997.7	1,200
Totals/ Average	728.30	49.4	2,120	92,745,530	0	92,745,530	45,793,105	997.7	45,688
_	•		•			•		Max	1,834

NOTE 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-16 flare is 3,168 MMBtu.

²⁾ Starting May 2023, the average methane percentage from the March 8, 9, and 13, 2023 source test will be used. Starting May 2024, the average methane percentage from the March 6, 2024 source test will be used.

A-16 Landfill Gas Flare

Heat Input Rate

MONTH: September-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Landfill Gas Volume (scf)	Byproduct Gas (BPG) Volume (scf)	Total Throughput (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
9/1/2024	23.83	49.4	1,642	2,348,424	0	2,348,424	1,159,534	997.7	1,157
9/2/2024	22.73	49.4	1,893	2,581,667	0	2,581,667	1,274,698	997.7	1,272
9/3/2024	24.00	49.4	1,762	2,537,379	0	2,537,379	1,252,831	997.7	1,250
9/4/2024	24.00	49.4	2,078	2,991,736	0	2,991,736	1,477,170	997.7	1,474
9/5/2024	24.00	49.4	2,011	2,896,106	0	2,896,106	1,429,952	997.7	1,427
9/6/2024	22.40	49.4	2,076	2,790,583	0	2,790,583	1,377,850	997.7	1,375
9/7/2024	24.00	49.4	2,166	3,119,483	0	3,119,483	1,540,245	997.7	1,537
9/8/2024	24.00	49.4	2,004	2,886,299	0	2,886,299	1,425,110	997.7	1,422
9/9/2024	23.63	49.4	2,143	3,038,956	0	3,038,956	1,500,485	997.7	1,497
9/10/2024	24.00	49.4	2,128	3,063,973	0	3,063,973	1,512,837	997.7	1,509
9/11/2024	24.00	49.4	2,099	3,022,665	0	3,022,665	1,492,441	997.7	1,489
9/12/2024	24.00	49.4	2,255	3,247,782	0	3,247,782	1,603,592	997.7	1,600
9/13/2024	24.00	49.4	2,304	3,317,499	0	3,317,499	1,638,015	997.7	1,634
9/14/2024	24.00	49.4	2,036	2,931,156	0	2,931,156	1,447,258	997.7	1,444
9/15/2024	24.00	49.4	2,018	2,906,128	0	2,906,128	1,434,901	997.7	1,432
9/16/2024	24.00	49.4	1,697	2,443,741	0	2,443,741	1,206,597	997.7	1,204
9/17/2024	24.00	49.4	1,861	2,680,318	0	2,680,318	1,323,407	997.7	1,320
9/18/2024	24.00	49.4	2,101	3,024,861	0	3,024,861	1,493,525	997.7	1,490
9/19/2024	24.00	49.4	2,138	3,079,270	0	3,079,270	1,520,390	997.7	1,517
9/20/2024	24.00	49.4	2,174	3,131,227	0	3,131,227	1,546,043	997.7	1,542
9/21/2024	24.00	49.4	2,246	3,234,808	0	3,234,808	1,597,186	997.7	1,594
9/22/2024	24.00	49.4	2,358	3,395,194	0	3,395,194	1,676,377	997.7	1,673
9/23/2024	24.00	49.4	2,404	3,461,940	0	3,461,940	1,709,333	997.7	1,705
9/24/2024	9.50	49.4	2,325	1,325,022	0	1,325,022	654,230	997.7	653
9/25/2024	6.30	49.4	2,448	925,200	0	925,200	456,818	997.7	456
9/26/2024	24.00	49.4	2,444	3,519,800	0	3,519,800	1,737,901	997.7	1,734
9/27/2024	24.00	49.4	2,383	3,431,936	0	3,431,936	1,694,518	997.7	1,691
9/28/2024	24.00	49.4	2,303	3,316,425	0	3,316,425	1,637,485	997.7	1,634
9/29/2024	24.00	49.4	2,182	3,141,838	0	3,141,838	1,551,283	997.7	1,548
9/30/2024	23.90	49.4	2,275	3,262,274	0	3,262,274	1,610,748	997.7	1,607
Totals/ Average	684.30	49.4	2,132	87,053,690	0	87,053,690	42,982,759	997.7	42,884
	•	-	•					Max	1,734

NOTE 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-16 flare is 3,168 MMBtu.

²⁾ Starting May 2023, the average methane percentage from the March 8, 9, and 13, 2023 source test will be used. Starting May 2024, the average methane percentage from the March 6, 2024 source test will be used.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet btu - British thermal units MMBTU - million British thermal units

A-16 Landfill Gas Flare

Heat Input Rate

MONTH: October-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Landfill Gas Volume (scf)	Byproduct Gas (BPG) Volume (scf)	Total Throughput (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
10/1/2024	24.00	49.4	2,353	3,388,032	0	3,388,032	1,672,841	997.7	1,669
10/2/2024	24.00	49.4	2,455	3,535,349	0	3,535,349	1,745,579	997.7	1,742
10/3/2024	24.00	49.4	2,390	3,441,312	0	3,441,312	1,699,148	997.7	1,695
10/4/2024	24.00	49.4	2,317	3,336,294	0	3,336,294	1,647,295	997.7	1,644
10/5/2024	24.00	49.4	2,226	3,206,159	0	3,206,159	1,583,041	997.7	1,579
10/6/2024	24.00	49.4	2,230	3,211,194	0	3,211,194	1,585,527	997.7	1,582
10/7/2024	24.00	49.4	2,217	3,192,588	0	3,192,588	1,576,340	997.7	1,573
10/8/2024	24.00	49.4	2,234	3,217,569	0	3,217,569	1,588,675	997.7	1,585
10/9/2024	15.70	49.4	2,062	1,942,151	0	1,942,151	958,937	997.7	957
10/10/2024	11.40	49.4	2,054	1,404,769	0	1,404,769	693,605	997.7	692
10/11/2024	24.00	49.4	1,863	2,682,931	0	2,682,931	1,324,697	997.7	1,322
10/12/2024	24.00	49.4	1,835	2,643,010	0	2,643,010	1,304,986	997.7	1,302
10/13/2024	24.00	49.4	1,909	2,748,500	0	2,748,500	1,357,072	997.7	1,354
10/14/2024	24.00	49.4	1,997	2,875,856	0	2,875,856	1,419,954	997.7	1,417
10/15/2024	24.00	49.4	1,927	2,774,764	0	2,774,764	1,370,040	997.7	1,367
10/16/2024	24.00	49.4	1,758	2,532,005	0	2,532,005	1,250,177	997.7	1,247
10/17/2024	24.00	49.4	1,725	2,483,595	0	2,483,595	1,226,275	997.7	1,223
10/18/2024	24.00	49.4	1,714	2,468,035	0	2,468,035	1,218,592	997.7	1,216
10/19/2024	24.00	49.4	1,724	2,482,183	0	2,482,183	1,225,578	997.7	1,223
10/20/2024	24.00	49.4	1,744	2,511,170	0	2,511,170	1,239,890	997.7	1,237
10/21/2024	23.40	49.4	1,970	2,765,936	0	2,765,936	1,365,681	997.7	1,363
10/22/2024	24.00	49.4	1,763	2,539,171	0	2,539,171	1,253,716	997.7	1,251
10/23/2024	24.00	49.4	1,782	2,566,371	0	2,566,371	1,267,146	997.7	1,264
10/24/2024	24.00	49.4	1,738	2,502,660	0	2,502,660	1,235,688	997.7	1,233
10/25/2024	24.00	49.4	1,696	2,442,546	0	2,442,546	1,206,007	997.7	1,203
10/26/2024	24.00	49.4	1,755	2,527,552	0	2,527,552	1,247,979	997.7	1,245
10/27/2024	24.00	49.4	1,726	2,484,818	0	2,484,818	1,226,879	997.7	1,224
10/28/2024	24.00	49.4	1,661	2,391,479	0	2,391,479	1,180,793	997.7	1,178
10/29/2024	24.00	49.4	1,644	2,367,926	0	2,367,926	1,169,163	997.7	1,166
10/30/2024	24.00	49.4	1,627	2,342,767	0	2,342,767	1,156,741	997.7	1,154
10/31/2024	24.00	49.4	1,864	2,684,245	0	2,684,245	1,325,346	997.7	1,322
Totals/ Average	722.50	49.4	1,934	83,692,937	0	83,692,937	41,323,388	997.7	41,228
								Max	1,742

NOTE 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-16 flare is 3,168 MMBtu.

²⁾ Starting May 2023, the average methane percentage from the March 8, 9, and 13, 2023 source test will be used. Starting May 2024, the average methane percentage from the March 6, 2024 source test will be used.

A-16 Landfill Gas Flare

Heat Input Rate

MONTH: November-24

Date	Runtime (Hours)	CH₄ (%)	Average Flow (scfm)	Landfill Gas Volume (scf)	Byproduct Gas (BPG) Volume (scf)	Total Throughput (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
11/1/2024	24.00	49.4	1,627	2,343,237	0	2,343,237	1,156,973	997.7	1,154
11/2/2024	24.00	49.4	1,820	2,620,486	0	2,620,486	1,293,865	997.7	1,291
11/3/2024	25.00	49.4	1,588	2,381,451	0	2,381,451	1,175,841	997.7	1,173
11/4/2024	24.00	49.4	1,611	2,320,528	0	2,320,528	1,145,761	997.7	1,143
11/5/2024	24.00	49.4	1,817	2,616,849	0	2,616,849	1,292,069	997.7	1,289
11/6/2024	24.00	49.4	1,789	2,576,088	0	2,576,088	1,271,943	997.7	1,269
11/7/2024	24.00	49.4	1,683	2,423,392	0	2,423,392	1,196,550	997.7	1,194
11/8/2024	24.00	49.4	1,624	2,338,599	0	2,338,599	1,154,683	997.7	1,152
11/9/2024	24.00	49.4	1,649	2,373,998	0	2,373,998	1,172,162	997.7	1,169
11/10/2024	24.00	49.4	1,626	2,342,107	0	2,342,107	1,156,415	997.7	1,154
11/11/2024	24.00	49.4	1,532	2,205,823	0	2,205,823	1,089,125	997.7	1,087
11/12/2024	24.00	49.4	1,517	2,184,684	0	2,184,684	1,078,688	997.7	1,076
11/13/2024	24.00	49.4	1,623	2,336,762	0	2,336,762	1,153,776	997.7	1,151
11/14/2024	24.00	49.4	1,576	2,269,768	0	2,269,768	1,120,698	997.7	1,118
11/15/2024	23.37	49.4	1,689	2,367,960	0	2,367,960	1,169,180	997.7	1,166
11/16/2024	24.00	49.4	1,479	2,129,197	0	2,129,197	1,051,291	997.7	1,049
11/17/2024	24.00	49.4	1,497	2,156,139	0	2,156,139	1,064,594	997.7	1,062
11/18/2024	24.00	49.4	1,446	2,082,689	0	2,082,689	1,028,328	997.7	1,026
11/19/2024	24.00	49.4	1,486	2,139,623	0	2,139,623	1,056,439	997.7	1,054
11/20/2024	24.00	49.4	1,579	2,274,282	0	2,274,282	1,122,927	997.7	1,120
11/21/2024	24.00	49.4	1,613	2,322,964	0	2,322,964	1,146,963	997.7	1,144
11/22/2024	24.00	49.4	1,626	2,341,341	0	2,341,341	1,156,037	997.7	1,153
11/23/2024	9.63	49.4	1,592	920,446	0	920,446	454,470	997.7	453
11/24/2024	14.13	49.4	2,077	1,761,109	0	1,761,109	869,548	997.7	868
11/25/2024	24.00	49.4	1,640	2,361,797	0	2,361,797	1,166,137	997.7	1,163
11/26/2024	24.00	49.4	1,553	2,235,849	0	2,235,849	1,103,950	997.7	1,101
11/27/2024	24.00	49.4	1,629	2,345,290	0	2,345,290	1,157,987	997.7	1,155
11/28/2024	24.00	49.4	1,661	2,391,555	0	2,391,555	1,180,830	997.7	1,178
11/29/2024	24.00	49.4	1,665	2,397,768	0	2,397,768	1,183,898	997.7	1,181
11/30/2024	24.00	49.4	1,645	2,369,401	0	2,369,401	1,169,892	997.7	1,167
Totals/ Average	696.13	49.4	1,632	67,931,182	0	67,931,182	33,541,021	997.7	33,464
								Max	1,291

NOTE 1) Pursuant to Permit Condition No. 19235, Part 4, the daily heat input limit to the A-16 flare is 3,168 MMBtu.

²⁾ Starting May 2023, the average methane percentage from the March 8, 9, and 13, 2023 source test will be used. Starting May 2024, the average methane percentage from the March 6, 2024 source test will be used.

^{% -} Percent CH₄ - methane scfm - standard cubic feet per minute scf - standard cubic feet btu - British thermal units MMBTU - million British thermal units

ALTAMONT LANDFILL & RESOURCE RECOVERY FACILITY, Livermore, CA A-15 TEMPERATURE REPORT From June 1, 2024 THROUGH November 30, 2024

REPORT PREPARED BY: Rajan Phadnis

TEMPERATURE SENSING DEVICE: Thermocouple

DATE: 12/01/24

Type K

DATE	TIME	TEMPERATURE	CAUSE	EXPLANATION	ACTION TAKEN
DATE	(Hours)	(°F)	CAUSE	EXPLANATION	ACTION TAKEN

No temperature deviations occurred during June 2024

No temperature deviations occurred during July 2024

No temperature deviations occurred during August 2024

No temperature deviations occurred during September 2024

No temperature deviations occurred during October 2024

No temperature deviations occurred during November 2024

COMMENTS:

The 3-hour average flare combustion zone temperature did not drop below 1,400°F while the flare was in operation

- 1) Pursuant to Permit Condition No. 19235, Part 10, the combustion zone temperature of the A-15 shall be maintained at a minimum of 50°F below the average combustion zone temperature determined during the most recent source test, provided that the minimum combustion zone temperature is not less than 1,400°F.
- 2) Pursuant to Permit Condition No. 19235, Part 10(a), the three-hour average minimum combustion zone temperature for the A-15 Flare is 1,433°F.

ALTAMONT LANDFILL & RESOURCE RECOVERY FACILITY, Livermore, CA A-16 TEMPERATURE REPORT From June 1, 2024 THROUGH November 30, 2024

REPORT PREPARED BY: Rajan Phadnis

TEMPERATURE SENSING DEVICE: Thermocouple

DATE: 12/01/24

MODEL: Type K

(Hours) (*F)		DATE	TIME (Hours)	TEMPERATURE (°F)	CAUSE	EXPLANATION	ACTION TAKEN
----------------	--	------	-----------------	---------------------	-------	-------------	--------------

No temperature deviations occurred during June 2024

No temperature deviations occurred during July 2024

No temperature deviations occurred during August 2024

No temperature deviations occurred during September 2024

No temperature deviations occurred during October 2024

No temperature deviations occurred during November 2024

COMMENTS:

The 3-hour average flare combustion zone temperature did not drop below 1,400°F while the flare was in operation

- 1) Pursuant to Permit Condition No. 19235, Part 10, the combustion zone temperature of the A-16 Flare shall be maintained at a minimum of 50°F below the average combustion zone temperature determined during the most recent source test, provided that the minimum combustion zone temperature is not less than 1,400°F.
- 2) Pursuant to Permit Condition No. 19235, Part 10(b), the three-hour average minimum combustion zone temperature for the A-16 Flare is 1,472°F.

APPENDIX H LNG PLANT (S-210) HEAT INPUT LOGS

S-210 LNG Plant

Heat Input Rate

MONTH: June-24

Date	Average Exit	Total LFG Volume	Total CH₄	Heating Value	Heat Input
Date	CH₄ (%)	(scf)	Volume (scf)	of CH ₄ (btu/scf)	(MMBTU)/Day
6/1/2024	NA	NA	NA	1,013.0	NA
6/2/2024	NA	NA	NA	1,013.0	NA
6/3/2024	NA	NA	NA	1,013.0	NA
6/4/2024	NA	NA	NA	1,013.0	NA
6/5/2024	NA	NA	NA	1,013.0	NA
6/6/2024	NA	NA	NA	1,013.0	NA
6/7/2024	NA	NA	NA	1,013.0	NA
6/8/2024	NA	NA	NA	1,013.0	NA
6/9/2024	NA	NA	NA	1,013.0	NA
6/10/2024	NA	NA	NA	1,013.0	NA
6/11/2024	NA	NA	NA	1,013.0	NA
6/12/2024	NA	NA	NA	1,013.0	NA
6/13/2024	NA	NA	NA	1,013.0	NA
6/14/2024	NA	NA	NA	1,013.0	NA
6/15/2024	NA	NA	NA	1,013.0	NA
6/16/2024	NA	NA	NA	1,013.0	NA
6/17/2024	NA	NA	NA	1,013.0	NA
6/18/2024	NA	NA	NA	1,013.0	NA
6/19/2024	NA	NA	NA	1,013.0	NA
6/20/2024	NA	NA	NA	1,013.0	NA
6/21/2024	NA	NA	NA	1,013.0	NA
6/22/2024	NA	NA	NA	1,013.0	NA
6/23/2024	NA	NA	NA	1,013.0	NA
6/24/2024	NA	NA	NA	1,013.0	NA
6/25/2024	NA	NA	NA	1,013.0	NA
6/26/2024	NA	NA	NA	1,013.0	NA
6/27/2024	NA	NA	NA	1,013.0	NA
6/28/2024	NA	NA	NA	1,013.0	NA
6/29/2024	NA	NA	NA	1,013.0	NA
6/30/2024	NA	NA	NA	1,013.0	NA
Total/ Average		0	0	1,013.0	0
				Maximum	0

¹⁾ The LNG Plant (S-210) heat input log is maintained pursuant to Permit Condition No. 24255, Part 4.

²⁾ The daily heat input limit for S-210 pursuant to Permit Condition No. 24255, Part 2 is 1,950 MMBtu/Day. S-210 was shutdown on June 30, 2023.

[%] - Percent CH_4 - methane btu - British thermal units MMBTU - million British thermal units scf - standard cubic

S-210 LNG Plant

Heat Input Rate

MONTH: July-24

Date	Average Exit	Total LFG Volume	Total CH₄	Heating Value	Heat Input
Date	CH₄ (%)	(scf)	Volume (scf)	of CH ₄ (btu/scf)	(MMBTU)/Day
7/1/2024	NA	NA	NA	1,013.0	NA
7/2/2024	NA	NA	NA	1,013.0	NA
7/3/2024	NA	NA	NA	1,013.0	NA
7/4/2024	NA	NA	NA	1,013.0	NA
7/5/2024	NA	NA	NA	1,013.0	NA
7/6/2024	NA	NA	NA	1,013.0	NA
7/7/2024	NA	NA	NA	1,013.0	NA
7/8/2024	NA	NA	NA	1,013.0	NA
7/9/2024	NA	NA	NA	1,013.0	NA
7/10/2024	NA	NA	NA	1,013.0	NA
7/11/2024	NA	NA	NA	1,013.0	NA
7/12/2024	NA	NA	NA	1,013.0	NA
7/13/2024	NA	NA	NA	1,013.0	NA
7/14/2024	NA	NA	NA	1,013.0	NA
7/15/2024	NA	NA	NA	1,013.0	NA
7/16/2024	NA	NA	NA	1,013.0	NA
7/17/2024	NA	NA	NA	1,013.0	NA
7/18/2024	NA	NA	NA	1,013.0	NA
7/19/2024	NA	NA	NA	1,013.0	NA
7/20/2024	NA	NA	NA	1,013.0	NA
7/21/2024	NA	NA	NA	1,013.0	NA
7/22/2024	NA	NA	NA	1,013.0	NA
7/23/2024	NA	NA	NA	1,013.0	NA
7/24/2024	NA	NA	NA	1,013.0	NA
7/25/2024	NA	NA	NA	1,013.0	NA
7/26/2024	NA	NA	NA	1,013.0	NA
7/27/2024	NA	NA	NA	1,013.0	NA
7/28/2024	NA	NA	NA	1,013.0	NA
7/29/2024	NA	NA	NA	1,013.0	NA
7/30/2024	NA	NA	NA	1,013.0	NA
7/31/2024	NA	NA	NA	1,013.0	NA
Total/ Average		0	0	1,013.0	0
				Maximum	0

¹⁾ The LNG Plant (S-210) heat input log is maintained pursuant to Permit Condition No. 24255, Part 4.

²⁾ The daily heat input limit for S-210 pursuant to Permit Condition No. 24255, Part 2 is 1,950 MMBtu/Day. S-210 was shutdown on June 30, 2023.

^{% -} Percent **CH₄** - methane **btu** - British thermal units **MMBTU** - million British thermal units **scf** - standard cubic The LNG Plant (S-210) was permanently shutdown starting June 30, 2023, and is in decomissioning stage.

S-210 LNG Plant

Heat Input Rate

MONTH: August-24

Date	Average Exit CH ₄ (%)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
8/1/2024	NA	NA	NA	1,013.0	NA
8/2/2024	NA	NA	NA	1,013.0	NA
8/3/2024	NA	NA	NA	1,013.0	NA
8/4/2024	NA	NA	NA	1,013.0	NA
8/5/2024	NA	NA	NA	1,013.0	NA
8/6/2024	NA	NA	NA	1,013.0	NA
8/7/2024	NA	NA	NA	1,013.0	NA
8/8/2024	NA	NA	NA	1,013.0	NA
8/9/2024	NA	NA	NA	1,013.0	NA
8/10/2024	NA	NA	NA	1,013.0	NA
8/11/2024	NA	NA	NA	1,013.0	NA
8/12/2024	NA	NA	NA	1,013.0	NA
8/13/2024	NA	NA	NA	1,013.0	NA
8/14/2024	NA	NA	NA	1,013.0	NA
8/15/2024	NA	NA	NA	1,013.0	NA
8/16/2024	NA	NA	NA	1,013.0	NA
8/17/2024	NA	NA	NA	1,013.0	NA
8/18/2024	NA	NA	NA	1,013.0	NA
8/19/2024	NA	NA	NA	1,013.0	NA
8/20/2024	NA	NA	NA	1,013.0	NA
8/21/2024	NA	NA	NA	1,013.0	NA
8/22/2024	NA	NA	NA	1,013.0	NA
8/23/2024	NA	NA	NA	1,013.0	NA
8/24/2024	NA	NA	NA	1,013.0	NA
8/25/2024	NA	NA	NA	1,013.0	NA
8/26/2024	NA	NA	NA	1,013.0	NA
8/27/2024	NA	NA	NA	1,013.0	NA
8/28/2024	NA	NA	NA	1,013.0	NA
8/29/2024	NA	NA	NA	1,013.0	NA
8/30/2024	NA	NA	NA	1,013.0	NA
8/31/2024	NA	NA	NA	1,013.0	NA
Total/ Average		0	0	1,013.0	0
				Maximum	0

¹⁾ The LNG Plant (S-210) heat input log is maintained pursuant to Permit Condition No. 24255, Part 4.

²⁾ The daily heat input limit for S-210 pursuant to Permit Condition No. 24255, Part 2 is 1,950 MMBtu/Day. S-210 was shutdown on June 30, 2023.

^{% -} Percent CH₄ - methane btu - British thermal units MMBTU - million British thermal units scf - standard cubic The LNG Plant (S-210) was permanently shutdown starting June 30, 2023, and is in decomissioning stage.

S-210 LNG Plant

Heat Input Rate

MONTH: September-24

Date	Average Exit CH ₄ (%)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
9/1/2024	NA	NA	NA	1,013.0	NA
9/2/2024	NA	NA	NA	1,013.0	NA
9/3/2024	NA	NA	NA	1,013.0	NA
9/4/2024	NA	NA	NA	1,013.0	NA
9/5/2024	NA	NA	NA	1,013.0	NA
9/6/2024	NA	NA	NA	1,013.0	NA
9/7/2024	NA	NA	NA	1,013.0	NA
9/8/2024	NA	NA	NA	1,013.0	NA
9/9/2024	NA	NA	NA	1,013.0	NA
9/10/2024	NA	NA	NA	1,013.0	NA
9/11/2024	NA	NA	NA	1,013.0	NA
9/12/2024	NA	NA	NA	1,013.0	NA
9/13/2024	NA	NA	NA	1,013.0	NA
9/14/2024	NA	NA	NA	1,013.0	NA
9/15/2024	NA	NA	NA	1,013.0	NA
9/16/2024	NA	NA	NA	1,013.0	NA
9/17/2024	NA	NA	NA	1,013.0	NA
9/18/2024	NA	NA	NA	1,013.0	NA
9/19/2024	NA	NA	NA	1,013.0	NA
9/20/2024	NA	NA	NA	1,013.0	NA
9/21/2024	NA	NA	NA	1,013.0	NA
9/22/2024	NA	NA	NA	1,013.0	NA
9/23/2024	NA	NA	NA	1,013.0	NA
9/24/2024	NA	NA	NA	1,013.0	NA
9/25/2024	NA	NA	NA	1,013.0	NA
9/26/2024	NA	NA	NA	1,013.0	NA
9/27/2024	NA	NA	NA	1,013.0	NA
9/28/2024	NA	NA	NA	1,013.0	NA
9/29/2024	NA	NA	NA	1,013.0	NA
9/30/2024	NA	NA	NA	1,013.0	NA
Total/ Average		0	0	1,013.0	0
				Maximum	0

¹⁾ The LNG Plant (S-210) heat input log is maintained pursuant to Permit Condition No. 24255, Part 4.

²⁾ The daily heat input limit for S-210 pursuant to Permit Condition No. 24255, Part 2 is 1,950 MMBtu/Day. S-210 was shutdown on June 30, 2023.

^{% -} Percent CH₄ - methane btu - British thermal units MMBTU - million British thermal units scf - standard cubic

S-210 LNG Plant

Heat Input Rate

MONTH: October-24

Date	Average Exit CH₄ (%)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
10/1/2024	NA	NA	NA	1,013.0	NA
10/2/2024	NA	NA	NA	1,013.0	NA
10/3/2024	NA	NA	NA	1,013.0	NA
10/4/2024	NA	NA	NA	1,013.0	NA
10/5/2024	NA	NA	NA	1,013.0	NA
10/6/2024	NA	NA	NA	1,013.0	NA
10/7/2024	NA	NA	NA	1,013.0	NA
10/8/2024	NA	NA	NA	1,013.0	NA
10/9/2024	NA	NA	NA	1,013.0	NA
10/10/2024	NA	NA	NA	1,013.0	NA
10/11/2024	NA	NA	NA	1,013.0	NA
10/12/2024	NA	NA	NA	1,013.0	NA
10/13/2024	NA	NA	NA	1,013.0	NA
10/14/2024	NA	NA	NA	1,013.0	NA
10/15/2024	NA	NA	NA	1,013.0	NA
10/16/2024	NA	NA	NA	1,013.0	NA
10/17/2024	NA	NA	NA	1,013.0	NA
10/18/2024	NA	NA	NA	1,013.0	NA
10/19/2024	NA	NA	NA	1,013.0	NA
10/20/2024	NA	NA	NA	1,013.0	NA
10/21/2024	NA	NA	NA	1,013.0	NA
10/22/2024	NA	NA	NA	1,013.0	NA
10/23/2024	NA	NA	NA	1,013.0	NA
10/24/2024	NA	NA	NA	1,013.0	NA
10/25/2024	NA	NA	NA	1,013.0	NA
10/26/2024	NA	NA	NA	1,013.0	NA
10/27/2024	NA	NA	NA	1,013.0	NA
10/28/2024	NA	NA	NA	1,013.0	NA
10/29/2024	NA	NA	NA	1,013.0	NA
10/30/2024	NA	NA	NA	1,013.0	NA
10/31/2024	NA	NA	NA	1,013.0	NA
Total/ Average		0	0	1,013.0	0
				Maximum	0

¹⁾ The LNG Plant (S-210) heat input log is maintained pursuant to Permit Condition No. 24255, Part 4.
2) The daily heat input limit for S-210 pursuant to Permit Condition No. 24255, Part 2 is 1,950 MMBtu/Day. S-210 was shutdown on June 30, 2023.

[%] - Percent CH_4 - methane btu - British thermal units MMBTU - million British thermal units scf - standard cubic

S-210 LNG Plant

Heat Input Rate

MONTH: November-24

Date	Average Exit CH ₄ (%)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Heating Value of CH ₄ (btu/scf)	Heat Input (MMBTU)/Day
11/1/2024	NA	NA	NA	1,013.0	NA
11/2/2024	NA	NA	NA	1,013.0	NA
11/3/2024	NA	NA	NA	1,013.0	NA
11/4/2024	NA	NA	NA	1,013.0	NA
11/5/2024	NA	NA	NA	1,013.0	NA
11/6/2024	NA	NA	NA	1,013.0	NA
11/7/2024	NA	NA	NA	1,013.0	NA
11/8/2024	NA	NA	NA	1,013.0	NA
11/9/2024	NA	NA	NA	1,013.0	NA
11/10/2024	NA	NA	NA	1,013.0	NA
11/11/2024	NA	NA	NA	1,013.0	NA
11/12/2024	NA	NA	NA	1,013.0	NA
11/13/2024	NA	NA	NA	1,013.0	NA
11/14/2024	NA	NA	NA	1,013.0	NA
11/15/2024	NA	NA	NA	1,013.0	NA
11/16/2024	NA	NA	NA	1,013.0	NA
11/17/2024	NA	NA	NA	1,013.0	NA
11/18/2024	NA	NA	NA	1,013.0	NA
11/19/2024	NA	NA	NA	1,013.0	NA
11/20/2024	NA	NA	NA	1,013.0	NA
11/21/2024	NA	NA	NA	1,013.0	NA
11/22/2024	NA	NA	NA	1,013.0	NA
11/23/2024	NA	NA	NA	1,013.0	NA
11/24/2024	NA	NA	NA	1,013.0	NA
11/25/2024	NA	NA	NA	1,013.0	NA
11/26/2024	NA	NA	NA	1,013.0	NA
11/27/2024	NA	NA	NA	1,013.0	NA
11/28/2024	NA	NA	NA	1,013.0	NA
11/29/2024	NA	NA	NA	1,013.0	NA
11/30/2024	NA	NA	NA	1,013.0	NA
Total/ Average		0	0	1,013.0	0
				Maximum	0

¹⁾ The LNG Plant (S-210) heat input log is maintained pursuant to Permit Condition No. 24255, Part 4.

²⁾ The daily heat input limit for S-210 pursuant to Permit Condition No. 24255, Part 2 is 1,950 MMBtu/Day. S-210 was shutdown on June 30, 2023.

[%] - Percent CH_4 - methane btu - British thermal units MMBTU - million British thermal units scf - standard cubic The LNG Plant (S-210) was permanently shutdown starting June 30, 2023, and is in decomissioning stage.

APPENDIX I MONTHLY COVER INTEGRITY MONITORING REPORTS

LOCATION: INSPECTION DATE: TECHNICIAN: Altamont Landfill and Resource Recovery Facility, Livermore, CA

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		х	
Erosion on side slopes		Х	
Ponding of water on cap		х	
Surface cracking		Х	
Acceptable vegetation	х		
Exposed waste		Х	

REPAIR AREAS:			
GPS Coordinates	GPS Coordinates		COMMENTS
Northing	Easting	Date of Repair	
Note: Monthly cover integrity monitoring is performed po	irsuant to BAAOMD Regulation	n 8-34-501 4	
	areaant to Brit talvib i togulatio		

LOCATION: INSPECTION DATE: TECHNICIAN: Altamont Landfill and Resource Recovery Facility, Livermore, CA

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		х	
Dead vegetation		х	
Erosion on cap system		х	
Erosion on side slopes		х	
Ponding of water on cap	х		Seeps noted near 2 wells
Surface cracking		х	
Acceptable vegetation	х		
Exposed waste		х	

REPAIR AREAS:							
GPS Coordinates	3	Date of Repair	COMMENTS				
Northing Easting		Bate of Repair	COMMENTO				
Seep near Well 579	•	-					
Seep near Well 87		-					
Note: Monthly cover integrity monitoring is performed	l pursuant to BAAQMD Regulati	on 8-34-501.4					

Altamont Landfill and Resource Recovery Facility, Livermore, CA

LOCATION: INSPECTION DATE: TECHNICIAN: Dan San Jose / Garry Carpenter

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		Х	
Dead vegetation		Х	
Erosion on cap system		х	
Erosion on side slopes		Х	
Ponding of water on cap		х	
Surface cracking		Х	
Acceptable vegetation	х		
Exposed waste		Х	

REPAIR AREAS:			
GPS Coordinates			
Northing	Easting	Date of Repair	COMMENTS
Seep near Well 579	,	8.8.24	Repairs were completed. Drainage pipe was unblocked. Soil was added.
Seep near Well 87		8.8.24	Repairs were completed. Drainage pipe was unblocked.

LOCATION: INSPECTION DATE: TECHNICIAN: Altamont Landfill and Resource Recovery Facility, Livermore, CA

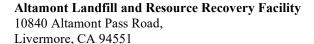
9.30.2024

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		х	
Dead vegetation		х	
Erosion on cap system		х	
Erosion on side slopes		х	
Ponding of water on cap	х		Seeps noted near well 821 and on front face
Surface cracking		х	
Acceptable vegetation	х		
Exposed waste		х	

REPAIR AREAS:			
GPS Coordinates		Data of Barraia	COMMENTO
Northing	Easting	Date of Repair	COMMENTS
Seep on bench near well 821 westside of front face	·	-	
Seep on front face along old haul road		-	
Note: Monthly cover integrity monitoring is performed	oursuant to BAAQMD Regulati	on 8-34-501.4	

LOCATION: INSPECTION DATE: TECHNICIAN: Altamont Landfill and Resource Recovery Facility, Livermore, CA 10.31.2024

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		х	
Dead vegetation		х	
Erosion on cap system		х	
Erosion on side slopes		х	
Ponding of water on cap	х		Seeps noted near well 821 and 822, and along old haul road
Surface cracking		х	
Acceptable vegetation	х		
Exposed waste		х	


REPAIR AREAS:			
GPS Coordinates			COMMENTO
Northing	Easting	Date of Repair	COMMENTS
Seep on bench near well 821 westside of front face		-	Remediation will be conducted after the affected areas have dried out and are safe for using heavy equipment
Seep on front face along old haul road		-	Remediation will be conducted after the affected areas have dried out and are safe for using heavy equipment
Seep on bench below old haul road near well 822		-	Remediation will be conducted after the affected areas have dried out and are safe for using heavy equipment
Note: Monthly cover integrity monitoring is performed purs			

LOCATION: INSPECTION DATE: TECHNICIAN: Altamont Landfill and Resource Recovery Facility, Livermore, CA 11.25.2024

COVER & VEGETATION	YES	NO	COMMENTS
Settling of cap		х	
Dead vegetation		х	
Erosion on cap system		х	
Erosion on side slopes		х	
Ponding of water on cap	х		Seeps noted near well 821,well 822, and along old haul road
Surface cracking		х	
Acceptable vegetation	х		
Exposed waste		х	

GPS Coordinates			
No adhio a	F4:	Date of Repair	COMMENTS
Northing	Easting		
Seep on bench near well 821 westside of front face		-	Remediation will be conducted after the affected areas have dried out and are safe for using heavy equipment
Seep on front face along old haul road		-	Remediation will be conducted after the affected areas have dried out and are safe for using heavy equipment
Seep on bench below old haul road near well 822		-	Remediation will be conducted after the affected areas have dried out and are safe for using heavy equipment

APPENDIX J SURFACE EMISSIONS MONITORING REPORTS

November 1, 2024

Blaine Harrison Altamont Landfill and Resource Recovery Facility 10840 Altamont Road Livermore, California 94551

Re: Third Quarter 2024 Surface Emissions and Component Leak Monitoring Report for the Altamont Landfill and Resource Recovery Facility

Dear Mr. Harrison:

This monitoring report for the "Altamont Landfill and Resource Recovery Facility (ALRRF)" contains the results of the Third Quarter 2024 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by RES Environmental, Inc. (RES). Re-monitoring of surface emissions and site-wide component leak monitoring, wherever applicable was conducted by ALRRF personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21, promulgated by the United States Environmental Protection Agency (USEPA).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) and Section 607 (Landfill Surface Inspection procedures).
- United States Environmental Protection Agency's (USEPA) *Standards of Performance for Municipal Solid Waste Landfills*; 40 Code of Federal Regulations (CFR) Part 63, Subpart AAAA-National Emission Standards for Hazardous Air Pollutants (NESHAP).

Component Leak

- Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 301 (Landfill Gas Collection and Emission Control System Requirements) and Section 602 (Collection and Control System Leak Inspection procedures).
- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95464, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

ALRRF Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 16, 2011. After receipt of comments, this ACO was amended, restated, and submitted to BAAQMD on July 1, 2016. SEM and Component Leak monitoring was conducted per the methods outlined in the July 1, 2016, ACO.

PROCEDURES

General

The surface of the ALRRF Fill Area 1 disposal area has been divided into one-hundred and ninety-three (193), approximately 50,000 square foot monitoring grids. The current surface of the ALRRF Fill Area II disposal area has been divided into forty-five (45), approximately 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the 25-foot walking pattern as depicted the 2011 ALRRF AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3), the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors.

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppm $_{v}$) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a) and NSPS. The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d) and CCR Title 17 §95471(c)(2).

RES personnel walked the surface of the landfill on a grid-by-grid basis with the wand tip held at 2 inches from the landfill surface. While sampling the grid; the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks,

seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppm_v (areas of concern) or 500 ppm_v (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Appendices of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Corrective actions must be initiated within 5 days of the initial exceedance and remonitoring shall be conducted within 10 days of the initial exceedance.
 - o If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - o If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month remonitoring event shows the area is still corrected, monitoring requirements have been completed.

If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppm_v for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held within 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(3).

Grids with results greater than 25 ppm_v were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppm_v are subject to the following re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.

- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all remonitoring requirements have been completed.
- The second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the third exceedance.

Component Leak Monitoring Procedures

ALRRF personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppm_v. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppm_v per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) and 1,000 ppm_v per requirements outlined in BAAQMD 8-34-303 were recorded. Applicable corrective action and remonitoring timelines are listed below:

- Leaks between 500 and 999 ppm_v must be corrected and re-monitored within 10 days of the initial exceedance.
- Leaks at or above 1000 ppm_v must be corrected and re-monitored within 7 days of the initial exceedance.

THIRD QUARTER 2024 SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and component leak monitoring results completed for the Third Quarter 2024.

Instantaneous Surface Emissions Monitoring Results

The Instantaneous surface monitoring was performed on September 9, 16, 17, and 18, 2024, in accordance with the NSPS, BAAQMD 8-34, NESHAP, and CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppm_v

There were 7 exceedances of 500 ppm_v as methane detected on September 17, and 18, 2024. Corrective actions to initiate repairs of the exceedances were completed within five days for all locations (September 19, 2024).

Ten-Day Re-Monitoring Results

The 10-day re-monitoring event was completed on September 19, 2024. All locations were observed at less than 500 ppm_v.

One-Month Re-Monitoring Results

The 1-month re-monitoring event was completed on October 14, 2024. All locations were observed at less than 500 ppm_v .

Readings between 200 ppm_v and 499 ppm_v (Initial and Re-monitored)

There were no readings between 200 ppm_v and 499 ppm_v as methane detected during the initial monitoring event on September 9, 16, 17, and 18, 2024. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppm_v but below 500 ppm_v are required to be recorded.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on September 10, 11, 17, and 18, 2024, in accordance with the ACO and requirements outlined in CCR Title 17 §95469.

Initial Monitoring Event Exceedances of 25 ppm_v

There were no grids with exceedances of 25 ppm_v as methane detected during the initial monitoring event on September 10, 11, 17, and 18, 2024.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B, Integrated SEM 25 ppm_v Exceedances and Monitoring Log, and SEM Map included in Attachment B, for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on August 15, 2024, and September 3, 2024. No leaks greater than 500 ppm_v were identified. LNG Plant has been decommissioned. Please see Attachment C, for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). The average wind speed recorded during the re-monitoring event was 16 mph. These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the ALRRF's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within

Mr. Blaine Harrison Page 6

24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppm $_{\rm v}$ in air for integrated sample analyses and 500 ppm $_{\rm v}$ in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact me at rphadnis@wm.com.

Thank you, Waste Management

Rajan Phadnis

Environmental Protection Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

Strip Chart Data

Attachment E - Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Table A.1 Instantaneous Landfill Surface Emissions Monitoring Initial Monitoring Event Areas of Concern

2024 QUARTER: 3 **PERFORMED BY**: RES

Flag Number	Grid Number	Date of Monitoring	Concentration of Emission (ppmv)	Comments
01	81	9/17/2024	8,000	LS2
O2	81	9/17/2024	900	VZMA
O3	36	9/17/2024	1,000	Well 824
04	114	9/17/2024	2,000	Well 762
O5	46	9/17/2024	610	Well 800
O6	14	9/18/2024	645	Well 517
07	9	9/18/2024	750	Well 820

Table A.2 Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2024 QUARTER: 3

INITIAL MONITORING PERFORMED BY:RES

FOLLOW-UP MONITORING PERFORMED BY: ALRRF

Initial	Monitoring	Event	Corr	ective action within 5 days	1st 10-	day Follow	-Up	1st 30	-day Follov	v-Up	
Flag	Monitoring	Field	Repair	Repair Action	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Taken	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
01	9/17/2024	8,000	9/19/2024	Added soil and compacted	9/19/2024	295		10/14/2024	273		LS2
O2	9/17/2024	900	9/19/2024	Added soil and compacted	9/19/2024	98		10/14/2024	78		VZMA
O3	9/17/2024	1,000	9/19/2024	Compacted soil/tuned	9/19/2024	41		10/14/2024	43		Well 824
04	9/17/2024	2,000	9/19/2024	Compacted soil/tuned	9/19/2024	78		10/14/2024	51		Well 762
O5	9/17/2024	610	9/19/2024	Compacted soil	9/19/2024	22		10/14/2024	12		Well 800
O6	9/18/2024	645	9/19/2024	Compacted soil/tuned	9/19/2024	63		10/14/2024	59		Well 517
07	9/18/2024	750	9/19/2024	Compacted soil	9/19/2024	20		10/14/2024	15		Well 820

Table A.3 Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (AB-32)

2024 QUARTER: 3

INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: ALRRF

Initial	Monitoring	Event	1st Re-m	on 10-day F	ollow-Up	2nd Re-r	non Event -	- 10 Days	
Flag	Monitoring	Field	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	Comments
01	9/17/2024	8,000	9/19/2024	295					LS2
02	9/17/2024	900	9/19/2024	98					VZMA
O3	9/17/2024	1,000	9/19/2024	41					Well 824
04	9/17/2024	2,000	9/19/2024	78					Well 762
O5	9/17/2024	610	9/19/2024	22					Well 800
O6	9/18/2024	645	9/19/2024	63					Well 517
07	9/18/2024	750	9/19/2024	20					Well 820

Table A.4 Instantaneous Landfill Surface Emissions Monitoring Areas of Concern Greater than 200 ppmv

2024 QUARTER: 3

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: NA

Initial	Monitoring	Event	Re-mo	n Event	
Exceedance	Monitoring	Field	Monitoring	Reading	Comments
Flag No.	Date	Reading	Date	ppm	
None					

Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs (NSPS/BAAQMD 8-34)

2024 Quarter: 3rd Quarter

INITIAL MONITORING PERFORMED BY: RES

FOLLOW-UP MONITORING PERFORMED BY: Garry Carpenter

LANDFILL NAME: ALRRF Wind Speed : 5 MPH Wind Speed : 8MPH Wind Direction : E Wind Direction : E

Initi	al Monitori	ng Event	Correc	tive action within 5 days	1st 10	-day Follo	ow-Up	1st 3	0-day Follow	w-Up	Comments
Flag	Monitoring	Field	Repair	Repair Action	Monitoring	No Exced.	Exced.	Monitoring	No Exced.	Exced.	
Number	Date	Reading	Date	Taken	Date	<500 ppm	>500 ppm	Date	<500 ppm	>500 ppm	
01	9/17/2024	8,000	9/19/2024	Added and compacted dirt	9/19/2024	295		10/14/2024	273		LS2 Grid 81
02	9/17/2024	900	9/19/2024	Added and compacted dirt	9/19/2024	98		10/14/2024	78		VZMA Grid 81
O3	9/17/2024	1,000	9/19/2024	compacted dirt/ icreased becs	9/19/2024	41		10/14/2024	43		Well 824 Grid 36
04	9/17/2024	2,000	9/19/2024	compacted dirt/ increased becs	9/19/2024	78		10/14/2024	51		Well 762 Grid114
O5	9/17/2024	610	9/19/2024	compcted dirt around well	9/19/2024	22		10/14/2024	12		Well 800 Grid 46
06	9/18/2024	645	9/19/2024	compcted dirt/ increased becs	9/19/2024	63		10/14/2024	59		Well 517 Grid 14
07	9/18/2024	750	9/19/2024	compacted dirt around well	9/19/2024	20		10/14/2024	15		Well 820 Grid 9

Orange Flag Landfill Surface Emissions Monitoring Exceedances and Monitoring Log

Site: ACtraint

echnician;	LE15 4WADE	~400										Page of	Pages
	H	04											
Calibration Standard:	500 pp	*											
uttal Dist	Initial Monitoring Event		First Re-N	First Re-Monitoring Event - 10 Days	- 10 Days	Second Re-	Second Re-Monitoring Event - 10 Days	nt - 10 Dave	30.05	30. Day Follow up Manierin	110		
DI S	rield Keading	Date	Date	No Excd.	Excd.	Date	No Excd.	Excd.	Date	No Fred	Eved	Comments	22
Number 6	(mdd)	Monitored	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 ppm	Monitored	<500 ppm	>500 250		
18	8,000	4-11-24								and one	mdd ooc		
18	006											7257	
36	00011											レング	
114	2,000											128 118 m	
9%	610	>										2941187	
2	7/17	9-19-91										WE11 800	
2	750	1.0011										715 Man	
		>										WE11 820	

Personnel: LEISA WASE	Daniel Jaka	:=
Anthony canadas	Luis Arovalo	Cal. Gas Exp. Date: //-/0-2 9
Date: <u>G-G-24</u> Instrument Us	sed: <u> </u>	Spacing: 251
Temperature: 94 Precip:	O Upwind BG: 26	Downwind BG: 3.4

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
15	LW	1/00	1115	85.07	3	4	16	
24		1115	1130	67.38	2	4	16	
30		1130	1145	52-10		2	2_	
36		1145	1200	138	1	3	4	
37		1200	1210	75.02		4	14	
43		1210	1220	34.26	L	3	12	
49		1220	1235	41.55		3	14	
48		1235	1245	72.68	1	3	4	
55		1245	1255	84.70	2	4	4	
56		1255	1310	51.22	4	6	5	
62		1310	1325	60.31	4	5	5	
61		1325	1335	92.04	2	4	4	5
67		1335	1350	70.16	1	3		
68		1350	1400	59.13	1	3	ما ل	
69	4	1400	1415	42.80	3	þ	10	
21	TM	1/00	1115	58.36	3	4	طا	
22	1	1115	1130	40-72	2	4	16	
73		1130	1145	61.47	1	2	2	
28		1145	1200	38.92	1	3	4	
27		1215	1230	20.88	l l	3	14	
26		1770	1245	49.62	1	3	4	
32		1245	1700	34.88	1	3	5	
33		1300	1315	62-71	2	4	5	
34		1315	1330	108	4	5	5	
41		1330	1345	80.66	1	3	Ь	
40		1345	1400	54.62	1	3	4	
39		1415	1430	38.27	2	3	1	
45		1430	1445	24.31	2	4	16	
46		1445	1500	35.66	3	5	طا	
47	4	1508	1515	40.74	4	6	16	
ttach Cal								

Attach Calibration Sheet

Attach site map showing grid ID

Page ______ of _____

Personnel: Laish wast	OSNICL JERG	
Andring egroles	- CHIS AREVETO	Cal. Gas Exp. Date: //-/0-24
Date: <u>9-9-24</u> Instrument	Used: LVAIOUS	_ Grid Spacing:ファ ′
Temperature: 96 Precip:	Dupwind BG:	Zub Downwind BG: 3.4

GRID ID	STAFF	START	STOP	тос	VIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
_ >	AC	1100	1115	85.12	3	4	16	
16		1115	1/30	34.22	2	4	16	
20		1130	1145	25.77	1	2	2	
25		1145	1200	34.27		3	4	
31		1200	1215	50.18]	4	14	
38		1215	1230	61.10		3	14	
44		1270	1245	42.16	1	3	<u>'</u> 4	
50		1243	1300	38.22	1	3	5	
51		1700	1315	46-81	2	4	5	
28		1315	1330	62-44	4	5	5	
5>		1770	1345	38.18		3	6	
63		1341	1400	24.26	1	3	4	
64		1400	1415	35.12	3	6	10	
7/		1615	1430	48-32	2	3	}	
70	P	1420	1445	2911	2	4	16	
52	DC	1110	1125	24.81	2	4	طا	
53		1125	1140	47.98		2	2	
60		1145	1700	32-12	1	3	4	
53		1200	1215	57-84		4	14	Đ.
61		1211	1230	40.12	1	3	12	
66		1220	1245	32.27		3	4	
73		1245	1300	48.62		3	5	
72		1700	1315	50.39	2	4	5	
75		1315	1330	30.17	4	5	5	
80		1330	1345	22.38	ı	3		
8 >		1745	1450	70-14	1	3	4	
86		1400	1415	45.32	3	6	10	
9 Z		1415	1430	38.66	2	3	1	
93		1430	1445	44.91	2	4	16	
100	V	1445	1500	34.78	3	5	ماا	
Attach Cal	ibration S			-			17	

Attach Calibration Sheet

Attach site map showing grid ID

Page _2__ of _3__

Personnel: Leighwnor	Deriel lens	======================================	
Anthony canalas	- LUW ALEVELT	Cal. Gas Ex	p. Date: 11-10-14
Date: <u>9-9-24</u> Instrument	Used:	Grid Spacing:	25'
Temperature: 94 Precip:	Upwind BG:	2-6 Downwin	d BG: 7.4

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
/	LA	1/00	1115	34.16	3	4	16	
2		1115	1130	47.48	2	4	16	
3		1130	1145	107	1	2	2	
6		1145	1200	92	1	3	4	
		1200	1215	122	1	4	14	
4		nis	1230	54.31		3	14	
8		1230	1245	35.2>	1	3	14	
9		1245	1705	64.12	_ {	3	5	
10		1305	1320	114	2	4	5	
13		1720	1335	75	4	5	5	
12		1331	1350	82	1	3	6	
1)		1350	1415	47.12	1	3	4	
17		. 111.55	1420	32.24	3	þ	lb	
18			1435	41-8-6	2	3	2 5	
19	Y		1450	109	2_	4	16	
	-							
			-					

Attach Calibration Sheet Attach site map showing grid ID

Page ______ of ______

Paniel 1419	
LLIS ARBUGLO	
	Cal. Gas Exp. Date: /トルーンタ

Date: 9-16-24 Instrument Used: 4v41000 Grid Spacing: 25'

Temperature: 70 Precip: 0 Upwind BG: 76 Downwind BG: 3-4

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPIARES
153	LW	1110	1125	60.12	4	5	ما	
154	N 1	1125	1175	78.32	2	3	(
155		1135	1145	50.07		2	9	
156		1145	1200	38.27	2	3	ما	
164		1200	1215	25.46	2	3	٥	
163		1210	1225	44.10		3	S.	
162		1223	1235	57.38	3	3	C	
161		1235	1245	70.54	1	2	ĺp	
160		1245	1255	48.37	2	Z	9	
159		1255	1317	14.56	2	3	10	
165		1310	1320	62.34	1	2	Q	
166		1320	1330	80.59	2_	3	Q	
167		1330	1340	64-32	2	3	8	
168		1340	1350	40.13	1	2 3	7	
176		1350	1425	38.66	2	3	Q	
175		1405	1415	47.27	2	2	7	
174		1415	1425	107	2	2	Q	
173		1425	1435	124	2	2	Ç	
/72		1435	1445	80-12	1	2	g	
17/	\forall	1445	1500	11.54	2	2	(
14	In	1100	1115	30.08	1	2	Q	
29		1115	1130	40.17	2	3	8	
35		1131	1146	61.70	1	2	9	
42		1146	1201	55.40	2	3	4	
54		1202	1217	40,70	2	3	φ	
74		1217	1232	51.06	3	3	6	
94)	1235	1250	40.20	2_	2	9	
10/		1251	1306	33.60	2	3	lo	
108		1310	1325	41.07	L	2_	B	
116	V	1325	1340	50.09	2	3	4	
ttach Cali	ibration SI	heet						

Attach Calibration Sheet

Attach site map showing grid ID

Personnel: LEISH JADE	Paniel lang	
Arthony cangles	Chis ARBUGLO	
Anthony canales	*	Cal. Gas Exp. Date: //-10-25
Date: 9-16-29 Instrument L	Jsed: 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Grid Spacing: 25'
Temperature: _ > D Precip: _	O Upwind BG: Z	6 Downwind BG: 3-4

GRID ID	STAFF	START	ART STOP TOC		WIND INFORMATION			REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEHAKKS
115		1342	1357	38.07	1	2	7	
123		14.0	1415	39.70	2	2	8	
124		1415	1430	51.70	2	2	8	
131		1420	1445	66.78	2	2	C	
132		1445	1500	54.56	2	2	Q	
139		1500	1515	40.30	2	2	4	
146		1515	1550	51.09	2	2	4	
158		1530	1545	35.75	2	2	4	
170		1545	1600	39.60	3	3	4	
188	سلم	1600	1615	50.09	2	3	4	
75	AC	1100	1115	42.01	1.	2	8	
76		1115	1130	67.48	2	3	Ç	
フフ		1130	1145	66.41	1	2	9	
78		1145	1200	63.08	2	3	ط	
85		1200	1215	39.49	2	3	ط	
84		1215	1230	36-43	3	3	4	
83		1230	1293	35.06	2	2	9	
82		1245		37.01	2_	3	10	
81		1300	1315	35.06	2	3	lb	
88		1315	1330	39.11	2	3	6	
89		1330	1345	48.16	2	3	2	
90		1345	1400	62.11	1	12	7	
91		1400	1415	68.06	2	2	(
99		1415	1430	30.07	2	2_	8	
98		1430	1445	32-11	2	2	C	
9>		1445	1500	47.64	2	2	6	
96		1500	1515	57-88	2_	2	4	
95		1515	1530	56.44	2	2_	4	
102		1530	1545	31.07	2	2	4	
103	V	1545	1600	34.22	3	3	4	
Attack Cal	ibration S	baab					-	

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 4

Personnel: LEISHUADE	DENIEL /4RE Lais ARBUELD	_
Anthony cangles	Cars Arterato	Cal. Gas Exp. Date: //-10-14
Date: 9-16-24 Instrument L	Jsed: <u> </u>	rid Spacing: 25/
Temperature: _ > D Precip:	O Upwind BG: Z	6 Downwind BG: 3-4

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLITAKO
125	PL	1105	1120	48.10		2	C	
126		1120	1135	51.61	2	3	4	,
133		1135	1150	37.22		2	9	
134		1150	1205	40.55	2	3	Ý	
136		1205	1220	45.17	2	3	6	
137		1220	1235	50.65	3	3	4	
138	\ \	1231	1250	51.18	2	2	9	
145		1250	1705	62.79	2	3	10	
144	\	1305	1320	59.01		2	6	
143		1320	1335	62.99	2_	3	4	
142		1335	1350	57.03	2	3	8	
141		1350	1405	55.43	J	2	1	
140		1405	1420	56.19	2	3	6	
147		1420	1435	52-82	2	2	C	
148		1435	1450	49.51	1	2	Q	
149		1450	157	45.97	2	2	E	
150		1505	1520	40.88	2	2	5	
151		1520	1535	32-18	2	2	4	
152		1535	1550	35.81	2	2	4	
157	4	1550	1605	41-31	3	3	4	
104	LA	1100	1115	45.71	1	2	C	
105	1	1115	1130	60.02	2	3	4	
106		1130	1145	65.36	l	2	9	
107		1145	1700	33.58	2	3	6	
114		1200	1215	70.27	2	3	4	
113		1215	1230	41-89	3	3	4	
112		1233	1245	57.16	2	2	9	
111		1245	1300	62.12	2	3	10	
110		1300	1315	41.23	2	3	10	
109	V	1315	1730	67-16	2	3	1	
	ibration S	heat					1 3	

Attach Calibration Sheet

Attach site map showing grid ID

Page <u>3</u> of <u>4</u>

Personnel: LEISHWADE	PENIEL /ARG	_
Anthony cangles	CRIS AILSOLLO	Cal. Gas Exp. Date: //-10-14
Date: 9-16-24 Instrument (Jsed: +VALOOD	Grid Spacing: 25'
Temperature: > > Precip: _	O Upwind BG: Z	6 Downwind BG: 3-4

GRID ID	STAFF	START STOP	тос	WIND INFORMATION			REMARKS	
	INITIALS	TIME	TIME PPM	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
117		1330	1345	30.21	1	2	7	
118		1745	14,0	44-73	2	3	4	
119		1400	1415	40.18	2	2	1	
120		1415	1430	33.36	2	2	8	
121		1470	1445	52.47	2	2	8	
122		1445	1510	66.07	2	2	Q	
130		1500	1515	69.40	2	2	4	
129		1515	1570	31.67	2	2	4	
128		1530	1545	55.59	2	2	4	
127	+	1545	1600	42-30	3	3	4	ļ
							00.	
								(5)
							N	
			*					

Attach Calibration Sheet Attach site map showing grid ID

Page 4_ of 4_

Personnel: LEISHUADE	Pariel lang	
Anthony canales	LEIS ARBUGLO	Cal. Gas Exp. Date: //-10-2
Date: 9-17-24 Instrument	Jsed: 441100 (Grid Spacing: 25'
Temperature: >D Precip:	O Upwind BG: Z	6 Downwind BG: 3-4

GRID ID	STAFF	AFF START STOP TOC		тос	WIN	ID INFORM	IATION	REMARKS
0.42	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLIJAKO
177	AU	0720	6735	66.10	3	5	4	
179		5225	0750	76.42	4	5	4	
180		0250	0805	101	나	5	4	
181		0805	0820	64.75	5	Y	Ц	
187		0820	0835	68-30	5	6	4	
186		0835	0845	72.87	5	6	4	
185		0845	0815	76.48	4	4	4	
184		0850	0910	84.13	5	6	4	
183		0910	0925	56.47	5	4	4	
182		0925	0940	72.64	5	b	4	
193		0940	0985	92.11	5	ý	10	
189		0955	1810	66.89	4	9	4	
190		1610	1025	62.52	4	5	4	
192		1020	1035	65.35	4	5	4	
194	4	1040	1100	72-13	4	5	4	
214	DL	0615	0630	33.14	5	5	4	
215		6670	0645	32.70	4	5	4	
216		0645	0710	18.69	4	5	4	
218		0700	0715	10.30	4	5	4	
217		0715	6735	12.10	3	5	4	
22/		0770	0745	15.84	4	5	14	
222		0745	080	17.36	4	5	4	
223		0800	0875	18.32	5	ط ا	4	
226		0812	0870	13.09	4	T _p	5	
225		0872	0845	12-01	5	b	4	
224		0845	0900	15.86	4	4	4	
227		0510	0915	15.72	5	4	4	
228		0915	0970	18.50	5	6	4	
229		0930	0945	16.83	4	9	4	
231	Y	0945	1010	19.91	4	Ś	5	

Attach Calibration Sheet Attach site map showing grid ID

Page 1 of 2

Personnel: LEISHWADE	PENIEL IGAS	
Anthony cangles	Lais ARBUGLO	
Anthony canales		_ Cal. Gas Exp. Date: // 10-2
Date: 9-17-24 Instrument Use	ed: <u> </u>	d Spacing: 25'
Temperature: >D Precip: 2	D Unwind BG 7 6	Downwind BG: 7.4

GRID ID	STAFF	STAFF START STOP		ор тос	WIND INFORMATION			REMARKS
4	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEPIAKKS
230		1010	1025	36.12	4	5	4	
233		1025	1040	38.5	4	5	4	
234		1040	1055	12.43	4	ط	4	
236		1205	1220	13.27	5	7	5	
235	$\downarrow V$	1230	1245	24-11	5	1	5	
195	LA	063.	0645	10.34	4	5	4	
197		0643	0700	10-62	4	5	4	
196		0700	2150	15.28	4	5	4	
198		0715	0570	12.07	3	5	4	
159		0733	246	20.56	4	5	4	
202		0745	0800	8.10	4	5	4	
201		0800	0815	14.41	5	9	4	
200		0845	1930	10.38	4	6	5	
203		0830	2862	23.05	5	6	4	
204		0845	0510	48.60	4	6	4	A
705		0900	0915	54.03	5	٩	4	
2.6		0915	0930	19,14	5	6	4	
209		0935	0945	10.69	3	6	4	
208		0945	1010	31.22	4	5	4	
20>		1000	1015	43.45	1	6	4	
210		1015	1070	18-58	4	5	4	
211		1030	1045	30.26	3	4	4	
212		1045	1100	36-74	3	5	4	
213		1215	1230	25.18	7	10	4	
219	a a	1230	1245	39.63	5	4	V	
							::	
	ibustian C							

Attach Calibration Sheet Attach site map showing grid ID

Page Z of Z

sonnel: _	Leish	1105							
*= 25							Cal. Gas	Exp. Date:	
ate: <u>9</u>	-17-24	Instrun	nent Used	i:		Gri	d Spacing:	:	
emperat	ure:	Pred	cip:	Up\	wind BG:	-	Downv	vind BG:	
GRID ID	STAFF	F START STOP		тос	WIN	VIND INFORMATION		REMARKS	
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT		
/32								steep-ve6	
178									
169									
191								W.	
220								Lonstraction	
237									
238									
232				*:				V	
							7		
			1						
	1								

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of ____

Year: 2024
Quarter: 310

IME Date	Time	IME Location ID	IME Concentration (ppm)
9-17-24		ALHC0824	1000
9-17-24		ALHC0825	36.40
9-17-24		ALLC0695	62.10
		2	
9-17-24		ALLC0700	29.3)
9-18-24		ALLC0703	70.13
9-18-24		ALLC0709	15.58
9-9-24		ALLC0734	65.30
/ -		ALLC0736	44-67
V		ALLC0737	32.10
9-17-24		ALLC0738	45.70
1 '		ALLC0739	15.60
		ALLC0740	14-75
		ALLC0743	20.16
		ALLC0744	12.14
		ALLC0745	45.70
		ALLC0746	27.10
		ALLC0747	32.58
		ALLC0748	13-56
\forall		ALLC0749	26.41
9-18-24		ALLC0755	11-15
9-17-24		ALLC0775	24.1/
9-17-24		ALLC0776	18-65
9-18-24		ALLC0777	18.60
1		ALLC0778	24.18
		ALLC0779	13.38
		ALLC0780	19.50
		ALLC0781	24.10
		ALLC0783	10.57
		ALLC0784	16.1/
		ALLC0785	32.10
+		ALLC0786	110
9-17-29		ALLC0787	20.15
		ALLC0788	24.1)
P		ALLC0789	32.16
9-18-24		ALLC0790	37.21
		ALLC0791	46.20
		ALLC0792	40-51
		ALLC0793	30.40
A		ALLC0794	31.77

Year:	2024	
Quarter:	3 pm	

IME Date	Time	IME Location ID	IME Concentration (ppm)
6-10-22		ALL C0706	50-39
9-18-24		ALLC0796	
9-18-24		ALLC0797	72.14
9-18-29		ALLC0798	24.13
9-17-24		ALLC0800	6/0
		ALLC0801	36.08
		ALLC0802	21.50
		ALLC0803	18.7/
		ALLC0804	14.66
		ALLC0805	17.64
		ALLC0806	14.58
		ALLC0807	37.12
Ψ		ALLC0808	13.22
9-18-24		ALLC0811	21.40
1		ALLC0812	31.66
		ALLC0813	12-40
A		ALLC0814	2>.32
9-17-24		ALLC0815	27.28
1		ALLC0816	21.22
V		ALLC0817	32.4/
9-18-24		ALLC0819	104
4		ALLC0820	750
9-17-24		ALLC0821	62-13
		ALLC0822	40.39
J		ALLC0826	21.32
9-18-24		ALLC0827	142
9-9-24		ALLC0828	31.55
9-18-24		ALLC0830	15,57
9-17-24		ALLC0831	40.11
9-18-24		ALLC0832	28.17
9-17-24		ALLC0833	56.10
		ALLC0834	40.77
		ALLC0835	J8. ZD
		ALLC0836	39.15
		ALLC0837	50.42
		ALLC0838	60.13
		ALLC0839	52.1/
		ALLC0840	64-39
+		ALLC0841	42-16

Year: 2024 Quarter: 300

IME Date	Time	IME Location ID	IME Concentration (ppm)
9-9-24		ALTAFP03	32.24
		ALTAFP04	60-18
		ALTAFP05	45.37
		ALTAFP06	58.22
		ALTAFP07	31.56
		ALTAFP08	40.21
		ALTAFP09	79.88
		ALTAFP10	72-27
		ALTAFP11	54.81
		ALTAFP12	108
		ALTAFP13	52
		ALTAFP14	ۍ د
		ALTAFP15	2 8
		ALTAFP16	59
		ALTAFP17	1/2
		ALTAFP18	154
		ALTAFP19	30.12
		ALTAFP21	40,77
		ALTAFP22	88
		ALTAFP23	65.13
		ALTAFP24	70
		ALTAFP25	68
		ALTAFP26	54.13
		ALTAFP27	80.10
		ALTAFP28	60.44
		ALTAFP29	
		ALTAFP30	40.36 85
		ALTAFP31	113
		ALTAFP32	92
		ALTAFP33	78
		ALTAFP34	50.30
		ALTAFP35	8.5
		ALTAFP36	59.24
		ALTAFP37	43.8/
		ALTAFP38	70
		ALTAFP39	89
		ALTAFP41	9 8
		ALTAFP42	104
		ALTAFP43	62
4		ALTAFP44	59

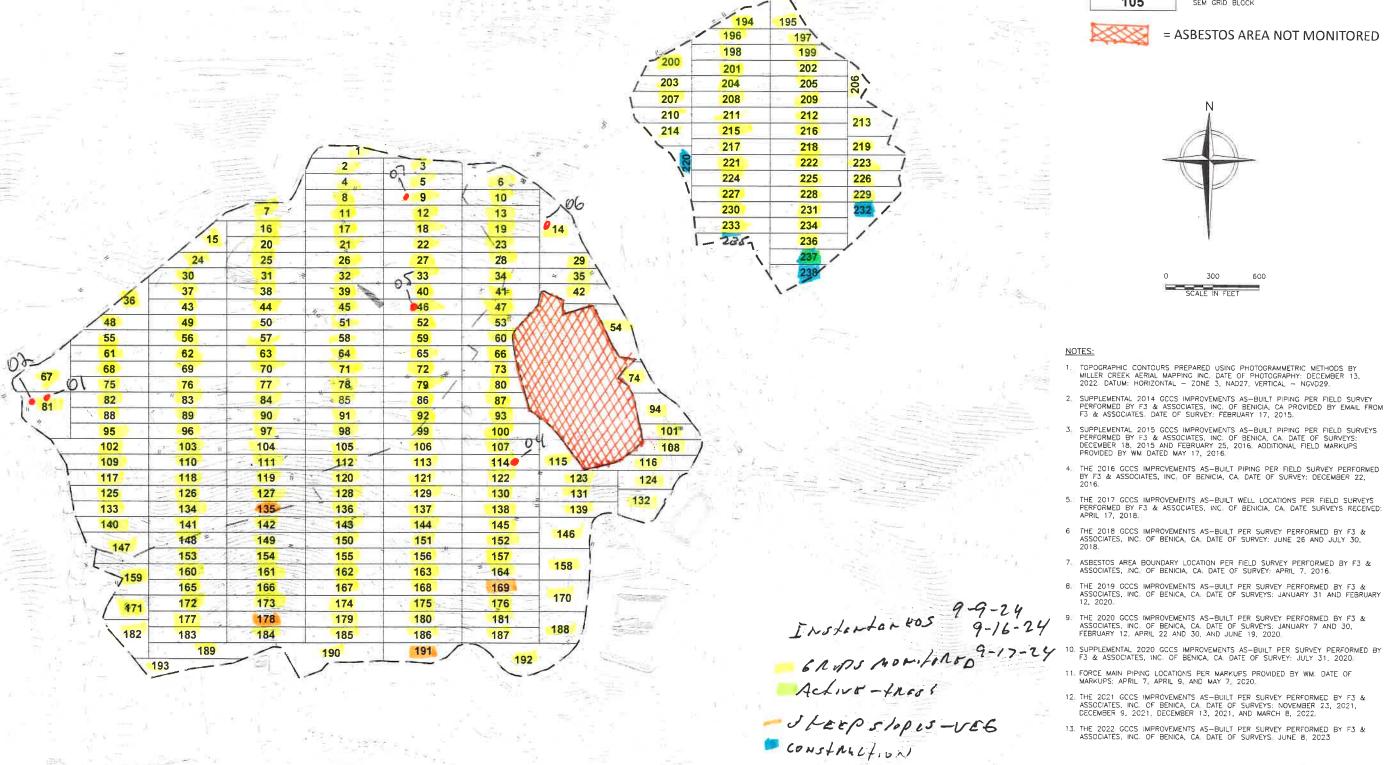
Year:	2014	
Quarter:	300	

IME Date	Time	IME Location ID	IME Concentration (ppm)
9-9-24		ALTAFP45	94
1		ALTAFP46	107
		ALTAFP47	83
		ALTAFP48	65
		ALTAFP49	102
		ALTAFP50	54.18
		ALTAFP51	47.26
		ALTAFP52	75.03
		ALTAFP53	60.88
		ALTAFP54	60.88
		ALTAFP55	61-90
		ALTAFP56	8.5
		ALTAFP57	110 NotoNAP
		ALTAFP58	134 1
		ALTAFP59	72 V
		ALTAFP60	89
		ALTAFP61	6 >
		ALTAFP62	105
		ALTAFP63	49-12
		ALTAFP64	36.2/
		ALTAFP65	54.58
		ALTAFP66	97
		ALTAFP67	128
		ALTAFP68	84
		ALTAFP69	72
		ALTAFP70	80
		ALTAFP71	6-6
		ALTAFP72	9 4
		ALTAFP73	107
		ALTAFP74	54
		ALTAFP75	38
		ALTAFP76	91
		ALTAFP77	74
		ALTAFP78	116
		ALTAFP79	85
		ALTAFP80	6 4
		ALTAFP81	//7
		ALTAFP82	94
		ALTAFP83	128
V		ALTAFP84	72

Year: 2024 Quarter: 3 mD

IME Date	Time	IME Location ID	IME Concentration (ppm)
9-18-24		ALTA0759	45.06
*		ALTA0760	70.13
9-17-24		ALTA0761	18.57
1		ALTA0762	2,000
Ψ		ALTA0764	2/.50
9-18-24		ALTA0765	20.30
9-17-24		ALTA0766	18.77
		ALTA0767	21.70
		ALTA0769	74.28
		ALTA0770	54.67
		ALTA0771	20.22
Ψ		ALTA0772	65.13
9-17-24		ALTA0733	30.04
9-17-24		ALTA0850	27.49
V		ALTA0851	30.22
9-18-24		ALTA0852	18.98
		ALTA0853	27.06
		ALTA0854	18.16
		ALTA0855	27.13
		ALTA0856	22-13
		ALTA0857	17.22
4		ALTA0858	15.40
9-17-24		ALTA0859	11.40
		ALTA0860	9.75
		ALTA0861	10.14
		ALT0862A	13.50
		ALTA0863	70.45
		ALTA0864	46.31
		ALTA0865	30.12
		ALTA0866	34.12
		ALTA0867	37.19
		ALTA0868	72.17
		ALTA0869	24.58
4		ALTA0870	21.50
9-17-24		ALTA0872	34.10
9-77-24		_ALTA0873	46.15
9-17-24		ALTA0875	2/. 40
1		ALTA0876	52.26
		ALTA0877	19.67
ψ		ALTA0880	52-40
9-9-24		ALTAFP02	40-17

Year: 2019 Quarter: 300


IME Date	Time	IME Location ID	IME Concentration (ppm)
9-18-24		ALTA0472	16.57
9-17-24		ALTA0483	115
V		ALTA0488	50.13
9-18-24		ALTA0491	21.03
9-9-24		ALTA0508	24.22
9-18-24		ALTA0517	645
9-17-24		ALTA0518	60.32
V		ALTA0529	106
9-17-24		ALTA0541	78-12
1		ALTA0545	107
		ALTA0551	26.64
		ALTA0578	
		ALTA0578	34.1/
V		ALTA0589	75-1/
9-17-24		ALTA0611	24.32
		ALTA0612	75.18
Ψ		ALTA0624	26.38
9-18-24		ALTA0629	17.80
9-17-24		ALTA0639	60.13
		ALTA0650	45.44
		ALTA0651	78.46
		ALTA0652	27.15
		ALTA0654	13.58
		ALTA0664	50.21
- 1/2 -		ALTA0668	13.27
V		ALTA0669	38.1/
9-18-24		ALTA0678	80.22
+		ALTA0682	40.75
9-17-24		ALTA0686	14.51
		ALTA0712	31.44
		ALTA0713	20-18
V		ALTA0714	26-5>
9-17-24		ALTA0733	30.04
		ALTA0751	19.22
		ALTA0753	10-12
		ALTA0755	12.15
4		ALTA0756	15.07

Year:	2024	
Quarter:	300	

IME Date	Time	IME Location ID	IME Concentration (ppm)
9-9-24		ALTAFP85	138
		ALTAFP86	126
		ALTAFP87	106 98 113 64.22
V		ALTAFP88	11.5
9-17-24		ALTOTC15	64.22
		ALUC0824	1,000
		VD2	110
		VZMA	900
		LS2	8, 50P 10-3P
V		ALLCSVE1	10.30
9-18-24		WELL 880	57.45
9-17-24		WELL 686	52-48
Q-9-24		WE11879	5418
4		WE1/878	54.10 36.41
		 	
			

Year:	2074	
Quarter:	300	

IME Date	Time	IME Location ID	IME Concentration (ppm)
9-17-24		ALLC0842	30.12
9-18-24		ALLC0843	78.10
		ALLC0844	24.66
4		ALLC0845	15.71
9-9-24		ALLC0846	104
		ALLC0847	32.20
		ALLC0848	64.10
ψ		ALLC0849	41.66
9-18-24		ALT20001	35.50
1		ALT20002	20.17
		ALT20003	71.22
		ALT20004	18.75
		ALT20005	78.66
		ALT20006	
		ALT20007	35.13
		ALT20008	49.12
		ALT20009	35.8b
		ALT20010	60.32
		ALT20011	40.11
		ALT20012	17.52
		ALT20013	11.74
		ALT20014	28.60
		ALT20015	51.75
		ALT20016	40.30
		ALT20017	32.17
		ALT20018	60.72
		ALT20019	41.17
		ALT20020	55.06
		ALT20021	81.76
		ALT20022	40.17
		ALT20023	90.41
		ALT20024	52.60
		ALT20025	34.75
		ALT20026	30.70
		ALT20027	21.85
		ALT20028	31,55
P		ALT20029	47.16
9-17-24		ALTA0003	Z4-1/ J8-1D
		ALTA0054	
		ALTA0056	117
		ALTA0059	90.17
		ALTA0087	3>./5
V		_ALTA0108	22-45

LEGEND

EXISTING 10' CONTOUR EXISTING LFG EXTRACTION WELL EXISTING CONDENSATE INJECTION WELL EXISTING LOCAL CONTROL WELL

105

SEM GRID BLOCK

EXISTING REMOTE WELLHEAD

= ASBESTOS AREA NOT MONITORED

300

- TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY MILLER CREEK AERIAL MAPPING INC. DATE OF PHOTOGRAPHY: DECEMBER 13, 2022. DATUM: HORIZONTAL ZONE 3, NAD27, VERTICAL NGVD29.
- SUPPLEMENTAL 2014 GCCS IMPROVEMENTS AS—BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA PROVIDED BY EMAIL FROM F3 & ASSOCIATES, DATE OF SURVEY: FEBRUARY 17, 2015.
- SUPPLEMENTAL 2015 GCCS IMPROVEMENTS AS—BUILT PIPING PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: DECEMBER 18, 2015 AND FEBRUARY 25, 2016. ADDITIONAL FIELD MARKUPS PROVIDED BY WM DATED MAY 17, 2016.
- THE 2016 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC, OF BENICIA, CA, DATE OF SURVEY: DECEMBER 22, 2016.
- 5. THE 2017 GCCS IMPROVEMENTS AS—BUILT WELL LOCATIONS PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE SURVEYS RECEIVED: APRIL 17, 2018.
- 6 THE 2018 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEY: JUNE 26 AND JULY 30,
- ASBESTOS AREA BOUNDARY LOCATION PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE OF SURVEY: APRIL 7, 2016
- 8. THE 2019 GCCS IMPROVEMENTS AS—BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: JANUARY 31 AND FEBRUARY 12, 2020.

- 11. FORCE MAIN PIPING LOCATIONS PER MARKUPS PROVIDED BY WM. DATE OF MARKUPS: APRIL 7, APRIL 9, AND MAY 7, 2020.
- 12, THE 2021 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: NOVEMBER 23, 2021, DECEMBER 9, 2021, DECEMBER 13, 2021, AND MARCH 8, 2022.
- 13. THE 2022 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS, JUNE 8, 2023

FINAL RECORD DRAWINGS

ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY ALAMEDA COUNTY, CALIFORNIA

2023 GCCS IMPROVEMENTS **SEM GRID MAP**

PROJECT NO 230018

SHEET NO.

WASTE MANAGEMENT

15

24

30

37

43

49

56

62

69

76

83

89

96

103

110

118

126

134

141

148

153

160

165

172

177

183

193

189

/36

48

55

61

68

75

82

88

95

102

109

117

125

133

140

147

159

\$71

182

67

81

LEGEND

EXISTING 10' CONTOUR

EXISTING REMOTE WELLHEAD

EXISTING LFG EXTRACTION WELL

EXISTING CONDENSATE INJECTION WELL

EXISTING LOCAL CONTROL WELL

105

SEM GRID BLOCK

= ASBESTOS AREA NOT MONITORED

NOTES:

- TOPOGRAPHIC CONTOURS PREPARED USING PHOTOGRAMMETRIC METHODS BY MILLER CREEK AERIAL MAPPING INC. DATE OF PHOTOGRAPHY: DECEMBER 13, 2022. DATUM: HORIZONTAL ZONE 3, NAD27, VERTICAL NGVD29.
- SUPPLEMENTAL 2014 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA. CA PROVIDED BY EMAIL FROM F3 & ASSOCIATES. DATE OF SURVEY: FEBRUARY 17, 2015.
- 3. SUPPLEMENTAL 2015 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: DECEMBER 18, 2015 AND FEBRUARY 25, 2016, ADDITIONAL FIELD MARKUPS PROVIDED BY WM DATED MAY 17, 2016.
- 4 THE 2016 GCCS IMPROVEMENTS AS-BUILT PIPING PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE OF SURVEY: DECEMBER 22, 2016.
- 5 THE 2017 GCCS IMPROVEMENTS AS-BUILT WELL LOCATIONS PER FIELD SURVEYS PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE SURVEYS RECEIVED:
- 6, THE 2018 GCCS IMPROVEMENTS AS—BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC, OF BENICA, CA. DATE OF SURVEY; JUNE 26 AND JULY 30.
- 7. ASBESTOS AREA BOUNDARY LOCATION PER FIELD SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICIA, CA. DATE OF SURVEY: APRIL 7, 2016.
- 8. THE 2019 GCCS IMPROVEMENTS AS—BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: JANUARY 31 AND FEBRUARY 12, 2020.
- 9. THE 2020 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: JANUARY 7 AND 30, FEBRUARY 12, APRIL 22 AND 30, AND JUNE 19, 2020
- 10. SUPPLEMENTAL 2020 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEY: JULY 31, 2020.
- 11. FORCE MAIN PIPING LOCATIONS PER MARKUPS PROVIDED BY WM. DATE OF MARKUPS: APRIL 7, APRIL 9, AND MAY 7, 2020.
- 12. THE 2021 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: NOVEMBER 23, 2021, DECEMBER 9, 2021, DECEMBER 13, 2021, AND MARCH 8, 2022.
- 13. THE 2022 GCCS IMPROVEMENTS AS-BUILT PER SURVEY PERFORMED BY F3 & ASSOCIATES, INC. OF BENICA, CA. DATE OF SURVEYS: JUNE 8, 2023

FINAL RECORD DRAWINGS

ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY ALAMEDA COUNTY, CALIFORNIA

2023 GCCS IMPROVEMENTS SEM GRID MAP

SHEET NO.

PROJECT NO 230018

Attachment B

Integrated Surface Emission Monitoring Event Records

Table B.1 Integrated Landfill Surface Monitoring Exceedances and Monitoring Log

2024 QUARTER: 3

INITIAL MONITORING PERFORMED BY: RES FOLLOW-UP MONITORING PERFORMED BY: NA

Initial	Initial Monitoring Event			on Event -		
Exceedance	Monitoring	Field	Monitoring	No Exced.	No Exced.	
Grid ID No.	Date	Reading	Date	<25 ppm	>25 ppm	Comments
No exceedan	ces					

Personnel: 1015 4 Whot	DENIEL IRAG	
Antiony canales	Luis alevelo	Cal. Gas Exp. Date: 1/-/0-29
10	ed: Gric	Spacing: 25/
Temperature: $\angle \mathcal{V}$ Precip:	D Unwind BG: 2.6	Downwind RG: 7.4

GRID	STAFF	START	STOP	тос	WIN	ND INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPIARES
36	LW	0600	0615	15,22	4	6	طا	
48		0615	0625	17-3/	5	7	 ما	
55		8625	0640	14.80	5	7	ماا	
61		0640	0655	12-74	5	1	16	
67		0615	6720	14.20	5	E	صا	
68		0770	0745	11.65	4	8	16	
75		0710	0815	13.51	10	6	16	
82		0815	0840	10.62	15	7	ماا	
81		0840	0505	7.84	6	10	ما	
83		0505	6970	9.21	و.	G	16	
84		0975	0955	6.88	7	10	16	
90		1000	1025	8.60	7	10	ما ا	
85		1025	1050	7.38	5	4	1	
88		1200	1/25	11.62	9	4	16	
95		1125	1150	13.51	7	10	16	
96		1300	1325	10.80	7	11	15	
97		1325	1350	12-66	1	10	15	
164		1350	1415	9.51	7	9	15	
103		1415	1440	7.80	1	10	15	
102	\forall	1440	1500	7-58	7	10	14	
26	TM	6600	0625	8.70	5	7	16	
27		0626	0651	7.80	5	7	16	
28		0651	0715	13.20	5	8	16	
34		6715	0742	19.70	5	4	lb	
33		0740	080	9.02	5	9	طا	
32		0810	0835	8.90	6	И	No	
39		0835	0900	7.60	6	W	16	
40		0901	0926	7.20	10	8	И	
41		0926	0952	18-60	7	lо	م)ا	
47	4	0552	1017	8.07	7	8	طا	

Attach Calibration Sheet

Attach site map showing grid ID

Page ______ of ______

Personnel: LAKE WAR	Densellens	
Anthony Chaelts	Luis Armalo	
Anthony concles		Cal. Gas Exp. Date: //-/0-29
Date: <u>9-10-24</u> Instrument U	sed: _ tvAloro	Grid Spacing:25'
Temperature: > Precip: _ •	Upwind BG: _2	Downwind BG: 3.4

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKAS
46	1	1020	1045	9.06	5	•		
45		1045	1110	9.75	7	9	طا	
51		1110	1135	7.55	ط	9	ما ا	
52		1135	1200	7.11	7	9	 _15	
53		1300	1325	8-17	7	- 11	15	
60		1325	1350	10-07	7	10	15	
19		1310	1415	8.90	7	9	15	
58		1415	1440	7.60	٦	10	15	
64		1440	1505	8.06	7	9	15	
65	V	1502	1531	7.08	4	10	14	
15	AC	0601	0626	18.65	5	1	طا	
20	1	0630	0665	2.42	5	1	16	
25		0856	0721	8.3>	5	É	صاًا	
24		0723	0748	16.07	5	6	طأ	
30		0749	0814	1741	6	4	طا	
3/		0815	0840	7.62	5	7	16	
38		0843	0925	8.78	6	10	16	
3>		0515	0930	14.62	6	8	16	
43		0925	100-	16.21	صا	9	16	
44		1001	1026	8.01	7	10	16	
50		1126	1051	7.06	5	•		
45		1051	1116	18.44	٦	9	16	
56		1116	114	19.01	٦	10	16	
57		1300	1725	9.62	7	9	15	
63		1325	1750	8.11	7	10	15	
62		1250	1415	18.4	7	9	15	
65		1415	1440	27.42	7	lo	1/5	
70		1441	1506	7.01	7	10	15	
>>		1506	1531	7.48	6	10	14	
76	7	1531	1556	11.82		10	15	

Attach Calibration Sheet

Attach site map showing grid ID

Page <u>2</u> of <u>4</u>

Personnel: Leighunor	Denigs lens	_ , ,
Anthony careles	LEIS ARDUCLO	Cal. Gas Exp. Date: 11-10-1
Date: <u>9-/0-24</u> Instrument U	sed: _ fra 1000 G	rid Spacing:
Temperature:> Precip:	0 Upwind BG: 7.	6 Downwind BG: 3-9

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KENAKIO
66	DL	0600	0625	10.25	5	7	16	
73		0625	0650	9.50	5	7	16	
72		0700	0725	8.50	5	G	16	
7/		0725	07/2	7.60	6	(J	16	
78		0800	0825	10.07	9	C	16	
75		8825	0850	2.80	b	9	مأا	
89		8850	0915	8.70	5	C	14	
87		0915	0847	10.30	6	9	10	
89		0940	1005	10.20	9	9	14	
81		1800	1020	8-20	7	10	16	
91		1070	1055	8.05	5	16	ماا	
92		1085	1115	9.10	7	9	14	
93		1115	1145	9.30	7	10	16	
100		1300	1725	9.25	_ 7	9	15	
99		1350	142	10.05	7	9	15	
58		1415	1440	10.52	7	10	15	
105		1447	1505	11.00		10	15	
106		1500	1530	13.2/	6	10	14	
107		1530	1885	11.37	8	10	15	
115	V	1555	1610	12.10	7	Ш	15	
/	LA	0600	0625	8.10	5	1	16	
2	1	0621	6650	7.04	5	7	16	
3		0650	0715	14,26	5	C	16	
6		0>20	0745	16.01	5	•	16	
5		0745	08/0	11.17	6	6	16	
4		0810	0832	7.20	6	16	16	
8		0845	0917	7.07	Ь	10	16	
5		0823	0835	10-04	b	مر	16	
10		0575	1010	16.50	ما	9	16	
13	P	1010	1075	20.41	1	16	16	

Attach Calibration Sheet

Attach site map showing grid ID

Page ______ of ______

Personnel: Large want	CALL SAEVALD	
Anthony carelas		Cal. Gas Exp. Date: 1/-10-2
Date: <u>9-/0-29</u> Instrument Us	sed: +VAIVVO G	rid Spacing:
Temperature: 75 Precip:	O Upwind BG: 2	Downwind BG: 3.4

GRID	STAFF			REMARKS				
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
12		1075	1100	14.06		10	14	
11		1100	1125	7.22	ما	8	طا	
フ		1175	1200	11.02	7	9	15	
16		1705	1730	9.10	7	ıı	ıs	
17		1770	1325	7.38	7	10	_ 15	
18		1355	1420	8-40	7	9	15	
19		1420	1445	15.23	7	10	15	
23		1457	1515	10.46	7	10	14	
22	11	1511	1540	17.21	1	10	14	
21	F	1540	1605	18.51	1	N	15	
					er .			
						0)		
					7			
			1					

Attach Calibration Sheet Attach site map showing grid ID

Page $\frac{4}{2}$ of $\frac{4}{2}$

Personnel: LOIGHNOE	PENIC / JERS LGIS ARBUBLO		
Androny canalos		Cal. Gas I	Exp. Date: //-/0-14
Date: 9-11-24 Instrument Use	ed: _ + VA 1000	Grid Spacing:	25'
Temperature:6 Z Precip:6	Upwind BG:	2-6 Downwi	ind BG: 3.4

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
157	LW	0600	0625	5.81	4	6	ن	
158		0625	0610	7.13	6	lo	Ť	
164		0650	0715	6.31	5	Q	7	
183		0720	0745	8.13	5	6	7	
162		0745	0810	7.25	6	9	1	
161		0810	0835	9.77	5	1	7	
166	1	0835	09.D	11.42	ط	9	7	
167		0518	0535	13.20	5	7	10	
168		0935	1000	10.07	5	C	10	
170		1005	1070	9.64	S	C	7	
176		1030	1055	8.32	5	7	10	
175		1055	1120	10.81	5	ιo	10	
174		1220	1245	12.64	4	4	11	
173		1245	1310	10.51	4	φ 7	12	
177	4	1320	1345	11.4	4	٩	10	
14	JM	0610	0635	8.07	5	p	6	
29		0636	0701	7.29	5	9	7	
35		2070	0727	8.17	5	(7	
42		0730	0755	9.60	5	7	9	
54		0785	0820	5.70	5	9	C	
74		0821	0846	7.10	5	10	4	
94		0846	0912	4.20	5	C	Ğ	
181		0915	0940	6.80	나	Le .	10	_
108		0240	1605	5.50	5	É	10	
116		1005	1030	4.20	5	8	7	
124		1071	1056	7.50	5	1	10	
123		1056	1121	4.10	5	10	10	
131		1235	1300	6.17	5	C	il I	
132		1305	1330	9.35	5	7	10	
139	4	1335	1400	8.20	4	6	10)	

Attach Calibration Sheet

Attach site map showing grid ID

Page _____ of _______

Personnel: LOIGHNAOK	Chis AREVUTO		
Anthony canalos		Cal. Gas E	xp. Date: //-/0-24
Date: $9-11-24$ Instrument (Jsed: +VA 1000	Grid Spacing:_	25'
Temperature: 62 Precip: _	O Upwind BG: _	2-6 Downwir	nd BG: _3.4

GRID STAFF		START STO	STOP	тос	WIND INFORMATION		DEMARKS	
ID	INITIALS	TIME	TIME PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS	
133	AC	0615	0640	8.25	5	6	4	
134		0840	0705	9.16	4	9	7	
141		6700	0732	7.42	15	10	r	
140		0733	8350	7.08	5	1D	Ġ	
147		0800	0825	8.96	5	Q	j	
148		0825	0858	9.16	5	10	ĺ	
153		0751	0916	7.02	5	4	6	
160		0917	0842	8.81	4	6	10	
159		0842	1007	8.78	4	4	10	
165		1008	1033	9.4/	4	6	Q	
1)2		1030	1/00	7.01	4	10	10	
171		1101	1126	6.42	5	10	10	
142		123/	1256	8.64	5	a	IJ	
149		1258	1323	1201	5	8	10	
154	1	1724	1349	11.54	5	1	(D	
109	LA	0610	0675	9.41	5	1	4	
110		0635	0)00	9,38	5	10	7	
111		0700	0725	11.12	5	8	7	
112		0725	0750	7,26	5	8	7	
113		0750	0815	8.63	4	7	Q	
114		0815	0840	10.65	5	9	1	
122		0850	0915	7.09	5	G	5	
121		0515	0940	7.47	4	Ь	10	
120		0940	1005	10.32	4	Ь	10	
119		1005	1070	7.05	4	ط	9	
118		1030	1255	9.23	4	7	8	
117		1015	1120	11-29	5	10	10	
125		1250	1315	11.01	5	9	19	
126		1315	1340	8.12	2_	5	10	
12>	4	1340	1405	10-56	4	6	10	
Attach Cali						-		

Attach Calibration Sheet

Attach site map showing grid ID

Page 2 of 3

ALTAMONT LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: Larghunot	Chis AREVELO	
Androny canalos	Call The Date	Cal. Gas Exp. Date: //-/0-24
Date: 9-11-24 Instrument Use	ed: <u> </u>	id Spacing:Zs'
Temperature: 62 Precip: 6	Upwind BG: 2-6	Downwind BG: 3.4

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	TEL TITLE
128	DL	06/0	0625	8.70	4	6	4	
179		0825	0700	7.69	5	9	7	
130		000	0725	8.30	5	Ç	1	
138		0725	0750	9.10	5	7	9	
137		0800	0825	8.15	5	9	8	
136		0825	0850	6.40	5	10	6	
143		8810	0815	7.29	5	8	(
144		0520	0945	7.34	4	6	10	
145		0945	10/0	8-23	1	6	lo	
146		1010	1035	7.65	4	6	C	
152		1035	1055	7.70	5	1	16	
151		1000	1120	8.25	5	10	10	
150		1270	1255	12-51	5	5	1	
155		1700	1325	13.04	5	8	10	
156	V	1325	1350	13.17	5	7	10	

Attach Calibration Sheet Attach site map showing grid ID

ALTAMONT LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: JERRY MURON	
	Cal. Gas Exp. Date: <u>//-/υ-</u> 2/2
Date: <u>9-17-24</u> Instrument Used: <u>+vA 1000</u>	Grid Spacing: 25/
Temperature: 62 Precip: 0 Upwind BG:	2.6 Downwind BG: 3.4

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	TO DIAGO
179	TM	0720	0730	10.03				
180		0730	0740	13.09				
181		6740	0750	11.07				
188		0750	0800	12.01				
/8フ		0800	0870	14.20				
186		0810	0820	13.21				
185		0870	0830	11.15				
184		1873	0847	10.09				
183		0845	0850	15.00				
182		0852	0900	14.00				
153		0200	0910	13.09				
189		0810	0920	11.70				
150		0921	593/	12.22				
192	P	0931	0941	10-35				
							11	

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of ____

ALTAMONT LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

ersonnel: _	Leighw.	102						-	
:= 2=							Cal. Gas Ex	p. Date:	
Date: _ 9	-17-24	_ Instrume	nt Used: _			Grid S	Spacing:		
Temperate	ıre:	Precip	•	_ Upwind	BG:		Downwin	d BG:	
GRID	STAFF	START	STOP	тос	WIN	ND INFOR	RMATION	REMARKS	
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT		
135								Strep-VE-6	
178								1	
151								7. J.	
169								P	
220								construction	
237									
238									
232								P	
	y.								
			4						
		9							
			·						

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of ____

ALTAMONT LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: JENRY NOTUZ ANTINY CANCIES	Luis AREVATO	
per lang		Cal. Gas Exp. Date: //~/o-2{
Date: 9-18-24 Instrument L	Jsed:	d Spacing:
Temperature: <u>62</u> Precip: _	Upwind BG: Z	Downwind BG: 3-4

GRID	STAFF	STAFF START		тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	STOP TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPIARRO
194	TM	0600	0625	7.01	3	3	ما	
195		0625	0650	7.77	2	3	طا	
197		0651	0716	9.25	2_	3	طا	
196		0716	0241	8.27	2	3	15	
200		0742	0807	7.35	2	3	2	
198		0810	487	9.40	4	5	2	
199		1875	0900	8.09	2	4	4	
206		1802	0927	7.55	4	4	1	
202		0930	0955	9.23	5	6	Q	
201	_\	0915	1020	9.07	2	4	Q	
203	P	1022	1147	8.25	3	5	9	
215	Ac	0600	0625	8.47	_	2	ما	
214	1	0675	0650	9.16	2	3	طا	
217		0650	2450	9.84	2	3	16	
218		0715	0740	6.75	2	3	15	
219		0743	080	6.85	2	3	2	
223		0810	08BS	9.13	4	5	2	
222		1835	0900	8.94	2	4	4	
221		0900	0975	8.00	4	6	1	
224		0970	0915	7.62	5	ط	(
775		1000	1025	8-33	2	4	€	
226	DL	0600	0625	フィフフ	_1	2	طيا	
229		0825	0850	8.10	2	3	طا	
728		0650	0745	6.46	2	3	16	
227		0715	0740	8-75	2	3	15	
230		0740	0805	9.01	2	3	2	
23/		0805	0830	8.00	4	5	2	
234	. 5	0831	0855.	8.78	2	4	4	
233		0850	0820	8.41	4	5	2	
235	4	0520	0864	9.72	4	5	2	

Attach Calibration Sheet

Attach site map showing grid ID

Page _/__ of _ 2__

ALTAMONT LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: JENRY ALAIZ	LEIS ALBURLO	
Dar lahi		Cal. Gas Exp. Date: 11-10-19
Date: <u> </u>	ed: fvalovo Grid	Spacing: Zs'
Temperature: 6 ² Precip:	D Upwind BG: フェク	Downwind BG: 3,4

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
236	ψ	0845	10/0	8.31	5	1	7	
204	LA	0600	6625	9.31	3	3	طا	
205	1	0621	0650	7.56	2	3	طا	
209		0650	2150	8.07	2	3	طا	
218		0715	0740	10.85	2_	3	15	
207		0740	0805	9.02	2	3	2	
210			0830	9.25	4	5	2	
211		0832		7.63	2	4	4	
217		0815	0855	10.50	4	6	1	
219		0845		8.74	2	4	Q	
216	1	1010	1035	10.52	5	7	Ĭ	
	oration Sh							

Attach Calibration Sheet Attach site map showing grid ID

Page _ Z _ of _ Z _

DWN BY DES BY CHK BY APP E

CHECKED BY

WASTE MANAGEMENT

7 PRGJECT NO 230018

2023 GCCS IMPROVEMENTS

SEM GRID MAP

Attachment C

Component Leak Monitoring Event Records

Table C.1

AB-32 Component Leak Monitoring Summary of Component Leaks Greater than 500 ppmv

2024 QUARTER: 3

INITIAL MONITORING PERFORMED BY: ALRRF
FOLLOW-UP MONITORING PERFORMED BY: ALRRF

LANDFILL NAME: Altamont Landfill and Resource Recovery Facility

Location	Initial Monitoring				Corrective Action	10)-Day Remonit	oring
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
A15- Flare Station	8/15/2024	ND						
A16- Flare Station	8/15/2024	ND						
S6 and S7 Turbines	9/3/2024	ND						

Note: LNG Plant was has been decommissioned.

ND= No exceedances detected

Table C.2

BAAQMD Component Leak Monitoring Summary of Component Leaks Greater than 1,000 ppmv

2024 QUARTER: 3

INITIAL MONITORING PERFORMED BY: ALRRF
FOLLOW-UP MONITORING PERFORMED BY: ALRRF

LANDFILL NAME: Altamont Landfill and Resource Recovery Facility

Location	Initi	al Monitoring			Corrective Action	7-Day Remonitoring		
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
A15- Flare Station	8/15/2024	ND						
A16- Flare Station	8/15/2024	ND						
S6 and S7 Turbines	9/3/2024	ND						

Note: LNG Plant was has been decommissioned.

ND= No exceedances detected

	QUARTERLY LFG COMPONENT LEAK MONTORING						
EQUIPMENT:	Turbine Gas skids						
INSTRUMENT:	FID						
MAKE:	Photovac						
MODEL:	MicroFiD I/S						
S/N:	CZPD312						
DATE OF SAMPLING:	9/3/2024						
TECHNICIAN:	L.LaCerra						

0 0																					
LOCATION OF LEAK(S)	Bolte	d Conne	ctions	(Flar	Pipes nged, Uni	ions)	Roots	Flex Cou	uplings	Howden Compressor	Inte	erstageVe	ssel	Oil/Gas	Separato	r Vessel		parator ssel	I	ig Towers hanger P	
	#1	# 2	#3	#1	# 2	#3	#1	#2	#3	# 1	#1	# 2	#3	#1	# 2	# 3	# 1	# 2	# 1	#2	#3
Compressor skid # 1																					
TEST DATE	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24
LEAK CONCENTRATION FOUND (ppm)		10.0 PPM	1		11.0 PPM	1		4.0 PPM	1	4.0 PPM		2.0 PPM			6.0 PPM		1.0 PPM			3.0 PPM	I
ACTION TAKEN																		•			
REPAIR DATE																					
RE-TEST DATE																					
RE-TEST																					
CONCENTRATION (ppm)																					
Compressor skid # 2										•							•				
TEST DATE	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24
LEAK CONCENTRATION FOUND (ppm)		7.0 PPM			4.0 PPM			12.0 PPN	Л	2.0 PPM		3.0 PPM			9.0 PPM		5.0 PPM			5.0 PPM	I
ACTION TAKEN																					
REPAIR DATE																					
RE-TEST DATE																					
RE-TEST																					
CONCENTRATION (ppm)																					
0 (

Comments:

Note:

In the event that an exceedance is detected, please intiate corrective action and **re-monitor the exceedance location within 7 days** of the initial exceedance.

Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

			QUARTERLY LFG COMP	ONENT LEAK MONTORI	NG	
EQUIPMENT:	Turbine Gas skids					
INSTRUMENT:	FID					
MAKE:	Photovac					
MODEL:	MicroFiD I/S					
S/N:	CZPD312					
DATE OF SAMPLING:	9/3/2024					
TECHNICIAN:	L.LaCerra					
	Bolted connections	Pipes (flanged, unions)	Inlet piping and valves	Sensors, transducers	Propane tank & piping	Gas manifold and piping

LOCATION OF LEAK(S)	Bolte	d connec	ctions	Pipes (flanged, เ	unions)	Inlet pi	ping and	valves	Sense	ors, trans	ducers	Propa	ne tank 8	piping		G	as manif	fold and pi	ping
. ,	#1	# 2	# 3	#1	# 2	# 3	#1	# 2	# 3	#1	# 2	# 3	#1	# 2	# 3	# 1	# 2	# 3	# 4	# 5
Turbine 1		-	-	-	-			-	-		-	-	-			-	-	-		
TEST DATE		9/3/24			9/3/24			9/3/24			9/3/24			9/3/24				Ç)/3/24	
LEAK CONCENTRATION FOUND (ppm)		2.0 PPM			2.0 PPM			7.0 PPM	I		3.0 PPM			2.0 PPM			6.0 PPM			
ACTION TAKEN																				
REPAIR DATE																				
RE-TEST DATE																				
RE-TEST CONCENTRATION (ppm)																				
Turbine 2		9/3/24			9/3/24			9/3/24			9/3/24			9/3/24				g	/3/24	
TEST DATE																				
LEAK CONCENTRATION FOUND (ppm)		5.0 PPM			7.0 PPM			5.0 PPM	I		5.0 PPM			6.0 PPM			4.0 PPM			
ACTION TAKEN																				
REPAIR DATE																				
RE-TEST DATE							_													
RE-TEST CONCENTRATION (ppm)																				

Comments:

Note:

In the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.

Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

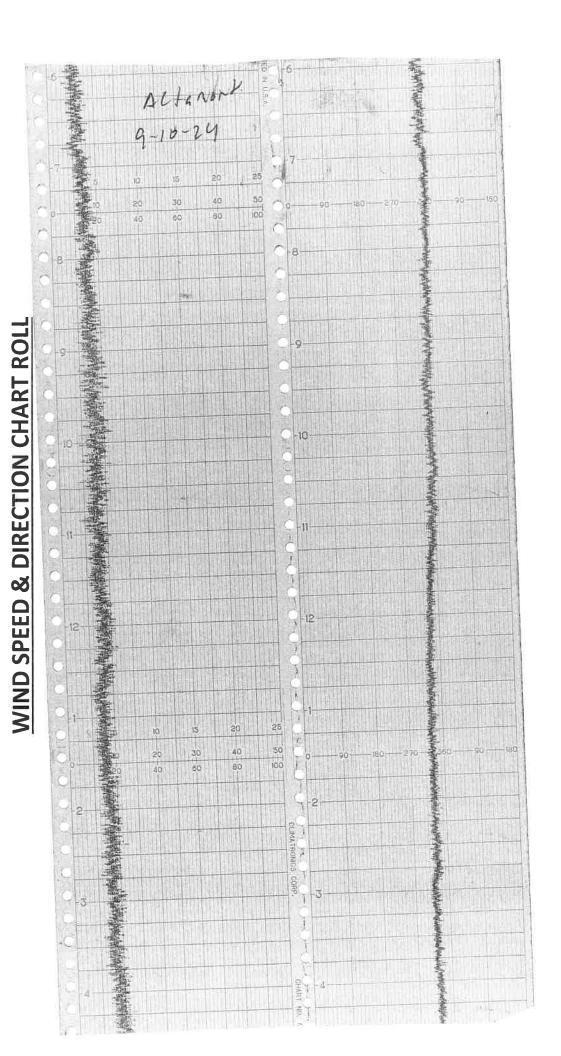
											UARTER	LYLFG	CO	MPONEN	NT LEA	K MON	TORIN	G															
EQUIPMENT:	A16 Fla	re																															
INSTRUMENT:	Photova	ic																															
MAKE:	Thermo	scientific																															
	Micro F																																
	CZPD3																																
	08.15.24																																
TECHNICIAN:	Garry C	arpenter																															
LOCATION OF LEAK(S)	Bolte	ed Conne	ctions	Pipes ((Flanged,	Unions)		Valves, S and Pipin			Blowers	ì		NG Valves Piping to L V				eader to I	_andfill		opane and Pip		IC	Engine Sen		es and	IC En	gine Cor Skid		on I			fold Piping ontainer
	#1	#2	#3	#1	#2	#3	#1	# 2	#3	#1	# 2	#3		#1	#2	#3	#1	# 2	#3	3 #	#1	#2	#	1 #	2	#3	#1	#2	#3	3	#1	#2	#3
A-16		•			•													'															
TEST DATE		08.15.24	ļ		08.15,2	4		08.15,2	1		08.15,2	4		08	3.15,24			08.15,	24		08.15	,24											
LEAK CONCENTRATION FOUND (ppm)		N/D			N/D			N/D			N/D			1	N/D			N/D		N	N/D												
ACTION TAKEN																							1	N	/A			N/A				N/A	
REPAIR DATE													Т											14	^			IN/A				IN//	
RE-TEST DATE																																	
RE-TEST CONCENTRATION (ppm)																																	
Comments: LNG Plant was	decomm	issioned i	n 2023.																														
Note: In the event that an exceedance is detected, please initiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance. Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B). Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.																																	

ALTRF Plant No. 2066

A16 Qtrly leak check form 08.15.2024 3rd Qtr

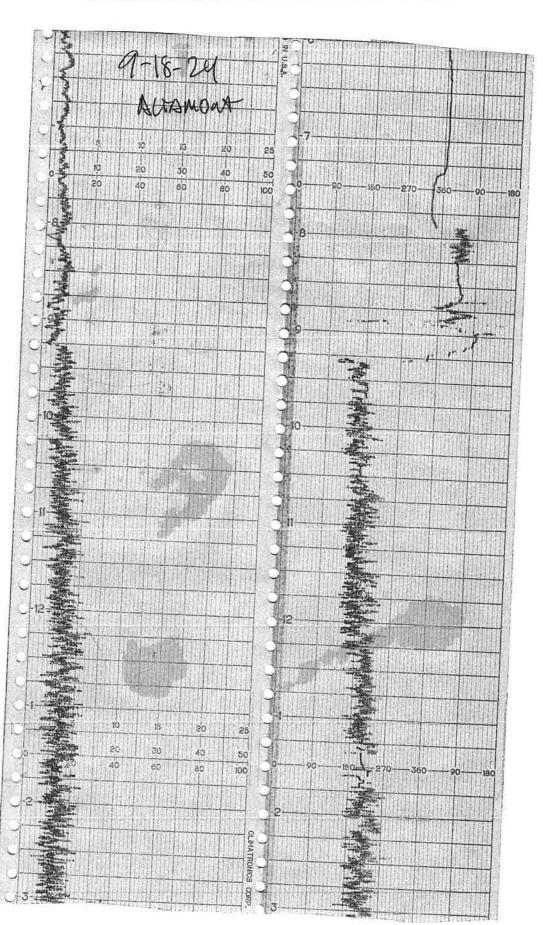
				Ql	JARTERL	Y LFG CO	OMPONE	NT LEAK	MONTOR	RING						
EQUIPMENT:	A15															
INSTRUMENT:	FID															
MAKE:	Photovad															
MODEL:	Micro FIE)														
S/N:	CZPD31	2														
DATE OF SAMPLING:	08.15,24															
TECHNICIAN:	Garry Ca	rpenter														
LOCATION OF LEAK(S)	Bolte	ed Connec	tions	Pipes ((Flanged,	Unions)	Dis	charge Blo	ower	Fla	ame Arres	tor		Pipe to Sensors	Propane Pip	Tank and ping
	#1	# 2	#3	#1	# 2	# 3	#1	#2	#3	#1	# 2	#3	# 1	# 2	# 1	# 2
A-15 Flare Station				•								•	•			
TEST DATE		08.15,24			08.15,24	1		08.15,24			08.15,24	•	08.1	15,24	08.	15,24
LEAK CONCENTRATION FOUND (ppm)		N/D			N/D			N/D			N/D		N.	/D	N	/D
ACTION TAKEN																
REPAIR DATE																
RE-TEST DATE																
RE-TEST CONCENTRATION (ppm)																

Comments: Bolt connections (expansion chamber) were tightened.

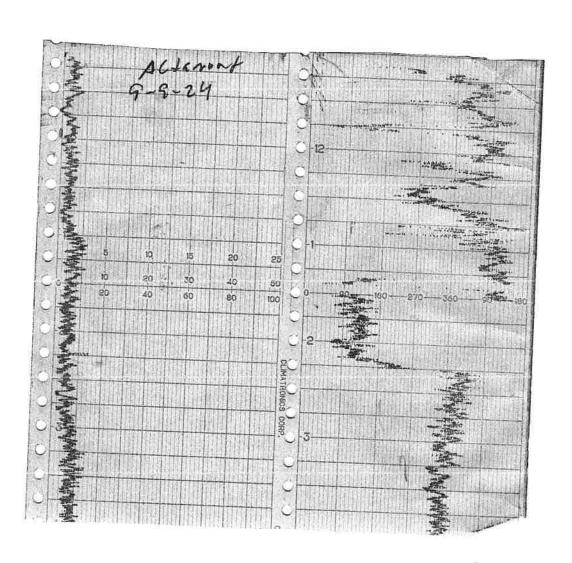

Note:

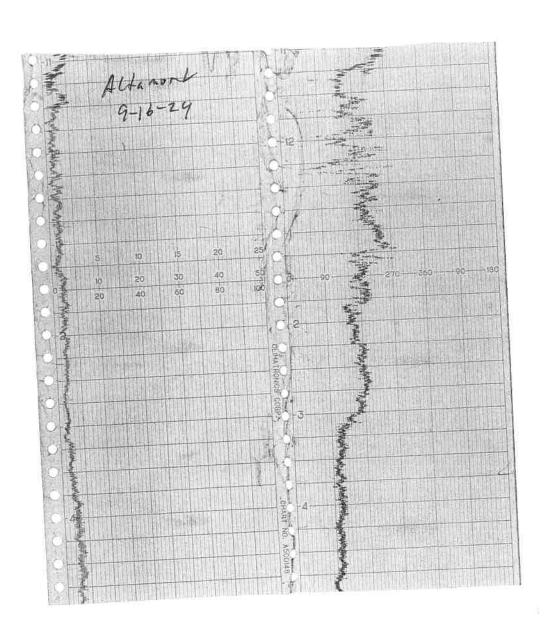
In the event that an exceedance is detected, please intiate corrective action and **re-monitor the exceedance location within 7 days** of the initial exceedance. Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.


Attachment D

Weather Station Data




WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

WIND SPEED & DIRECTION CHART ROLL

CALIBRATION	PROCEDURE	AND BACK	GROUND	REPORT	- INSTANTAN	EOUS
-------------	-----------	----------	--------	--------	-------------	------

LANDFILL NAME: A Channel	INSTRUMEN	T MAKE: +	ferm
MODEL: LUAIOUS EQUIPMENT#	10	SERIAL #:	1036346773
MONITORING DATE: 9-18-24	TIME:	055	D

- 1. Allow instrument to zero itself while introducing air.
- Introduce calibration gas into the probe. Stabilized reading = ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgr	ound	Downwind Backs	ground	Background Valu	ie:
Reading: (Highest in 30 seconds)		Reading: (Highest in 30 seco	onds)	(Upwind + Dow	nwind)
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	g Using	90% of the Stabilia Reading	zed	Time to Reach 9 Stabilized Readi switching from a Calibration Gas	ng after
#1	505	ppm	455	ppm	y	
#2	500	ppm	450	ppm	4	
#3	500	ppm	450	ppm	4	
	Calculate Response	Time (<u>1</u> - 3	+2+3)		4	#DIV/0!
			Must be less than	30 seconds		

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	eter Reading for Zero Air (A)			Calculate Precision [STD – (B)			
#1	0.11	ppm	سر د ک	ppm	\$			
#2	0.00	ppm	ە د ر	ppm	0			
#3	0-04	ppm	500	ppm	8			
Calculate Precision	on [STD-B1] + [S	TD-B2] + [5 3	STD-B3] X <u>1</u> X 500	100 1	O - 3J	#DIV/0!		

<i>.</i>				
Performed By:	NANT	Date/Time:	9-18-24-0550	

	16-POINT V	VIND DIRECTION	N INDEX	
<u>NO</u>	DIRECTION		<u>DEGREES</u>	
		FROM	CENTER	<u>TO</u>
16	NORTH (N)	348.8	369,0	t 1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033,8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	<u>067.5</u>	078.8
4	EAST (E)	078.8	<u>090.0</u>	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
6	SOUTHEAST (SE)	123.8	135.0	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	157.5	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
10	SOUTHWEST (SW)	213.8	225.0	236.3
11	WEST-SOUTHWEST (WSW)	236.3	<u>247.</u> 5	258.8
12	WEST (W)	258.8	270.0	281.3
13	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
14	NORTHWEST (NW)	30.2.8	315.0	326.3
15	NORTH-NORTHWEST (NNW)	326.3	<u>337.5</u>	348.8

Attachment E

Calibration Records

CALIBRATION PROCEDURE AND BACKGROUND R	REPORT - INSTANTANEOUS
--	------------------------

LANDFILL NAME: ALKAUNL	INSTRUMENT MAKE: + Holen -			
MODEL: WAWY EQUIPMENT #:	10	SERIAL #:	103634677	
MONITORING DATE: 9-9-24	TIME:	1050		

Background Determination Procedure

Upwind Background Reading:		Downwind Backg Reading:	Background Value:			
(Highest in 30 seconds)		(Highest in 30 second	(Upwind	1 + Dowr 2	nwind)	
2.6	ppm	3.4	ppm	3.	0	ppm

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	508	ppm	458	ppm	-6	
#2	500	ppm	450	ppm	6	
#3	500	ppm	450	ppm	6	
	6	#DIV/0!				
					Must be less tha	in 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (B)]
#1	0.11	ppm	508	ppm	8	
#2	0.06	ppm	500	ppm	0	
#3	0.05	ppm	500	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [9 3	0.53	#DIV/0!		
			Must be less than	10%		

Performed By:	WARK	Date/Time:	9-9-24	-1050	

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS	CALIE	BRATION	PROCEDURE	AND BACKGROUND	REPORT -	INSTANTANEOUS
---	-------	---------	------------------	----------------	----------	---------------

LANDFILL NAME: Alternal	INSTRUMENT MAKE: + HUND
MODEL JUA1000 EQUIPMENT #	11
MONITORING DATE: 9-9-29	TIME: /D/O

Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = 500 ppm.
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgr	ound	Downwind Back	ground	Background Value:		
Reading: (Highest in 30 sec	conds)	Reading: (Highest in 30 seco	onds)	(Upwind + Dow 2	nwind)	
2-6	ppm	3.4	ppm	3.0	ppm	

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	990	ppm	440	ppm	5	
#2	58/	ppm	451	ppm	5	
#3	500	ppm	450	ppm	5	
	5	#DIV/0!				
					Must be less than	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	r Reading for Zero Air (A)		A) Meter Reading for Calibration Gas (B)		STD - (B)]
#1	0.16	ppm	450	ppm	10	
#2	0.12	ppm	50/	ppm	/	
#3	0.09	ppm	500	ppm	b	
Calculate Precision	[STD-B1] + [S	TD-B2] + [\$	STD-B3] X <u>1</u> X 500	(<u>100</u> 1	0.73	#DIV/0!
				Must be less than	10%	

Performed By: _	TENNY	MEROZ	Date/Time:	9-9-24	-1050	
	0					

CALIBRATION PROCEDURE	AND BACKGROUND	REPORT - IN	STANTANEOUS

LANDFILL NAME: AL	fan urt	INSTRUMENT MAKE: + HENW			
MODEL: LVA 100	EQUIPMENT #:	12	SERIAL #: /0362467	14/	
MONITORING DATE:	9-9-24	TIME:	1080		

- Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = _______ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2.6 ppn	3-4 ppm	3.0 ppm

Background Value = _______ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	425	ppm	445	ppm	y	
#2	500	ppm	450	ppm	4	
#3	500	ppm	450	ppm	4	
Calculate Response Time (1+2+3) 3					4	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zei	eter Reading for Zero Air (A)		for s (B)	Calculate Precision [STD – (B)]	
#1	0.10	ppm	485	ppm	5	
#2	0.05	ppm	100	ppm	0	
#3	0.03	ppm	200	ppm	6	
Calculate Precision	[STD-B1] + [ST	D-B2] + [\$ 3	STD-B3] X <u>1</u> X 500	<u>100</u> 1	0.33	#DIV/0!
					Must be less tha	n 10%

Performed By:	Anthoy	carales	Date/Time: 9-9-24-/050	
	,			=

CALIBRATION	PROCEDURE	AND BACKGROUND	REPORT - I	NSTANTANEOUS

LANDFILL NAME: ACTION	INSTRUMENT MAKE: + HOAV		
MODEL:	13 SERIAL #: 1/02746775		
MONITORING DATE: 9-9-29	TIME:/050		

1.	Allow instrument to zero itself while introducing air.	ب	CO.	
2.	Introduce calibration gas into the probe. Stabilized reading =	1	00	ppm

3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Reading:	Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2		
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3.7 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	485	ppm	439	ppm	6	
#2	502	ppm	452	ppm	6	
#3	500	ppm	450	ppm	6	
		#DIV/0!				
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #			Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0.12	ppm	485	ppm	11	
#2	0.08	- ppm	202	ppm	2	
#3	0.06	ppm	500	ppm	0	
Calculate Precision	[STD-B1] + [STD-B2] + [S	STD-B3] X <u>1</u> X 500	<u>100</u> 1	0186	#DIV/0!
						n 10%

Performed By: Deniel Ishs	_ Date/Time	9-9-24-1000

	CALIBRATION	PROCEDURE	AND BACKGROUND	REPORT - INS	STANTANEOUS
--	-------------	------------------	----------------	--------------	-------------

LANDFILL NAME: A CHANNEL	IN	STRUMEN	T MAKE: +	lonn
MODEL: LUA 1000 EQUIPMENT	+ 16		SERIAL #:	160746776
MONITORING DATE: 9-9-29		_TIME:	1050	
Calibration Procedure:				

- Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

1	Upwind Backg	round	Downwind Backgr	round	Background Valu	e:
	Reading: (Highest in 30 se	econds)	Reading: (Highest in 30 secon	ıds)	(Upwind + Down 2	wind)
	2.6	ppm	3.4	ppm	3,0	ppm

Background Value = 3,00 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	g Using	90% of the Stabil Reading	ized	Time to Reach 9 Stabilized Read switching from Calibration Gas	ling after Zero Air to
#1	450	ppm	440	ppm	в	
#2	500	ppm	450	ppm	6	
#3	500	ppm	450	ppm	6	
Calculate Response Time (1+2+3)					4	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD - (B)]
#1	0.15	ppm	450	ppm	10	
#2	0.11	ppm	100	ppm	0	
#3	0.07	ppm	500	ppm	v	
Calculate Precision	[STD-B1] + [STD-B2] + [STD-B3] X 1 X 100 3 500 1			0.66	#DIV/0!	
			:		Must be less tha	an 10%

Performed By: 1415	ANEUGLO	Date/Time: 9-9-24 1050

LANDFILL MAME ACT	INSTRUME	NT MAKE _ +/	Herno	
MODEL LUAIDUD	EQUIPMENT#	10	3ERIAL #	1036346773
MONITORING DATE	9-16-24	TIME	1050	

Calibration Procedure:

- 1. Allow Instrument to zero itself while Introducing air.
- 2 Introduce calibration gas into the probe. Stabilized reading = 500 ppm.

 3 Adjust mater settings to read 500 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 sec	_	Background Val	
2.6	ppm	3.4	ppm	3-0	ppm

Background Value = 3. p ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	504	ppm	454	ppm	5	
#2	501	ppm	451	ppm	5	
#3	500	ppm	450	ppm	5	
	Calculate Response 1	ime (<u>1</u> -	<u>+2+3</u>)		Must be less than	#DIV/0! 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zer	o Air (A)	Meter Reading Calibration Gas		Calculate Precision [S	STD - (B)]
#1	0.10	ppm	504	ppm	4	
#2	0-28	ppm	531	ppm	1	
#3	0.06	ppm	513	ppm	D	
Calculate Precision	[STD-B1] + [ST	D-B2] + [5	STD-B3] X <u>1</u> X 500	100	0.33	#DIV/0!
					Must be less than	10%

Performed By	Leishunoo	Date/Time 9-16-24 =/050
7.		

LANDFILL MANIE ALF	enont	INSTRUA	ENTMAKE _ +	Herno
MODEL LUAIUUD	EQUIPMENT #	11	SERMU#	1036346774
WONTENS DATE	9-16-24	TiME	1050	

Calibration Procedure:

- Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe. Stabilized reading = 500 ppm.

 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 sec	_	Background Valo	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3. p ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	J Using	90% of the Stabili Reading	ized	Time to Reach 9 Stabilized Readi switching from a Calibration Gas	ing after Zero Air to
#1	490	ppm	440	ppm	>	
#2	502	ppm	412	ppm	>	
#3	500	ppm	450	ppm	>	
	Calculate Response T	ime (<u>1</u> -	+2+ <u>3</u>)		Must be less than	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zer	o Air (A)	Meter Reading 1 Calibration Gas		Calculate Precision [STD - (B)]
#1	0.15	ppm	490	ppm	10	-
#2	0.07	ppm	512	ppm	2	
#3	0.05	ppm	500	ppm	D	
Calculate Precision	[STD-B1] + [ST	D-B2] + [9 3	STD-B31 X <u>1</u> X 500	100 1	0-80	#DIV/0!
					Must be less than	10%

Ferformed By: TENNY RUNUR	_≥ Date/Time	9-16-24-	1050
---------------------------	------------------------	----------	------

LANDELL MAME ACK	emint_	INSTRUME	IT MAKE +	42rno
MODE LUAIDOD	EQUIPMENTE			103624674/
MIDNITORING DATE	9-16-24	Y: N. 1=	10	10

Calibration Procedure:

- Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe. Stabilized reading = 500 pom
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgi	round	Downwind Back	kground	Background Val	ue:
Reading: (Highest in 30 se	conds)	Reading: (Highest in 30 sec	conds)	(Upwind + Dow 2	nwind)
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3. p ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabiliz	ed	Time to Reach 9 Stabilized Readi switching from a Calibration Gas	ng after
#1	506	ppm	456	ppm	6	
#2	498	ppm	448	ppm	6	
#3	د د س	ppm	450	ppm	6	
	Calculate Response T	ime (<u>1</u> -	<u>+2+3</u>)		6	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Zer	o Air (A)	Meter Reading f Calibration Gas		Calculate Precision [STD - (B)]
#1	0.17	ppm	506	ppm	6	Hall-William .
#2	0.1/	ppm	458	ppm	2	
#3	0.29	ppm	500	ppm	0	
Calculate Precision	[STD-B1] + [ST	D-B2] + [5 3	STD-B3] X <u>1</u> X 500	<u>100</u> 1	0.53	#DIV/0!
					Must be less that	1 10%

Performed	By	A	~ 11	זע מ	Car	wel	ک سے'

______Date/Time __9-16-24- 1050

LANDFILL NAME ALL	mint	MSTRUMENT	MAKE _	+ HERNO
MODEL LUAIDOD	EDU PMENT =	13	3ER,4	= //02746775
MONITORING DATE	9-16-24	TiME		1010

Calibration Procedural

- 1. Allow instrument to zero itself while introducing air.
- 2 Introduce calibration gas into the probe. Stabilized reading = _______ppm.
 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

(Highest in 30 se	econds)	Reading: (Highest in	30 secor	nds)	(Upwind + Dow 2	<u>(nwind)</u>
2.6	ppm	3.9	4	ppm	3.0	ppm

Background Value = _____ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #			90% of the Stabili Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	504	ppm	454	ppm	5	
#2	500	ppm	450	ppm	5	
#3	500	ppm	450	ppm	5	
	Calculate Response	Time (<u>1</u> - 3	<u>+2+3</u>)		5	#DIV/0!
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #			Meter Reading Calibration Gas		Calculate Precision [STD – (B)	
#1	0.09	ppm	504	ppm	4	
#2	0.0>	ppm	000	ppm	0	
#3	0.04	ppm	٥٥٠	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [\$	STD-B31 X <u>1</u> X 500	<u>100</u>	0.26	#DIV/0!
and the same of th					Must be less tha	ın 10%

Performed By	Dan 1	ang	Date/Time	9-16-24-1050

ANDFILL MANE ACTS	n,~ L	BNSTRUMEN	IT MAKE + HORNO
MODEL LUATOUD	EQUIPMENT # _	16	SERIAL = //02746776
MONITORING DATE			

Calibration Procedure:

- 1. Allow Instrument to zero itself while introducing air.
- 2 Introduce calibration gas into the probe. Stabilized reading = 500 ppm.
- 3. Adjust mater settings to read 500 ppm.

Background Determination Procedure

Upwind Backg	round	Downwind Background		Background Val	ue:
Reading:		Reading:			
(Highest in 30 se	(Highest in 30 seconds)		(Highest in 30 seconds)		<u>(nwind)</u>
2.6	ppm	3.4 ppm		3.0	ppm

Background Value = _____ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabilized Reading		Time to Reach Stabilized Read switching from Calibration Gas	ling after Zero Air to	
#1	482	ppm	442	ppm	b	
#2	500	ppm	450	ppm	6	
#3	500	ppm	450	ppm	6	
	6	#DIV/0!				
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #			ading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B	
#1	0.12	ppm	492	ppm	8	
#2	0-07	ppm	103	ppm	0	
#3	0.04	ppm	500	ppm	8	
Calculate Precision	[STD-B1] + [ST	D-B2] + [\$ 3	STD-B3] X <u>1</u> X 500	<u>100</u>	0.53	#DIV/0!
					Must be less tha	n 10%

Performed 8)	6415	ANGUALD	Date/Time	9-16-2	4-1050	

CALIBRATION	DOCCEDIDE	ANDRA	CKCDOTIND	DEDODT	MICTANITA	MEDILE
CALIDITATION	PROCEDURE	AND DA	TONGROUND	KEPUKI -	- INSTANTA	いとしいろ

LANDFILL NAME: ALJANUAL	INSTRUMENT MAKE: + HEN No	
MODEL 4VALUVS EQUIPMENT #:	/ 2	2
MONITORING DATE: 9-17-2 4	TIME:OSSO	

- 1. Allow instrument to zero itself while introducing air.
- Introduce calibration gas into the probe. Stabilized reading = ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Va	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = _____ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabili Reading	90% of the Stabilized Reading		90% of ling after Zero Air to
#1	504	ppm	454	ppm	4	
#2	500	ppm	400	ppm	4	
#3	500	ppm	410	ppm	4	
	4	#DIV/0!				
					Must be less that	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]
#1	043	ppm	504	ppm	4	
#2	0.09	ppm	500	ppm	o	
#3	0.06	ppm	500	ppm	V	
Calculate Precision	[STD-B1] + [S	3 + [S	TD-B3] X <u>1</u> X 500	<u>100</u> 1	0.26	#DIV/0!
					Must be less than	10%

Performed By: _	Leishward	Date/Time: 9~/>~24 - 0 550

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEO	TANEOL	- INSTANT	REPORT -	ID BACKGROUND	AND	PROCEDURE	CALIBRATION
---	--------	-----------	----------	---------------	-----	-----------	-------------

LANDFILL NAME: A	Channel	INSTRUMENT MAKE Horn.		
MODEL: FVAID	EQUIPMENT #:	12	SERIAL #: 103624674/	
MONITORING DATE:	9-17-24	TIME:	0550	

1.	Allow instrument to zero itself while introducing air.	- a a	
2.	Introduce calibration has into the probe. Stabilized reading =	500	,

3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 sec		Downwind Backs Reading: (Highest in 30 second		Background Val	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	y Using	90% of the Stabi Reading	lized	Time to Reach Stabilized Rea switching from Calibration Ga	ding after Zero Air to
#1	495	ppm	445	ppm	5	
#2	500	ppm	450	ppm	~	
#3	500	ppm	450	ppm	~	
	5	#DIV/0!				
					Must be less tha	in 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (B)]
#1	0.13	ppm	485	ppm	5	
#2	0-08	ppm	500	ppm	O	
#3	0.08	ppm	504	ppm	8	
Calculate Precision	STD-B1] + [S	TD-B2] + [\$ 3	STD-B3] X <u>1</u> X 500	<u>100</u> 1	6.33	#DIV/0!
					Must be less than	10%

Performed By: Anthony	C4 ra/r Date	A/Time: 9-17-24-0556

CALIBRATION PROCEDURE AND BACKGROUND	REPORT - INSTANT	TANEOUS
--------------------------------------	------------------	----------------

LANDFILL NAME: ALta	nint	INSTRUMEN	TMAKE: + HORNO
MODEL: LUAIUU	EQUIPMENT #:	13	SERIAL #: //07746775
MONITORING DATE: ?	-17-24	TIME	0550

- 1. Allow instrument to zero itself while introducing air.
- Introduce calibration gas into the probe. Stabilized reading = 500 ppm.
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Value (Upwind + Dow 2	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3. ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	487	ppm	447	ppm	6	
#2	504	ppm	454	ppm	6	
#3	500	ppm	450	ppm	6	
Calculate Response Time (1+2+3) 3					6	#DIV/0!
	Must be less than	30 seconds				

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]	
#1	0-16	ppm	457	ppm	3	
#2	0.08	ppm	504	ppm	y	
#3	0-04	ppm	510	ppm	D	
Calculate Precision [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100 3 500 1				0.46	#DIV/0!	
					Must be less than 10%	

Performed By: _	DEN/ERS	Date/Time:	9-17-24-0150
-----------------	---------	------------	--------------

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS	CALIBRATION PRO	CEDURE AND BAC	KGROUND REPOR	F - INSTANTANEOUS
---	-----------------	----------------	---------------	-------------------

LANDSILL MANE ALten		INS FRUME		
MODEL LUAIDOD	EQUIPMENT =	16	SER A. #	1/02746776
MONITORING DATE			0.	

t. Allow instrument to zero itself while introducing air.

2 Introduce calibration gas into the probe Stabilized reading = 500 pom

3. Adjust meter settings to read 500 ppm

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Val	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3. p ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabili Reading	zed	Time to Reach 90% of Stabilized Reading a switching from Zero Calibration Gas		
#1	490	ppm	440	ppm	>		
#2	SUD	ppm	450	ppm	>		
#3	500	ppm	455	ppm	フ		
	フ	#DIV/0!					
					Must be less than	30 seconds	

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Gas		Calculate Precision	[STD - (B)]
#1	0.10	ppm	450	ppm	10	
#2	0106	ppm	510	ppm	o	
#3	0.05	ppm	500	ppm	D	
Calculate Precision	[STD-B1] + [ST	TD-B2] + [5 3	STD-B3] X <u>1</u> X 500	100	0.66	#DIV/0!
					Must be less tha	n 10%

Performed By	6405	AREUALS	Bate/Time	9-17-	24-	0553

CALIBRATION PROCEDURE	AND DARKODO IND		
A DESCRIPTION OF THE PROPERTY	AND DAUGESUND	KEPUKI - IN	ESRATED

LANDFILL	NAME A	Chanunk	MSTRUMEN	TMAKE #	Honns
MODEL	tuA love	EQUIPMENT#			1076286773
MONITOR	RING DATE	9-10-24	TIME	0550	

- Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe Stabilized reading = 2 s ppm
 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgro Reading: (Highest in 30 seco		Downwind Back Reading: (Highest in 30 seco		Background Va	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 7.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	90% of the Stabilized Reading		Time to Reach Stabilized Rea switching from Calibration Ga	iding after n Zero Air to	
#1	24	ppm	21.6	ppm	5	
#2	25	ppm	22.5	ppm	5	
#3	75	ppm	27.5	ppm	~	
	Calculate Response	Time (<u>1</u> -	+2+3)		, ,	#DIV/0!
					Must be less th	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	101 Lot 2010 741 (74)		Meter Readin Calibration G		Calculate Precision [STD – (B	
#1	OUR	ppm	24	ppm	/	
#2	0109	ppm	25	ppm	0	
#3	0-07	ppm	7.	ppm	0	
Calculate Precision	[STD-B1] + [3 + [STD-B2]	STD-B3] X <u>1</u> 25	X <u>100</u>	13	#DIV/0!
					Must be less th	nan 10%

Performed By	Loighunno	Date/Time	9-10-24-05	50
	17.5 miles			

LANDFIEL NAME Altanual			(NSTRUME)	ENTMAKE + Hunno	
MODEL _	LUALONO	EQUIPMENT #			1036346707
MONITOR	ING DATE q - q	10-24	TIME	655	o

Calibration Procedure:

- Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe Stabilized reading = 25 ppm
 Adjust meter settings to read 25 ppm.
- , J

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Backg Reading: (Highest in 30 seco		Background Valu (Upwind + Dow 2	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3. p ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	73	ppm	20-7	ppm	6	
#2	25	ppm	72.0	ppm	6	
#3	7.5	ppm	27.5	ppm	6	
	Calculate Response	Time (1-3	+2+3)		. 6	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD – (B)]
#1	0-1/	ppm	23	ppm	7	
#2	0.07	ppm	25	ppm	0	
#3	0.04	ppm	25	ppm	O	
Calculate Precision	[STD-B1] + [S	3 + [S	STD-B3] X <u>1</u>) 25	100	2-6	#DIV/0!
					Must be less tha	an 10%

⁵ erformed	By	TENNY	144102
		U	

Date/Time 5-10-74- 0550

LANDFILL NAME	Alterort	INSTRUME!	T MAKE	+ Horno
MODEL TUA	EQUIPMENT			1036246741
MONITORING DATE	9-10-24	TIME		0550

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2			
2.6	ppm	3.4	ppm	7.0	ppm

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	ppm	y	
#2	24	ppm	21-6	ppm	4	
#3	25	ppm	27.	ppm	4	
	Calculate Response	Time (1-	+2+3)		Must be less that	#DIV/0!

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Readin Calibration G	_	Calculate Precision	on [STD – (B)]
#1	0.15	ppm	24	ppm	1	
#2	0.07	ppm	74	ppm	/	
#3	0.04	ppm	75	ppm	0	
Calculate Precision [STD-B1] + [STD-B2] + 3		TD-B2] + [5 3	STD-B3] X <u>1</u> 25	X <u>100</u> 1	7.6	#DIV/0!
					Must be less	than 10%

Performed By	Anthon	Caroles

Date/Time 9-/0-24- 0550

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRAT	=:

LANDFILL NAME ACTIONNA	MSTRUMENT MAKE	Herrs
MODEL	13 SERIAL #	1102746775
MONITORING DATE 9-10-24	TIME	0550

- Allow instrument to zero itself while introducing air
 Introduce calibration gas into the probe Stabilized reading = 25 ppm
 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backg Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Val	1
2,6	ppm	3.4	ppm	7.0	ppm

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	23	ppm	20.7	ppm	6	
#2	24	ppm	71.6	ppm	6	
#3	70	ppm	770	ppm	6	
	Calculate Response	Time (<u>1</u> -	+2+3)		, 6	#DIV/01
					Must be less tha	n 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Ga		Calculate Precisio	n [STD – (B)]
#1	0.18	ppm	7.3	ppm	5	
#2	0.14	ppm	74	ppm	1	
#3	0.09	ppm	フノ	ppm	<i>b</i>	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5 3	STD-B3] X <u>1</u> X 25	100	4.0	#DIV/0!
					Must be less ti	nan 10%

Performed By Denie / Inf	9-10-24-050
--------------------------	-------------

CALIBRATION	PROCEDURE	AND BACKS	ROUND	REPORT -	INTEGRATED
-------------	-----------	-----------	-------	----------	------------

LANDFILL	NAME A61	snort	MSTRUMENT	MAKE	+ HORES
MODEL =	LUAIUM	EQUIPMENT#	16	SERIAL	= 1/02746776
MONITOR	ING DATE _ 9-10	-29	TIME		0550

- 1 Allow instrument to zero itself while introducing air
- Introduce calibration gas into the probe Stabilized reading = 25 ppm
 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgi Reading: (Highest in 30 se		Downwind Bac Reading: (Highest in 30 se		Background Val	
2.6	ppm	3.4	ppm	7.0	ppm

Background Value = 3.9 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	2116	ppm	5	
#2	75	ppm	225	ppm	~	
#3	25	ppm	72.5	ppm	5	
	Calculate Response	e Time (<u>1</u> -	+2+3)		~	#DIV/0!
					Must be less that	an 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading Calibration Ga		Calculate Precision	[STD - (B)]
#1	0.15	ppm	24	ppm		
#2	0.08	ppm	25	ppm	D	
#3	0.07	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S	TD-B2] + [9	STD-B31 X 1 X	100	1.3	#DIV/0!
					Must be less tha	ın 10%

Derformed.	Ву	6415	ARBUELO

Date/Time 5-10-24 -0550

LANDFILL M	AME A	Chanent	(NSTROMEN	MAKE +HERMS
MODEL	traine	EQUIPMENT #	10	SERIAL # 1038346773
MONITORIN	G DATE	7-11-24	TIME	0550

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe Stabilized reading = 2.5 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Reading: (Highest in 30 seconds)	Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
Z.6 ppm	5.9 ppm	3. D ppm

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabili Reading	zed	Time to Reach Stabilized Read switching from Calibration Gas	ing after Zero Air to
#1	24	ppm	21.6	ppm	4	
#2	75	ppm	22.0	ppm	4	
#3	25	ppm	22.5	ppm	4	
	Calculate Response Ti	me (<u>1</u> -	+2+3)		. 4	#DIV/0!
					Must be less than	1 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zer	for Zero Air (A) Meter Reading Calibration Gas			Calculate Precision	[STD - (B)]
#1	6,12	ppm	24	ppm	1	
#2	0.07	ppm	25	ppm	D	
#3	0.04	ppm	75	ppm	0	
Calculate Precision	[STD-B1] + [ST	D-B2] + [8	STD-B3] X <u>1</u> X	1 100 1	1.3	#DIV/0!
					Must be less that	an 10%

Performed By	ShUADE	Date/Time	9-11-24	-055	D
					_

LANDELL MAME Altanint	INSTRUMENT MAKE + HERMS
MODEL LUAIDO EQUIPMENTE	1/ SERIAL # 1036246772
MONITORING DATE 9-11-24	TIME 0550

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2 Introduce calibration gas into the probe Stabilized reading = 25 ppm

3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

2.6	ppm	3.4	ppm	2 7. D	ppm
Reading: (Highest in 30 seconds)		Reading: (Highest in 30 seconds)		(Upwind + Downwind)	
Upwind Backgr	ound	Downwind Bac	kground	Background Va	lue:

Background Value = 3. ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas Reading		ized	Time to Reach Stabilized Read switching from Calibration Gas	ding after I Zero Air to	
#1	23	ppm	70.7	ppm	6	
#2	25	ppm	7.2.5	ppm	6	
#3	75	ppm	22.5	ppm	1	-
	Calculate Response	Time (<u>1</u>	+2+3)		6	#D(V/0!
					Must be less tha	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading for (Calibration Gas (B)		Calculate Precision	[STD - (B)]
#1	0.15	ppm	23	ppm	2	
#2	0.21	ppm	2.5	ppm	0	
#3	0100	ppm	20	ppm	8	
Calculate Precision	[STD-B1] + [S	TD-B2] + [STD-B3] X 1 25	X <u>100</u>	7.6	#D1V/0
				·	Must be less th	ar 10%

ет	me	₽,		thry	rbro	2
			V			_

LANDFILL MANE ALTRAINT	INSTRUM	ent Make +4	Ven mo
MODEL FVAIOU EQUIPMENT =	12	SERIALE	1036246741
MONITORING DATE 9-11-24	7 ME	0550	

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe Stabilized reading = 25 pure.
- 3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

2.6	ppm	3.4	ppm	3. D	ppm	
Reading: (Highest in 30 seco	ading: ghest in 30 seconds)		Reading: (Highest in 30 seconds)		wnwind)	
Upwind Backgrou	ınd	Downwind Back	ground	Background Value:		

Background Value = 3. b ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas Reading		ized	Time to Reach Stabilized Read switching from Calibration Gas	ding after Zero Air to	
#1	24	ppm	24.6	ppm	5	
#2	25	ppm	ZZV	ppm	5	
#3	7.5	ppm	72.5	ppm		
	Calculate Response	Time (1-	+2+3)		-	#D!V/0!
					Must be less tha	in 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Z	r Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precisio	n [STD - (B)]	
#1	0.18	ppm	24	ppm	/	
#2	0.11	ppm	21	ppm	0	***************************************
#3	0.0>	ppm	7 0	ppm	0	
Calculate Precision	[STD-B1] + [S	3 + [S	STD-B3] X <u>1</u> > 25	100	1.3	#DIV//0
					Must be less	tran 10%

Ferformed By	Anthry	caralou
_		

1 Objecting 9-11-24-0550

ANDFILL	MANIE AUT	enent	MSTRUI	MENTIMAKE: HERMO
JEGGN	441000	EQUIPMENT =	13	SERIAL # //02748775
15/4111 <u>(</u> 1=(NUDATE 9-	11-24	TIME	0550

Calibration Procedure:

1 Allow instrument to zero itself while introducing air

2. Introduce calibration gas into the probe. Stabilized reading = 25 ppm

3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)		Downwind Bac Reading: (Highest in 30 se		Background Va	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3. b ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	ng Using	90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	maa	5	
#2	25	mga	22.5	ppm	5	
#3	70	ppm	27.5	ppm	5	
	Calculate Response	Time (<u>1</u>	+2+3)		- 5	#DIV/0!
					Must be less tha	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	Meter Reading Calibration Ga		Calculate Precision [STD - (B)]		
#1	0.13	ppm	74	ppm		
#2	0-0)	ppm	75	ppm	0	
#3	0.15	ppm	70	ppm	0	
Calculate Precision	[STD-B1] + [S	3 + [S	STD-B3] X 1 X	100	1.3	#DIV/I)
					Must be less t	han 10%

Partorned By	Dericl	1akg

LANDFILL	NAME AUT	eaint	INSTRUMENT	MARE HERMS	
MODEL	tua1000	EQUIPMENT=_		SERVAL = 1/02746776	5
MONTOR	NUMBER 9-	11-24	TME	0550	

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe Stabilized reading = 2 5 ppm
- 3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Reading: (Highest in 30 se	conds)	Downwind Bac Reading: (Highest in 30 se		Background Va (Upwind + Dov 2	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3. b ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	23	ppm	20.7	ppm	7	
#2	24	ppm	21-6	ppm	>	
#3	7.5	ppm	22.5	ppm	7	
	Calculate Response	Time (<u>1</u> -	+2+3)		>	#DIV/0!
					Must be less tha	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #			Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (
#1	0.14	ppm	23	ppm	2	
#2	0.1/	ppm	24	ppm	1	
#3	0.09	ppm	75	ppm	٥	
Calculate Precision	[STD-B1] + [S	TD-B2] + [\$	STD-B3] X 1 X 25	1 <u>100</u> 1	4.0	#DIV/0
					Must be less to	han 100m

arform	red	By	6	415	AVULIN	L

CALIBRA	MOIT	PROCEDU	RE AND	BACKGROUND	REPORT	- INTEGRAT	80

LANDERLI	LNAME ALL	enert	MISTRUMENT	MAKE /	Henno
MODEL	tu A 1000	EQUIPMENT #	1)	SERIAL #	1036346772
MONITOR	RING DATE 9	-17-24	TIME	0550	

- 1 Allow instrument to zero itself while introducing air
- 2 Introduce calibration gas into the probe. Stabilized reading = 25 ppm
- 3 Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds) Downwind Background Reading: (Highest in 30 seconds)				Background Value (Upwind + Dow 2	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = _______ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24	ppm	21.6	ppm	.5	
#2	25	ppm	27.5	ppm	~	
#3	25	ppm	22.5	ppm	5	
	Calculate Response	Time (<u>1</u> -	+2+3)		~ ~	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zer	o Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B		
#1	0.16	ppm	24	ppm	1		
#2	0110	ppm	25	ppm	9		
#3	0.08	ppm	25	ppm	Ø		
Calculate Precision	[STD-B1] + [ST	D-B2] + [S	STD-B3] X <u>1</u> X	100 1	1.3	#DIV/0!	
					Must be less th	nan 10%	

Performed By	9-17-24-0550	
--------------	--------------	--

CALIBRATION	PROCEDURE	AND BA	CKGROUND	REPORT	INTEGRATE	27)

LANDFILL NAME A Ctanort			INSTRUMENT MAKE HUNN		
MODEL _	fu A 1000	EQUIPMENT#	11		1036346772
MONITORI	NG DATE $9-$	18-24	TIME	0550	

- 1 Allow instrument to zero itself while introducing air
- Introduce calibration gas into the probe Stabilized reading = _______ppm
- Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Backg Reading: (Highest in 30 seco		Background Val	j
2-6	ppm	3.4	ppm	3.0	ppm

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas	ng Using	90% of the Stabil Reading	ized	Time to Reach Stabilized Read switching from Calibration Gas	ding after Zero Air to
#1	24	ppm	21.6	ppm	6	
#2	24	ppm	21.8	ppm	6	
#3	75	ppm	22.5	ppm	4	
	Calculate Response	Time (<u>1</u> -	+2+3)		6	#DIV/0!
					Must be less tha	in 30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Ze	ero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]		
#1	0-11	ppm	24	ppm	1	
#2	0.07	ppm	24	ppm	1	
#3	0.05	ppm	75	ppm	8	
Calculate Precision	[STD-B1] + [S	TD-B2] + [9	STD-B3] X <u>1</u> >	100	2.6	#DIV/0!
					Must be less th	an 10%

² erformed	Ву	Jenny	MURUR
-----------------------	----	-------	-------

Date/Time 9-18-24 - 0550

LANDFILL NAME	Ltenent	INSTRUMENT MAKE + HM N			
MODEL LUAIDA	/▽ EQUIPMENT #	١	SERIAL # 10362467	4/	
MONITORING DATE	9-18-24	TIME	0550		

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe Stabilized reading = 25 ppm
- Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgi Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Val	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	g Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	74	ppm	21.6	ppm	5		
#2	25	ppm	22.5	ppm	~		
#3	72	ppm	77.5	ppm	س		
	Calculate Response	Time (<u>1-</u> 3	+2+3)		, -	#DIV/0!	
					Must be less tha	n 30 seconds	

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading Calibration Ga		Calculate Precision	n [STD (B)]
#1	0.10	ppm	74	ppm	1	
#2	0.14	ppm	75	ppm	۵	-
#3	0107	ppm	25	ppm	0	
Calculate Precision	[STD-B1] + [S	3 + [S	STD-B3] X 1 X	100	ال ، ر	#DIV/0!
					Must be less th	nan 10%

erformed By	Anthony	cenalos	Date/Time	9-18-24	0850	

CALIBRATION PROCEDURE AND BACKGROUND RE	EPORT -	- INTEGRATED
---	---------	--------------

CANDFILL NAME	Abaront	MSTRUME	ST MAKE $\not\vdash$	Hon
MODEL +VAID	EQUIPMENT #	/3	SERIAL#	1102746725
MONITORING DATE _	9-18-24	TIME		

- 1 Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe Stabilized reading = 25 ppm
- Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgi Reading: (Highest in 30 se		Downwind Back Reading: (Highest in 30 sec		Background Val	
2.6	ppm	3-4	ppm	3.0	ppm

Background Value = 3,0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readi Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	73	ppm	20.7	ppm	フ	-	
#2	24	ppm	71.6	ppm	>		
#3	2.5	ppm	72~	ppm	7		
	Calculate Response	Time (<u>1</u> -	+2+3)		7	#DIV/0!	
					Must be less tha	an 30 seconds	

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Ga		Calculate Precision	n [STD (B)]
#1	0.17	ppm	7.3	ppm	7	
#2	0.13	ppm	24	ppm	,	
#3	0.09	ppm	75	ppm	8	
Calculate Precision	[STD-B1] + [S	TD-B2] + [5	STD-B3] X 1) 25	K <u>100</u>	4,0	#DIV/0!
					Must be less th	nan 10%

Performed By	Date/Time 9-18-24-0550
--------------	------------------------

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED
--

LANDFIELDAME Abount		INSTRUMENT MAKE + Honw		
MODEL FUNIOUS	EQUIPMENT #		SERIAL# //0274677-6	
MONITORING DATE 9-	18-24	TIME	0550	

1 Allow instrument to zero itself while introducing air.

Introduce calibration gas into the probe Stabilized reading = ________ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Value (Upwind + Dow 2	
2.6	ppm	3.4	ppm	3.0	ppm

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using 90% of the Stabilized Reading		zed	Time to Reach Stabilized Read switching from Calibration Gas	ding after Zero Air to	
#1	74	ppm	21.6	ppm	6	
#2	25	ppm	72.5	ppm	6	
#3	75	ppm	22.5	ppm	б	
	Calculate Response	Time (<u>1</u> -	+2+3)		, 6	#DIV/0!
					Must be less tha	an 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ero Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision	n [STD - (B)]
#1	0.11	ppm	74	ppm	,	
#2	0.08	ppm	ひ	ppm	0	
#3	0.04	ppm	20	ppm	ව	
Calculate Precision	n [STD-B1] + [S	TD-B2] + [\$	STD-B3] X <u>1</u> X 25	1 <u>100</u> 1	حي. ٦	#DIV/0!
					Must be less th	nan 10%

Ferformed By	6415	AREVELO	Date/Time	9-18-24	0550
			Date/ Hite	6 0 -/ =	

CALIBRATION PRECISION TEST RECORD

Date: 8-16-24		
Expiration Date (3 months): [(-\$5-24		
Time: (0:50 AM PM		
Instrument Make: Photo Vac Model: Min FIL	S/N: CZ	00312
Measurement #1:		
Meter Reading for Zero Air:	0	ppm (a)
Meter Reading for Calibration Gas:	500	ppm (b)
Measurement #2: Meter Reading for Zero Air:	0	ppm (c)
Meter Reading for Calibration Gas:		
Measurement #3:		
Meter Reading for Zero Air:	0	ppm (e)
Meter Reading for Calibration Gas:		
ewarderst gege gate and an experience		
Calculate Precision:		
$\frac{\{ (500) - (b) + (500) - (d) + (500) - (f) \}}{3} \times \frac{1}{500}$	x 100	
% (must be < than 10)%)	
Performed By: Gary Carpater		

RESPONSE TIME TEST RECORD

Date: 8-15-24 Expiration Date (3 months): 11-15-24 Time: 10:47 AM _____ PM Instrument Make: PhotoVac Model: Viero FID S/N: 67 PD 312 Measurement #1: Stabilized Reading Using Calibration Gas: ______ppm 90% of the Stabilized Reading: 450 Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: Z, D seconds (a) Measurement #2: Stabilized Reading Using Calibration Gas: 500 ppm 90% of the Stabilized Reading: 450 Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: 2.0 seconds (b) Measurement #3: Stabilized Reading Using Calibration Gas: _____ 50 / ___ ppm 90% of the Stabilized Reading: 451 ppm Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: 2. seconds (c) Calculate Response Time:

2 seconds (must be less than 30 seconds)

Performed By: Carpeler

RESPONSE TIME TEST RECORD

Date: 10.10.24 Expiration Date (3 months): 1-10-25 Time: 10512 AM _____ PM Instrument Make: Photo Vac Model: Miero FW S/N: CZPB31Z Measurement #1: Stabilized Reading Using Calibration Gas: 500 ppm 90% of the Stabilized Reading: 450 ppm Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: 2.5 seconds (a) Measurement #2: Stabilized Reading Using Calibration Gas: _____ppm 90% of the Stabilized Reading: 451 ppm Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: 20 seconds (b) Measurement #3: Stabilized Reading Using Calibration Gas: _____ ppm 90% of the Stabilized Reading: 45/ Time to Reach 90% of Stabilized Reading after 2 seconds (c) switching from Zero Air to Calibration Gas: ___ Calculate Response Time: 2 seconds (must be less than 30 seconds)

Performed By: Carlapar

CALIBRATION PRECISION TEST RECORD

Date: 10-10-24 Expiration Date (3 months): 1-10. 25 Time: 10:10 AM _____ PM Instrument Make: Proto Vouc Model: Miro FID S/N: CZ PO 317 Measurement #1: Meter Reading for Zero Air: _____ ppm (a) Meter Reading for Calibration Gas: ________ ppm (b) Measurement #2: Meter Reading for Zero Air: _____ ppm (c) Meter Reading for Calibration Gas: ______ppm (d) Measurement #3: Meter Reading for Zero Air: _____ ppm (e) Meter Reading for Calibration Gas: 500 ppm (f) Calculate Precision: $\frac{\{|(500) - (b)| + |(500) - (d)| + |(500) - (f)|\}}{3} \times \frac{1}{500} \times 100$

_____ % (must be < than 10%)

Performed By: Gry Capelo

Landfill Name: Altamont Landfill Date: 10/4.24
Time: 855 AM PM
Instrument Make: Photo Vac Model: Mars Fit S/N: CZP0312
Calibration Procedure
1. Allow instrument to internally zero itself while introducing zero air.
2. Introduce the calibration gas into the probe.
Stable Reading =ppm
3. Adjust meter to read 500 ppm.
Background Determination Procedure
1. Upwind Reading (highest in 30 seconds): ppm (a)
2. Downwind Reading (highest in 30 seconds): ppm (b)
Calculate Background Value:
$\frac{(a) + (b)}{2} \text{Background} = \underbrace{5} \text{ppm}$
Performed By: Carpeter

Landfill Name: Altamont Landfill Date: 9-19-24
Time: AM <u>[:15</u> PM
Instrument Make: Photo Vac Model: Min F11 S/N: CZP0312
Calibration Procedure
1. Allow instrument to internally zero itself while introducing zero air.
2. Introduce the calibration gas into the probe.
Stable Reading = <u>Sol</u> ppm
3. Adjust meter to read 500 ppm.
Background Determination Procedure
1. Upwind Reading (highest in 30 seconds): ppm (a)
2. Downwind Reading (highest in 30 seconds): ppm (b)
Calculate Background Value:
$\frac{(a) + (b)}{2} \qquad \text{Background} = \underline{\qquad} \text{ppm}$

Performed By: Gary Carpater

Landfill Name: Altamont Landfill Date: \$ 15-24
Time: [5:53 AM PM
Instrument Make: Phobles Model: Merot-OD S/N: CZPD 312
Calibration Procedure
 Allow instrument to internally zero itself while introducing zero air.
2. Introduce the calibration gas into the probe.
Stable Reading =ppm
3. Adjust meter to read 500 ppm.
Background Determination Procedure
1. Upwind Reading (highest in 30 seconds): ppm (a)
2. Downwind Reading (highest in 30 seconds): ppm (b)
Calculate Background Value:
(a) + (b) Background =
2
Performed By: Gary Corporter

Landfill Name: Altamont Landfill Date: 9-3-24
Time: 10:30 AMPM
Instrument Make: ProbaVac Model: Mico FID S/N: CZPD 312
Calibration Procedure
1. Allow instrument to internally zero itself while introducing zero air.
2. Introduce the calibration gas into the probe.
Stable Reading = 500 ppm
3. Adjust meter to read 500 ppm.
Background Determination Procedure
1. Upwind Reading (highest in 30 seconds): ppm (a)
2. Downwind Reading (highest in 30 seconds): ppm (b)
Calculate Background Value:
$\frac{(a) + (b)}{2} \qquad \text{Background} = \underbrace{1.5} \text{ppm}$

Performed By: 6-m Carpetes

Site:	¥			
Purpose:				
Operator:	4 M			
Date: 9-7-29	Time:	0900		
Model # TM 1000				
Serial # #10 (0363	46773			
INSTRUMENT INTEGRITY	CHECKLIST	INS	STRUMENT CALIBRAT	TION
Battery test Reading following ignition Leak test Clean system check (check valve chatter) H ₂ supply pressure gauge (acceptable range 9.5 - 12) Date of last factory calibration Factory calibration record w/instrument within 3 months	Pass / Fail 2 6 ppm Pass / Fail / NA Time required 1 1. 2. 3. Average Equal to or less	tion Gas, ppm 40 to attain 90% of Cal Gas 6	Accuracy (OO), OO sppm	
Comments:				

Site:				
Purpose:				
ruipose,	1. 01	14		
Operator:	11 / 11	4		
Date:	1	Time:	0915	
Model #	0			
Serial # #11 10363	16774	*		
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBRA	TION
Battery test	Pass / Fail	Calibration Gas (ppm)	ALIBRATION CHEC	%
Reading following ignition	2 ppm	=	(ppm)	Accuracy
_eak test	Fass / Fail / NA	500	500	(00)
Cloop ourieur al aut			RESPONSE TIME	
Clean system check check valve chatter)	Pass / Fail / NA	Calibration Gas, p	pm S	300
12 supply pressure gauge acceptable range 9.5 - 12)	Fass / Fail / NA	90% of Calibration		(SO) as ppm
Date of last factory calibration	1-1-24	2. 3.	6	77
Factory calibration record v/instrument within 3 months	Pass / Fail	Equal to or less the		Ø N
Comments:		Instrument calibrat	led to Cipy	gas.

Site:	*			
Purpose:				
Operator:	n O	21		
Date: 9-7-2-9		Time:	0930	
Model # TVA 1000				
Serial # #12 03624	6741	8 4 4		
INSTRUMENT INTEGRITY (CHECKLIST	INSTR	RUMENT CALIBRA	TION
Battery test Reading following ignition Leak test Clean system check (check valve chatter) H ₂ supply pressure gauge (acceptable range 9.5 - 12) Date of last factory calibration Factory calibration record w/instrument within 3 months	Pass / Fail 2,3 ppm Pass / Fail / NA	Calibration Gas (ppm) Calibration Gas, p 90% of Calibration Time required to a 1. 2. 3.	of Gas, ppm attain 90% of Cal Gas % Accuracy (007,	
Comments:				
	3			

Site:	*			
Purpose:				
Operator:	Mu M	i		
Date: 9-7-29		Time:	1000	
Model # _ TVA (000	Salara United States of Control o			
Serial # #13 11027	46775	18		
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBRA	ATION
Battery test	Pass / Fail	CA Calibration Gas (ppm)	LIBRATION CHE Actual (ppm)	CK % Accuracy
Reading following ignition	2.4 ppm	Soo	500	LOOY,
Leak test Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p	P'''	500
12 supply pressure gauge acceptable range 9.5 - 12)	Fass / Fail / NA	1 <i>1</i>	ittain 90% of Cal G	<u>ƳSO</u> ∂as ppm
Date of last factory calibration	7-7-24	2. <u>(</u> 3. <u>-</u> 6		8
Factory calibration record v/instrument within 3 months	Rass / Fail	Average 6 Equal to or less th Instrument calibra		⊘ N _gas.
Comments:				

U M	A A		
11//11			
	Time:	1045	
<u>746</u> 776	æ		
Y CHECKLIST	INSTR	UMENT CALIBRA	LTION
Pass / Fail	Calibration	Actual	%
	—————		Accuracy
Pass / Fail / NA	500	500	100
Pass / Fail / NA	Calibration Gas, pp	om S	500
Fass / Fail / NA	90% of Calibration Time required to at 1.	Gas, ppmtain 90% of Cal G	as ppm
1-7-24	2(3(<u> </u>	*(
Pass / Fail			Ø N
	W		gas.
	Pass / Fail 23 ppm Pass / Fail / NA Pass / Fail / NA Pass / Fail / NA Pass / Fail / Fass / Fail	CHECKLIST Pass / Fail Calibration Gas (ppm) Cass / Fail / NA Pass / Fail / NA Calibration Gas, pp 90% of Calibration Time required to at 1. 2. 3. Average Equal to or less that	CHECKLIST INSTRUMENT CALIBRA CALIBRATION CHECK Actual (ppm) Soo Soo RESPONSE TIME Calibration Gas, ppm 90% of Calibration Gas, ppm 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CUSTOMER:	RIES Unit	# 10	
SERIAL NUMBER:	10363	46 773	
TECHNICIAN:	Un Mu	DATE: _	7-7-24

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	499	+/- 125
10000	10000	10,112	+/- 2500
< 1	ZERO GAS	0.54	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1	ZERO GAS	/	< 3

CUSTOMER: <u>RIES WAG</u>	¥11
SERIAL NUMBER: 103634677	14
TECHNICIAN: M	DATE: 7-7-29

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	0.53	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1	ZERO GAS	1	< 3

CUSTOMER: MISS VANT #11	
SERIAL NUMBER: 1036246741	
TECHNICIAN: DATE:	7-7-24

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
<1	ZERO GAS	0,63	< 3
	Pil	0	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500	/	+/- 125
<1	ZERO GAS	1	< 3

CUSTOMER:	Pies Cart #	-13	
SERIAL NUMBER	110274677	15	
TECHNICIAN:	Mr Mr	DATE: _	1-7-29

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00	+/- 25
500	500	SOO	+/- 125
10000	10000	10,003	+/- 2500
< 1	ZERO GAS	0.61	< 3
	Pli	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

CUSTOMER:	
SERIAL NUMBER:	
TECHNICIAN: M M DATE: 7-7-24	1

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	CMO	+/- 125
10000	10000	10,000	+/- 2500
<1	ZERO GAS	0,63	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1	ZERO GAS	/	< 3

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152

Order Number 75836320 PO Number 04C23328

Lot Number

4-236-82

Norlab Part#

J1002

Cylinder Size

103 Liter

Number of Cyl

2

Customer Part# N/A

Date on Manufacture

8/29/2024

Expires

08/2028

Analytical Accuracy

Certified

Component

Air

Oxygen

T.H.C. (as Methane)

Nitrogen

Reported

Concentration

Zero Grade 20.9 %

< 0.1 ppm

Balance

Requested

Concentration

Zero Grade

20.9 %

< 0.1 ppm

Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and

when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

Date Signed:

8/29/2024

David Reed Lab Technician

oo on safety com

33596 Starling Height

mponents

Mc (as Methane)

Concentration (Mole

Zero Grade 20.9 % < 0.1 ppm Balance

4-236-82

Certified

J1002

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

3/29/2024

08/2028

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312 Cust Number 07152 Order Number 69679439 PO Number 04906817

Lot Number

2-154-85 J1002

Norlab Part# Cylinder Size

103 Liter

Number of Cyl

Customer Part# N/A

Date on Manufacture

6/13/2022

Expires

06/2025

Analytical Accuracy

Certified

Component
Air
Oxygen
T.H.C. (as Methane)
Nitrogen

Reported
Concentration
Zero Grade
20.9 %

20.9 % < 1.0 ppm Balance Requested

Concentration Zero Grade

Zero Grade 20.9 %

< 1.0 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

David Reed Lab Technician Date Signed:

6/13/2022

800.962.7837 promiersafety.com

Sterling Heigh

components

onygen TH.C. (as Methane)

Concentration (M)

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85

ecy: Certified

J1002

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

6/13/2022

06/2025

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 75275610 PO Number 04B84126

Lot Number Norlab Part#

4-176-81 J197125PA

Cylinder Size Number of Cyl

103 Liter

Component

Methane

Air

Customer Part# N/A

Date on Manufacture

6/25/2024

Expires

06/2028

Analytical Accuracy

+/- 5 %

Reported

Concentration

25 ppm Balance Requested

Concentration

25 ppm

Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Lab Technician

Date Signed:

6/25/2024

mponents

Concentration (Mole)

500 ppm Balance

4-080-87

of: 4-2%

J1971500PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date

Exp. Date:

6/25/2024

06/2028

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Certification

Analytical Accuracy

Methane

25 ppm

 $\pm 5\%$

Air

Balance

Lot#

17-6074

Mfg. Date:

10/16/2017

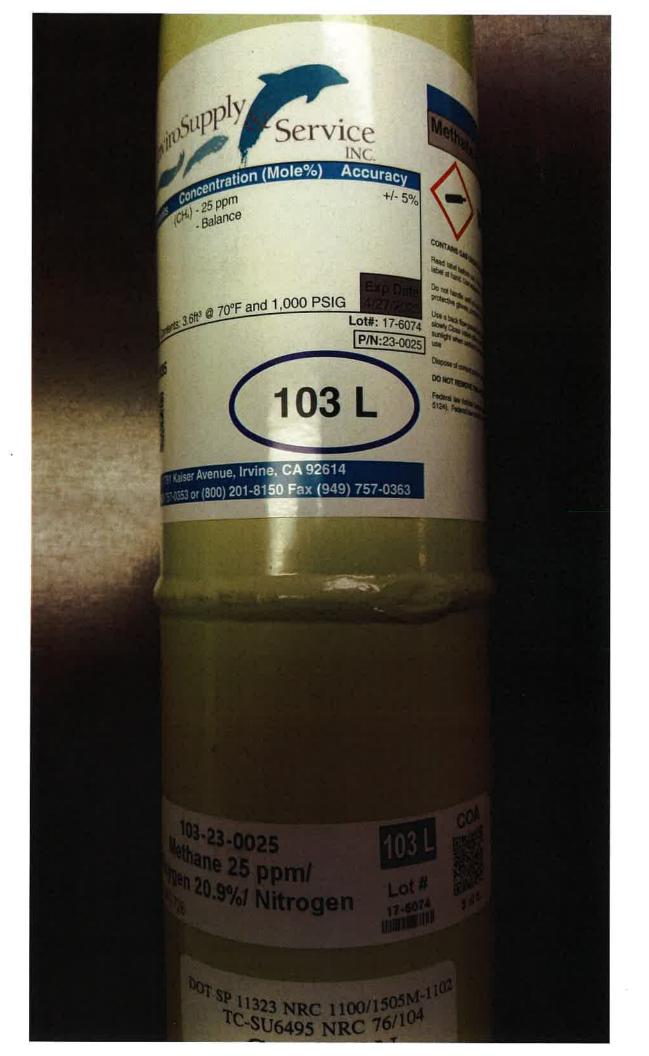
Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number 3-340-62

Norlab Part# J197125PA

Cylinder Size

103 Liter

Number of Cyl 5

Customer Part# N/A

Cust Number 07152

Order Number 73732858

PO Number 04B70733

Date on Manufacture

12/7/2023

Expires

12/2027

Analytical Accuracy

+/- 5 %

Component Methane Air Reported Concentration

25 ppm Balance Requested

Concentration

25 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager Date Signed:

12/7/2023

800.962.7837 ww.premiersafety.com 33596 Sterling Ponting Sterling Heights Min

Components

Mathane

Concentration (Mole)

25 ppm Balance

3-340-62

COURSY: +1-5%

J197125PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

12/7/2023

Exp. Date:

12/2027

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 75275610 PO Number 04B84126

Lot Number

4-080-87 J1971500PA

Norlab Part# Cylinder Size

Number of Cyl

103 Liter

Customer Part# N/A

Date on Manufacture

6/25/2024

Expires

06/2028

Analytical Accuracy

+/- 2 %

Component Methane Air

Reported Concentration

500 ppm Balance

Requested

Concentration

500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Lab Technician

Date Signed: 6/25/2024

300.962.7837 somiets afety.com 33596 Sterling Ponding Heights, Inc.

amponents

thane

Concentration (Mole

500 ppm Balance

4-080-87

mor. 4-2%

J1971500PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

6/25/2024

06/2028

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312 Cust Number 07152 Order Number 69671309 PO Number 08361523

Expires

6/10/2022

06/2025

+/- 2 %

Date on Manufacture

Lot Number Norlab Part# 2-108-80 J1971500PA

Cylinder Size

103 Liter

Number of Cyl

105

Analytical Accuracy

Customer Part# N/A

ustollici Falt# 19/7

Component Methane Air Reported Concentration

500 ppm Balance Requested

Concentration

500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

David Reed

_Date Signed:

6/10/2022

Lab Technician

800.962.7837 800.962.7837 premiers afety.com

33596 Sterling Posts Sterling Height u

Components

Methane

Concentration (Mole

500 ppm Balance

2-108-80

Accuracy: +/- 2 %

J1971500PA

Contents: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

5/5/2022

Exp. Date:

05/2025

CALIBRATION GAS

2

CERTIFICATE OF ANALYSIS

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301

Cust Number WH012 Order Number 71846398 PO Number 04A35563

Lot Number

3-088-88

Norlab Part#

J1971500PA

Cylinder Size

103 Liter

Number of Cyl

5

Date on Manufacture

4/7/2023

Expires

04/2027

Analytical Accuracy

+/- 2 %

Customer Part# N/A

Component

Methane Air

Reported

Concentration

500 ppm Balance

Requested

Concentration

500 ppm

Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Jeff Korn

Lab Technician

Date Signed:

4/7/2023

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

9

800.962.7837 www.premiers afety.com

33596 Sterling Persons Height

Components

Methane

Concentration (Mile

500 ppm Balance

3 088-88

Marcy, #-2%

J1971500PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

4/7/2023

04/2027

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312 Cust Number 07152 Order Number 73732858 PO Number 04B70733

Lot Number Norlab Part# 3-340-61 J1971500PA

Cylinder Size

103 Liter

Number of Cyl 5

Customer Part# N/A

Date on Manufacture

12/7/2023

Expires

12/2027

Analytical Accuracy

+/- 2 %

Component Methane Air Reported Concentration

500 ppm Balance Requested

Concentration

500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager Date Signed:

12/7/2023

800,962,7837 www.mmicrs.afetty.com

500 ppm Balance

Concentration

3-340-61

Accuracy: +/- 2 %

Contents: 103Liters-3.6Cu.Ft.,-1000psig Part 31971500PA

MFG Date: Exp. Date:

APPENDIX K COMPONENT LEAK REPORTS

Table C.1

AB-32 Component Leak Monitoring Summary of Component Leaks Greater than 500 ppmv

2024 QUARTER: 3

INITIAL MONITORING PERFORMED BY: ALRRF
FOLLOW-UP MONITORING PERFORMED BY: ALRRF

LANDFILL NAME: Altamont Landfill and Resource Recovery Facility

Location	Initia	al Monitoring			Corrective Action	10)-Day Remonit	oring
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
A15- Flare Station	8/15/2024	ND						
A16- Flare Station	8/15/2024	ND						
S6 and S7 Turbines	9/3/2024	ND						

Note: LNG Plant was has been decommissioned.

ND= No exceedances detected

Table C.2

BAAQMD Component Leak Monitoring Summary of Component Leaks Greater than 1,000 ppmv

2024 QUARTER: 3

INITIAL MONITORING PERFORMED BY: ALRRF
FOLLOW-UP MONITORING PERFORMED BY: ALRRF

LANDFILL NAME: Altamont Landfill and Resource Recovery Facility

Location	Initi	al Monitoring			Corrective Action		7-Day Remo	nitoring
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
A15- Flare Station	8/15/2024	ND						
A16- Flare Station	8/15/2024	ND						
S6 and S7 Turbines	9/3/2024	ND						

Note: LNG Plant was has been decommissioned.

ND= No exceedances detected

	QUARTERLY LFG COMPONENT LEAK MONTORING
EQUIPMENT:	Turbine Gas skids
INSTRUMENT:	FID
MAKE:	Photovac
MODEL:	MicroFiD I/S
S/N:	CZPD312
DATE OF SAMPLING:	9/3/2024
TECHNICIAN:	L.LaCerra

0 0																					
LOCATION OF LEAK(S)	Bolte	d Conne	ctions	(Flar	Pipes nged, Uni	ions)	Roots	Flex Cou	uplings	Howden Compressor	Inte	erstageVe	ssel	Oil/Gas	Separato	r Vessel		parator ssel	I	ig Towers hanger P	
	#1	# 2	#3	#1	# 2	#3	#1	#2	#3	# 1	#1	#2	#3	#1	# 2	# 3	# 1	# 2	# 1	#2	#3
Compressor skid # 1																					
TEST DATE	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24
LEAK CONCENTRATION FOUND (ppm)		10.0 PPM	1		11.0 PPM	1		4.0 PPM	1	4.0 PPM		2.0 PPM			6.0 PPM		1.0 PPM			3.0 PPM	I
ACTION TAKEN																		•			
REPAIR DATE																					
RE-TEST DATE																					
RE-TEST																					
CONCENTRATION (ppm)																					
Compressor skid # 2										•							•				
TEST DATE	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24	9/3/24
LEAK CONCENTRATION FOUND (ppm)		7.0 PPM			4.0 PPM			12.0 PPN	Л	2.0 PPM		3.0 PPM			9.0 PPM		5.0 PPM			5.0 PPM	I
ACTION TAKEN																					
REPAIR DATE																					
RE-TEST DATE																					
RE-TEST																					
CONCENTRATION (ppm)																					
0 (

Comments:

Note:

In the event that an exceedance is detected, please intiate corrective action and **re-monitor the exceedance location within 7 days** of the initial exceedance.

Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

			QUARTERLY LFG COMP	ONENT LEAK MONTORII	NG	
EQUIPMENT:	Turbine Gas skids					
INSTRUMENT:	FID					
MAKE:	Photovac					
MODEL:	MicroFiD I/S					
S/N:	CZPD312					
DATE OF SAMPLING:	9/3/2024					
TECHNICIAN:	L.LaCerra					
	Bolted connections	Pines (flanged unions)	Inlet piping and valves	Sensors transducers	Propage tank & piping	Gas manifold and piping

LOCATION OF LEAK(S)	Bolte	d connec	ctions	Pipes (flanged, ι	unions)	Inlet pip	ping and	l valves	Sens	ors, trans	ducers	Propa	ne tank &	piping		G	as manif	fold and p	iping
	#1	# 2	# 3	#1	# 2	# 3	#1	#2	# 3	#1	# 2	# 3	#1	# 2	# 3	# 1	#2	# 3	# 4	# 5
Turbine 1													-			-				
TEST DATE		9/3/24			9/3/24			9/3/24			9/3/24			9/3/24				9	9/3/24	
LEAK CONCENTRATION FOUND (ppm)		2.0 PPM			2.0 PPM			7.0 PPM	1		3.0 PPM	I		2.0 PPM	I		6.0 PPM	I		
ACTION TAKEN																				
REPAIR DATE																				
RE-TEST DATE																				
RE-TEST CONCENTRATION (ppm)																				
Turbine 2		9/3/24			9/3/24			9/3/24			9/3/24			9/3/24			-	9	0/3/24	
TEST DATE																				
LEAK CONCENTRATION FOUND (ppm)		5.0 PPM			7.0 PPM		;	5.0 PPM	1		5.0 PPN	I		6.0 PPM	I		4.0 PPM	I		
ACTION TAKEN																				
REPAIR DATE				_												_				
RE-TEST DATE																_				
RE-TEST CONCENTRATION (ppm)																				

Comments:

Note:

In the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.

Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

											UARTER	LYLFG	CO	MPONEN	NT LEA	K MON	TORIN	G															
EQUIPMENT:	A16 Fla	re																															
INSTRUMENT:	Photova	ic																															
MAKE:	Thermo	scientific																															
	Micro F																																
	CZPD3																																
	08.15.24																																
TECHNICIAN:	Garry C	arpenter																															
LOCATION OF LEAK(S)	Bolte	ed Conne	ctions	Pipes ((Flanged,	Unions)		Valves, S and Pipin			Blowers	ì		NG Valves Piping to L V				eader to I	_andfill		opane and Pip		IC	Engine Sen		es and	IC En	gine Cor Skid		on I			fold Piping ontainer
	#1	#2	#3	#1	#2	#3	#1	# 2	#3	#1	# 2	#3		#1	#2	#3	#1	# 2	#3	3 #	#1	#2	#	1 #	2	#3	#1	#2	#3	3	#1	#2	#3
A-16		•			•																						•						
TEST DATE		08.15.24	ļ		08.15,2	4		08.15,2	1		08.15,2	4		80	3.15,24			08.15,	24		08.15	,24											
LEAK CONCENTRATION FOUND (ppm)		N/D			N/D			N/D			N/D			1	N/D			N/D		N	N/D												
ACTION TAKEN																							1	N	/A			N/A				N/A	
REPAIR DATE													Т											14	^			IN/A				IN//	
RE-TEST DATE																																	
RE-TEST CONCENTRATION (ppm)																																	
Comments: LNG Plant was	decomm	issioned i	n 2023.																														
Note: In the event that Leaks over 500 Leaks over 1,00	ppmv m	ethane ar	e excee	dances at	any com	ponent co	ontaining	landfill g	as pursua	int to C	ARB Title	17 of Cali	iforr	nia Čode d	of Regu				Article 4	l, Subar	rticle 6,	Section	n 954	64(b)(1)	(B).								

ALTRF Plant No. 2066

A16 Qtrly leak check form 08.15.2024 3rd Qtr

				Ql	JARTERL	Y LFG CO	OMPONE	NT LEAK	MONTOR	RING						
EQUIPMENT:	A15															
INSTRUMENT:	FID															
MAKE:	Photovad															
MODEL:	Micro FIE)														
S/N:	CZPD31	2														
DATE OF SAMPLING:	08.15,24															
TECHNICIAN:	Garry Ca	rpenter														
LOCATION OF LEAK(S)	Bolte	ed Connec	tions	Pipes ((Flanged,	Unions)	Dis	charge Blo	ower	Fla	ame Arres	tor		Pipe to Sensors	Propane Pip	Tank and ping
	#1	# 2	#3	#1	# 2	# 3	#1	#2	#3	#1	# 2	#3	# 1	# 2	# 1	# 2
A-15 Flare Station				•								•	•			
TEST DATE		08.15,24			08.15,24	1		08.15,24			08.15,24	•	08.1	15,24	08.	15,24
LEAK CONCENTRATION FOUND (ppm)		N/D			N/D			N/D			N/D		N.	/D	N	/D
ACTION TAKEN																
REPAIR DATE																
RE-TEST DATE																
RE-TEST CONCENTRATION (ppm)																

Comments: Bolt connections (expansion chamber) were tightened.

Note:

In the event that an exceedance is detected, please intiate corrective action and **re-monitor the exceedance location within 7 days** of the initial exceedance. Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

Table C.1

AB-32 Component Leak Monitoring Summary of Component Leaks Greater than 500 ppmv

2024 QUARTER: 4

INITIAL MONITORING PERFORMED BY: ALRRF
FOLLOW-UP MONITORING PERFORMED BY: ALRRF

LANDFILL NAME: Altamont Landfill and Resource Recovery Facility

Location	Initia	l Monitoring			Corrective Action	10	-Day Remonit	oring
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
A15- Flare Station	10/10/2024	ND						
A16- Flare Station	10/10/2024	ND						
S6 and S7 Turbines	11/4/2024	ND						

Note: LNG Plant was has been decommissioned.

ND= No exceedances detected

Table C.2

BAAQMD Component Leak Monitoring Summary of Component Leaks Greater than 1,000 ppmv

2024 QUARTER: 4

INITIAL MONITORING PERFORMED BY: ALRRF
FOLLOW-UP MONITORING PERFORMED BY: ALRRF

LANDFILL NAME: Altamont Landfill and Resource Recovery Facility

Location	In	tial Monitoring			Corrective Action		7-Day Remo	onitoring
Location	Date	TOC (ppmv)	Tech	Date	Description	Date	TOC (ppmv)	Tech
A15- Flare Station	10/10/2024	ND						
A16- Flare Station	10/10/2024	ND						
S6 and S7 Turbines	11/4/2024	ND						

Note: LNG Plant was has been decommissioned.

ND= No exceedances detected

EQUIPMENT: A15 INSTRUMENT: FID			QL	JARTERL	Y LFG CC	MPONE	NT LEAK	MONTOF	RING						
INSTRUMENT: FID															
INOTRUMENT: FID															
MAKE: Photo	ovac														
MODEL: Micro	FID														
S/N: CZPD	0312														
DATE OF SAMPLING: 10.10).24														
TECHNICIAN: Garry	/ Carpenter														
LOCATION OF LEAK(S)	Bolted Conne	ctions	Pipes ((Flanged,	Unions)	Dis	charge Blo	wer	Fla	ame Arres	stor		Pipe to Sensors		ne Tank Piping
#1	# 2	# 3	#1	# 2	# 3	#1	# 2	# 3	#1	# 2	#3	# 1	#2	# 1	# 2
A-15 Flare Station		•		•					•	•					
TEST DATE	10.10.24	1		10.10.24			10.10.24			10.10.24	1	10.1	0.24	10.	10.24
LEAK CONCENTRATION FOUND (ppm)	N/D			N/D			N/D			N/D		N	/D	N	/D
ACTION TAKEN															
REPAIR DATE															
RE-TEST DATE															
RE-TEST CONCENTRATION (ppm)															

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

ALRRF Plant No. 2066

				QUARTERLY LFG	COMPONENT LEAK MON	TORING					
EQUIPMENT:	A16 Flare										
NSTRUMENT:	Photovac										
MAKE:	Thermo scientific										
MODEL:	Micro FID										
S/N:	CZPD312										
DATE OF SAMPLING:	10.10.24										
FECHNICIAN:	Garry Carpenter										
LOCATION OF LEAK(S)	Bolted Connections	Pipes (Flanged, Unions)	Flare Valves, Sensors and Piping	Blowers	LNG Valves, Sensors and Piping to LNG Isolation Valve	Header to Landfill	Propane Tanks and Piping		Valves and nsors	IC Engine Compression Skid	IC Engine Manifold Piping and Metal Container
	#1 #2 #3	#1 #2 #3	#1 #2 #3	#1 #2 #3	#1 #2 #3	#1 #2 #3	#1 # 2	#1	#2 #3	#1 #2 #3	#1 #2 #3
A-16											
TEST DATE	10.10.24	10.10.24	10.10.24	10.10.24	10.10.24	10.10.24	10.10.24				
LEAK CONCENTRATION FOUND (ppm)	N/D	N/D	N/D	N/D	N/D	N/D	N/D N/D				
ACTION TAKEN							•	١,	N/A	N/A	N/A
REPAIR DATE								l '	N/A	N/A	IN/A
RE-TEST DATE											
RE-TEST CONCENTRATION (ppm)											
LNG Plant		•		•	•	•	•			•	•
Comments: LNG Plant was	decommissioned.	<u> </u>			<u> </u>					<u> </u>	
Leaks over 500	ppmv methane are exceed		ontaining landfill gas pursu	ant to CARB Title 17 of Ca	hin 7 days of the initial excelling the Alifornia Code of Regulations		Subarticle 6, Sect	ion 95464(b)	(1)(B).		

ALTRF Plant No. 2066
A16 Qtrly leak check form 10.10.2024 4th Qtr

QUARTERLY LFG COMPONENT LEAK MONTORING							
EQUIPMENT:	Turbine Gas skids						
INSTRUMENT:	Toxic Vapor Analyzer						
MAKE:	Thermo Scientific						
MODEL:	TVA1000B-81020						
S/N:	936338909						
DATE OF SAMPLING:	11/4/2024						
TECHNICIAN:	L.LaCerra						

LOCATION OF LEAK(S)	Bolted Connections		Bolled Connections		Pipes (Flanged, Unions)		Roots Flex Couplings		Howden Compressor	InterstageVessel		Oil/Gas Separator Vessel		r Vessel	Gas Separator Vessel		Cooling Towers/ Heat Exchanger Piping				
	#1	#2	#3	#1	#2	#3	#1	# 2	#3	# 1	#1	# 2	# 3	#1	#2	#3	# 1	# 2	# 1	#2	# 3
Compressor skid # 1			•				-			-	·			-					·		
TEST DATE	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24
LEAK CONCENTRATION FOUND (ppm)	,	13.0 PPM	1		9.0 PPM			2.0 PPM		2.0 PPM		11.0 PPN	1		16.0 PPM	1	1.0 PPM			2.0 PPM	
ACTION TAKEN																					
REPAIR DATE																					
RE-TEST DATE																					
RE-TEST CONCENTRATION (ppm)																					
Compressor skid # 2							•				•			•					•		
TEST DATE	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24	11/4/24
LEAK CONCENTRATION FOUND (ppm)		6.0 PPM			3.0 PPM			10.0 PPM	1	2.0 PPM		14.0 PPN	1		6.0 PPM		3.0 PPM			2.0 PPM	
ACTION TAKEN																					
REPAIR DATE																					
RE-TEST DATE																					
RE-TEST CONCENTRATION (ppm)																					

Comments:

Note:

In the event that an exceedance is detected, please intiate corrective action and **re-monitor the exceedance location within 7 days** of the initial exceedance.

Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

							QUAR	RTERLY L	FG COMP	ONENT	LEAK M	ONTORI	NG								
EQUIPMENT:	Turbine	Gas skids	3																		
INSTRUMENT:	Toxic Vapor Analyzer																				
MAKE:	Thermo	Thermo Scientific																			
MODEL:	TVA100	TVA1000B-81020																			
S/N:	9363389	909																			
DATE OF SAMPLING:	11/4/202	1/4/2024																			
TECHNICIAN:	L.LaCeri	ra																			
LOCATION OF LEAK(S)	Bolte	ed connec	tions	Pipes (flanged, unions)			Inlet	Inlet piping and valves		Sens	Sensors, transducers		Propane tank & piping		Gas manifold and piping						
	#1	#2	# 3	#1	# 2	# 3	#1	# 2	# 3	#1	# 2	# 3	#1	# 2	# 3	# 1	# 2	# 3	# 4		# 5
Turbine 1																					
TEST DATE		11/4/24			11/4/24			11/4/2	24		11/4/24			11/4/24				1	1/4/24		
LEAK CONCENTRATION FOUND (ppm)		2.0 PPM			4.0 PPM			6.0 PP	PM .		4.0 PPM			2.0 PPM	1		2.0 PPM	1			
ACTION TAKEN																					
REPAIR DATE																					
RE-TEST DATE																					•
RE-TEST CONCENTRATION (ppm)																					
Turbine 2		11/4/24			11/4/24			11/4/2	24		11/4/24			11/4/24			1	1	1/4/24		
TEST DATE																					
LEAK CONCENTRATION FOUND (ppm)		4.0 PPM			10.0 PPM	1		12.0 PF	PM		9.0 PPM			5.0 PPM	1		3.0 PPM	1			
							_														

Comments:

REPAIR DATE
RE-TEST DATE
RE-TEST
CONCENTRATION (ppm)

Note:

In the event that an exceedance is detected, please intiate corrective action and re-monitor the exceedance location within 7 days of the initial exceedance.

Leaks over 500 ppmv methane are exceedances at any component containing landfill gas pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B).

Leaks over 1,000 ppmv methane are exceedances at any component containing landfill gas pursuant to BAAQMD Regulation 8-34-301.2.

APPENDIX L NON-DEGRADABLE WASTE ACCEPTANCE RECORD

FRIABLE ASBESTOS REPORT

Material Name	ORIGIN NAME	LOADS	TONNAGE AMOUNT
FACW	ALAMEDA	1	0.02
FACW	FREMONT	1	2.77
FACW	Hayward	2	0.11
FACW	OAKLAND	3	0.97
FACW	San Jose	1	0.07
FACW	South San Francisco	1	0.09
WM-Asb Friable	ALAMEDA	2	11.35
WM-Asb Friable	ALAMEDA	42	351.00
WM-Asb Friable	ALAMEDA	3	20.10
WM-Asb Friable	Alamo	1	6.43
WM-Asb Friable	Antioch	2	10.01
WM-Asb Friable	Atherton	4	7.21
WM-Asb Friable	Bay Point	1	9.32
WM-Asb Friable	BELMONT	1	3.69
WM-Asb Friable	BELMONT	1	0.59
WM-Asb Friable	BELMONT	2	10.89
WM-Asb Friable	BELMONT	2	7.21
WM-Asb Friable	BELMONT	1	0.20
WM-Asb Friable	BELMONT	1	10.83
WM-Asb Friable	BENICIA	1	0.88
WM-Asb Friable	BENICIA	1	3.85
WM-Asb Friable	BERKELEY	2	3.28
WM-Asb Friable	BERKELEY	2	10.33
WM-Asb Friable	BERKELEY	4	8.28
WM-Asb Friable	BERKELEY	1	3.40
WM-Asb Friable	BERKELEY	2	0.56
WM-Asb Friable	BERKELEY	7	58.74
WM-Asb Friable	BERKELEY	1	0.52
WM-Asb Friable	BERKELEY	5	30.68
WM-Asb Friable	BERKELEY	8	29.60
WM-Asb Friable	BERKELEY	4	16.34
WM-Asb Friable	Brisbane	1	3.59
WM-Asb Friable	Burlingame	1	11.68
WM-Asb Friable	Burlingame	1	0.22
WM-Asb Friable	Burlingame	2	4.81
WM-Asb Friable	Calistoga	2	10.35
WM-Asb Friable	CAMPBELL	1	3.94
WM-Asb Friable	CAMPBELL	2	7.82
WM-Asb Friable	CAMPBELL	2	3.42

FRIABLE ASBESTOS REPORT

Material Name	ORIGIN NAME	LOADS	TONNAGE AMOUNT
WM-Asb Friable	Castro Valley	4	37.82
WM-Asb Friable	Castro Valley	1	5.69
WM-Asb Friable	Castro Valley	2	11.45
WM-Asb Friable	CLAYTON	1	2.88
WM-Asb Friable	CONCORD	8	27.52
WM-Asb Friable	CONCORD	2	0.93
WM-Asb Friable	CONCORD	4	17.21
WM-Asb Friable	Cupertino	2	18.22
WM-Asb Friable	Cupertino	1	3.50
WM-Asb Friable	Cupertino	6	29.08
WM-Asb Friable	Cupertino	5	59.01
WM-Asb Friable	Daly City	2	18.94
WM-Asb Friable	Daly City	1	1.67
WM-Asb Friable	Daly City	1	0.53
WM-Asb Friable	Daly City	1	0.49
WM-Asb Friable	Danville	1	5.64
WM-Asb Friable	Danville	1	5.70
WM-Asb Friable	DIXON	1	0.39
WM-Asb Friable	Dublin	1	2.17
WM-Asb Friable	EAST PALO ALTO	1	8.52
WM-Asb Friable	El Cerrito	1	4.59
WM-Asb Friable	El Cerrito	1	2.88
WM-Asb Friable	El Sobrante	1	10.34
WM-Asb Friable	Fair Fax	1	1.28
WM-Asb Friable	FAIRFIELD	1	7.39
WM-Asb Friable	FAIRFIELD	1	3.49
WM-Asb Friable	FOSTER CITY	1	5.59
WM-Asb Friable	FREMONT	6	32.69
WM-Asb Friable	FREMONT	1	3.28
WM-Asb Friable	FREMONT	7	37.28
WM-Asb Friable	FREMONT	3	15.76
WM-Asb Friable	FREMONT	1	1.05
WM-Asb Friable	Gilroy	1	7.77
WM-Asb Friable	Gilroy	4	21.80
WM-Asb Friable	Greenbrae	1	0.22
WM-Asb Friable	Hayward	3	22.76
WM-Asb Friable	Hayward	3	17.11
WM-Asb Friable	Hayward	1	0.00
WM-Asb Friable	Hayward	2	7.64

FRIABLE ASBESTOS REPORT

Material Name	ORIGIN NAME	LOADS	TONNAGE AMOUNT
WM-Asb Friable	HILLSBOROUGH	2	12.55
WM-Asb Friable	HILLSBOROUGH	1	8.04
WM-Asb Friable	HILLSBOROUGH	4	5.81
WM-Asb Friable	LAFAYETTE	1	0.38
WM-Asb Friable	Larkspur	1	0.65
WM-Asb Friable	Livermore	2	6.77
WM-Asb Friable	Livermore	1	0.06
WM-Asb Friable	Livermore	2	8.75
WM-Asb Friable	Los Altos	2	13.81
WM-Asb Friable	Los Altos	1	0.19
WM-Asb Friable	Los Altos	1	1.90
WM-Asb Friable	Los Altos	1	4.40
WM-Asb Friable	Los Altos	1	7.01
WM-Asb Friable	Los Altos Hills	1	3.23
WM-Asb Friable	Los Gatos	2	10.23
WM-Asb Friable	Los Gatos	1	2.81
WM-Asb Friable	Los Gatos	2	18.52
WM-Asb Friable	Martinez	3	4.01
WM-Asb Friable	Martinez	3	11.84
WM-Asb Friable	Menlo Park	1	5.71
WM-Asb Friable	Menlo Park	1	1.25
WM-Asb Friable	Menlo Park	1	4.33
WM-Asb Friable	Menlo Park	1	5.44
WM-Asb Friable	Menlo Park	1	2.80
WM-Asb Friable	Mill Valley	1	1.30
WM-Asb Friable	Millbrae	2	8.58
WM-Asb Friable	Millbrae	1	4.06
WM-Asb Friable	Milpitas	1	9.53
WM-Asb Friable	Milpitas	2	6.98
WM-Asb Friable	Milpitas	1	9.46
WM-Asb Friable	Milpitas	1	0.90
WM-Asb Friable	Milpitas	3	16.38
WM-Asb Friable	MONTARA	1	8.42
WM-Asb Friable	MORAGA	1	2.45
WM-Asb Friable	Morgan Hill	1	6.18
WM-Asb Friable	Moss Beach	1	0.94
WM-Asb Friable	Mountain View	1	2.01
WM-Asb Friable	Mountain View	1	3.99
WM-Asb Friable	Mountain View	8	38.61

FRIABLE ASBESTOS REPORT

Material Name	ORIGIN NAME	LOADS	TONNAGE AMOUNT
WM-Asb Friable	Napa	1	0.18
WM-Asb Friable	Napa	2	13.49
WM-Asb Friable	NEWARK	1	2.78
WM-Asb Friable	NEWARK	1	0.83
WM-Asb Friable	Novato	2	0.38
WM-Asb Friable	Novato	1	1.04
WM-Asb Friable	Novato	1	4.22
WM-Asb Friable	Novato	1	2.61
WM-Asb Friable	Novato	2	15.48
WM-Asb Friable	OAKLAND	1	1.11
WM-Asb Friable	OAKLAND	5	27.32
WM-Asb Friable	OAKLAND	2	9.92
WM-Asb Friable	OAKLAND	1	0.29
WM-Asb Friable	OAKLAND	2	14.52
WM-Asb Friable	OAKLAND	1	0.28
WM-Asb Friable	OAKLAND	8	39.62
WM-Asb Friable	OAKLAND	10	42.96
WM-Asb Friable	OAKLAND	1	8.48
WM-Asb Friable	ORINDA	1	5.78
WM-Asb Friable	ORINDA	1	5.45
WM-Asb Friable	PACHECO	5	29.05
WM-Asb Friable	Pacifica	1	6.51
WM-Asb Friable	Palo Alto	1	10.71
WM-Asb Friable	Palo Alto	1	2.67
WM-Asb Friable	Palo Alto	1	8.56
WM-Asb Friable	Palo Alto	1	7.77
WM-Asb Friable	Palo Alto	4	4.57
WM-Asb Friable	PETALUMA	1	3.30
WM-Asb Friable	Piedmont	1	3.41
WM-Asb Friable	Piedmont	1	6.08
WM-Asb Friable	PITTSBURG	1	4.46
WM-Asb Friable	PITTSBURG	5	19.33
WM-Asb Friable	Pleasant Hill	1	3.71
WM-Asb Friable	Pleasanton	1	3.38
WM-Asb Friable	Pleasanton	1	0.29
WM-Asb Friable	Pleasanton	2	9.98
WM-Asb Friable	Pleasanton	1	12.17
WM-Asb Friable	Redwood City	1	3.99
WM-Asb Friable	Redwood City	2	4.12

FRIABLE ASBESTOS REPORT

Material Name	ORIGIN NAME	LOADS	TONNAGE AMOUNT
WM-Asb Friable	RICHMOND	2	19.21
WM-Asb Friable	RICHMOND	1	1.74
WM-Asb Friable	RICHMOND	1	9.49
WM-Asb Friable	RICHMOND	2	12.73
WM-Asb Friable	RICHMOND	3	4.99
WM-Asb Friable	RICHMOND	1	10.42
WM-Asb Friable	RODEO	1	2.23
WM-Asb Friable	RODEO	4	8.97
WM-Asb Friable	San Bruno	1	2.24
WM-Asb Friable	San Bruno	3	22.14
WM-Asb Friable	San Bruno	1	0.15
WM-Asb Friable	San Bruno	1	3.25
WM-Asb Friable	SAN CARLOS	2	7.63
WM-Asb Friable	SAN CARLOS	1	0.50
WM-Asb Friable	SAN CARLOS	1	3.62
WM-Asb Friable	SAN CARLOS	1	5.06
WM-Asb Friable	San Francisco	13	33.12
WM-Asb Friable	San Francisco	16	105.82
WM-Asb Friable	San Francisco	1	2.48
WM-Asb Friable	San Francisco	1	0.49
WM-Asb Friable	San Francisco	1	0.03
WM-Asb Friable	San Francisco	4	10.06
WM-Asb Friable	San Francisco	1	0.15
WM-Asb Friable	San Francisco	1	2.25
WM-Asb Friable	San Francisco	5	7.67
WM-Asb Friable	San Francisco	11	45.42
WM-Asb Friable	San Francisco	83	358.65
WM-Asb Friable	San Francisco	3	1.70
WM-Asb Friable	San Jose	13	70.39
WM-Asb Friable	San Jose	1	3.63
WM-Asb Friable	San Jose	4	4.46
WM-Asb Friable	San Jose	1	6.10
WM-Asb Friable	San Jose	18	76.64
WM-Asb Friable	San Jose	2	0.18
WM-Asb Friable	San Jose	18	130.53
WM-Asb Friable	San Jose	1	5.54
WM-Asb Friable	SAN LEANDRO	2	12.14
WM-Asb Friable	SAN LEANDRO	2	16.38
WM-Asb Friable	SAN LEANDRO	4	20.79

ALTAMONT LANDFILL & RESOURCE RECOVERY FACILITY

FRIABLE ASBESTOS REPORT

JUNE 1, 2024 -NOVEMBER 30, 2024

Material Name	ORIGIN NAME	LOADS	TONNAGE AMOUNT
WM-Asb Friable	SAN LEANDRO	2	20.41
WM-Asb Friable	SAN LEANDRO	5	20.07
WM-Asb Friable	San Lorenzo	1	4.76
WM-Asb Friable	San Lorenzo	1	2.88
WM-Asb Friable	SAN MARTIN	1	4.31
WM-Asb Friable	San Mateo	1	6.61
WM-Asb Friable	San Mateo	2	0.77
WM-Asb Friable	San Mateo	1	0.18
WM-Asb Friable	San Mateo	1	0.63
WM-Asb Friable	San Mateo	3	18.41
WM-Asb Friable	San Pablo	1	0.44
WM-Asb Friable	San Pablo	4	25.58
WM-Asb Friable	San Pablo	1	0.74
WM-Asb Friable	San Pablo	1	6.14
WM-Asb Friable	San Pablo	1	2.74
WM-Asb Friable	San Rafael	1	0.65
WM-Asb Friable	San Rafael	1	4.78
WM-Asb Friable	San Rafael	1	2.90
WM-Asb Friable	San Rafael	1	6.45
WM-Asb Friable	San Rafael	1	7.32
WM-Asb Friable	San Ramon	1	9.81
WM-Asb Friable	San Ramon	1	1.07
WM-Asb Friable	San Ramon	1	4.16
WM-Asb Friable	SANTA CLARA	1	3.45
WM-Asb Friable	SANTA CLARA	1	0.79
WM-Asb Friable	SANTA CLARA	1	2.79
WM-Asb Friable	SANTA CLARA	5	28.27
WM-Asb Friable	Santa Rosa	2	11.68
WM-Asb Friable	Santa Rosa	2	12.32
WM-Asb Friable	Santa Rosa	1	4.38
WM-Asb Friable	Saratoga	1	5.37
WM-Asb Friable	Saratoga	1	7.35
WM-Asb Friable	Sausalito	1	0.76
WM-Asb Friable	SONOMA	1	1.59
WM-Asb Friable	South San Francisco	2	11.50
WM-Asb Friable	South San Francisco	5	60.84
WM-Asb Friable	St. Helena	4	25.97
WM-Asb Friable	STANFORD	1	6.56
WM-Asb Friable	STANFORD	1	5.67

ALTAMONT LANDFILL & RESOURCE RECOVERY FACILITY

FRIABLE ASBESTOS REPORT

JUNE 1, 2024 -NOVEMBER 30, 2024

Material Name	ORIGIN NAME	LOADS	TONNAGE AMOUNT
WM-Asb Friable	STANFORD	2	9.33
WM-Asb Friable	STANFORD	4	27.88
WM-Asb Friable	STANFORD	2	0.37
WM-Asb Friable	STANFORD	7	54.44
WM-Asb Friable	STANFORD	2	20.28
WM-Asb Friable	SUNNYVALE	4	34.20
WM-Asb Friable	SUNNYVALE	1	0.40
WM-Asb Friable	SUNNYVALE	4	21.54
WM-Asb Friable	SUNNYVALE	2	10.34
WM-Asb Friable	SUNNYVALE	3	3.66
WM-Asb Friable	Travis AFB	1	0.31
WM-Asb Friable	UNION CITY	2	11.32
WM-Asb Friable	Vacaville	1	2.20
WM-Asb Friable	Vacaville	1	0.28
WM-Asb Friable	Vallejo	1	3.73
WM-Asb Friable	Vallejo	1	0.24
WM-Asb Friable	Vallejo	1	0.26
WM-Asb Friable	Vallejo	3	14.56
WM-Asb Friable	Vallejo	1	5.94
WM-Asb Friable	WALNUT CREEK	5	33.32
WM-Asb Friable	WALNUT CREEK	4	17.59
WM-Asb Friable	WALNUT CREEK	1	4.09
SUM		697	3,372.88

APPENDIX M MONTHLY WELLHEAD MONITORING DATA

Wellfield Monitoring Report - June 2024 REPORT PREPARED BY: Rajan Phadnis

UPDATED DATE: 7/1/2024

FLOW SENSING DEVICE: LANDTEC GEM

MODEL: 5000

DATE LAST CALIBR	RATED: DAILY								
Wellhead ID Number	Date and Time	CH₄ (% by Volume)	CO ₂ (% by Volume)	O ₂ (% by Volume)	BALANCE GAS (% by Volume)	INITIAL TEMPERATURE (°F)	ADJUSTED TEMPERATURE (°F)	INITIAL STATIC PRESSURE ("WC)	ADJUSTED STATIC PRESSURE ("WC)
ALHC0824	6/24/2024 10:40	51.8	37.1	1.3	9.8	84.1	84.0	-0.1	-0.1
ALLC0695	6/17/2024 12:24	48.8	36.1	1.1	14.0	118.5	118.6	-53.8	-50.1
ALLC0700	6/17/2024 9:59	48.4	33.8	3.3	14.5	74.8	74.6	-73.9	-73.9
ALLC0703	6/24/2024 12:34	53.8	37.2	1.0	8.0	116.1	116.4	-11.2	-22.7
ALLC0709	6/13/2024 10:20	55.4	37.5	0.6	6.5	115.3	115.3	-28.6	-35.5
ALLC0734	6/12/2024 11:03	56.8	40.4	0.9	1.9	112.7	112.8	-57.6	-57.6
ALLC0736	6/12/2024 11:33	49.4	37.9	0.0	12.7	105.2	105.4	-18.0	-18.0
ALLC0737	6/12/2024 11:38	55.8	39.1	0.9	4.2	107.2	108.4	-63.2	-63.2
ALLC0738	6/10/2024 9:39	51.8	48.2	0.0	0.0	82.8	82.9	-78.6	-78.6
ALLC0739	6/13/2024 9:15	47.2	34.7	3.5	14.6	76.0	75.5	-86.4	-86.5
ALLC0740	6/13/2024 9:35	51.8	42.2	0.0	6.0	123.7	125.5	-4.6	-7.5
ALLC0743	6/10/2024 9:44	52.9	47.1	0.0	0.0	111.3	111.5	-76.7	-76.7
ALLC0744	6/13/2024 9:09	56.6	43.4	0.0	0.0	80.0	80.0	-79.2	-79.3
ALLC0745	6/13/2024 9:42	40.3	36.9	0.0	22.8	117.0	117.0	-2.5	-2.5
ALLC0746	6/13/2024 9:20	54.1	45.9	0.0	0.0	111.9	112.1	-85.5	-85.5
ALLC0747	6/17/2024 10:11	50.5	40.5	0.9	8.1	119.6	119.7	-71.6	-71.6
ALLC0748	6/17/2024 10:04	58.7	39.1	0.6	1.6	110.1	111.1	-74.7	-74.7
ALLC0749	6/17/2024 9:51	54.3	37.7	0.2	7.8	118.6	119.1	-37.8	-45.3
ALLC0775	6/14/2024 13:20	23.6	19.8	8.2	48.4	113.9	114.6	-63.3	-63.7
ALLC0775	6/19/2024 13:59			NSPS/E	IEG Corrective Action	n Completed (CAC)- Well decommission	Led	
ALLC0776	6/13/2024 12:40	2.2	5.0	15.8	77.0	81.8	81.6	-74.3	-75.0
ALLC0776	6/19/2024 14:09					on Completed (CAC)- Well decommission		
ALLC0777	6/6/2024 12:06	46.9	37.2	0.0	15.9	117.1	115.9	-4.7	-2.7
ALLC0778	6/7/2024 8:56	48.7	34.5	0.2	16.6	100.6	99.6	-25.1	-8.0
ALLC0779	6/3/2024 12:00	55.8	44.2	0.0	0.0	107.8	109.3	-1.9	-3.9
ALLC0780	6/3/2024 11:56	45.5	36.2	0.0	18.3	106.2	103.9	-2.0	-1.1
ALLC0781	6/3/2024 12:14	50.3	39.6	0.0	10.1	110.5	110.5	-0.8	-0.8
ALLC0783	6/7/2024 9:18	56.7	38.9	0.0	4.4	115.6	115.8	-0.8	-0.8
ALLC0784	6/7/2024 9:29	27.4	26.1	0.0	46.5	96.6	96.6	-0.8	-0.7
ALLC0785	6/7/2024 9:05	47.9	34.5	0.9	16.7	107.4	105.3	-6.7	-3.2
ALLC0786	6/7/2024 9:14	58.5	38.5	0.0	3.0	120.0	120.3	-3.3	-4.6
ALLC0787	6/3/2024 11:22	54.7	40.3	0.0	5.0	109.9	110.1	-7.7	-8.7
ALLC0788	6/3/2024 11:28	56.1	39.3	0.1	4.5	108.5	108.5	-56.7	-57.1
ALLC0789	6/3/2024 11:49	55.8	41.0	0.0	3.2	116.6	117.8	-2.5	-4.0
ALLC0790	6/6/2024 11:51	48.5	36.2	1.9	13.4	103.3	103.1	-57.5	-59.6
ALLC0791	6/6/2024 11:32	49.0	41.0	0.1	9.9	103.9	103.9	-42.4	-42.5
ALLC0792	6/6/2024 11:36	44.3	37.7	0.0	18.0	112.6	111.7	-7.2	-3.5
ALLC0793	6/17/2024 11:03	43.8	34.5	0.0	21.7	108.4	108.5	-81.1	-75.7
ALLC0794	6/12/2024 8:59	56.0	39.9	0.0	4.1	115.1	115.1	-57.5	-53.6
ALLC0796	6/6/2024 11:15	50.3	44.8	0.0	4.9	129.1	129.1	-27.0	-29.7
ALLC0797	6/6/2024 11:10	47.5	51.1	0.0	1.4	111.5	111.5	-1.1	-1.1
ALLC0798	6/6/2024 11:27	42.7	45.2	0.0	12.1	125.1	125.0	-0.5	-0.5
ALLC0800	6/17/2024 11:08	52.6	42.2	0.0	5.2	110.9	111.1	-1.6	-2.4
ALLC0801	6/11/2024 10:13	50.3	49.7	0.0	0.0	124.5	124.5	-6.0	-8.4
ALLC0803	6/3/2024 11:16	43.3	38.1	0.7	17.9	113.0	113.1	-1.2	-1.2
ALLC0804	6/3/2024 11:12	52.7	43.1	0.0	4.2	106.2	106.6	-1.7	-2.3
ALLC0805	6/12/2024 11:42	48.5	36.6	0.0	14.9	92.4	92.5	-1.4	-1.3
ALLC0806	6/12/2024 11:45	43.4	36.6	0.0	20.0	106.3	106.4	-1.0	-1.0
ALLC0807	6/12/2024 11:50	27.1	29.2	2.2	41.5	105.1	104.2	-3.9	-3.8
ALLC0811	6/17/2024 10:38	48.4	36.5	0.0	15.1	98.8	98.8	-1.0	-1.0
ALLC0812	6/6/2024 11:56	49.1	40.7	0.0	10.2	111.3	112.6	-0.9	-1.5
ALLC0812	6/6/2024 11:56	49.1	40.7	0.0	10.2	111.3	112.6	-0.9	-1.5

ALLC0813	6/12/2024 10:31	36.6	28.4	0.0	35.0	101.9	101.9	-1.1	-1.1
ALLC0814	6/5/2024 9:55	52.6	37.5	0.4	9.5	122.9	123.8	-1.0	-2.6
ALLC0815	6/13/2024 10:46	48.9	37.6	0.3	13.2	110.2	110.3	-21.8	-21.8
ALLC0816	6/14/2024 13:10	57.9	40.0	0.8	1.3	91.9	92.0	-80.1	-80.1
ALLC0817	6/13/2024 10:34	54.0	39.5	0.3	6.2	119.0	119.1	-10.4	-15.3
ALLC0819	6/12/2024 9:13	55.0	45.0	0.0	0.0	106.2	107.1	-3.6	-4.8
ALLC0820	6/12/2024 9:17	51.5	39.5	1.8	7.2	103.9	104.3	-55.4	-55.4
ALLC0821	6/17/2024 13:50	51.0	37.6	0.3	11.1	105.0	105.0	-22.5	-32.8
ALLC0822	6/19/2024 11:21	10.4	64.8	0.5	24.3	125.5	126.7	-1.6	-24.6
ALLC0822	6/19/2024 11:25	11.4	65.5	0.3	22.8	126.9	126.8	-26.2	-8.0
ALLC0826	6/12/2024 11:38	51.7	39.3	0.0	9.0	101.9	101.9	-82.9	-83.2
ALLC0827	6/12/2024 9:22	57.3	42.7	0.0	0.0	92.7	92.7	-56.8	-57.4
ALLC0828	6/12/2024 10:57	60.7	36.9	1.1	1.3	86.2	86.2	-67.3	-67.3
ALLC0828	6/19/2024 14:23)- Well decommission		
ALLC0830	6/13/2024 9:34	56.5	37.8	1.4	4.3	106.6	106.5	-80.3	-80.3
ALLC0831	6/12/2024 11:23	29.6	31.3	0.0	39.1	100.9	101.0	-0.8	-0.8
ALLC0832	6/6/2024 11:41	46.6	40.9	0.0	12.5	125.4	125.5	-8.8	-9.2
ALLC0833	6/6/2024 11:04	34.5	35.5	0.3	29.7	114.6	114.5	-0.2	-0.2
ALLC0833									
	6/13/2024 11:54	56.4	43.6	0.0	0.0	124.2	124.3	-85.1	-85.2
ALLCO835	6/13/2024 11:50	54.7	44.9	0.0	0.4	124.5	124.5	-85.1	-85.2
ALLC0836	6/13/2024 11:46	52.5	45.9	0.0	1.6	129.8	129.9	-84.7	-84.7
ALLC0837	6/13/2024 11:42	54.9	45.0	0.0	0.1	127.6	127.4	-84.8	-85.4
ALLC0838	6/14/2024 11:04	44.7	39.6	2.8	12.9	79.1	79.0	-56.3	-58.2
ALLC0839	6/14/2024 10:55	41.9	42.1	0.0	16.0	129.7	128.6	-6.2	-4.5
ALLC0840	6/14/2024 10:47	39.7	39.5	0.0	20.8	123.6	123.6	-2.8	-2.8
ALLC0841	6/19/2024 11:10	65.6	32.3	0.3	1.8	77.1	77.1	-83.8	-83.8
ALLC0842	6/17/2024 12:55	37.4	32.8	0.4	29.4	113.5	113.5	-4.9	-4.0
ALLC0843	6/13/2024 9:11	50.2	36.0	0.8	13.0	75.0	75.1	-9.4	-14.0
ALLC0844	6/13/2024 9:14	40.2	32.7	0.5	26.6	86.0	86.1	-7.5	-5.3
ALLC0845	6/13/2024 9:18	58.9	37.6	1.3	2.2	80.8	80.8	-76.6	-76.6
ALLC0846	6/17/2024 10:20	49.8	37.5	2.2	10.5	74.9	74.9	-71.4	-71.1
ALLC0847	6/12/2024 11:51	44.4	32.2	2.1	21.3	114.2	114.3	-3.2	-3.2
ALLC0848	6/12/2024 11:55	35.8	31.3	0.6	32.3	105.2	105.2	-14.1	-14.2
ALLC0849	6/12/2024 12:02	30.3	30.3	0.4	39.0	119.2	119.6	-25.0	-25.1
ALT20001	6/18/2024 11:04	45.2	38.3	0.6	15.9	103.3	103.5	-0.8	-0.5
ALT20003	6/10/2024 9:31	52.9	42.0	0.2	4.9	123.1	123.6	-27.4	-41.0
ALT20004	6/10/2024 9:44	46.1	39.5	0.1	14.3	105.7	105.9	-5.2	-5.2
ALT20005	6/10/2024 9:49	49.8	43.2	0.0	7.0	108.8	108.9	-3.1	-3.1
ALT20006	6/10/2024 9:40	53.2	41.6	0.0	5.2	123.4	123.8	-7.3	-12.5
ALT20007	6/10/2024 9:35	49.3	39.0	0.3	11.4	106.2	106.5	-9.6	-11.5
ALT20008	6/5/2024 10:56	35.5	32.8	3.0	28.7	124.1	122.9	-2.8	-2.6
ALT20009	6/5/2024 11:01	53.0	42.1	0.0	4.9	129.1	129.1	-35.8	-40.2
ALT20010	6/17/2024 10:09	47.5	40.9	0.0	11.6	128.5	128.5	-3.0	-2.9
ALT20011	6/5/2024 11:08	43.9	38.6	0.0	17.5	129.3	129.2	-5.7	-4.6
ALT20012	6/5/2024 11:14	48.3	40.9	0.0	10.8	133.3	132.6	-2.0	-1.2
ALT20012	6/5/2024 11:14					CO was 40 ppm			
ALT20013	6/5/2024 11:23	44.6	41.2	0.0	14.2	132.4	132.4	-1.1	-1.0
ALT20014	6/5/2024 11:27	44.0	39.5	0.0	16.5	117.7	117.7	-0.9	-0.9
ALT20015	6/5/2024 11:32	48.3	40.0	0.1	11.6	121.5	121.4	-4.5	-3.3
ALT20016	6/10/2024 9:26	54.1	43.9	0.1	1.9	126.3	126.5	-10.0	-10.1
ALT20017	6/10/2024 9:21	49.5	43.2	0.4	6.9	135.0	135.7	-6.0	-7.4
ALT20018	6/5/2024 9:33	54.4	44.4	0.0	1.2	132.9	132.9	-5.3	-5.7
ALT20018	6/5/2024 9:34	54.0	44.4	0.0	1.6	132.9	132.9	-6.1	-6.1
ALT20018	6/5/2024 9:40	00		J		CO was 20 ppm	.02.0	L	<u> </u>
ALT20018	6/10/2024 9:55	53.3	43.8	0.0	2.9	132.3	132.3	-4.7	-4.9
ALT20018	6/10/2024 10:00	55.5	70.0	0.0	2.0	CO was 20 ppm	102.0	1 7.1	4.0
ALT20018 ALT20018	6/18/2024 10:00	51.3	12.7	0.2	4.8	132.5	132.5	-6.5	-6.5
		01.0	43.7	U.Z	4.0		132.3	-6.5	-0.0
ALT20018	6/18/2024 10:50	E4.0	45.0	0.0	0.0	CO was 20 ppm	420.0	0.4	0.0
ALT20019	6/5/2024 10:03	54.6	45.2	0.0	0.2	132.4	132.3	-3.1	-3.2
ALT20019	6/5/2024 10:05	54.4	45.2	0.0	0.4	132.4	132.4	-3.5	-3.5

ATTROOF 6000000 102	ALT20019	6/5/2024 10:10		CO was 20 ppm							
ALTERIOR 0190204 1010 ALTERIOR 9 0100204 1010			53.5	44.0	0.0	2.5		132.1	3.1	3.4	
ATTOONS 0180206 1900 993 4.93 9.0 17.0 1922 1923 4.6 4.6			33.3	44.0	0.0	2.3	L	132.1	-5.1	-5.4	
ALT DEPT CHINGSE AT 188 DEP DEP CHINGSE AT 188 DEP DEP CHINGS AT 188 DEP DEP DEP CHINGS AT 188 DEP			40.0	40.0	0.0	7.0		400.0	1.0	4.0	
ATTROCO			49.0	43.0	0.2	7.0		132.3	-4.0	-4.0	
ALTOWER 940004 (210) 473 416 0.01 90.8 1161 1162 20.5 1-83. ALTOWER 94004 (210) 47.7 48.7 48.8 0.1 17.4 1162 1166 4.5 1-7.6 ALTOWER 94004 (210) 60.8 42.1 0.0 0.0 0.7 100.7 100.7 100.7 -0.1 -0.0 ALTOWER 94004 (210) 60.8 42.1 0.0 0.0 1.0 100.7 100.7 100.7 -0.1 -0.0 ALTOWER 94004 (210) 60.8 42.1 0.0 0.8 41.0 0.0 0.1 100.7 100.7 100.7 -0.1 -0.0 ALTOWER 940004 (210) 60.8 42.1 0.0 0.8 41.0 0.0 0.1 100.7 100.7 100.7 -0.1 -0.0 ALTOWER 940004 (210) 60.2 42.8 0.1 0.3 9.0 100.8 100.0 1.0 1.0 -0.1 -0.0 ALTOWER 940004 (210) 60.2 42.8 0.1 0.3 9.0 100.8 100.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1							1		Ι .	T .	
### ATTORIZES 0840004 (2) PT 497 42.6 0.7 7.4 1517 1518 4.8 4.00 ### ATTORIZES 0840004 (2) PT 497 44.6 0.7 7.4 1517 1720 3.7 7.6 ### ATTORIZES 0840004 (2) PT 55.1 44.2 0.2 0.5 17.7 17.7 17.7 1.07 2.1 4.0 ### ATTORIZES 0840004 (2) PT 55.6 44.1 0.0 0.1 12.7 150.7 2.1 4.0 ### ATTORIZES 0840004 (3) PT 55.2 43.0 0.1 13.0 17.7 150.7 2.1 4.0 ### ATTORIZES 0840004 (3) PT 55.2 43.0 0.1 13.0 17.7 17.7 1.1 5.1 4.0 ### ATTORIZES 0840004 (3) PT 4.5 4.0 0.1 18.0 17.1 17.1 5.1 5.1 4.3 ### ATTORIZES 0850004 (3) PT 55.4 43.0 0.1 18.0 17.1 17.1 5.1 5.1 4.3 ### ATTORIZES 0.8 0.8 55.8 43.5 0.0 1.0 12.0 10.5 7.7 1.0 ### ATTORIZES 0.8 0.8 5.8 43.5 0.0 1.0 12.0 10.5 7.7 1.0 ### ATTORIZES 13.1 56.5 3.0 1.0 12.0 10.5 7.7 1.0 ### ATTORIZES 0.8 5.6 3.0 1.0 12.0 10.5 7.7 1.0 ### ATTORIZES 0.8 5.6 3.0 1.2 2.5 7.8 7.8 4.4 3.0 ### ATTORIZES 0.8 5.6 3.0 1.2 2.5 7.8 7.8 4.4 4.2 4.4 ### ATTORIZES 0.8 5.6 3.0 1.2 2.5 7.8 7.8 4.4 4.3 4.4 ### ATTORIZES 0.8 5.6 3.0 1.2 2.5 7.8 7.8 4.4 4.3 4.4 ### ATTORIZES 0.8 5.6 3.0 1.2 2.5 7.8 7.8 4.4 4.3 4.4 ### ATTORIZES 0.8 5.6 3.0 1.2 2.5 7.8 7.8 4.4 4.3 4.4 ### ATTORIZES 0.8 5.6 3.0 1.2 2.5 7.8 7.8 7.8 4.4 4.0 ### ATTORIZES 0.8 5.6 3.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 ### ATTORIZES 0.8 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ### ATTORIZES 0.0											
ALTRODIA 040024 127 511 442 0.2 4.5 1104 1106 4.5 7.4											
ALTERIOR 040004 1278 52 2 44.1 0.0 3.7 1789 172.0 -3-7 -7.0 ALTERIOR 040004 1376 55.8 44.1 0.0 0.1 126.7 122.7 2.1 0.0 ALTERIOR 040004 1376 53.2 42.8 0.1 3.8 177.8 177.5 177.5 -1.0 -1.4 ALTERIOR 040004 1374 65.1 42.0 0.1 1.8 177.1 177.1 6.1 4.3 ALTERIOR 040004 1374 55.1 42.0 0.1 1.8 177.1 177.1 6.1 4.3 ALTERIOR 040004 130.8 55.5 43.5 0.0 1.0 1.2 125.0 125.3 -7.1 -1.0 ALTERIOR 040004 130.8 55.5 43.5 0.0 1.0 125.0 125.3 -7.1 -1.0 ALTERIOR 040004 130.8 55.5 43.5 0.0 1.0 125.0 125.3 -7.1 -1.0 ALTERIOR 040004 130.8 55.5 43.5 0.0 1.0 125.0 125.3 -7.1 -1.0 ALTERIOR 040004 130.8 55.5 43.5 0.0 1.0 125.0 125.3 -7.1 -1.0 ALTERIOR 040004 130.8 55.5 43.5 0.0 1.0 125.0 125.3 -7.1 -1.0 ALTERIOR 040004 130.8 55.5 43.5 0.0 1.0 125.0 125.3 -7.1 -1.0 ALTERIOR 040004 130.8 55.5 43.5 0.0 1.0 1.0 125.0 125.3 -7.1 -1.0 ALTERIOR 040004 130.8 55.5 43.5 0.0 1.0 1.0 125.0 125.3 -7.1 -1.0 ALTERIOR 040004 130.8 55.5 43.5 0.0 0.1 1.0 1.0 1.0 1.0 ALTERIOR 040004 130.8 55.5 43.5 0.1 0.1 0.0 0.1 0.0 0.0 ALTERIOR 040004 130.8 55.5 43.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 ALTERIOR 040004 130.8 55.5 43.5 0.0	ALT20022	6/4/2024 12:17	49.7	42.8	0.1	7.4	113.7	113.8			
ALTRODOS 0.4020415101 S58	ALT20023	6/4/2024 12:27	51.1	44.2	0.2	4.5	119.4	119.6	-9.5		
ALTODOS 0442024 5101 532 428 011 358 1278 1279 1.10 1.14 1.4 1.4 0.3 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.8 1.7 1.8 1.7 1.8 1.8 1.7 1.8 1.7 1.8		6/4/2024 12:38	52.2	44.1		3.7	126.9	127.0	-3.7		
ALTOCOT 0402041314 S51		6/4/2024 13:01	55.8	44.1	0.0	0.1	120.7	120.7		-6.0	
ALTRODOR 6950241032 514 420 08 558 1253 1254 544 4-3	ALT20026	6/4/2024 13:10	53.2	42.8	0.1	3.9	127.8	127.9	-1.0	-1.4	
ALTACOGN 0600024 1034 56.5 63.5 0.0 1.6 125.0 125.3 7.1 -10.6	ALT20027	6/4/2024 13:14	55.1	43.0	0.1	1.8	117.1	117.1	-8.1	-9.3	
ALTADOS 0/19/2024 11:31 56.5 36.9 1.4 5.2 112.8 113.2 49.8 40.8 40.8 ALTADOS 0/19/2024 11:31 56.5 36.9 1.4 30.0 0.4 2.2 76.6 76.6 44.3 44.3 44.3 44.3 44.3 44.3 44.3 4	ALT20028	6/5/2024 10:32	51.4	42.0	0.8	5.8	125.3	125.4	-5.4	-6.3	
ALTAOGS 01820261120 58.4 39.9 0.4 2.2 78.8 78.6 78.6 44.3 44.3	ALT20029	6/5/2024 10:36	55.5	43.5	0.0	1.0	125.0	125.3	-7.1	-10.8	
ALTA0056 61802024 11:20 55.7 38.5 1.2 3.8 108.0 108.0 108.4 60.8 60.9 ALTA0056 81802024 10:03 54.4 38.5 1.8 5.5 80.5 60.5 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77	ALTA0003	6/18/2024 11:31	56.5	36.9	1.4	5.2	112.8	113.2	-80.8	-80.8	
### ATA0066 6182024 10.03 56.4 38.5 1.6 5.5 5.5 90.5 90.5 77.1 77.1 77.1 ### ATA0067 6172024 12.40 58.5 40.0 0.2 1.3 106.2 12.2 77.1 77.1 77.1 77.1 77.1 77.1 77	ALTA0054	6/18/2024 11:25	58.4	39.0	0.4	2.2	78.6	78.6	-44.3	-44.3	
### ALTAQOS** 61772024*1240* 68.5* 40.0* 0.2* 15.3* 126.2* 126.2* 7.8.1* 7.8.1* 1.76.1* ### ALTAQOS** 61772024*1240* 45.84 40.9* 0.0* 0.7* 176.3* 126.4* 40.5* 40	ALTA0056	6/18/2024 11:20	56.7	38.5	1.2	3.6	108.0	108.4	-60.8	-60.9	
ALTA0087 0/17/2024 14:04 58.4 40.9 0.0 0.7 120:3 128:4 -80.5 80.5 ALTA0108 0/17/2024 14:04 58.4 40.9 0.0 0.7 120:3 128:4 -80.5 80.5 ALTA0108 0/17/2024 10:00 55.3 42:1 0.0 2.8 10:8 86.7 86.7 .5 .4 .5 .7 .4 ALTA021 8/3/2024 11:08 55.5 42:1 0.0 2.8 10:8 .5 10:12.8 .7 .5 .4 .7 .4 ALTA0483 0/17/2024 10:40 50.6 30.3 0.9 0.2 12:1.0 112.0 113.0 .81:3 82.4 ALTA0483 0/17/2024 10:40 50.6 30.3 0.9 0.2 12:1.0 112.4 -7.5 .5 .76 .4 ALTA0483 0/17/2024 10:40 50.6 30.3 0.9 0.2 12:1.0 122.4 .7.5 .5 .76 .4 ALTA0489 0/17/2024 10:40 50.6 30.3 0.9 0.2 12:1.0 122.4 .7.5 .5 .76 .4 ALTA0491 0/13/2024 0.0 55.5 30.2 2.3 0.0 115.9 117.9 .70.5 .0 .0 .0 ALTA0491 0/13/2024 11:1 58:1 38:4 0.8 4.7 110.7 1111.0 .96.9 .9 .66 .8 ALTA0517 0/12/2024 11:1 58:8 38:3 3.0 5 4.4 1111.4 111.4 171.4 .73.2 .73.2 .73.2 ALTA0518 0/18/2024 11:17 56.0 42.2 0.2 10.8 8.0 8.0 8. 80.8 .80.8 .80.5 .80.3 .3 .2 ALTA0519 0/18/2024 11:17 56.0 42.2 0.2 10.8 8.0 8.0 8.0 8.0 8.8 .86.5 .80.5 .80.3 ALTA0541 0/13/2024 11:3 54:1 35:8 0.9 112.1 118.8 118.9 .24.2 .25.7 ALTA0548 0/17/2024 11:3 54:2 35:8 0.9 12:1 118.8 118.9 .24.2 .25.7 ALTA0549 0/17/2024 11:3 54:2 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA0579 0/14/2024 11:3 54:2 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA0579 0/14/2024 11:3 54:2 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA0579 0/14/2024 11:3 54:2 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA0579 0/14/2024 11:3 54:2 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA0679 0/14/2024 11:3 54:2 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA0679 0/14/2024 11:3 54:2 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA0679 0/14/2024 11:3 54:2 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA00679 0/14/2024 11:3 54:2 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA00679 0/14/2024 11:3 54:4 40.6 0.2 5.0 86.5 88.3 .40.0 .40.7 ALTA00680 0/14/2024 11:3 56.4 31.4 38.5 34.2 59.9 84.0 .40.2 1.19.9 ALTA00690 0/14/2024 11:3 56.4 31.4 38.5 34.2 59.9 84.0 .40.2 1.19.9 ALTA00690 0/14/2024 11:3 56.4 38.4 38.5 37.7 4.5 5.1 11.6 0.4 11.6 3.0 3.8 3.8 3.3 3.3 3.3 3.7 7 86.5 86.8 3.5 3.5 3.8 3.3 3.3 3.3	ALTA0059	6/18/2024 10:03	54.4	38.5	1.6	5.5	90.5	90.5	-77.1	-77.1	
ALTADO108	ALTA0087	6/17/2024 12:40	58.5	40.0	0.2	1.3	126.2	126.2	-78.1	-78.1	
ALTA0201 0/14/2024 9:10 55.3 42.1 0.0 2.0 100.6 108.5 467.5 467.4 47.4 47.4 47.4 47.4 47.4 47.4 47.	ALTA0087	6/17/2024 14:04	58.4	40.9	0.0	0.7	126.3	126.4	-80.5	-80.5	
ALTADATZ 6/3/2024 11:08 55.5 40.5 0.0 4.0 112.9 113.0 -81.3 -82.4 ALTADASS 0/17/2024 10:09 0.0 0.0 30.3 0.9 0.2 12:19 122.4 -75.5 -76.4 ALTADASS 6/17/2024 12:9 47.9 41.0 0.9 10.2 123.9 123.8 7-79.9 41.0 ALTADASS 6/17/2024 12:19 56.3 36.2 2.3 6.0 115.9 117.9 -70.5 -80.0 ALTADASS 6/17/2024 11:11 56.8 38.3 0.5 4.4 111.4 111.4 -70.5 2 73.2 ALTADSS 6/12/2024 11:21 56.8 38.3 0.5 4.4 111.4 111.4 7-32.2 73.2 ALTADSS 6/12/2024 11:21 56.8 38.3 0.5 4.4 111.4 111.4 7-32.2 73.2 ALTADSS 6/12/2024 11:21 56.8 38.3 0.5 4.4 111.4 111.4 7-32.2 73.2 ALTADSS 6/14/2024 11:21 56.8 38.3 0.5 4.4 111.4 111.4 7-32.2 73.2 ALTADSS 6/14/2024 11:21 56.8 38.3 0.5 4.4 111.4 111.4 7-32.2 73.2 ALTADSS 6/14/2024 11:23 56.8 38.3 0.5 12.1 18.8 118.9 18.9 7.0 1.2 7.5 7.5 7.0 ALTADSS 6/14/2024 11:23 56.0 42.2 0.2 1.6 80.8 80.8 80.8 80.8 80.5 80.5 80.5 80.5	ALTA0108	6/18/2024 9:54	54.7	40.1	0.6	4.6	86.7	86.7	-5.5	-7.4	
ALTA0483 6/17/2024 10:29 47:9 41:0 0.9 10:2 12:19 12:24 7:55 7:64 4.0 ALTA0488 6/17/2024 12:29 47:9 41:0 0.9 10:2 12:89 12:88 7:79.9 48:0 ALTA0488 6/17/2024 12:39 47:9 41:0 0.9 10:2 12:89 12:88 7:79.9 48:0 ALTA0508 6/12/2024 11:15 66:1 38:4 0.8 4.7 11:0.7 11:10 -60:9 46:8 ALTA0517 6/12/2024 11:21 56:8 38:3 36:2 2.3 80.0 11:59 11:17 9 7:79.5 48:0 ALTA0518 6/12/2024 11:21 56:8 38:3 36:2 0.5 4.4 11:1.4 11:1.4 7:3.2 7:3.2 ALTA0519 6/12/2024 11:21 56:8 38:3 36:2 0.5 4.4 11:1.4 11:1.4 7:3.2 7:3.2 ALTA0529 6/14/2024 11:17 56:0 42:2 0.2 1:6 80:8 80:8 80:8 80:8 80:8 80:8 80:8 80	ALTA0201	6/14/2024 9:10	55.3	42.1	0.0	2.6	108.6	108.5	-87.5	-87.4	
ALTA0488 6/17/2024 12:29 47.9 41.0 0.9 10.2 128.9 128.8 7-79.9 -81.0 ALTA0491 6/19/2024 91.0 53.5 36.2 2.3 8.0 115.9 117.9 7-70.5 -80.0 ALTA0491 6/19/2024 11:15 66.1 38.4 0.8 4.7 110.7 1111.0 -86.9 -66.8 ALTA0517 6/12/2024 11:15 56.1 38.4 0.8 4.7 110.7 1111.0 -86.9 -66.8 ALTA0518 6/18/2024 11:21 56.8 38.3 0.5 4.4 111.4 111.4 7.72.2 7.32 ALTA0518 6/18/2024 11:21 56.8 38.3 0.5 4.4 111.4 111.4 7.72.2 7.32 ALTA0518 6/18/2024 11:21 56.0 42.2 0.2 1.6 80.8 80.8 -80.8 -86.5 -86.0 ALTA0529 6/14/2024 11:23 54.8 49.2 0.2 1.6 80.8 80.8 80.8 -86.5 -86.0 ALTA0546 6/19/2024 19:3 54.2 40.6 0.2 1.6 80.8 10.8 -80.8 -80.5 -80.6 ALTA0545 6/19/2024 11:33 54.2 40.6 0.2 5.0 86.5 88.3 -5.0 1.4 4 9.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ALTA0472	6/3/2024 11:08	55.5	40.5	0.0	4.0	112.9	113.0	-81.3	-82.4	
ALTAGA91 6/13/2024 9.30 53.5 36.2 2.3 8.0 115.9 117.9 -79.5 -80.0 ALTAGA93 6/12/2024 11.15 56.1 38.4 0.8 4.7 110.7 111.0 -66.9 -66.8 ALTAGA93 6/12/2024 11.21 58.8 38.3 0.5 4.4 111.4 111.4 -73.2 .73.2 ALTAGA93 6/18/2024 11.40 55.5 39.9 0.0 4.6 122.0 122.1 -3.0 -3.2 ALTAGA93 6/18/2024 11.40 55.5 39.9 0.0 4.6 122.0 122.1 -3.0 -3.2 ALTAGA93 6/18/2024 11.17 56.0 42.2 0.2 1.6 80.8 80.8 -86.5 -86.0 ALTAGA93 6/18/2024 12.17 56.0 42.2 0.2 1.6 80.8 80.8 -86.5 -86.0 ALTAGA94 6/18/2024 11.17 56.0 42.2 0.2 1.6 80.8 80.8 -86.5 -86.0 ALTAGA94 6/18/2024 12.35 34.8 49.2 0.0 16.0 125.0 124.9 -1.9 -1.9 -1.9 ALTAGA94 6/18/2024 12.35 34.8 49.2 0.0 16.0 125.0 124.9 -1.9 -1.9 -1.9 ALTAGA95 6/18/2024 12.35 54.2 40.6 0.2 5.0 86.5 88.3 -5.0 -14.4 ALTAGA95 6/18/2024 11.23 54.7 49.9 0.0 8.4 95.7 95.9 -85.3 -40.0 -40.7 ALTAGA98 6/18/2024 10.53 35.8 28.4 3.8 34.2 93.9 94.0 -1.6 2 -11.9 ALTAGA98 6/18/2024 10.53 35.8 28.4 3.8 34.2 93.9 94.0 -1.6 2 -11.9 ALTAGA94 6/18/2024 10.5 50.0 36.5 1.4 12.1 125.6 125.6 45.3 -53.3 -53.3 ALTAG89 6/18/2024 10.5 50.0 36.5 1.4 12.1 125.6 125.6 +53.3 -53.3 ALTAG89 6/18/2024 10.5 50.0 36.5 1.4 12.1 125.6 125.6 +53.3 -53.3 ALTAG89 6/18/2024 10.5 50.0 36.5 1.4 12.1 125.6 125.6 +53.3 -53.3 ALTAG89 6/18/2024 10.5 50.0 36.5 1.4 12.1 125.6 125.6 +53.3 -53.3 ALTAGA94 6/18/2024 10.5 50.0 36.5 1.4 12.1 125.6 125.6 +53.3 -53.3 ALTAG89 6/18/2024 10.5 50.0 36.5 1.4 12.1 12.1 125.6 125.6 +53.3 -53.3 ALTAG69 6/18/2024 10.5 50.0 36.5 1.4 12.1 12.1 125.6 125.6 +53.3 -53.3 ALTAG69 6/18/2024 10.5 50.0 36.5 1.4 12.1 12.1 125.6 125.6 +53.3 -53.3 ALTAG69 6/18/2024 10.5 50.0 36.5 1.4 12.1 12.1 125.6 125.6 +53.3 -53.3 ALTAG69 6/18/2024 10.5 50.0 36.5 1.4 12.1 12.1 12.1 12.1 12.1 12.1 12.1	ALTA0483	6/17/2024 10:40	50.6	39.3	0.9	9.2	121.9	122.4	-75.5	-76.4	
ALTA0508 6/12/2024 11:15 56.1 38.4 0.8 4.7 110.7 111.0 46.9 46.8 46.8 ALTA0517 6/12/2024 11:21 56.8 38.3 0.5 4.4 111.4 111.4 173.2 -73.2 ALTA0518 6/18/2024 11:17 56.0 39.9 0.0 4.6 122.0 122.1 3.0 -3.2 ALTA0518 6/18/2024 11:17 56.0 42.2 0.2 1.8 80.8 80.8 46.5 -66.0 ALTA0518 6/18/2024 11:17 56.0 42.2 0.2 1.8 80.8 80.8 46.5 -66.0 ALTA0518 6/18/2024 11:17 56.0 42.2 0.2 1.8 80.8 80.8 46.5 -66.0 ALTA0518 6/18/2024 11:17 56.0 42.2 0.2 1.8 80.8 80.8 46.5 -66.0 ALTA0518 6/18/2024 12:13 54.8 49.2 0.0 16.0 125.0 124.9 -1.9 -1.9 -1.9 ALTA0518 6/18/2024 11:33 54.2 40.6 0.2 5.0 86.5 88.3 5.0 -14.4 ALTA0578 6/18/2024 11:33 54.2 40.6 0.2 5.0 86.5 88.3 -5.0 -14.4 ALTA0578 6/18/2024 11:33 54.2 40.6 0.2 5.0 86.5 88.3 -5.0 -14.4 ALTA0578 6/18/2024 10:3 50.2 37.1 0.8 11.9 105.2 106.3 40.0 40.7 AltA0579 6/18/2024 10:3 30.6 28.4 38 34.2 93.9 94.0 -16.2 111.9 ALTA0579 6/18/2024 10:5 33.6 28.4 38 34.2 93.9 94.0 -16.2 -111.9 ALTA0579 6/18/2024 10:5 33.8 28.4 38.3 4.2 93.9 94.0 -16.2 -111.9 ALTA0612 6/18/2024 10:5 50.0 36.5 1.4 12.1 125.6 125.6 53.3 -53.3 ALTA0612 6/18/2024 10:5 50.0 36.5 1.4 12.1 125.6 125.6 53.3 -53.3 ALTA0612 6/18/2024 10:5 50.4 39.5 1.8 7.3 128.8 128.8 49.2 49.2 49.2 ALTA0624 6/17/2024 11:5 50.4 39.5 1.8 7.3 128.8 128.8 49.2 49.2 49.2 ALTA0639 6/18/2024 10:15 50.4 39.5 1.8 7.3 128.8 128.8 49.2 49.2 49.2 ALTA0639 6/18/2024 10:15 50.4 39.1 0.6 0.9 115.6 116.3 30.8 -35.8 ALTA0639 6/18/2024 10:15 50.4 39.1 0.6 0.9 115.6 116.3 30.8 -35.8 ALTA0639 6/18/2024 10:15 50.4 39.1 0.6 0.9 115.6 116.3 30.8 -35.8 ALTA0639 6/18/2024 10:15 50.4 39.1 1.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0664 6/18/2024 10:15 50.4 30.4 10.6 0.9 115.6 116.3 30.8 -35.8 ALTA0639 6/18/2024 10:15 50.4 30.4 10.6 0.9 115.6 116.3 30.8 -35.8 ALTA0639 6/18/2024 10:15 50.4 30.4 10.6 0.9 115.6 116.3 30.8 -35.8 ALTA0639 6/18/2024 10:15 50.4 30.4 10.6 0.9 115.6 116.3 30.8 -35.8 ALTA0639 6/18/2024 10:15 50.4 30.4 10.5 10.4 11.5 0.0 7.5 131.8 131.7 -29.2 -29.2 1.8 1.7 -41.1 11.1 1.0 1.0 1.1 1.1 1.0 1.1 1.1 1.1	ALTA0488	6/17/2024 12:29	47.9	41.0	0.9	10.2	128.9	128.8	-79.9	-81.0	
ALTA0517 6/12/2024 11:21 56.8 38.3 0.5 4.4 111.4 111.4 -73.2 7:3.2 7:3.2 ALTA0518 6/18/2024 11:40 55.5 39.9 0.0 4.6 122.0 122.1 -3.0 -3.2 ALTA0528 6/14/2024 11:17 56.0 42.2 0.2 1.6 80.8 80.8 -86.5 -86.0 ALTA0528 6/14/2024 11:17 56.0 42.2 0.2 1.6 80.8 80.8 -86.5 -86.0 ALTA0528 6/14/2024 11:17 56.0 42.2 0.2 1.6 80.8 80.8 -86.5 -86.0 ALTA0528 6/14/2024 11:3 56.0 42.2 0.2 1.6 80.8 80.8 -86.5 -86.0 ALTA0528 6/14/2024 11:3 56.0 42.2 0.2 1.6 80.8 80.8 -86.5 -86.0 ALTA0528 6/14/2024 12:35 54.8 49.2 0.0 16.0 125.0 124.9 1.9 1.9 1.9 1.9 ALTA0551 6/18/2024 12:35 54.2 40.6 0.2 5.0 86.5 88.3 -5.0 1.44.4 ALTA0545 6/14/2024 11:3 41.7 49.9 0.0 84.4 95.7 95.9 45.3 49.0 49.7 ALTA0549 6/14/2024 11:0 3 41.7 49.9 0.0 84.4 95.7 95.9 95.9 95.3 95.3 85.3 ALTA0549 6/14/2024 11:0 3 33.6 28.4 3.8 34.2 93.9 94.0 1.6 2 11.9 ALTA0641 6/13/2024 10.0 5 90.0 36.5 1.4 12.1 125.6 125.6 53.3 53.3 ALTA0642 6/14/2024 10.0 5 90.0 36.5 1.4 12.1 125.6 125.6 53.3 53.3 ALTA0642 6/14/2024 10.0 5 90.0 36.5 1.4 12.1 125.6 125.6 53.3 53.3 ALTA0642 6/14/2024 10.0 5 90.0 36.5 1.8 7.3 126.8 126.	ALTA0491	6/13/2024 9:30	53.5	36.2	2.3	8.0	115.9	117.9	-79.5	-80.0	
ALTA0518 6/18/2024 11:40 55.5 \$39.9 0.0 4.6 122.0 122.1 -3.0 -3.2 ALTA0529 6/14/2024 11:41 55.5 \$39.9 0.0 4.6 122.0 122.1 -3.0 -3.2 ALTA0529 6/14/2024 11:41 55.5 \$35.8 0.9 12.1 118.8 118.9 -24.2 -25.7 ALTA0541 6/13/2024 9:54 51.2 35.8 0.9 12.1 118.8 118.9 -24.2 -25.7 ALTA0545 6/13/2024 12:35 34.8 49.2 0.0 16.0 125.0 124.9 -1.9 -1.9 -1.9 ALTA0551 6/19/2024 11:33 54.2 40.6 0.2 5.0 86.5 88.3 -5.0 -144.4 ALTA0578 6/19/2024 11:33 54.2 40.6 0.2 5.0 86.5 88.3 -5.0 -144.4 ALTA0578 6/19/2024 10:23 50.2 37.1 0.8 11.9 105.2 106.3 -49.0 -49.7 ALTA0579 6/14/2024 11:33 14.7 44.9 0.0 8.4 95.7 99.9 -85.3 -85.3 ALTA0589 6/19/2024 10:53 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 -111.9 ALTA0679 6/14/2024 10:53 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 -111.9 ALTA0671 6/13/2024 10:05 50.0 36.5 14.4 12.1 12.6 125.6 125.6 -53.3 -53.3 ALTA06712 6/13/2024 10:05 50.0 36.5 14.8 12.1 12.5 6 125.6 -53.3 -53.3 ALTA06712 6/13/2024 10:15 59.4 39.5 1.8 7.3 126.8 126.8 -69.2 -69.2 ALTA0624 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0699 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0699 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0699 6/13/2024 10:15 59.4 49.1 43.6 0.0 7.3 138.8 138.9 -81.9 -81.5 ALTA0699 6/13/2024 10:15 59.4 49.1 43.6 0.0 7.3 138.8 138.9 -81.9 -81.5 ALTA0699 6/13/2024 10:15 59.4 49.1 43.6 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0694 6/14/2024 10:36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 -86.3 ALTA0698 6/13/2024 10:15 59.4 45.0 44.5 10.0 12.4 1.7 5.1 104.9 104.7 -88.5 -57.0 ALTA0698 6/13/2024 10:15 59.4 45.0 44.5 10.0 12.4 1.7 5.1 104.9 104.7 -88.5 -57.0 ALTA0698 6/13/2024 10:15 59.4 45.0 44.5 10.0 12.4 1.7 5.1 104.9 104.7 -88.5 -57.0 ALTA0698 6/13/2024 10:16 59.4 45.0 48.2 1.7 5.1 104.9 104.7 -88.5 -57.0 ALTA0698 6/13/2024 10:16 55.1 38.1 0.8 0.0 77.5 131.8 131.7 -29.2 -29.2 ALTA0698 6/13/2024 10:18 55.1 38.1 0.8 0.0 77.8 77.9 12.7 3.3 12.6 6.7 12.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.1 1.0	ALTA0508	6/12/2024 11:15	56.1	38.4	0.8	4.7	110.7	111.0	-66.9	-66.8	
ALTA0549 6/14/2024 11:17 56.0 42.2 0.2 1.6 80.8 80.8 -86.5 -86.0 ALTA0541 6/13/2024 95.4 51.2 35.8 0.9 12.1 118.8 118.9 2-4.2 2-25.7 ALTA0545 6/17/2024 12.35 34.8 49.2 0.0 16.0 125.0 124.9 1.1.9 1.1.9 1.9 ALTA0545 6/17/2024 10.33 54.2 40.6 0.2 5.0 86.5 88.3 -5.0 14.4 ALTA0576 6/17/2024 10.23 50.2 37.1 0.8 11.9 105.2 106.3 49.0 49.7 ALTA0579 6/14/2024 11.23 41.7 49.9 0.0 8.4 95.7 95.9 85.3 85.3 85.3 ALTA0579 6/14/2024 10.53 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 11.9 ALTA0589 6/19/2024 10.53 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 11.9 ALTA0611 6/19/2024 10.55 50.0 36.5 1.4 12.1 125.6 125.6 53.3 53.3 53.3 55.3 35.3 ALTA0611 6/19/2024 10.5 50.0 36.5 1.4 12.1 125.6 125.6 53.3 55.3 ALTA0612 6/13/2024 95.9 51.4 39.5 1.8 7.3 126.8 125.6 53.3 -63.3 -63.2 ALTA0629 6/13/2024 10.5 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.6 ALTA0629 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.6 ALTA0699 6/13/2024 10.36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 86.3 ALTA0699 6/13/2024 10.36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 86.3 ALTA0669 6/14/2024 10.36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 86.3 ALTA0664 6/14/2024 10.36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 86.3 ALTA0669 6/13/2024 10.41 52.8 47.2 0.0 0.0 0.0 92.2 92.1 81.7 81.1 ALTA0664 6/14/2024 10.36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 86.3 ALTA0669 6/14/2024 10.36 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 85.8 ALTA0669 6/14/2024 10.26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 85.8 ALTA0669 6/14/2024 10.26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 85.8 ALTA0669 6/14/2024 10.26 55.4 38.4 1.0 5.2 126.6 123.7 77.9 -77.3 76.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.4 1.5 1.0 1.5 1.0 1.4 1.5 1.0 1.5 1.0 1.4 1.5 1.0 1.5 1.0 1.4 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.4 1.5 1.0 1	ALTA0517	6/12/2024 11:21	56.8	38.3	0.5	4.4	111.4	111.4	-73.2	-73.2	
ALTA0541 6/13/2024 9.54 512 35.8 0.9 12.1 118.8 118.9 -24.2 -25.7 ALTA0545 6/17/2024 12.35 34.8 49.2 0.0 16.0 125.0 124.9 1.19 1.19 1.19 ALTA0545 6/17/2024 12.35 34.8 49.2 0.0 16.0 125.0 124.9 1.19 1.19 ALTA0545 6/19/2024 11.33 54.2 40.6 0.2 5.0 86.5 88.3 5.0 1.14.4 ALTA0576 6/19/2024 10.23 50.2 37.1 0.8 11.9 105.2 106.3 49.0 49.7 ALTA0579 6/14/2024 11.23 41.7 49.9 0.0 8.4 95.7 95.9 85.3 86.3 85.3 ALTA0589 6/19/2024 10.53 33.6 28.4 3.8 34.2 93.9 94.0 1.62 1.11.9 ALTA0681 6/13/2024 10.05 50.0 38.5 1.4 12.1 125.6 125.6 53.3 453.3 ALTA0611 6/13/2024 10.99 51.4 39.5 1.8 7.3 126.8 126.8 60.2 69.2 69.2 ALTA0629 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 33.8 34.1 33.8 36.6 83.5 6.9 7.0 ALTA0629 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 16.1 ALTA0629 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 16.5 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 115.6 116.3 30.8 35.8 ALTA0620 6/13/2024 10.15 59.4 39.1 0.6 0.9 32.2 92.1 81.7 81.7 81.5 ALTA0620 6/13/2024 10.15 50.8 40.2 37.7 4.5 17.0 75.7 75.7 86.6 86.3 86.3 ALTA0620 6/13/2024 10.15 50.8 40.2 37.7 4.5 17.0 75.7 75.7 86.6 86.3 86.3 ALTA0620 6/13/2024 10.15 50.8 40.2 37.7 4.5 17.0 75.7 75.7 86.6 86.3 86.3 37.7 86.5 85.8 37.7 86.5 85.8 37.7 86.5 85.8 37.7 86.5 85.8 37.7 86.5 85.8 37.7 86.5 85.8 37.7 86.5 85.8 37.7 86.5 85.8 37.7 86.5 85.8 37.7 87.9 77.9 77.3 77.9 77.8 57.0 37.7 86.5 37.7 32.2 76.6 128.3 128.4 77.2 97.7 79.9 77.3 3.7 76.5 37.7 32.2 76.6 128.3 128.4 77.2 97.7 79.9 77.3 3.7 76.5 37.7 32.2 76.6 128.3 128.4 77.2	ALTA0518	6/18/2024 11:40	55.5	39.9	0.0	4.6	122.0	122.1	-3.0	-3.2	
ALTA0545 6/17/2024 12:35 34.8 49.2 0.0 16.0 125.0 124.9 -1.9 -1.9 -1.9 ALTA0576 6/17/2024 12:33 54.2 40.6 0.2 5.0 86.5 88.3 5.0 -14.4 ALTA0576 6/17/2024 10:23 50.2 37.1 0.8 11.9 105.2 106.3 49.0 49.7 ALTA0577 6/17/2024 10:23 50.2 37.1 0.8 11.9 105.2 106.3 49.0 49.7 ALTA0578 6/17/2024 10:25 41.7 49.9 0.0 8.4 95.7 95.9 485.3 485.3 485.3 ALTA0589 6/19/2024 10:55 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 -11.9 ALTA0611 6/13/2024 10:05 50.0 36.5 1.4 12.1 125.6 125.6 -53.3 -53.3 ALTA0612 6/13/2024 9:59 51.4 39.5 1.8 7.3 126.8 126.8 -69.2 -69.2 ALTA0624 6/17/2024 10:07 49.5 36.4 0.8 13.3 83.6 83.5 -6.9 -7.0 ALTA0629 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 10:16 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 10:15 59.4 39.1 0.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA0650 6/14/2024 10:36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 -86.3 ALTA0651 6/14/2024 10:34 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0664 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 66.7 -86.6 -86.8 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 65.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 65.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 65.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 65.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 65.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 65.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 65.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 66.8 65.8 -76.4 -76.4 ALTA0679 6/12/2024 11:14 65.3 38.4 10.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0713 6/14/2024 10:15 55.4 38.4 10.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/14/2024 90.8 57.6 41.2 0.6 0.0 2.4 143.7 142.8 -6.6 9.3 ALTA0753 6/14/2024 90.6 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 9.3 ALTA0753 6/14/2024 94.6 51.1 46.5 0.0 2.6 107.4 111.1 -0.4 1.16 ALTA0753 6/14/2024 94.6 51.1 46.5 0.0 2.6 107.4 111.1 -0.4 1.16 ALTA0758 6/12/2	ALTA0529	6/14/2024 11:17	56.0	42.2	0.2	1.6	80.8	80.8	-86.5	-86.0	
ALTA0576 6/17/2024 12:33 34.8 49.2 0.0 16.0 125.0 124.9 -1.9 -1.9 -1.9 ALTA0576 6/17/2024 10:23 50.2 37.1 0.8 11.9 105.2 106.3 -49.0 -49.7 ALTA0576 6/17/2024 10:23 50.2 37.1 0.8 11.9 105.2 106.3 -49.0 -49.7 ALTA0576 6/17/2024 10:23 50.2 37.1 0.8 11.9 105.2 106.3 -49.0 -49.7 ALTA0576 6/17/2024 10:25 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 -11.9 ALTA0589 6/19/2024 10:55 50.0 36.5 1.4 12.1 125.6 125.6 -53.3 -55.3 ALTA0611 6/13/2024 10:05 50.0 36.5 1.4 12.1 125.6 125.6 -53.3 -53.3 ALTA0612 6/13/2024 9:59 51.4 39.5 1.8 7.3 126.8 126.8 -69.2 -69.2 ALTA0624 6/17/2024 10:07 49.5 36.4 0.8 133.3 83.6 83.5 -8.9 -7.0 ALTA0629 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 12:16 49.1 43.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA0650 6/14/2024 10:36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 -86.3 ALTA0651 6/14/2024 10:3 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0664 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0679 6/17/2024 10:15 55.4 38.4 10 0.0 3.7 126.6 127.1 -70.3 -70.0 ALTA0680 6/14/2024 10:15 55.4 38.4 10.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0713 6/14/2024 10:15 55.4 38.4 10.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0773 6/14/2024 94.6 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 9.3 ALTA0775 6/12/2024 11:14 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 1.16 ALTA0753 6/14/2024 94.6 51.1 46.5 0.0 2.6 107.4 111.1 -0.4 1.16 ALTA0753 6/14/2024 94.6 51.5 38.6 0.0 20.9 126.1 126.1 126.2 -7.7 7.0	ALTA0541	6/13/2024 9:54	51.2	35.8	0.9	12.1	118.8	118.9	-24.2	-25.7	
ALTA0551 6/19/2024 11:33 54.2 40.6 0.2 5.0 86.5 88.3 -5.0 -14.4 ALTA0578 6/17/2024 10:23 50.2 37.1 0.8 11.9 105.2 106.3 -49.0 -49.7 ALTA0579 6/14/2024 10:33 41.7 49.9 0.0 8.4 95.7 95.9 -85.3 -85.3 ALTA0589 6/19/2024 10:53 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 -11.9 ALTA0589 6/19/2024 10:05 50.0 36.5 1.4 12.1 125.6 125.6 53.3 -53.3 ALTA0589 6/19/2024 10:05 50.0 36.5 1.4 12.1 125.6 125.6 53.3 -53.3 ALTA0611 6/19/2024 10:05 50.0 36.5 1.4 12.1 125.6 125.6 53.3 -53.3 ALTA0612 6/13/2024 10:05 50.0 36.5 1.4 12.1 125.6 125.6 53.3 -53.3 ALTA0612 6/13/2024 10:05 50.0 36.5 1.4 12.1 12.5 6 125.6 53.3 -53.3 -53.3 ALTA0624 6/13/2024 10:05 59.0 36.4 0.8 13.3 83.6 83.5 -69.2 -69.2 ALTA0624 6/17/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 10:16 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0650 6/14/2024 10:36 40.8 37.7 4.5 11.0 75.7 75.7 75.7 -86.6 -86.3 ALTA0650 6/14/2024 10:41 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0650 6/14/2024 10:41 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0654 6/14/2024 10:41 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0654 6/14/2024 10:40 52.8 47.2 0.0 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0654 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -86.5 ALTA0669 6/17/2024 9:9 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 -76.4 ALTA0669 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0713 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0713 6/17/2024 10:18 55.4 38.4 1.0 5.2 126.6 127.1 -77.0 -70.1 ALTA0734 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -77.0 -70.1 ALTA0734 6/13/2024 9:46 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 11.1 -0.4 11.6 ALTA0733 6/13/2024 9:46 55.5 43.2 0.0 2.6 107.4 111.1 -0.4 11.1 -0.4 11.6 ALTA0753 6/13/2024 9:46 55.5 43.2 0.0 4.3 127.4 127.6 1-11.7 -12.9 ALTA0755 6/1		6/17/2024 12:35	34.8	49.2	0.0	16.0	125.0	124.9	-1.9	-1.9	
ALTA0578 6/14/2024 10:23 50.2 37.1 0.8 11.9 105.2 106.3 -49.0 -49.7 ALTA0579 6/14/2024 11:23 41.7 49.9 0.0 8.4 95.7 95.9 -85.3 8.5.3 ALTA0589 6/14/2024 10:53 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 -11.9 ALTA0611 6/13/2024 10:05 50.0 36.5 1.4 12.1 125.6 125.6 -53.3 -53.3 ALTA0612 6/13/2024 9.9 51.4 39.5 1.8 7.3 126.8 126.8 -69.2 -60.2 ALTA0624 6/17/2024 14:07 49.5 36.4 0.8 13.3 83.6 83.5 -6.9 -7.0 ALTA0629 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 12:16 49.1 43.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA0650 6/14/2024 10:41 52.8 47.2 0.0 0.0 92.2 92.1 -81.7 88.1 ALTA0651 6/14/2024 10:41 52.8 47.2 0.0 0.0 99.2 92.1 -81.7 88.1 ALTA0664 6/10/2024 94.9 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA0664 6/10/2024 94.9 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA0669 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0669 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0669 6/14/2024 10:3 50.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/14/2024 10:3 50.0 32.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0668 6/14/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0668 6/14/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0671 6/14/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0674 6/13/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0678 6/14/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0679 6/14/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0713 6/14/2024 10:15 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/14/2024 11:14 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 1.1.6 ALTA0733 6/14/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 1.1.6 ALTA0753 6/13/2024 9.46 52.5 43.2 0.0 4.3 127.4 127.6 1.11.7 -12.9 ALTA0755 6/13/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0	ALTA0551	6/19/2024 11:33									
ALTA0579 6/14/2024 11:23 41.7 49.9 0.0 8.4 95.7 95.9 -85.3 -85.3 -85.3 ALTA0589 6/19/2024 10:53 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 -11.9 ALTA0611 6/19/2024 10:55 50.0 36.5 1.4 12.1 125.6 125.6 125.6 53.3 -53.3 -53.3 ALTA0612 6/19/2024 9.59 51.4 39.5 1.8 7.3 126.8 126.8 -69.2 -69.2 -69.2 ALTA0624 6/17/2024 14.07 49.5 36.4 0.8 13.3 83.6 83.5 -6.9 -7.0 ALTA0624 6/17/2024 14.07 49.5 36.4 0.8 13.3 83.6 83.5 -6.9 -7.0 ALTA0629 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 12:16 49.1 43.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA0639 6/14/2024 10:35 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 86.3 ALTA0650 6/14/2024 10:41 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/17/2024 10:08 57.6 41.2 0.6 0.6 84.4 84.8 -85.2 -85.2 ALTA0669 6/17/2024 10:16 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0666 6/17/2024 10:16 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0668 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0713 6/17/2024 10:15 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0713 6/17/2024 10:15 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0713 6/17/2024 10:15 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 -76.1 ALTA0733 6/17/2024 9.46 51.1 46.5 0.0 2.4 143.7 124.0 124.1 -77.0 -78.1 ALTA0733 6/17/2024 9.46 51.1 46.5 0.0 2.4 143.7 124.0 124.1 -77.0 -78.1 ALTA0733 6/17/2024 9.46 51.1 46.5 0.0 2.4 12.2 12.6 126.6 127.1 -70.3 -70.0 ALTA0753 6/13/2024 9.46 51.5 37.7 3.2 0.0 2.6 107.4 111.1 -0.4 1.1.6 ALTA0753 6/13/2024 9.46 51.1 46.5 0.0 2.4 12.9 12.9 126.1 126.2 -7.7 -7.0 12.9 ALTA0755 6/13/2024 9.46 52.5 43.2 0.0 2.0 9.0 126.1 126.2 -7.7 -7.0 12.9 ALTA0755 6/13/2024 9.46 52.5 43.2 0.0 2.0 9.0 126.1 126.2 -7											
ALTA0689 6/19/2024 10:53 33.6 28.4 3.8 34.2 93.9 94.0 -16.2 -11.9 ALTA0611 6/13/2024 10:05 50.0 36.5 1.4 12.1 125.6 125.6 -53.3 -53.3 ALTA0612 6/13/2024 9:99 51.4 39.5 1.8 7.3 126.8 126.8 -69.2 -69.2 ALTA0624 6/17/2024 14:07 49.5 36.4 0.8 13.3 83.6 83.5 -6.9 -7.0 ALTA0629 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 12:16 49.1 43.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA0639 6/13/2024 12:16 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -86.6 -86.3 ALTA0651 6/14/2024 10:41 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -86.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/17/2024 10:16 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:16 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:16 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0686 6/17/2024 10:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 13.7 142.8 -6.6 9.3 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0611 6/13/2024 10:05 50.0 36.5 1.4 12.1 125.6 125.6 -53.3 -53.3 -53.3 ALTA0612 6/13/2024 9:59 51.4 39.5 1.8 7.3 126.8 126.8 -69.2 -69.2 ALTA0624 6/17/2024 14:07 49.5 36.4 0.8 13.3 83.6 83.5 -6.9 -7.0 ALTA0629 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 12:16 49.1 43.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA06630 6/14/2024 10:36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 -86.3 ALTA0661 6/14/2024 10:41 52.8 47.2 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0661 6/14/2024 10:41 52.8 47.2 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA06664 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0668 6/17/2024 10:16 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0671 6/13/2024 10:46 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0733 6/11/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -0.4 -1.6 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0612 6/13/2024 9:59 51.4 39.5 1.8 7.3 126.8 126.8 -69.2 -69.2 ALTA0624 6/17/2024 14:07 49.5 36.4 0.8 13.3 83.6 83.5 -6.9 -7.0 ALTA0629 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 12:16 49.1 43.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA0650 6/14/2024 10:36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 -86.3 ALTA0651 6/14/2024 10:41 52.8 47.2 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0654 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -86.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0668 6/17/2024 10:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0668 6/17/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0668 6/17/2024 12:16 55.3 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0714 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0733 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0733 6/17/2024 11:45 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0624 6/17/2024 14:07 49.5 36.4 0.8 13.3 83.6 83.5 -6.9 -7.0 ALTA0629 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 12:16 49.1 43.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA0650 6/14/2024 10:36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 -86.3 ALTA0651 6/14/2024 10:41 52.8 47.2 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0654 6/14/2024 10:49 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA06654 6/14/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0668 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0688 6/17/2024 11:46 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0689 6/17/2024 11:45 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0733 6/11/2024 10:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0733 6/11/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 14.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0		1									
ALTA0629 6/13/2024 10:15 59.4 39.1 0.6 0.9 115.6 116.3 -30.8 -35.8 ALTA0639 6/13/2024 12:16 49.1 43.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA0650 6/14/2024 10:36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 -86.3 ALTA0651 6/14/2024 10:41 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0654 6/10/2024 9:49 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 85.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0668 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0668 6/17/2024 10:12 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0713 6/11/2024 9:46 51.5 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.5 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0639 6/13/2024 12:16 49.1 43.6 0.0 7.3 138.8 138.8 -81.9 -81.5 ALTA0650 6/14/2024 10:36 40.8 37.7 4.5 17.0 75.7 75.7 -86.6 -86.3 ALTA0651 6/14/2024 10:41 52.8 47.2 0.0 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0654 6/10/2024 9:49 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0668 6/17/2024 9:08 57.6 41.2 0.6 0.6 84.4 84.8 -85.2 -85.2 ALTA0682 6/12/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 10:51 55.4 38.4 1.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0733 6/17/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0650 6/14/2024 10:36 40.8 37.7 4.5 17.0 75.7 75.7 86.6 86.3 ALTA0651 6/14/2024 10:41 52.8 47.2 0.0 0.0 9.0 92.2 92.1 81.7 81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0654 6/10/2024 9:49 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 85.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0678 6/7/2024 9:08 57.6 41.2 0.6 0.6 84.4 84.8 -85.2 -85.2 ALTA0682 6/12/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0733 6/11/2024 9:46 52.5 43.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0		1									
ALTA0651 6/14/2024 10:41 52.8 47.2 0.0 0.0 92.2 92.1 -81.7 -81.1 ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0654 6/10/2024 9:49 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0678 6/7/2024 9:08 57.6 41.2 0.6 0.6 84.4 84.8 -85.2 -85.2 ALTA0682 6/12/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 10:11 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0652 6/13/2024 12:11 51.0 41.5 0.0 7.5 131.8 131.7 -29.2 -29.2 ALTA0654 6/10/2024 9:49 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0678 6/7/2024 9:08 57.6 41.2 0.6 0.6 84.4 84.8 -85.2 -85.2 ALTA0682 6/12/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 10:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0654 6/10/2024 9:49 45.0 48.2 1.7 5.1 104.9 104.7 -58.5 -57.0 ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0678 6/7/2024 9:08 57.6 41.2 0.6 0.6 84.4 84.8 -85.2 -85.2 ALTA0682 6/12/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0714 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -111.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0664 6/14/2024 10:26 40.0 32.5 0.1 27.4 66.8 66.7 -86.6 -85.8 ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 ALTA0678 6/7/2024 9:08 57.6 41.2 0.6 0.6 84.4 84.8 -85.2 -85.2 ALTA0682 6/12/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 10:11 55.4 38.4 1.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0714 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0	-										
ALTA0669 6/17/2024 10:07 30.2 28.8 3.3 37.7 86.5 85.8 -76.4 -76.4 -76.4 ALTA0678 6/7/2024 9:08 57.6 41.2 0.6 0.6 84.4 84.8 -85.2 -85.2 ALTA0682 6/12/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0714 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0678 6/7/2024 9:08 57.6 41.2 0.6 0.6 84.4 84.8 -85.2 -85.2 ALTA0682 6/12/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0714 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0682 6/12/2024 11:26 56.8 40.2 0.7 2.3 123.6 123.7 -71.9 -73.3 ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0714 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0	-										
ALTA0686 6/17/2024 10:18 55.1 38.1 0.8 6.0 77.8 77.9 -77.3 -76.5 ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0714 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46											
ALTA0712 6/13/2024 12:45 51.5 37.7 3.2 7.6 128.3 128.4 -72.8 -72.0 ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0714 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0713 6/17/2024 11:14 55.3 41.0 0.0 3.7 124.0 124.1 -77.0 -78.1 ALTA0714 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0714 6/13/2024 10:51 55.4 38.4 1.0 5.2 126.6 127.1 -70.3 -70.0 ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0733 6/11/2024 9:46											
ALTA0733 6/11/2024 9:46 51.1 46.5 0.0 2.4 143.7 142.8 -6.6 -9.3 ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0			55.4	38.4	1.0	5.2		127.1	-70.3	-70.0	
ALTA0751 6/12/2024 11:34 55.2 42.2 0.0 2.6 107.4 111.1 -0.4 -1.6 ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0						<u> </u>	1		I	Γ	
ALTA0753 6/13/2024 9:46 52.5 43.2 0.0 4.3 127.4 127.6 -11.7 -12.9 ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
ALTA0755 6/12/2024 11:54 40.5 38.6 0.0 20.9 126.1 126.2 -7.7 -7.0											
	ALTA0753	6/13/2024 9:46	52.5	43.2	0.0	4.3	127.4	127.6	-11.7	-12.9	
ALTA0756 6/12/2024 10:49 54.0 46.0 0.0 0.0 106.5 106.2 -57.0 -61.4											
·	ALTA0756	6/12/2024 10:49	54.0	46.0	0.0	0.0	106.5	106.2	-57.0	-61.4	

ALTA0759	6/12/2024 9:09	48.1	41.6	0.0	10.3	127.8	127.9	-27.8	-23.6
ALTA0760	6/12/2024 9:04	53.2	44.3	0.3	2.2	134.7	134.7	-40.5	-40.5
ALTA0761	6/13/2024 10:37	48.0	36.9	0.3	14.8	117.7	117.8	-11.0	-11.0
ALTA0762	6/13/2024 12:36	56.9	40.3	0.7	2.1	125.3	125.3	-63.0	-64.4
ALTA0764	6/12/2024 11:03	49.4	39.3	0.0	11.3	115.7	115.7	-6.3	-6.3
ALTA0765	6/13/2024 9:25	45.9	35.3	0.6	18.2	101.5	101.7	-39.9	-39.9
ALTA0766	6/12/2024 10:43	57.4	42.6	0.0	0.0	92.3	92.3	-76.2	-76.6
ALTA0767	6/12/2024 11:19	52.1	40.5	0.0	7.4	127.4	128.3	-2.2	-2.4
ALTA0769	6/11/2024 9:53	45.4	54.5	0.1	0.0	106.4	106.5	-57.8	-57.8
ALTA0770	6/13/2024 10:42	54.4	38.2	0.2	7.2	122.2	122.2	-7.6	-8.6
ALTA0771	6/14/2024 13:25	51.8	37.8	1.1	9.3	122.2	122.3	-58.4	-60.7
ALTA0772	6/17/2024 9:45	51.0	37.5	0.5	11.0	124.6	124.7	-19.6	-19.8
ALTA0851	6/12/2024 10:54	54.0	45.9	0.0	0.1	116.9	117.7	-3.2	-4.0
ALTA0852	6/12/2024 10:39	49.7	50.3	0.0	0.0	117.7	122.4	-0.2	-0.9
ALTA0853	6/12/2024 10:35	54.3	42.8	0.0	2.9	114.4	115.2	-7.6	-11.1
ALTA0854	6/5/2024 10:07	49.7	40.8	0.0	9.5	126.3	126.7	-1.6	-2.2
ALTA0856	6/7/2024 9:26	51.1	39.7	0.0	9.2	127.8	129.5	-0.4	-0.5
ALTA0857	6/3/2024 12:11	52.8	41.6	0.1	5.5	117.3	117.4	-81.7	-80.3
ALTA0858	6/3/2024 12:06	50.2	49.8	0.0	0.0	133.1	133.0	-0.2	-1.2
ALTA0859	6/13/2024 10:26	53.8	45.6	0.0	0.6	122.3	129.4	-2.8	-11.7
ALTA0860	6/13/2024 10:31	37.7	38.0	0.5	23.8	125.7	125.8	-29.3	-29.3
ALTA0861	6/17/2024 13:31	36.4	36.5	0.0	27.1	124.8	124.7	-0.1	-0.1
ALTA0862	6/11/2024 10:19	38.6	40.3	0.0	21.1	119.2	118.8	-5.7	-4.4
ALTA0863	6/10/2024 9:27	53.6	45.3	0.0	1.1	110.5	110.5	-78.2	-78.3
ALTA0864	6/11/2024 8:18	52.5	33.0	1.6	12.9	81.3	81.3	-75.2	-75.2
ALTA0865	6/14/2024 10:09	52.8	45.5	0.1	1.6	75.7	75.6	-86.8	-86.7
ALTA0866	6/13/2024 11:58	52.7	45.6	0.0	1.7	125.5	127.3	-11.2	-21.6
ALTA0867	6/13/2024 12:05	39.9	35.8	0.0	24.3	133.6	133.6	-56.6	-47.3
ALTA0868	6/10/2024 12:22	18.9	16.6	13.2	51.3	95.6	95.3	-26.6	-26.6
ALTA0868	6/10/2024 12:24	19.6	16.7	13.3	50.4	94.9	94.9	-26.4	-26.4
ALTA0870	6/17/2024 12:45	54.9	40.0	1.2	3.9	115.8	116.1	-81.0	-81.1
ALTA0870	6/17/2024 13:54	56.9	43.0	0.0	0.1	115.7	115.3	-83.8	-83.7
ALTA0872	6/14/2024 13:15	50.5	36.5	2.8	10.2	83.6	83.7	-79.9	-79.9
ALTA0873	6/14/2024 13:01	52.0	37.2	2.7	8.1	123.2	123.5	-78.9	-78.9
ALTA0875	6/14/2024 10:18	51.5	48.5	0.0	0.0	95.5	95.9	-86.5	-86.5
ALTA0877	6/14/2024 10:13	55.3	44.1	0.6	0.0	69.3	69.3	-86.4	-86.5
ALTA0878	6/12/2024 11:10	52.7	37.5	1.4	8.4	84.6	84.5	-68.4	-68.0
ALTA0879	6/12/2024 11:58	42.3	34.5	0.3	22.9	111.2	111.4	-38.5	-33.8
	1	33.0	67.0	0.0	0.0	126.8	126.8		

Wellfield Monitoring Report - July 2024 REPORT PREPARED BY: Rajan Phadnis

UPDATED DATE: 8/1/2024

FLOW SENSING DEVICE: LANDTEC GEM

MODEL: 5000

Wellhead ID Number	PATED: DAILY Date and Time	CH₄ (% by Volume)	CO ₂ (% by Volume)	O ₂ (% by Volume)	BALANCE GAS (% by Volume)	INITIAL TEMPERATURE (°F)	ADJUSTED TEMPERATURE (°F)	INITIAL STATIC PRESSURE ("WC)	ADJUSTED STATIC PRESSURE ("WC)
ALHC0824	7/11/2024 10:33	45.0	30.4	4.4	20.2	98.0	95.6	0.0	-0.1
ALLC0695	7/9/2024 6:49	50.6	38.1	0.6	10.7	116.9	117.8	-44.0	-51.1
ALLC0700	7/5/2024 7:11	45.5	33.1	4.2	17.2	81.4	81.4	-67.8	-67.8
ALLC0703	7/3/2024 5:54	8.4	7.9	15.7	68.0	100.8	101.8	-8.7	-23.7
ALLC0703	7/3/2024 6:00	10.7	8.9	15.1	65.3	101.3	101.7	-26.2	-6.9
ALLC0703	7/16/2024 9:03	8.8	8.5	15.8	66.9	100.1	101.7	-6.0	-22.4
ALLC0703	7/16/2024 9:07	10.2	9.4	15.2	65.2	102.0	101.7	-23.1	-4.0
ALLC0709	7/1/2024 9:36	51.6	37.0	0.2	11.2	116.4	116.4	-35.5	-40.8
ALLC0734	7/3/2024 6:59	57.4	40.1	0.9	1.6	112.7	112.7	-48.8	-48.8
ALLC0736	7/3/2024 6:14	48.7	37.1	0.4	13.8	105.5	105.6	-17.4	-21.4
ALLC0737	7/3/2024 6:07	49.7	34.7	3.6	12.0	110.2	111.1	-56.4	-56.5
ALLC0738	7/8/2024 9:13	54.5	45.5	0.0	0.0	85.6	85.5	-87.4	-87.4
ALLC0739	7/5/2024 9:48	59.0	41.0	0.0	0.0	83.5	83.8	-86.3	-85.1
ALLC0740	7/5/2024 9:37	37.6	36.5	0.0	25.9	123.6	122.1	-8.4	-6.5
ALLC0743	7/8/2024 9:07	56.0	44.0	0.0	0.0	108.1	108.8	-83.8	-85.7
ALLC0744	7/5/2024 9:43	54.4	41.6	0.0	4.0	89.7	89.4	-78.0	-78.0
ALLC0745	7/5/2024 9:33	30.9	32.0	0.0	37.1	119.4	119.4	-3.1	-3.1
ALLC0746	7/5/2024 9:53	55.6	44.3	0.0	0.1	115.0	115.0	-84.8	-84.5
ALLC0747	7/5/2024 7:24	50.2	40.6	0.9	8.3	119.6	119.7	-72.5	-72.5
ALLC0748	7/5/2024 7:17	59.8	40.1	0.0	0.1	113.0	113.0	-75.7	-75.7
ALLC0749	7/5/2024 7:02	44.8	35.3	0.3	19.6	118.9	119.0	-40.5	-35.0
ALLC0777	7/2/2024 9:49	56.8	39.6	0.0	3.6	116.0	117.5	-2.3	-3.5
ALLC0778	7/2/2024 9:43	59.2	40.8	0.0	0.0	100.7	101.3	-7.3	-23.5
ALLC0779	7/2/2024 8:22	43.7	39.3	0.0	17.0	110.3	110.3	-4.7	-3.3
ALLC0780	7/2/2024 8:06	54.9	39.2	0.0	5.9	99.3	107.1	-0.5	-2.8
ALLC0781	7/2/2024 8:18	33.2	34.2	0.0	32.6	112.0	112.0	-1.3	-1.3
ALLC0783	7/2/2024 9:20	46.8	38.0	0.0	15.2	116.6	116.6	-1.3	-1.2
ALLC0784	7/2/2024 9:09	28.3	27.3	0.0	44.4	100.3	100.3	-0.7	-0.7
ALLC0785	7/2/2024 9:16	59.1	40.8	0.1	0.0	106.2	108.5	-0.5	-3.2
ALLC0786	7/2/2024 9:25	52.8	39.2	0.0	8.0	120.9	120.9	-5.1	-6.6
ALLC0787	7/2/2024 7:47	50.7	40.7	0.0	8.6	111.0	111.3	-8.1	-10.1
ALLC0788	7/2/2024 7:51	52.7	38.8	0.0	8.5	110.0	109.9	-47.3	-59.1
ALLC0789	7/2/2024 7:58	46.0	39.4	0.0	14.6	118.8	118.4	-3.8	-3.1
ALLC0790	7/2/2024 10:03	46.7	33.9	2.7	16.7	100.2	100.3	-67.9	-66.6
ALLC0791	7/3/2024 11:01	51.5	39.5	0.0	9.0	104.2	104.1	-46.1	-61.0
ALLC0792	7/10/2024 8:52	59.4	40.6	0.0	0.0	113.0	114.5	-3.4	-6.6
ALLC0793	7/2/2024 10:12	45.1	35.7	0.0	19.2	109.3	108.9	-61.0	-63.8
ALLC0793	7/3/2024 10:57	38.0	37.8	0.0	24.2	127.7	127.8	-0.8	-0.8
ALLC0794	7/3/2024 10:39	53.3	40.3	0.0	6.4	117.8	117.7	-52.0	-53.9
ALLC0796	7/3/2024 10:45	50.4	42.2	0.0	7.4	127.4	127.4	-32.7	-32.7
ALLC0797	7/3/2024 10:51	45.1	47.4	0.0	7.5	112.4	112.3	-1.3	-1.3
ALLC0798	7/11/2024 8:23	26.9	31.1	0.9	41.1	127.3	127.3	-1.1	-1.1
ALLC0800	7/3/2024 11:25	50.7	42.9	0.0	6.4	114.1	114.4	-3.7	-5.1
ALLC0800	7/10/2024 9:11	35.9	37.6	0.3	26.2	123.5	123.6	-0.8	-0.8
ALLC0801	7/5/2024 8:14	46.9	43.5	0.0	9.6	124.2	124.2	-11.0	-8.9
ALLC0803	7/2/2024 7:41	36.8	36.3	0.8	26.1	117.1	117.2	-1.2	-1.1
ALLC0804	7/2/2024 7:36	45.9	42.0	0.0	12.1	107.8	107.5	-2.6	-1.8
ALLC0805	7/5/2024 10:15	41.7	35.1	0.0	23.2	99.8	99.7	-1.6	-1.7
ALLC0806	7/5/2024 10:01	41.8	36.1	0.0	22.1	107.7	108.0	-1.2	-1.2
ALLC0807	7/5/2024 10:07	31.8	32.0	1.9	34.3	110.2	109.4	-4.3	-3.7
ALLC0811	7/2/2024 9:54	44.0	36.4	0.0	19.6	103.3	103.3	-0.9	-0.9
ALLC0812	7/2/2024 9:59	46.3	37.7	0.0	16.0	114.3	114.3	-2.4	-2.4

ALLC0813	7/3/2024 11:30	16.4	26.3	0.0	57.3	104.6	105.3	-1.4	-1.4
ALLC0814	7/5/2024 8:31	32.4	29.7	1.8	36.1	121.2	120.9	-4.3	-2.7
ALLC0815	7/1/2024 10:06	44.7	35.9	0.9	18.5	110.8	110.5	-21.7	-20.7
ALLC0816	7/10/2024 6:45	55.0	40.9	0.1	4.0	89.2	89.4	-82.2	-83.2
ALLC0817	7/1/2024 9:44	47.6	38.1	0.2	14.1	119.1	119.3	-15.8	-13.2
ALLC0819	7/3/2024 10:23	54.3	45.7	0.0	0.0	110.8	110.8	-3.5	-3.5
ALLC0820	7/3/2024 10:15	53.2	40.5	1.5	4.8	109.3	109.4	-51.0	-50.9
ALLC0821	7/10/2024 10:33	51.4	36.7	0.3	11.6	105.7	105.8	-20.1	-28.6
ALLC0822	7/10/2024 10:44	15.5	66.9	0.0	17.6	127.7	127.8	-3.7	-4.0
ALLC0826	7/5/2024 9:04	47.1	38.1	0.0	14.8	101.6	101.6	-85.4	-85.4
ALLC0827	7/3/2024 10:10	56.5	43.5	0.0	0.0	94.3	94.4	-52.6	-52.5
ALLC0830	7/8/2024 7:45	57.6	39.2	1.0	2.2	106.7	106.8	-80.5	-80.4
ALLC0831	7/5/2024 8:59	15.9	27.1	0.0	57.0	106.0	106.1	-1.5	-1.5
ALLC0832	7/2/2024 10:08	52.6	41.0	0.0	6.4	126.3	126.6	-9.1	-18.7
ALLC0833	7/10/2024 9:16	42.0	36.6	0.0	21.4	112.8	112.3	-0.2	-0.1
ALLC0834	7/8/2024 9:55	57.2	42.8	0.0	0.0	125.3	125.3	-86.8	-86.3
ALLC0835	7/8/2024 9:50	55.4	44.0	0.0	0.6	125.1	125.1	-86.9	-86.9
ALLC0836	7/8/2024 9:46	53.5	45.2	0.0	1.3	129.8	129.8	-85.9	-86.5
ALLC0837	7/8/2024 9:42	55.0	45.0	0.0	0.0	129.2	129.3	-86.1	-86.1
ALLC0838	7/11/2024 10:42	32.2	25.7	7.9	34.2	106.8	106.7	-68.7	-68.5
ALLC0838	7/11/2024 10:46	30.9	23.7	8.6	36.8	106.7	106.7	-70.5	-65.8
ALLC0838	7/25/2024 8:04	46.9	36.9	4.0	12.2	79.8	79.9	-69.9	-68.5
ALLC0839	7/10/2024 10:11	49.4	40.9	0.0	9.7	128.2	128.4	-2.8	-9.7
ALLC0840	7/9/2024 13:09	41.5	35.2	0.0	23.3	125.2	124.9	-2.8	-1.5
ALLC0841	7/11/2024 7:28	50.9	26.8	2.7	19.6	77.1	77.2	-82.4	-82.8
ALLC0842	7/8/2024 9:38	47.6	35.9	0.4	16.1	113.0	113.2	-2.8	-2.7
ALLC0843	7/3/2024 7:22	50.0	36.6	0.2	13.2	79.4	79.0	-11.7	-18.9
ALLC0844	7/3/2024 7:16	46.3	34.9	0.0	18.8	88.0	87.3	-3.6	-8.4
ALLC0844	7/3/2024 7:10	45.7	34.5	0.0	19.6	87.2	87.8	-10.2	-5.3
ALLC0845	7/3/2024 7:19	58.5	38.2	0.2	2.4	83.2	83.2	-61.9	-61.9
ALLC0846	7/9/2024 6:37	52.5	36.1	3.3	8.1	65.9	65.8	-71.6	-71.6
ALLC0847	7/3/2024 6:45	46.2	32.8	1.5	19.5	88.8	88.8	-2.8	-2.8
ALLC0848	7/3/2024 6:41	37.9	32.2	0.2	29.7	105.3	105.3	-12.4	-12.4
ALLC0849	7/3/2024 6:35	33.4	31.1	0.5	35.0	119.4	120.1	-20.9	-58.8
ALLC0849	7/3/2024 6:38	33.2	31.4	0.8	34.6	121.0	121.6	-61.5	-38.1
ALT20001	7/9/2024 8:33	48.8	39.2	0.4	11.6	100.8	101.0	-0.7	-0.6
ALT20001	7/24/2024 9:47	47.1	38.1	0.6	14.2	103.3	103.5	-0.8	-0.7
ALT20003	7/2/2024 9:01	45.1	39.5	0.6	14.8	122.9	123.0	-45.7	-40.8
ALT20004	7/2/2024 8:45	29.8	28.6	3.6	38.0	96.8	96.9	-3.7	-3.6
ALT20005	7/2/2024 8:40	40.7	40.2	0.2	18.9	103.6	104.1	-3.6	-3.6
ALT20006	7/2/2024 8:50	48.1	39.3	0.5	12.1	124.2	124.3	-13.6	-11.6
ALT20007	7/2/2024 8:54	41.2	34.7	0.4	23.7	107.5	107.6	-13.4	-12.0
ALT20008	7/2/2024 8:23	28.6	29.2	4.9	37.3	124.4	124.0	-1.8	-1.7
ALT20009	7/2/2024 8:09	45.5	38.2	1.0	15.3	128.0	128.1	-39.8	-34.2
ALT20010	7/2/2024 8:29	47.3	39.7	0.1	12.9	129.2	128.9	-2.5	-17.5
ALT20010	7/2/2024 8:32	49.2	40.5	0.3	10.0	128.9	128.9	-20.6	-20.7
ALT20011	7/2/2024 8:04	42.2	37.7	0.2	19.9	128.3	128.3	-3.8	-3.3
ALT20012	7/2/2024 7:54	45.8	40.5	0.2	13.5	127.6	126.9	-1.0	-1.0
ALT20012	7/2/2024 8:00		I	I	l .	CO was 20 ppm	1	1	
ALT20013	7/2/2024 7:58	45.0	40.0	0.6	14.4	130.7	130.9	-1.0	-1.0
ALT20014	7/2/2024 7:43	38.3	36.8	0.6	24.3	116.3	116.2	-0.8	-0.8
ALT20015	7/2/2024 7:48	49.7	39.3	0.4	10.6	121.2	121.4	-3.3	-4.5
ALT20016	7/2/2024 7:40	52.0	43.1	0.4	4.8	127.6	127.6	-9.2	-9.2
ALT20010 ALT20017	7/2/2024 9:10	44.3	41.3	0.1	14.1	136.5	136.7	-7.3	-7.5
ALT20017 ALT20018		50.2	42.6	0.0	7.2	132.9	132.9	-6.0	-7.5
	7/2/2024 9:33	30.2	42.0	0.0	1.2	CO was 20 ppm	132.8	-0.0	-0.0
ALT20018	7/2/2024 9:38	40.0	40.0	0.0	40.0		400.0	4.4	4.4
ALT20019	7/2/2024 9:42	48.0	40.9	0.2	10.9	132.6	132.6	-4.1	-4.1
ALT20019	7/2/2024 9:50					CO was 20 ppm			
ALT20020	7/2/2024 9:23	56.1	43.9	0.0	0.0	129.5	129.6	-6.3	-6.3
ALT20021	7/2/2024 5:36	45.0	40.1	0.7	14.2	118.5	118.5	-15.1	-13.3

ALT20021	7/22/2024 10:15	37.0	37.9	0.2	24.9	118.9	118.9	-18.1	-9.7
ALT20022	7/2/2024 5:41	43.1	38.0	1.5	17.4	114.4	114.3	-10.9	-8.4
ALT20022	7/22/2024 10:18	36.1	37.0	0.3	26.6	114.9	115.1	-22.7	-16.4
ALT20023	7/2/2024 5:45	51.1	43.7	0.4	4.8	121.0	121.4	-8.4	-12.9
ALT20023	7/22/2024 10:01	40.6	39.7	0.5	19.2	121.6	121.3	-37.8	-28.4
ALT20024	7/2/2024 5:49	50.1	43.5	0.2	6.2	127.0	126.9	-6.2	-6.6
ALT20024	7/22/2024 9:56	32.5	35.5	0.4	31.6	125.9	126.1	-30.8	-22.2
ALT20025	7/2/2024 5:55	53.0	42.5	0.7	3.8	121.3	121.3	-4.9	-6.2
ALT20025	7/22/2024 9:51	35.1	33.4	2.8	28.7	121.0	121.3	-19.8	-15.5
ALT20026	7/2/2024 5:59	49.5	40.5	1.2	8.8	127.8	127.8	-1.8	-1.8
ALT20026	7/22/2024 9:46	35.1	33.0	2.5	29.4	127.9	127.8	-6.3	-5.1
ALT20027	7/2/2024 6:03	55.8	43.4	0.3	0.5	117.5	117.5	-6.0	-6.9
-									
ALT20027	7/22/2024 9:41	43.2	38.4	1.6	16.8	117.2	117.4	-26.2	-19.9
ALT20028	7/2/2024 9:15	56.1	43.9	0.0	0.0	124.7	124.9	-5.6	-6.3
ALT20029	7/2/2024 9:18	56.6	43.3	0.0	0.1	124.6	124.6	-5.5	-7.3
ALTA0003	7/8/2024 9:43	60.7	38.8	0.6	-0.1	111.5	111.7	-81.0	-83.5
ALTA0054	7/10/2024 11:08	59.4	39.4	0.0	1.2	79.1	79.1	-41.0	-40.5
ALTA0056	7/10/2024 11:01	59.8	40.2	0.0	0.0	108.9	108.9	-55.2	-55.2
ALTA0059	7/11/2024 8:54	59.0	40.6	0.3	0.1	101.6	101.7	-79.5	-79.5
ALTA0087	7/8/2024 7:30	51.3	36.0	2.3	10.4	123.6	123.9	-80.3	-81.0
ALTA0108	7/11/2024 9:06	44.7	38.1	0.3	16.9	89.3	89.1	-11.1	-9.9
ALTA0108	7/24/2024 6:25	44.0	39.1	0.3	16.6	88.6	89.0	-10.3	-8.4
ALTA0201	7/10/2024 7:46	57.5	38.6	0.0	3.9	108.6	108.8	-87.5	-87.9
ALTA0472	7/2/2024 7:24	56.2	41.1	0.0	2.7	114.6	114.6	-81.1	-81.8
ALTA0483	7/10/2024 6:56	44.9	35.7	3.8	15.6	122.1	123.0	-75.6	-76.6
ALTA0488	7/8/2024 7:01	49.7	42.4	0.9	7.0	126.8	127.1	-83.2	-83.2
ALTA0491	7/8/2024 7:42	50.1	36.3	2.4	11.2	116.1	116.9	-79.9	-79.9
ALTA0508	7/3/2024 6:49	58.6	38.8	0.6	2.0	110.7	110.9	-57.1	-57.1
ALTA0517	7/3/2024 6:19	54.8	36.4	1.4	7.4	110.6	111.1	-66.2	-66.3
ALTA0518	7/8/2024 9:49	53.0	38.7	0.2	8.1	121.4	121.4	-4.0	-4.6
ALTA0529	7/10/2024 10:25	57.3	39.0	0.0	3.7	91.3	91.2	-65.3	-65.2
ALTA0541	7/1/2024 9:15	50.7	35.6	0.6	13.1	119.2	119.3	-28.1	-27.5
ALTA0545	7/8/2024 7:35	34.5	49.8	0.2	15.5	123.0	123.0	-2.0	-2.0
ALTA0551	7/10/2024 8:10	58.1	41.8	0.0	0.1	77.0	78.9	-4.4	-11.5
ALTA0578	7/5/2024 7:35	46.9	36.3	1.1	15.7	106.0	108.4	-46.7	-39.4
ALTA0579	7/8/2024 7:09	40.3	43.2	1.6	14.9	97.3	95.9	-85.1	-76.4
ALTA0589	7/11/2024 7:04	44.3	33.5	1.8	20.4	94.0	94.8	-14.3	-12.9
ALTA0611	7/1/2024 9:26	51.2	37.3	0.8	10.7	125.8	126.2	-52.8	-57.3
ALTA0612	7/1/2024 9:20	54.6	42.3	0.4	2.7	129.5	129.6	-67.8	-67.8
ALTA0624	7/10/2024 10:56	44.6	32.7	2.2	20.5	87.4	87.4	-7.0	-7.0
ALTA0629	7/1/2024 9:32	43.0	31.0	4.7	21.3	115.6	116.6	-45.5	-42.6
ALTA0639	7/8/2024 10:21	48.9	42.2	0.0	8.9	138.6	138.7	-82.9	-82.9
ALTA0650	7/10/2024 10:21	43.7	36.0	3.9	16.4	89.3	89.2	-66.8	-66.8
ALTA0651	7/9/2024 13:04	57.1	42.9	0.0	0.0	92.6	92.7	-79.5	-81.8
ALTA0651 ALTA0652	7/8/2024 10:15	51.3	40.4	0.0	8.3	131.0	130.6	-79.5	-29.1
ALTA0652 ALTA0654	7/8/2024 10:13	50.4	47.9	0.0	0.9	106.9	107.1	-64.6	-66.8
									-85.4
ALTA0664 ALTA0669	7/9/2024 12:50	44.6 47.8	31.4 51.7	0.0	19.8 0.5	87.1	87.3 86.0	-85.5 -77.1	-85.4 -77.2
	7/5/2024 7:21					86.1			
ALTA0678	7/2/2024 9:30	56.2	42.6	0.5	0.7	92.7	92.8	-84.2	-84.2
ALTA0682	7/3/2024 6:23	56.1	38.7	1.2	4.0	123.4	123.6	-61.4	-64.1
ALTA0686	7/5/2024 7:30	29.0	28.9	2.5	39.6	75.9	75.9	-77.1	-77.5
ALTA0712	7/1/2024 10:22	54.0	40.9	0.9	4.2	129.1	129.1	-68.7	-71.1
ALTA0713	7/1/2024 10:14	51.0	37.4	1.3	10.3	124.3	124.3	-73.5	-74.6
ALTA0714	7/1/2024 9:56	53.9	38.0	1.2	6.9	127.5	127.7	-70.3	-70.3
ALTA0733	7/8/2024 8:46	47.0	40.5	0.0	12.5	143.9	143.2	-13.8	-11.9
ALTA0733	7/8/2024 8:50	46.9	40.1	0.0	13.0	142.4	142.5	-10.9	-10.9
ALTA0733	7/8/2024 8:50		ı	T	T	CO was 20 ppm			
ALTA0751	7/5/2024 9:09	44.4	39.0	0.0	16.6	111.4	111.3	-2.0	-1.5
ALTA0753	7/5/2024 9:29	46.1	40.5	0.0	13.4	128.1	127.9	-18.5	-16.4
ALTA0755	7/5/2024 10:10	42.2	39.2	0.1	18.5	123.6	121.6	-3.6	-2.5

ALTA0756	7/5/2024 8:21	54.2	45.8	0.0	0.0	103.4	104.2	-69.3	-74.7
ALTA0756	7/24/2024 7:57	55.0	44.7	0.0	0.3	110.9	111.4	-74.4	-80.1
ALTA0759	7/3/2024 10:30	50.5	41.9	0.0	7.6	128.6	128.5	-19.9	-19.9
ALTA0760	7/3/2024 10:34	54.5	45.5	0.0	0.0	135.1	135.1	-35.5	-35.5
ALTA0761	7/1/2024 9:48	42.4	35.4	0.4	21.8	118.5	118.8	-11.3	-10.0
ALTA0762	7/1/2024 10:18	53.7	39.7	1.3	5.3	125.8	125.8	-60.8	-61.8
ALTA0764	7/5/2024 8:39	48.9	39.0	0.0	12.1	116.1	115.4	-6.6	-5.1
ALTA0765	7/8/2024 7:50	48.3	35.7	0.6	15.4	99.0	100.2	-25.4	-28.7
ALTA0766	7/5/2024 8:08	57.3	42.7	0.0	0.0	92.9	93.1	-85.0	-84.0
ALTA0767	7/5/2024 8:54	47.5	39.9	0.0	12.6	132.0	129.5	-3.0	-2.6
ALTA0769	7/8/2024 8:37	41.5	44.6	3.2	10.7	108.3	108.0	-85.8	-85.8
ALTA0770	7/1/2024 9:52	46.5	36.9	0.3	16.3	122.7	122.7	-11.3	-10.5
ALTA0771	7/5/2024 6:41	53.4	39.7	0.0	6.9	121.7	121.8	-61.6	-65.6
ALTA0772	7/5/2024 6:57	48.3	37.5	0.0	14.2	124.4	124.4	-21.3	-21.3
ALTA0851	7/5/2024 8:26	47.6	42.8	0.0	9.6	117.9	117.6	-8.2	-7.6
ALTA0852	7/5/2024 8:03	45.4	41.0	1.6	12.0	124.6	124.7	-1.6	-1.6
ALTA0853	7/5/2024 7:59	49.0	41.9	0.0	9.1	114.3	117.6	-6.8	-12.3
ALTA0854	7/2/2024 8:49	43.9	40.6	0.0	15.5	128.7	127.0	-3.3	-2.6
ALTA0856	7/2/2024 8:57	38.8	37.1	0.0	24.1	129.1	129.1	-0.6	-0.6
ALTA0857	7/2/2024 8:31	50.0	41.5	0.0	8.5	117.8	117.9	-79.8	-80.8
ALTA0858	7/2/2024 8:26	44.1	43.9	0.0	12.0	135.2	135.2	-2.2	-1.5
ALTA0859	7/8/2024 8:01	46.9	40.1	0.4	12.6	124.6	123.7	-7.9	-7.7
ALTA0860	7/8/2024 8:07	38.8	37.4	0.4	23.4	125.0	125.1	-28.2	-27.8
ALTA0861	7/8/2024 8:17	38.8	37.4	0.0	23.8	124.9	124.7	-0.5	-0.5
ALTA0862	7/8/2024 8:23	45.1	39.8	0.0	15.1	116.4	114.3	-3.1	-1.7
ALTA0863	7/8/2024 9:24	52.5	40.3	0.0	7.2	110.3	110.3	-86.7	-86.7
ALTA0864	7/11/2024 8:14	50.3	29.3	3.6	16.8	92.7	92.8	-87.2	-87.2
ALTA0865	7/8/2024 9:38	44.7	33.4	4.4	17.5	82.0	81.9	-87.6	-87.6
ALTA0866	7/8/2024 10:00	44.6	40.0	0.0	15.4	124.7	124.4	-32.7	-20.8
ALTA0867	7/8/2024 10:08	49.4	40.4	0.0	10.2	134.1	131.5	-30.3	-20.2
ALTA0868	7/8/2024 7:17	49.7	48.1	0.7	1.5	78.4	78.1	-82.7	-82.0
ALTA0870	7/8/2024 7:26	51.9	40.1	0.3	7.7	111.5	111.4	-84.2	-84.3
ALTA0872	7/1/2024 10:36	43.8	34.3	3.2	18.7	93.2	93.3	-77.9	-77.9
ALTA0873	7/1/2024 10:41	44.7	33.5	4.7	17.1	123.9	124.4	-75.1	-73.4
ALTA0875	7/9/2024 12:42	52.1	39.5	1.6	6.8	108.8	94.6	-82.7	-82.0
ALTA0877	7/9/2024 12:36	52.3	35.9	2.8	9.0	86.2	86.0	-83.0	-81.6
ALTA0878	7/3/2024 6:55	57.4	39.1	0.9	2.6	88.4	88.4	-57.1	-57.1
ALTA0879	7/3/2024 6:31	46.9	36.0	0.5	16.6	111.4	111.4	-26.7	-26.7
ALTA0880	7/8/2024 8:29	36.9	63.1	0.0	0.0	129.1	129.1	-69.4	-68.8

Wellfield Monitoring Report - August 2024 REPORT PREPARED BY: Rajan Phadnis UPDATED DATE: 9/1/2024

FLOW SENSING DEVICE: LANDTEC GEM

MODEL: 5000

Vellhead ID Number	Date and Time	CH₄ (% by Volume)	CO ₂ (% by Volume)	O ₂ (% by Volume)	BALANCE GAS (% by Volume)	INITIAL TEMPERATURE (°F)	ADJUSTED TEMPERATURE (°F)	INITIAL STATIC PRESSURE ("WC)	ADJUSTED STATIC PRESSURE ("WC)
ALHC0824	8/19/2024 9:41	43.2	32.4	4.8	19.6	79.8	79.7	-0.6	-0.1
ALLC0695	8/5/2024 12:06	48.9	41.2	0.0	9.9	117.5	118.1	-47.7	-57.9
ALLC0700	8/9/2024 10:22	56.7	43.3	0.0	0.0	85.4	85.4	-74.8	-74.8
ALLC0703	8/7/2024 8:42	9.1	10.0	13.1	67.8	106.7	107.8	-1.0	-17.9
ALLC0703	8/7/2024 8:44	10.9	10.4	13.2	65.5	108.3	108.7	-20.2	-1.4
ALLC0709	8/8/2024 9:44	49.5	37.5	0.1	12.9	117.0	117.0	-41.8	-45.3
ALLC0734	8/7/2024 8:00	54.4	40.0	1.4	4.2	106.3	108.2	-54.8	-55.9
ALLC0736	8/7/2024 8:33	42.7	35.5	0.0	21.8	106.7	106.8	-26.7	-20.3
ALLC0737	8/7/2024 8:37	58.8	41.2	0.0	0.0	87.0	87.0	-60.3	-60.3
ALLC0738	8/7/2024 9:45	52.8	46.6	0.5	0.1	95.9	96.0	-66.6	-66.5
ALLC0739	8/6/2024 12:10	48.5	35.1	3.0	13.4	85.7	88.1	-83.1	-83.0
ALLC0740	8/6/2024 12:20	49.3	40.9	0.0	9.8	128.4	127.8	-4.4	-2.8
ALLC0743	8/7/2024 9:41	51.8	43.1	1.3	3.8	124.0	124.3	-65.4	-62.4
ALLC0744	8/6/2024 12:15	54.5	41.4	0.2	3.9	106.1	106.7	-74.6	-75.8
ALLC0745	8/7/2024 8:28	39.1	37.6	0.0	23.3	119.3	119.3	-2.5	-2.5
ALLC0746	8/6/2024 12:05	54.7	45.3	0.0	0.0	115.2	115.1	-82.0	-82.5
ALLC0747	8/9/2024 10:33	50.3	45.1	0.0	4.6	119.2	119.2	-74.0	-74.0
ALLC0748	8/9/2024 10:25	57.7	42.3	0.0	0.0	111.5	111.9	-76.1	-76.2
ALLC0749	8/9/2024 10:17	49.1	39.3	0.0	11.6	118.5	118.8	-41.3	-41.1
ALLC0777	8/1/2024 13:50	50.3	36.0	0.0	13.7	118.3	117.9	-4.3	-3.8
ALLC0778	8/1/2024 11:31	49.5	36.5	0.0	14.0	102.2	102.2	-20.6	-14.1
ALLC0779	8/1/2024 10:46	51.9	40.9	0.0	7.2	109.9	110.6	-2.4	-3.9
ALLC0780	8/1/2024 10:42	36.1	31.9	0.0	32.0	109.7	108.4	-2.8	-1.5
ALLC0781	8/1/2024 11:01	39.2	33.9	0.0	26.9	112.2	112.3	-1.2	-1.1
ALLC0783	8/1/2024 11:06	50.4	37.2	0.0	12.4	116.6	116.6	-0.9	-0.9
ALLC0784	8/1/2024 11:35	20.1	25.3	0.0	54.6	100.5	100.6	-0.9	-0.9
ALLC0785	8/1/2024 11:27	47.7	34.7	0.0	16.9	106.5	106.0	-5.4	-4.0
ALLC0786	8/1/2024 11:13	51.0	36.7	0.0	12.3	121.1	121.1	-6.4	-6.3
ALLC0780	8/1/2024 11:13	51.0	38.3	0.0	10.7	110.7	110.9	-10.8	-12.2
ALLC0788					5.2		107.5	-70.3	-72.0
ALLC0789	8/1/2024 10:15 8/1/2024 10:21	56.3 58.1	38.4 41.2	0.1	0.7	107.7	120.4	-70.3	-72.0 -4.1
		52.7	36.9	0.0	10.4	118.3	104.3	-72.4	-69.2
ALLC0790	8/1/2024 14:07					104.0			
ALLC0791	8/2/2024 11:00	40.4	36.8	0.0	22.8	103.3	103.6	-61.7	-46.8
ALLC0792	8/2/2024 11:05	39.1	34.8	0.0	26.1	117.5	117.0	-8.5	-4.8
ALLC0793	8/1/2024 14:17	37.2	31.8	0.0	31.0	109.1	109.2	-81.5	-76.7
ALLC0794	8/2/2024 11:12	40.7	34.8	0.1	24.4	119.7	119.8	-30.4	-24.8
ALLC0796	8/2/2024 10:47	48.0	41.6	0.0	10.4	129.8	129.7	-33.4	-29.6
ALLC0797	8/2/2024 10:42	42.4	47.1	0.0	10.5	111.7	111.7	-1.4	-1.4
ALLC0798	8/2/2024 10:55	27.9	34.1	0.1	37.9	128.9	128.9	-1.1	-1.1
ALLC0800	8/2/2024 10:32	46.1	41.0	0.0	12.9	114.3	114.2	-4.9	-3.6
ALLC0801	8/2/2024 9:47	50.1	46.6	0.0	3.3	124.4	124.5	-6.5	-6.5
ALLC0803	8/1/2024 10:01	52.3	43.3	0.0	4.4	115.6	120.5	-1.4	-2.4
ALLC0804	8/1/2024 9:57	51.7	42.5	0.0	5.8	106.7	107.1	-1.4	-2.1
ALLC0805	8/6/2024 13:45	44.6	36.5	0.0	18.9	98.7	98.7	-1.2	-1.1
ALLC0806	8/6/2024 13:48	43.6	38.0	0.0	18.4	109.7	109.7	-1.1	-1.1
ALLC0807	8/6/2024 13:53	42.4	39.1	1.3	17.2	108.3	106.9	-2.8	-2.2
ALLC0811	8/1/2024 13:55	43.7	34.5	0.0	21.8	105.5	105.8	-0.9	-0.9
ALLC0812	8/1/2024 14:00	40.2	34.5	0.0	25.3	115.1	115.0	-2.4	-2.2
ALLC0813	8/2/2024 10:27	26.7	25.7	0.0	47.6	106.0	106.0	-1.3	-1.3
ALLC0814	8/2/2024 10:07	48.2	36.1	1.3	14.4	119.5	119.5	-0.7	-0.7
ALLC0815	8/5/2024 9:45	46.1	40.3	0.0	13.6	110.2	109.3	-17.6	-16.3

ALLC0816	8/5/2024 11:46	55.2	44.8	0.0	0.0	91.5	91.9	-82.9	-82.8
ALLC0817	8/5/2024 10:05	52.6	43.1	0.0	4.3	119.1	119.2	-10.4	-16.4
ALLC0819	8/7/2024 8:08	50.8	44.0	2.6	2.6	109.4	109.5	-2.4	-2.4
ALLC0820	8/6/2024 11:34	53.7	42.1	1.0	3.2	109.6	109.6	-68.7	-68.7
ALLC0821	8/8/2024 10:54	44.9	40.5	0.3	14.3	106.1	106.0	-25.5	-26.3
ALLC0822	8/14/2024 9:14	12.7	66.8	0.0	20.5	126.2	126.3	-5.5	-5.4
ALLC0826	8/6/2024 11:58	52.9	39.5	0.0	7.6	101.8	101.7	-82.5	-82.5
ALLC0827	8/6/2024 11:39	56.8	43.2	0.0	0.0	95.6	95.6	-72.1	-72.2
ALLC0830	8/8/2024 12:35	58.8	39.4	0.0	1.8	107.6	107.8	-79.0	-79.0
ALLC0831	8/6/2024 11:50	25.3	30.4	0.0	44.3	110.5	110.5	-1.4	-1.4
ALLC0832	8/1/2024 14:13	38.8	33.9	0.0	27.3	126.7	126.4	-24.4	-12.7
ALLC0833	8/2/2024 10:37	46.2	39.1	0.0	14.7	110.7	110.7	0.0	0.0
ALLC0834	8/8/2024 8:19	51.6	48.4	0.0	0.0	124.0	124.0	-85.2	-84.5
ALLC0835	8/8/2024 8:14	50.4	49.6	0.0	0.0	124.4	124.4	-85.7	-84.5
ALLC0836	8/8/2024 8:08	48.9	51.1	0.0	0.0	128.8	128.8	-84.5	-84.1
ALLC0837	8/8/2024 8:06	50.1	49.9	0.0	0.0	126.5	126.5	-84.4	-84.4
ALLC0838	8/14/2024 9:08	40.1	35.0	4.7	20.2	76.1	76.1	-56.5	-56.5
ALLC0839	8/8/2024 10:24	31.1	37.7	0.0	31.2	129.2	120.9	-13.1	-6.7
ALLC0840	8/8/2024 10:17	39.6	41.8	0.0	18.6	124.4	124.3	-2.0	-1.8
ALLC0841	8/15/2024 7:39	59.9	32.2	0.0	7.9	65.7	65.9	-49.1	-49.1
ALLC0842	8/14/2024 9:27	57.8	41.8	0.0	0.4	111.7	112.8	-1.4	-3.3
ALLC0843	8/8/2024 7:39	50.0	38.1	0.0	11.9	73.1	73.2	-52.6	-63.6
ALLC0844	8/8/2024 7:36	42.3	34.8	0.0	22.9	86.0	86.1	-5.0	-3.6
ALLC0845	8/8/2024 7:33	59.5	40.5	0.1	-0.1	80.4	80.5	-79.4	-79.5
ALLC0846	8/13/2024 10:50	46.1	32.9	3.5	17.5	81.0	81.0	-70.9	-70.9
ALLC0847	8/7/2024 9:26	44.7	32.4	1.5	21.4	115.4	115.5	-2.9	-2.9
ALLC0848	8/7/2024 9:19	36.7	32.2	0.0	31.1	107.2	107.2	-13.4	-13.4
ALLC0849	8/7/2024 9:15	27.6	30.3	0.0	42.1	119.7	120.8	-34.6	-27.8
ALT20001	8/7/2024 7:45	47.5	40.1	0.1	12.3	101.3	102.0	-0.7	-0.6
ALT20003	8/13/2024 7:25	46.3	39.9	0.6	13.2	122.9	122.9	-38.9	-34.7
ALT20004	8/13/2024 7:17	45.4	39.0	0.4	15.2	103.3	102.8	-25.0	-15.1
ALT20005	8/13/2024 7:20	40.2	39.2	0.3	20.3	98.3	98.1	-4.6	-4.6
ALT20006	8/13/2024 7:09	50.3	39.6	0.3	9.8	123.2	123.6	-10.2	-13.5
ALT20007	8/13/2024 7:28	44.7	36.2	0.4	18.7	106.0	106.2	-8.9	-8.2
ALT20007 ALT20008		18.8	20.9	4.8		120.0	119.8	-2.4	-2.4
	8/14/2024 9:38 8/6/2024 9:23				55.5				
ALT20009		43.6	37.7	1.0	17.7	128.7	128.9	-36.0	-24.7
ALT20010	8/13/2024 8:05	37.1	31.4	3.5	28.0	129.8	129.1	-22.4	-15.1
ALT20011	8/6/2024 9:18	39.0	37.3	0.0	23.7	127.6	127.7	-2.8	-2.7
ALT20012	8/6/2024 8:50	42.6	40.8	0.1	16.5	127.8	127.8	-1.1	-1.1
ALT20013	8/6/2024 8:53	43.7	40.6	0.0	15.7	131.1	131.1	-1.0	-1.0
ALT20014	8/6/2024 8:45	34.2	35.6	0.0	30.2	115.6	115.6	-1.5	-0.9
ALT20015	8/6/2024 8:42	44.1	38.3	0.3	17.3	123.4	123.2	-5.2	-3.1
ALT20016	8/13/2024 7:38	51.8	43.8	0.0	4.4	126.8	127.2	-9.8	-9.7
ALT20017	8/13/2024 7:33	42.8	40.9	0.0	16.3	135.5	135.5	-7.9	-7.8
ALT20018	8/7/2024 7:22	49.3	43.2	0.0	7.5	132.7	132.8	-6.1	-6.1
ALT20018	8/13/2024 7:55	49.9	42.5	0.0	7.6	131.8	131.9	-6.7	-6.7
ALT20019	8/7/2024 7:28	44.3	41.2	0.0	14.5	132.9	133.1	-4.3	-4.2
ALT20019	8/13/2024 7:46	45.6	40.5	0.2	13.7	132.4	132.4	-4.1	-4.0
ALT20020	8/13/2024 7:50	55.5	44.5	0.0	0.0	129.2	129.2	-7.5	-7.5
ALT20021	8/6/2024 7:59	49.9	41.1	0.0	9.0	118.2	118.9	-3.6	-8.0
ALT20022	8/6/2024 8:16	48.3	41.4	0.0	10.3	115.7	115.7	-5.5	-5.8
ALT20023	8/6/2024 7:49	49.3	43.9	0.1	6.7	122.0	122.1	-10.2	-14.0
ALT20024	8/6/2024 7:36	44.7	41.4	0.1	13.8	126.6	126.6	-8.6	-6.4
ALT20025	8/6/2024 7:28	53.3	42.6	0.0	4.1	122.1	122.1	-6.2	-8.8
ALT20026	8/6/2024 7:19	49.7	40.7	0.9	8.7	126.6	127.2	-0.8	-1.0
ALT20020 ALT20027	8/6/2024 7:19	53.6	42.9	0.9	3.2	117.7	117.7	-15.2	-19.4
ALT20027 ALT20028	8/7/2024 7:14						124.6	-6.8	-19.4
		55.0	45.0	0.0	0.0	124.5			
ALT20029	8/7/2024 7:33	55.6	44.4	0.0	0.0	124.0	124.0	-6.5	-7.2
ALTA0003	8/13/2024 13:40	58.3	36.1	0.2	5.4	113.1	113.1	-83.2	-83.2
ALTA0054	8/14/2024 9:05	58.3	40.0	0.0	1.7	77.8	77.8	-46.8	-46.8

ALTA0056	8/13/2024 13:47	57.2	38.1	0.1	4.6	109.4	109.3	-63.5	-63.5
ALTA0056	8/14/2024 9:00	59.0	41.0	0.0	0.0	107.4	107.8	-63.9	-63.1
ALTA0059	8/14/2024 8:46	57.4	41.2	0.6	0.8	81.9	83.4	-81.6	-80.4
ALTA0087	8/14/2024 9:20	57.6	41.4	0.0	1.0	125.5	125.9	-81.2	-80.7
ALTA0108	8/14/2024 8:37	50.6	40.0	0.2	9.2	87.1	87.4	-7.3	-8.5
ALTA0201	8/13/2024 11:05	53.2	35.0	0.5	11.3	109.5	109.4	-84.6	-84.6
ALTA0472		54.8	39.1	0.0				-84.2	-83.7
	8/1/2024 9:52				6.1	116.4	115.8		
ALTA0483	8/8/2024 10:22	53.2	41.3	0.0	5.5	118.6	118.8	-63.6	-63.0
ALTA0488	8/8/2024 10:32	50.2	43.5	0.0	6.3	126.0	126.8	-65.7	-65.7
ALTA0491	8/8/2024 12:31	60.2	39.8	0.1	-0.1	121.0	121.1	-79.3	-79.3
ALTA0508	8/7/2024 8:11	57.9	40.4	0.0	1.7	111.5	111.6	-64.5	-64.4
ALTA0517	8/7/2024 8:18	56.7	38.7	0.0	4.6	111.3	111.5	-69.9	-70.4
ALTA0518	8/13/2024 8:39	50.0	38.5	0.0	11.5	119.7	120.1	-4.3	-4.7
ALTA0529	8/8/2024 10:40	53.0	42.3	0.0	4.7	82.0	81.9	-67.9	-67.9
ALTA0541	8/5/2024 13:30	50.7	38.2	0.0	11.1	109.9	116.5	-28.1	-28.5
ALTA0545	8/13/2024 8:31	34.3	48.9	0.4	16.4	122.8	122.7	-2.5	-2.5
ALTA0551	8/14/2024 9:32	47.7	37.5	2.9	11.9	79.8	79.5	-20.2	-18.7
ALTA0578	8/9/2024 10:44	54.2	42.1	0.0	3.7	103.8	105.7	-26.9	-49.2
ALTA0579	8/8/2024 10:41	40.9	46.3	0.0	12.8	104.8	104.9	-67.0	-67.0
ALTA0589	8/15/2024 7:50	47.2	35.4	0.9	16.5	95.5	95.7	-12.0	-12.4
ALTA0611	8/8/2024 8:59	51.6	39.0	0.0	9.4	124.9	124.9	-61.8	-67.3
ALTA0612	8/8/2024 8:52	56.5	43.2	0.1	0.2	126.2	126.2	-70.4	-70.4
ALTA0624	8/13/2024 13:33	44.5	32.5	1.1	21.9	87.9	88.1	-70.4	-5.9
ALTA0629	8/8/2024 9:06	59.4	40.6	0.0	0.0	113.3	115.8	-33.5	-37.7
ALTA0639	8/14/2024 8:36	48.4	40.7	0.1	10.8	137.0	137.8	-82.7	-82.7
ALTA0650	8/8/2024 10:07	37.7	37.4	4.9	20.0	81.6	81.6	-70.9	-71.5
ALTA0651	8/8/2024 10:12	51.3	48.7	0.0	0.0	91.8	91.8	-66.5	-67.6
ALTA0652	8/8/2024 8:40	47.8	46.0	0.0	6.2	137.0	136.9	-28.6	-26.4
ALTA0654	8/7/2024 9:35	48.5	49.6	0.7	1.2	130.5	132.2	-58.4	-58.4
ALTA0664	8/8/2024 9:55	35.8	33.5	4.5	26.2	71.8	72.2	-73.3	-73.3
ALTA0669	8/9/2024 10:30	33.1	41.0	4.3	21.6	77.1	77.0	-78.7	-78.7
ALTA0678	8/1/2024 11:20	57.0	40.7	0.3	2.0	88.7	89.1	-85.7	-85.9
ALTA0682	8/7/2024 8:22	56.9	40.8	0.2	2.1	124.0	124.1	-67.3	-68.0
ALTA0686	8/9/2024 10:39	43.1	35.3	2.3	19.3	74.8	75.1	-74.5	-75.4
ALTA0712	8/5/2024 11:35	53.8	44.8	0.0	1.4	128.4	128.6	-74.2	-74.8
ALTA0713	8/5/2024 11:28	54.4	41.9	0.0	3.7	123.1	123.3	-77.6	-77.2
ALTA0714	8/5/2024 9:49	54.7	43.0	0.0	2.3	126.3	126.5	-76.5	-76.5
ALTA0733	8/7/2024 9:26	49.0	44.9	0.0	6.1	144.8	144.8	-8.2	-8.3
ALTA0733	8/7/2024 9:28	48.9	44.5	0.0	6.6	144.5	143.8	-8.2	-6.8
ALTA0733	8/7/2024 9:28					CO was 20 ppm		<u> </u>	
ALTA0751	8/6/2024 11:46	51.6	42.8	0.0	5.6	111.4	111.5	-0.8	-0.8
ALTA0753	8/6/2024 14:04	52.0	42.8	0.0	5.2	128.4	128.6	-9.7	-11.1
ALTA0755 ALTA0755	8/6/2024 13:58	52.0		0.0	0.9	117.1	123.1	-9.7	-2.1
			46.8						
ALTA0756	8/2/2024 9:41	53.2	46.8	0.0	0.0	107.3	107.1	-83.3	-83.3
ALTA0759	8/6/2024 10:20	48.1	42.3	0.0	9.6	129.1	129.0	-22.9	-17.6
ALTA0760	8/6/2024 10:14	54.4	43.4	0.3	1.9	135.4	135.4	-46.3	-46.3
ALTA0761	8/5/2024 10:03	48.3	40.9	0.0	10.8	116.2	116.3	-7.2	-7.2
ALTA0762	8/5/2024 11:31	55.3	44.7	0.0	0.0	124.8	124.9	-67.2	-64.0
ALTA0764	8/2/2024 9:34	57.1	42.4	0.0	0.5	112.8	114.1	-3.1	-4.2
ALTA0765	8/8/2024 12:39	45.8	35.0	0.4	18.8	102.9	103.1	-32.3	-29.1
ALTA0766	8/2/2024 10:15	56.6	43.4	0.0	0.0	97.4	97.5	-86.0	-86.0
ALTA0767	8/7/2024 8:02	55.5	44.4	0.1	0.0	130.6	130.6	-1.1	-1.1
ALTA0769	8/7/2024 9:14	43.9	55.7	0.4	0.0	118.2	118.0	-66.9	-66.9
ALTA0770	8/5/2024 9:54	51.2	41.1	0.0	7.7	121.5	121.7	-8.2	-9.1
ALTA0771	8/5/2024 11:57	45.2	39.2	0.4	15.2	119.3	119.5	-63.8	-60.0
ALTA0772	8/9/2024 10:12	48.7	39.2	0.0	12.1	124.6	124.6	-21.0	-21.0
ALTA0851	8/2/2024 10:03	52.6	47.4	0.0	0.0	117.1	118.2	-2.7	-3.6
ALTA0852	8/2/2024 10:19	51.3	48.7	0.0	0.0	128.2	129.0	-6.9	-5.3
ALTA0853	8/2/2024 10:23	47.6	41.7	0.0	10.7	118.6	118.0	-10.5	-8.8
ALTA0854	8/1/2024 11:50	44.2	39.9	0.0	15.9	127.2	124.1	-1.6	-1.2
, 1217 (0004	S, ., 2027 11.00	77.4	00.0	0.0	10.0	121.2	147.1	1.0	1.2

ALTA0856	8/1/2024 11:43	38.9	34.9	0.0	26.2	129.1	129.1	-0.6	-0.6
ALTA0857	8/1/2024 10:56	50.9	39.8	0.0	9.3	117.9	117.9	-83.0	-82.4
ALTA0858	8/1/2024 10:51	50.4	45.6	0.0	4.0	134.1	134.1	-1.2	-1.2
ALTA0859	8/7/2024 8:34	52.9	46.7	0.0	0.4	127.3	131.8	-2.2	-13.1
ALTA0860	8/7/2024 8:39	40.3	40.5	0.3	18.9	127.2	127.0	-21.9	-20.5
ALTA0861	8/7/2024 8:43	49.0	42.5	0.0	8.5	125.8	125.9	-0.2	-0.2
ALTA0862	8/7/2024 9:05	52.1	47.9	0.0	0.0	115.2	119.5	-0.9	-2.7
ALTA0863	8/8/2024 7:47	48.8	40.9	0.1	10.2	109.1	109.1	-84.5	-84.5
ALTA0864	8/8/2024 7:53	53.6	46.4	0.0	0.0	87.1	87.1	-85.1	-85.1
ALTA0865	8/8/2024 8:00	47.3	41.3	2.8	8.6	80.5	80.4	-81.7	-81.7
ALTA0866	8/8/2024 8:26	48.2	51.8	0.0	0.0	119.7	127.0	-3.7	-15.2
ALTA0867	8/8/2024 8:34	49.6	50.4	0.0	0.0	131.3	132.5	-15.5	-17.1
ALTA0868	8/8/2024 10:46	50.0	50.0	0.0	0.0	92.3	92.3	-62.6	-62.1
ALTA0870	8/13/2024 11:31	56.9	39.3	0.3	3.5	117.7	118.0	-82.5	-82.6
ALTA0872	8/5/2024 11:50	34.0	32.6	3.7	29.7	79.9	79.8	-83.1	-83.1
ALTA0873	8/5/2024 11:41	53.6	44.0	0.0	2.4	122.9	123.1	-78.8	-78.8
ALTA0875	8/8/2024 9:49	52.1	47.5	0.4	0.0	88.9	88.8	-73.7	-73.7
ALTA0877	8/8/2024 9:44	54.3	44.3	0.8	0.6	70.5	70.6	-76.0	-76.0
ALTA0878	8/7/2024 8:06	57.8	40.9	0.4	0.9	89.7	89.8	-69.8	-69.9
ALTA0879	8/7/2024 9:11	44.7	35.6	0.0	19.7	110.7	110.9	-24.7	-19.3
ALTA0880	8/7/2024 9:09	33.1	66.9	0.0	0.0	129.8	129.8	-54.5	-54.4

Wellfield Monitoring Report - September 2024 REPORT PREPARED BY: Rajan Phadnis UPDATED DATE: 10/1/2024

FLOW SENSING DEVICE: LANDTEC GEM

MODEL: 5000

DATE LAST CALIBR	RATED: DAILY	1	1	ı	1			I	
Wellhead ID Number	Date and Time	CH₄ (% by Volume)	CO ₂ (% by Volume)	O ₂ (% by Volume)	BALANCE GAS (% by Volume)	INITIAL TEMPERATURE (°F)	ADJUSTED TEMPERATURE (°F)	INITIAL STATIC PRESSURE ("WC)	ADJUSTED STATIC PRESSURE ("WC)
ALHC0824	9/19/2024 7:46	54.1	35.8	2.4	7.7	69.3	74.0	-0.2	-0.7
ALLC0695	9/13/2024 8:34	47.8	38.8	0.0	13.4	118.4	118.3	-48.3	-48.2
ALLC0700	9/3/2024 10:31	58.9	41.1	0.0	0.0	90.9	90.8	-69.2	-69.2
ALLC0703	9/11/2024 8:37	6.5	10.3	12.1	71.1	99.0	102.4	-3.8	-22.9
ALLC0703	9/11/2024 8:40	6.4	10.0	12.5	71.1	103.1	103.6	-22.4	-3.4
ALLC0703	9/23/2024 13:37				NSPS/EG Corr	ective Action Comp	oleted (CAC)		
ALLC0709	9/6/2024 7:56	44.6	35.5	0.0	19.9	118.0	118.6	-46.0	-35.0
ALLC0734	9/11/2024 7:55	56.1	43.9	0.0	0.0	109.8	109.7	-58.1	-58.0
ALLC0736	9/11/2024 8:25	52.3	40.6	0.0	7.1	102.2	103.0	-14.0	-20.0
ALLC0737	9/11/2024 8:31	56.7	43.3	0.0	0.0	108.4	108.7	-70.3	-70.3
ALLC0738	9/11/2024 10:43	49.4	43.6	1.8	5.2	118.3	117.9	-81.2	-77.5
ALLC0739	9/9/2024 11:39	47.7	34.9	3.2	14.2	93.5	93.7	-57.8	-58.6
ALLC0740	9/11/2024 9:42	51.4	43.4	0.0	5.2	123.6	125.8	-2.4	-4.1
ALLC0743	9/11/2024 10:35	53.5	46.5	0.0	0.0	122.6	122.5	-78.6	-82.8
ALLC0744	9/9/2024 11:31	52.6	41.4	0.0	6.0	110.8	110.8	-48.9	-50.1
ALLC0745	9/11/2024 9:46	37.3	37.5	0.0	25.2	116.1	116.1	-2.9	-2.8
ALLC0746	9/9/2024 11:45	54.5	45.5	0.0	0.0	118.2	118.2	-57.6	-58.0
ALLC0747	9/3/2024 10:43	50.6	41.8	0.0	7.6	119.4	119.5	-73.9	-73.9
ALLC0748	9/3/2024 10:34	58.9	40.1	0.0	1.0	110.9	111.5	-75.5 -75.5	-75.5
ALLC0749	9/3/2024 10:34	50.3	37.6	0.0	12.1	118.8	119.0	-41.3	-47.9
ALLC0777	9/5/2024 8:23	51.8	40.1	0.0	8.1 1.4	115.6	116.7	-3.4	-4.7
ALL 00778	9/4/2024 11:53	54.2	44.4	0.0		103.6	103.8	-12.4	-20.5
ALLC0779	9/3/2024 10:27	49.9	40.3	0.0	9.8	110.5	110.7	-3.6	-5.2
ALLC0780	9/3/2024 10:23	58.2	39.1	0.0	2.7	105.9	108.9	-0.6	-2.2
ALLC0781	9/3/2024 10:41	49.3	37.0	0.0	13.7	111.2	111.2	-0.5	-0.5
ALLC0783	9/4/2024 11:32	54.2	45.2	0.0	0.6	116.7	116.8	-0.3	-0.3
ALLC0784	9/4/2024 11:28	27.9	31.7	0.0	40.4	102.9	102.9	-0.5	-0.5
ALLC0785	9/4/2024 11:42	52.0	43.0	0.2	4.8	107.8	108.2	-2.2	-3.4
ALLC0786	9/4/2024 11:37	51.5	43.7	0.0	4.8	121.7	121.6	-5.1	-6.1
ALLC0787	9/3/2024 10:10	52.8	38.4	0.0	8.8	110.4	110.9	-7.4	-10.7
ALLC0788	9/3/2024 10:14	55.5	38.7	0.1	5.7	107.9	107.8	-68.4	-71.9
ALLC0789	9/3/2024 10:19	53.0	40.0	0.0	7.0	118.7	119.5	-3.2	-5.8
ALLC0790	9/5/2024 8:38	54.1	41.3	0.0	4.6	102.6	102.5	-56.8	-61.1
ALLC0791	9/16/2024 13:14	49.5	40.7	0.0	9.8	104.2	104.2	-45.6	-56.8
ALLC0792	9/5/2024 12:09	57.2	42.8	0.0	0.0	116.7	117.8	-1.7	-3.8
ALLC0793	9/5/2024 12:18	42.5	37.0	0.0	20.5	109.9	109.9	-64.7	-61.1
ALLC0794	9/5/2024 12:01	48.8	41.2	0.0	10.0	120.8	120.8	-22.5	-22.0
ALLC0796	9/4/2024 10:26	46.6	47.5	0.0	5.9	128.9	128.7	-24.1	-20.5
ALLC0797	9/4/2024 10:20	39.5	52.3	0.0	8.2	112.4	112.4	-1.1	-1.1
ALLC0798	9/4/2024 10:32	40.1	45.5	1.0	13.4	122.6	122.7	-0.3	-0.3
ALLC0800	9/5/2024 12:23	51.2	45.0	0.0	3.8	114.2	114.4	-1.8	-2.5
ALLC0801	9/9/2024 10:43	51.4	46.4	0.0	2.2	124.9	124.9	-5.7	-7.8
ALLC0803	9/3/2024 10:06	43.9	36.1	0.7	19.3	115.6	115.7	-0.9	-0.9
ALLC0804	9/3/2024 10:02	52.9	42.0	0.0	5.1	106.3	106.9	-0.7	-1.6
ALLC0805	9/9/2024 11:50	44.4	36.9	0.0	18.7	100.8	101.0	-1.1	-1.1
ALLC0806	9/9/2024 11:54	43.5	38.1	0.0	18.4	109.4	109.5	-0.9	-0.9
ALLC0807	9/9/2024 11:58	33.8	35.5	1.7	29.0	109.8	109.4	-2.5	-2.1
ALLC0811	9/5/2024 8:29	54.1	41.1	0.0	4.8	99.8	103.8	-0.9	-1.4
ALLC0812	9/5/2024 8:33	47.5	41.8	0.0	10.7	111.5	110.8	-1.3	-1.1
ALLC0813	9/5/2024 12:27	29.6	29.1	0.0	41.3	99.8	102.7	-0.7	-0.7
ALLC0814	9/4/2024 10:58	49.6	45.0	0.6	4.8	119.5	121.4	-0.2	-1.2
ALLC0815	9/12/2024 9:40	44.7	38.5	0.0	16.8	110.6	110.3	-13.8	-13.0
ALLC0816	9/12/2024 10:00	56.7	43.3	0.0	0.0	90.9	94.0	-76.4	-76.4

ALLC0817	9/12/2024 9:54	46.8	39.4	0.0	13.8	119.5	119.6	-15.7	-12.7
ALLC0819	9/5/2024 11:43	51.8	48.2	0.0	0.0	111.5	112.0	-1.3	-1.7
ALLC0820	9/5/2024 11:38	53.1	44.6	0.7	1.6	113.5	113.7	-62.6	-62.6
ALLC0821	9/13/2024 11:11	57.4	39.4	0.0	3.2	106.4	106.7	-20.6	-30.7
ALLC0822	9/18/2024 13:12	14.0	63.3	1.3	21.4	118.4	118.2	-8.9	-8.9
ALLC0826	9/9/2024 11:23	50.1	39.7	0.0	10.2	103.3	103.3	-59.0	-60.0
ALLC0827	9/5/2024 11:34	48.7	39.1	2.7	9.5	93.1	93.2	-69.2	-69.2
ALLC0830	9/13/2024 8:14	58.7	41.2	0.0	0.1	104.9	105.0	-68.5	-68.4
ALLC0831	9/9/2024 11:18	19.8	29.1	0.0	51.1	113.0	113.0	-2.2	-2.2
ALLC0832	9/5/2024 12:14	48.9	42.0	0.0	9.1	126.9	126.9	-10.1	-10.2
ALLC0833	9/4/2024 10:15	46.8	44.0	0.0	9.2	111.4	111.4	-0.2	-0.2
ALLC0834	9/11/2024 11:40	55.1	44.9	0.0	0.0	124.4	124.4	-83.5	-83.0
ALLC0835	9/11/2024 11:32	51.1	45.0	0.0	3.9	124.6	124.6	-83.2	-83.2
ALLC0836	9/11/2024 11:28	51.5	46.7	0.0	1.8	124.0	129.0	-82.7	-82.7
ALLC0837		52.9	47.1	0.0	0.0	129.0	129.0	-82.6	-83.1
	9/11/2024 11:24								
ALLC0838	9/13/2024 10:23	44.1	35.1	4.0	16.8	95.1	95.1	-28.0	-28.9
ALLC0839	9/12/2024 9:46	44.2	46.0	0.0	9.8	128.8	128.8	-3.6	-3.6
ALLC0840	9/12/2024 9:41	42.9	43.5	0.0	13.6	124.4	124.4	-1.6	-1.5
ALLC0841	9/17/2024 9:47	60.3	39.7	0.0	0.0	70.5	70.5	-86.4	-86.4
ALLC0842	9/13/2024 11:18	46.6	37.1	0.0	16.3	114.4	114.3	-4.0	-3.0
ALLC0843	9/11/2024 9:49	44.7	37.3	0.0	18.0	74.2	74.2	-55.8	-56.3
ALLC0844	9/11/2024 9:46	44.2	35.8	0.0	20.0	86.4	86.4	-3.6	-3.6
ALLC0845	9/11/2024 9:39	58.5	41.1	0.0	0.4	80.8	80.9	-77.5	-77.0
ALLC0846	9/16/2024 12:52	57.5	41.4	0.5	0.6	65.5	65.4	-71.6	-70.4
ALLC0847	9/11/2024 9:13	42.1	32.8	1.1	24.0	113.3	114.4	-2.5	-2.3
ALLC0848	9/11/2024 9:07	39.6	34.3	0.0	26.1	105.1	105.2	-12.9	-12.9
ALLC0849	9/11/2024 8:56	40.4	35.4	0.0	24.2	118.3	118.4	-20.1	-71.0
ALLC0849	9/11/2024 9:00	41.6	37.0	0.0	21.4	120.4	120.6	-75.4	-67.1
ALT20001	9/13/2024 7:54	47.8	40.2	0.5	11.5	101.0	101.3	-0.6	-0.5
ALT20003	9/4/2024 10:50	44.3	39.2	0.0	16.5	96.8	96.8	-27.9	-23.2
ALT20004	9/4/2024 10:40	23.5	28.8	0.0	47.7	106.7	106.7	-10.4	-10.4
ALT20005	9/4/2024 10:47	39.0	39.3	0.0	21.7	114.4	114.4	-3.4	-3.4
ALT20006	9/4/2024 10:37	45.8	38.5	0.0	15.7	124.5	124.7	-13.4	-11.0
ALT20007	9/4/2024 10:56	41.4	33.6	1.2	23.8	107.3	107.3	-5.7	-5.2
ALT20008	9/5/2024 8:23	18.1	19.7	8.8	53.4	120.1	126.9	-1.0	-1.8
ALT20008	9/5/2024 8:28	24.8	27.3	4.1	43.8	127.8	127.4	-2.0	-2.0
ALT20009	9/13/2024 7:43	50.9	43.3	0.0	5.8	128.4	128.7	-27.5	-32.9
ALT20010	9/5/2024 7:39	39.8	36.2	0.3	23.7	130.8	129.6	-12.0	-8.9
ALT20011	9/5/2024 7:49	48.5	40.1	0.0	11.4	126.0	127.6	-2.1	-3.0
ALT20012	9/5/2024 7:56	47.7	42.4	0.0	9.9	127.0	131.2	-0.8	-2.7
ALT20012	9/5/2024 7:59	47.0	42.4	0.0	10.6	133.4	133.2	-3.6	-2.2
ALT20012	9/5/2024 8:02	45.6	41.0	0.3	13.1	129.1	129.5	-0.8	-0.8
ALT20014	9/5/2024 8:07	44.0	38.9	0.1	17.0	112.5	112.6	-0.3	-0.3
ALT20015	9/5/2024 8:10	53.5	41.8	0.0	4.7	121.3	121.8	-2.0	-3.8
ALT20016	9/5/2024 8:40	49.9	43.5	0.0	6.6	81.9	81.8	-8.4	-8.4
ALT20017	9/5/2024 8:38	43.0	41.3	0.0	15.7	136.2	136.4	-6.0	-5.9
ALT20017 ALT20018	9/3/2024 6:36	48.9	43.0	0.0	8.1	130.2	132.6	-6.5	-6.6
ALT20018 ALT20019	9/4/2024 8:26	43.0	39.5	0.0	17.5	133.2	133.5	-3.5	-3.6
-									-3.6 -7.0
ALT20020	9/13/2024 7:38	54.2	45.8	0.0	0.0	128.8	128.8	-7.0	
ALT20021	9/4/2024 7:27	51.8	42.3	0.0	5.9	119.4	119.6	-9.3	-11.7
ALT20022	9/4/2024 7:31	52.1	43.5	0.0	4.4	115.9	116.2	-6.1	-8.0
ALT20023	9/4/2024 7:35	50.6	44.3	0.0	5.1	122.8	123.0	-11.4	-14.6
ALT20024	9/4/2024 7:39	49.2	43.4	0.0	7.4	126.9	127.2	-6.1	-7.7
ALT20025	9/4/2024 7:43	53.6	43.7	0.0	2.7	122.9	122.8	-7.9	-9.6
ALT20026	9/4/2024 7:47	48.7	41.1	0.4	9.8	126.8	126.9	-1.0	-1.1
ALT20027	9/4/2024 7:50	55.8	44.2	0.0	0.0	118.8	118.8	-15.2	-20.0
ALT20028	9/4/2024 8:10	54.7	45.3	0.0	0.0	124.7	124.8	-6.9	-6.9
ALT20029	9/4/2024 8:07	55.0	45.0	0.0	0.0	124.0	124.0	-5.0	-6.9
ALTA0003	9/13/2024 11:32	60.1	39.3	0.1	0.5	114.9	114.9	-71.3	-71.1
ALTA0054	9/13/2024 10:34	57.2	40.2	0.0	2.6	79.1	79.1	-33.9	-33.9

ALTA0056	9/13/2024 10:29	59.1	40.8	0.0	0.1	108.7	108.7	-44.0	-44.7
ALTA0059	9/13/2024 10:02	57.3	42.7	0.0	0.0	94.5	94.6	-57.6	-57.5
ALTA0087	9/13/2024 11:01	58.6	40.6	0.0	0.8	126.7	126.7	-62.3	-61.3
ALTA0108	9/13/2024 9:58	43.3	39.2	0.4	17.1	79.9	75.4	-8.4	-7.1
ALTA0201	9/17/2024 10:22	54.0	42.1	0.0	3.9	109.1	109.0	-85.5	-85.4
ALTA0472	9/3/2024 9:57	54.0	38.7	0.2	7.1	86.6	85.8	-82.5	-82.8
ALTA0483	9/12/2024 10:21	52.5	42.5	0.0	5.0	127.3	127.4	-69.5	-69.9
ALTA0483	9/13/2024 8:23	52.2	41.2	0.0	6.6	111.7	115.3	-63.8	-64.5
ALTA0488	9/13/2024 10:45	49.3	43.4	0.1	7.2	127.5	127.2	-58.3	-58.1
ALTA0491	9/13/2024 8:10	58.5	41.5	0.0	0.0	117.5	118.5	-68.6	-68.5
ALTA0508	9/11/2024 8:08	57.9	42.0	0.0	0.1	109.9	110.0	-71.7	-71.6
ALTA0507	9/11/2024 8:06	57.7	40.8	0.0	1.5	109.9	109.5	-80.5	-80.5
-									
ALTA0518	9/13/2024 11:39	48.6	38.5	0.0	12.9	122.4	122.4	-4.2	-4.2
ALTA0529	9/12/2024 10:08	44.3	35.9	3.4	16.4	79.3	79.4	-78.6	-78.6
ALTA0541	9/6/2024 7:25	49.8	36.2	0.0	14.0	119.0	119.0	-32.0	-33.1
ALTA0545	9/13/2024 10:55	33.9	51.0	0.0	15.1	126.5	126.6	-1.9	-1.9
ALTA0551	9/19/2024 8:31	44.8	34.9	4.5	15.8	65.8	66.1	-10.9	-11.4
ALTA0578	9/3/2024 10:53	49.0	37.5	0.5	13.0	109.1	110.2	-49.1	-50.3
ALTA0579	9/13/2024 10:37	40.6	46.0	0.0	13.4	97.5	101.4	-59.3	-59.3
ALTA0589	9/17/2024 9:42	35.3	30.2	2.8	31.7	101.1	100.7	-23.4	-18.6
ALTA0611	9/6/2024 7:46	49.6	37.9	0.0	12.5	87.8	87.1	-68.7	-73.0
ALTA0612	9/6/2024 7:37	56.0	43.5	0.0	0.5	126.3	126.6	-72.6	-72.7
ALTA0624	9/18/2024 13:02	51.9	38.1	1.2	8.8	84.2	84.3	-20.8	-22.3
ALTA0629	9/6/2024 7:51	54.0	39.0	0.0	7.0	80.0	79.8	-49.1	-54.5
ALTA0639	9/11/2024 12:01	45.2	43.9	0.0	10.9	138.7	138.8	-80.6	-80.6
ALTA0650	9/12/2024 9:31	40.0	39.1	4.6	16.3	74.8	75.0	-74.0	-74.5
ALTA0651	9/12/2024 9:36	50.4	49.6	0.0	0.0	92.6	92.5	-69.7	-70.2
ALTA0652	9/11/2024 11:57	51.4	43.8	0.0	4.8	137.4	137.5	-22.3	-22.4
ALTA0654	9/11/2024 10:29	47.7	52.3	0.0	0.0	121.7	122.5	-76.3	-76.2
ALTA0664	9/16/2024 13:23	44.9	35.7	1.9	17.5	78.1	78.0	-84.6	-84.7
ALTA0669	9/3/2024 10:39	28.1	28.8	2.8	40.3	92.5	91.4	-78.5	-78.5
ALTA0678	9/4/2024 11:48	52.4	46.4	0.2	1.0	98.5	98.6	-64.4	-64.4
ALTA0682	9/11/2024 8:20	56.3	43.7	0.0	0.0	122.4	123.1	-77.3	-77.6
ALTA0686	9/3/2024 10:48	53.8	39.7	0.1	6.4	88.5	88.7	-72.1	-73.9
ALTA0712	9/12/2024 8:22	56.5	42.5	0.0	1.0	127.1	127.2	-58.2	-58.1
ALTA0713	9/12/2024 8:30	53.5	40.4	0.0	6.1	121.8	121.9	-62.2	-61.6
ALTA0714	9/12/2024 9:50	56.3	41.0	0.4	2.3	128.0	128.1	-67.6	-67.7
ALTA0733	9/16/2024 12:34	52.8	47.2	0.0	0.0	138.2	138.4	-2.1	-4.8
ALTA0751	9/9/2024 11:10	49.1	41.8	0.0	9.1	111.6	111.8	-0.9	-1.7
ALTA0753	9/11/2024 9:37	48.1	42.3	0.0	9.6	127.7	127.4	-16.8	-15.2
ALTA0755	9/9/2024 12:02	44.3	42.4	0.0	13.3	126.4	126.5	-4.5	-3.9
ALTA0756	9/9/2024 10:48	53.7	45.8	0.0	0.5	112.4	112.4	-62.6	-62.6
ALTA0759	9/5/2024 11:46	50.4	46.5	0.0	3.1	128.8	128.9	-11.8	-13.6
ALTA0760	9/5/2024 11:51	50.3	47.0	0.5	2.2	135.9	135.9	-43.7	-43.7
ALTA0760	9/3/2024 11:31	45.0	35.9	0.4	18.7	115.8	116.0	-6.9	-7.0
ALTA0761	9/12/2024 8:36	57.2	42.8	0.4	0.0	125.7	125.8	-51.3	-7.0 -50.1
ALTA0762 ALTA0764			39.7	0.0					-6.2
-	9/9/2024 11:03	46.0	39.7	0.0	14.3	117.6	117.6	-7.7 16.0	-b.2 -18.9
ALTA0765	9/13/2024 8:06	52.2			8.8	100.1	100.7	-16.9	
ALTA0766	9/17/2024 10:14	55.0	43.1	0.7	1.2	83.7	83.7	-83.8	-83.8
ALTA0767	9/13/2024 10:10	56.7	41.3	0.1	1.9	133.0	133.3	-1.4	-1.6
ALTA0769	9/11/2024 10:23	44.5	54.8	0.7	0.0	109.6	109.8	-83.3	-83.3
ALTA0770	9/12/2024 9:45	48.0	38.7	0.0	13.3	122.0	122.1	-11.2	-11.2
ALTA0771	9/12/2024 10:16	48.9	39.7	0.0	11.4	80.7	80.8	-56.4	-56.4
ALTA0772	9/3/2024 10:21	46.8	37.3	0.0	15.9	125.3	125.5	-21.6	-19.5
ALTA0851	9/16/2024 13:06	51.0	49.0	0.0	0.0	114.3	117.2	-2.6	-4.5
ALTA0852	9/5/2024 12:37	48.9	51.1	0.0	0.0	126.9	126.8	-0.1	-0.1
ALTA0853	9/5/2024 12:32	51.9	48.1	0.0	0.0	117.6	119.5	-2.9	-6.4
ALTA0854	9/4/2024 11:04	47.4	52.6	0.0	0.0	129.0	128.9	-0.3	-0.3
ALTA0856	9/4/2024 10:53	42.6	42.6	0.0	14.8	129.0	128.7	-0.4	-0.4
ALTA0857	9/3/2024 10:36	53.1	40.8	0.0	6.1	117.8	117.8	-80.9	-81.1

ALTA0858	9/3/2024 10:32	51.3	46.1	0.0	2.6	134.0	134.0	-0.8	-1.7
ALTA0859	9/11/2024 9:52	41.8	39.9	0.7	17.6	124.4	122.6	-10.9	-8.8
ALTA0860	9/11/2024 10:02	42.9	42.2	0.2	14.7	120.8	122.3	-12.9	-13.0
ALTA0861	9/11/2024 10:06	38.8	42.1	0.0	19.1	123.6	123.7	-0.3	-0.3
ALTA0862	9/11/2024 10:11	36.8	39.8	0.0	23.4	116.4	114.6	-4.7	-2.8
ALTA0863	9/11/2024 11:13	47.7	37.7	0.1	14.5	109.1	109.0	-83.3	-83.2
ALTA0864	9/12/2024 9:04	36.6	29.7	4.7	29.0	69.2	69.0	-64.6	-64.6
ALTA0865	9/11/2024 11:21	55.3	44.7	0.0	0.0	84.6	84.2	-79.8	-79.9
ALTA0866	9/11/2024 11:45	42.0	42.0	0.0	16.0	125.1	124.4	-21.6	-14.9
ALTA0867	9/11/2024 11:51	52.6	47.4	0.0	0.0	130.3	130.5	-12.1	-20.0
ALTA0868	9/12/2024 10:13	42.0	37.2	3.6	17.2	91.4	90.4	-74.8	-75.5
ALTA0870	9/13/2024 11:06	57.0	43.0	0.0	0.0	119.1	119.3	-66.3	-66.0
ALTA0872	9/12/2024 10:04	46.3	38.8	1.7	13.2	87.5	87.7	-76.9	-76.9
ALTA0873	9/12/2024 10:08	56.1	43.8	0.0	0.1	124.4	124.6	-75.6	-76.2
ALTA0875	9/12/2024 9:23	50.1	49.9	0.0	0.0	84.7	84.8	-69.3	-69.3
ALTA0877	9/12/2024 9:13	55.1	44.0	0.9	0.0	68.0	67.9	-63.1	-63.1
ALTA0878	9/11/2024 8:03	45.8	34.0	3.4	16.8	56.6	56.6	-72.5	-72.6
ALTA0879	9/11/2024 8:51	55.4	41.1	0.0	3.5	108.0	108.5	-14.1	-21.4
ALTA0880	9/11/2024 10:16	32.8	67.2	0.0	0.0	128.7	128.8	-64.6	-65.3

Wellfield Monitoring Report - October 2024 REPORT PREPARED BY: Rajan Phadnis UPDATED DATE: 11/1/2024

FLOW SENSING DEVICE: LANDTEC GEM

MODEL: 5000

Wellhead ID Number	Date and Time	CH₄ (% by Volume)	CO ₂ (% by Volume)	O ₂ (% by Volume)	BALANCE GAS (% by Volume)	INITIAL TEMPERATURE (°F)	ADJUSTED TEMPERATURE (°F)	INITIAL STATIC PRESSURE ("WC)	ADJUSTED STATIC PRESSURE ("WC)
ALHC0824	10/24/2024 8:31	59.7	40.0	0.3	0.0	75.5	77.2	-0.1	-0.2
ALLC0695	10/9/2024 11:12	48.0	38.2	0.0	13.8	117.9	118.0	-45.4	-45.4
ALLC0700	10/14/2024 9:32	57.7	42.3	0.0	0.0	76.4	76.2	-65.5	-65.5
ALLC0709	10/9/2024 8:45	48.8	36.8	0.0	14.4	119.8	119.9	-33.2	-33.6
ALLC0734	10/8/2024 9:59	58.4	41.1	0.0	0.5	114.9	115.1	-36.9	-36.5
ALLC0736	10/8/2024 10:26	42.9	34.8	0.0	22.3	106.6	106.9	-23.3	-21.3
ALLC0737	10/8/2024 10:30	58.8	40.0	0.0	1.2	98.6	103.7	-53.5	-53.5
ALLC0738	10/14/2024 14:00	55.5	44.5	0.0	0.0	106.6	105.1	-82.2	-83.2
ALLC0739	10/9/2024 9:20	50.0	37.1	2.9	10.0	72.4	74.9	-84.7	-85.4
ALLC0740	10/9/2024 10:03	47.1	42.1	0.0	10.8	127.7	127.2	-4.9	-3.6
ALLC0743	10/14/2024 13:56	56.9	43.1	0.0	0.0	124.4	124.3	-76.9	-79.2
ALLC0744	10/9/2024 9:12	50.7	42.0	0.0	7.3	106.6	106.9	-76.5	-76.0
ALLC0745	10/9/2024 9:58	37.0	36.3	0.0	26.7	115.8	115.8	-2.3	-2.3
ALLC0746	10/9/2024 9:29	53.4	46.6	0.0	0.0	113.2	113.0	-84.4	-84.4
ALLC0747	10/14/2024 9:43	47.8	42.6	0.0	9.6	119.1	119.1	-64.2	-64.2
ALLC0748	10/14/2024 9:36	54.1	39.6	0.2	6.1	106.3	106.8	-66.1	-66.1
ALLC0749	10/14/2024 9:27	45.8	37.0	0.0	17.2	118.7	118.8	-37.5	-31.2
ALLC0777	10/4/2024 10:52	42.3	38.9	0.0	18.8	118.4	118.4	-6.3	-3.9
ALLC0778	10/4/2024 10:38	45.8	39.3	0.0	14.9	104.1	104.4	-23.4	-7.3
ALLC0779	10/4/2024 9:47	37.5	39.0	0.0	23.5	111.0	111.0	-5.5	-4.0
ALLC0780	10/4/2024 9:41	27.6	31.2	0.0	41.2	113.3	113.1	-7.2	-5.6
ALLC0781	10/4/2024 9:51	41.2	38.7	0.0	20.1	110.8	110.8	-1.0	-1.0
ALLC0783	10/4/2024 10:32	46.6	40.2	0.0	13.2	116.9	116.9	-0.7	-0.7
ALLC0784	10/4/2024 10:21	18.5	27.4	0.0	54.1	101.9	102.0	-0.9	-0.9
ALLC0785	10/4/2024 10:47	45.3	37.9	0.5	16.3	106.6	105.7	-5.5	-2.9
ALLC0786	10/21/2024 14:01	52.0	38.0	0.0	10.0	121.8	121.7	-6.3	-7.3
ALLC0787	10/4/2024 8:59	44.6	40.2	0.0	15.2	110.6	110.3	-10.9	-8.1
ALLC0788	10/4/2024 9:04	43.7	39.5	0.0	16.8	109.1	109.1	-59.7	-43.7
ALLC0789	10/4/2024 9:36	33.9	34.4	1.0	30.7	119.3	119.0	-8.5	-5.7
ALLC0790	10/4/2024 11:07	50.0	39.6	0.0	10.4	104.5	104.6	-68.8	-69.6
ALLC0791	10/4/2024 11:26	44.2	40.3	0.0	15.5	104.7	104.8	-55.5	-40.9
ALLC0792	10/4/2024 11:23	48.0	40.0	0.0	12.0	119.6	119.6	-4.5	-4.5
ALLC0793	10/4/2024 11:12	36.3	35.3	0.0	28.4	110.1	110.1	-69.0	-66.8
ALLC0794	10/9/2024 13:55	50.8	39.6	0.0	9.6	116.5	118.3	-12.3	-12.3
ALLC0796	10/9/2024 14:00	50.6	43.8	0.0	5.6	129.3	129.3	-21.6	-21.6
ALLC0797	10/9/2024 14:04	42.2	48.0	0.0	9.8	112.7	112.6	-1.1	-1.1
ALLC0798	10/9/2024 14:20	47.3	44.5	0.0	8.2	121.2	123.1	-0.3	-0.3
ALLC0800	10/4/2024 11:37	47.4	44.5	0.0	8.1	114.2	114.2	-3.2	-3.1
ALLC0801	10/14/2024 13:25	50.5	43.6	0.2	5.7	125.3	125.3	-6.4	-7.7
ALLC0803	10/4/2024 8:42	42.5	43.2	0.0	14.3	108.0	108.3	-1.5	-1.5
ALLC0804	10/4/2024 8:37	40.0	41.1	0.0	18.9	107.6	107.4	-2.2	-1.6
ALLC0805	10/9/2024 9:36	42.3	36.5	0.0	21.2	86.5	86.6	-1.1	-1.1
ALLC0806	10/9/2024 9:40	44.4	39.7	0.0	15.9	104.8	104.8	-1.4	-1.3
ALLC0807	10/9/2024 9:45	40.8	40.6	1.6	17.0	103.9	103.0	-3.3	-2.9
ALLC0811	10/4/2024 10:57	45.4	40.7	0.0	13.9	109.2	109.2	-1.8	-1.8
ALLC0812	10/4/2024 11:02	48.3	40.3	0.0	11.4	112.4	112.4	-1.1	-1.1
ALLC0813	10/4/2024 11:41	23.1	28.2	0.0	48.7	104.4	105.0	-1.5	-1.5
ALLC0814	10/23/2024 14:00	13.2	12.5	12.7	61.6	96.3	94.6	-2.4	-1.4
ALLC0814	10/23/2024 14:03	11.8	11.0	13.5	63.7	95.6	95.6	-1.0	-1.0
ALLC0815	10/9/2024 9:19	44.3	38.0	0.0	17.7	109.7	108.0	-11.1	-8.7
ALLC0816	10/9/2024 10:08	57.4	42.6	0.0	0.0	95.2	95.1	-76.9	-76.9
ALLC0817	10/9/2024 9:06	41.5	36.1	0.0	22.4	119.1	118.9	-12.3	-8.5
ALLC0819	10/9/2024 13:32	53.5	46.5	0.0	0.0	107.3	107.4	-0.7	-0.7

ALLC0820	10/9/2024 13:27	55.3	43.4	0.6	0.7	109.6	109.8	-65.0	-65.0
ALLC0821	10/15/2024 10:50	46.0	36.6	0.5	16.9	106.5	106.6	-25.7	-20.6
ALLC0822	10/22/2024 10:59	9.3	62.9	0.0	27.8	128.0	128.0	-0.6	-0.5
ALLC0826	10/9/2024 9:09	40.4	37.3	0.0	22.3	100.8	100.8	-84.9	-84.9
ALLC0827	10/9/2024 13:24	56.9	42.9	0.1	0.1	92.8	92.8	-72.9	-73.0
ALLC0830	10/15/2024 9:36	56.6	39.6	0.0	3.8	106.7	106.9	-68.7	-68.7
ALLC0831	10/9/2024 9:02	14.7	26.7	0.0	58.6	106.9	107.4	-2.3	-2.3
ALLC0832	10/4/2024 11:16	44.3	40.3	0.0	15.4	126.8	126.6	-10.0	-10.1
ALLC0833	10/4/2024 11:10	51.8	40.2	0.0	8.0		112.1	-0.1	-0.1
ALLC0833	10/21/2024 10:47					111.5		-80.6	
		56.1	43.9	0.0	0.0	125.8	125.8		-81.0
ALLC0835	10/21/2024 10:42	50.5	43.7	0.0	5.8	126.2	126.2	-79.5	- 79.5
ALLC0836	10/21/2024 10:37	50.8	45.5	0.0	3.7	130.5	130.6	-79.1	-79.1
ALLC0837	10/21/2024 10:33	53.7	46.3	0.0	0.0	130.7	130.7	-78.5	-78.5
ALLC0838	10/18/2024 10:54	37.8	33.6	4.3	24.3	71.5	71.4	-54.5	-55.4
ALLC0839	10/15/2024 10:27	44.8	41.6	0.0	13.6	128.6	128.6	-3.5	-3.5
ALLC0840	10/15/2024 10:23	42.2	38.8	0.0	19.0	124.5	124.6	-1.5	-1.5
ALLC0841	10/23/2024 9:29	59.9	35.4	0.6	4.1	72.7	73.0	-85.5	-85.1
ALLC0842	10/18/2024 11:21	54.1	37.6	0.0	8.3	112.5	113.0	-2.3	-3.8
ALLC0843	10/15/2024 10:19	38.8	33.5	0.0	27.7	75.5	75.6	-46.7	-42.8
ALLC0844	10/15/2024 10:22	28.8	27.1	1.8	42.3	87.0	87.0	-5.7	-5.6
ALLC0845	10/15/2024 10:25	60.6	39.3	0.0	0.1	81.0	81.1	-66.4	-66.4
ALLC0846	10/15/2024 10:32	53.5	35.4	3.0	8.1	77.2	77.1	-68.2	-67.7
ALLC0847	10/8/2024 10:51	47.6	33.2	0.9	18.3	114.6	114.6	-1.3	-1.3
ALLC0848	10/8/2024 10:48	38.2	31.4	0.0	30.4	107.4	107.4	-13.1	-13.1
ALLC0849	10/8/2024 10:44	24.1	27.9	0.3	47.7	119.0	119.9	-63.9	-46.3
ALT20001	10/15/2024 8:51	48.3	38.6	0.7	12.4	100.1	100.3	-0.5	-0.4
		46.8	41.3					-22.8	
ALT20003	10/7/2024 9:28			0.0	11.9	124.4	124.4		-17.6
ALT20004	10/7/2024 9:19	28.4	32.1	0.0	39.5	106.4	106.0	-8.3	-4.3
ALT20005	10/7/2024 9:24	40.6	41.0	0.0	18.4	112.7	112.7	-2.9	-3.0
ALT20006	10/7/2024 9:14	49.7	41.6	0.0	8.7	124.5	124.7	-10.3	-12.9
ALT20007	10/7/2024 9:33	44.7	37.7	0.0	17.6	109.9	110.0	-3.7	-3.0
ALT20008	10/15/2024 9:01	24.6	27.9	3.8	43.7	128.1	126.4	-2.8	-2.8
ALT20009	10/7/2024 9:55	44.3	40.6	0.0	15.1	129.7	129.4	-36.0	-30.7
ALT20010	10/15/2024 8:57	42.7	37.3	0.4	19.6	129.5	129.3	-4.3	-4.3
ALT20011	10/7/2024 9:51	35.8	36.7	0.0	27.5	129.1	129.1	-4.0	-3.3
ALT20012	10/7/2024 9:59	38.5	40.1	0.0	21.4	133.5	133.5	-2.5	-2.0
ALT20013	10/7/2024 10:03	41.3	41.1	0.0	17.6	130.2	130.8	-0.9	-1.2
ALT20014	10/7/2024 10:07	39.1	39.2	0.0	21.7	114.5	114.6	-0.4	-0.4
ALT20015	10/7/2024 10:11	41.9	38.9	0.0	19.2	124.6	124.7	-4.4	-3.5
ALT20016	10/4/2024 9:05	49.3	44.4	0.0	6.3	129.1	129.1	-8.5	-8.5
ALT20017	10/4/2024 9:08	40.9	40.9	0.3	17.9	136.9	137.1	-4.8	-4.8
ALT20018	10/4/2024 9:11	46.5	42.4	0.0	11.1	132.7	132.8	-6.2	-6.2
ALT20019	10/4/2024 9:15	41.9	39.8	0.0	18.3	133.8	134.1	-3.7	-3.6
ALT20020	10/4/2024 9:01	53.8	45.4	0.0	0.8	128.4	128.4	-6.6	-6.6
ALT20020	10/4/2024 8:01	46.8	41.7	0.0	11.5	120.0	120.1	-11.7	-10.9
ALT20021	10/4/2024 8:05	48.1	42.8	0.0	9.1	116.8	116.8	-6.3	-6.4
	10/4/2024 8:03								-0.4
ALT20023		49.2	44.8	0.3	5.7	123.4	123.6	-10.8	
ALT20024	10/4/2024 8:19	45.3	43.0	0.0	11.7	127.7	127.9	-4.6	-5.8
ALT20025	10/4/2024 8:23	52.2	44.3	0.0	3.5	123.6	123.6	-6.4	-6.5
ALT20026	10/4/2024 8:28	47.7	41.5	0.6	10.2	126.9	127.0	-0.9	-0.8
ALT20027	10/4/2024 8:32	54.9	44.3	0.0	0.8	119.0	119.1	-14.3	-14.4
ALT20028	10/4/2024 8:43	54.6	45.4	0.0	0.0	124.4	124.4	-6.2	-6.2
ALT20029	10/4/2024 8:41	54.7	45.3	0.0	0.0	123.3	123.3	-3.9	-3.3
ALTA0003	10/18/2024 13:04	60.1	37.3	0.2	2.4	114.1	114.3	-83.0	-81.9
ALTA0054	10/18/2024 13:36	54.2	37.2	0.4	8.2	78.9	78.9	-41.2	-41.2
ALTA0056	10/18/2024 13:41	59.1	39.0	0.1	1.8	108.9	108.9	-60.7	-61.1
ALTA0059	10/22/2024 11:24	55.1	38.8	0.7	5.4	95.3	95.3	-78.6	-78.1
ALTA0087	10/15/2024 11:00	57.1	41.2	0.0	1.7	126.1	126.2	-80.1	-80.1
ALTA0108	10/22/2024 11:11	46.5	39.2	0.3	14.0	91.7	91.7	-7.2	-6.4
	1	I			l	I	1		I

ALTA0201	10/11/2024 7:48	55.8	39.6	0.1	4.5	108.9	109.2	-86.4	-86.4
ALTA0472	10/4/2024 8:31	52.5	41.7	0.0	5.8	124.3	124.3	-65.6	-65.3
ALTA0483	10/9/2024 11:02	52.7	41.5	0.0	5.8	119.9	120.0	-59.7	-58.9
ALTA0488	10/9/2024 11:18	49.5	43.5	0.0	7.0	126.8	127.5	-59.0	-59.0
ALTA0491	10/15/2024 9:33	59.2	40.6	0.1	0.1	117.1	117.5	-69.4	-69.4
ALTA0508	10/8/2024 10:10	57.8	38.6	0.0	3.6	111.1	111.5	-55.3	-55.3
ALTA0517	10/8/2024 10:15	56.8	37.4	0.0	5.8	111.3	111.7	-60.0	-60.0
ALTA0518	10/15/2024 9:26	47.9	38.3	0.1	13.7	120.6	120.8	-3.9	-4.0
ALTA0529	10/15/2024 10:43	44.0	31.9	3.8	20.3	79.3	79.3	-83.1	-83.1
ALTA0541	10/9/2024 8:21	49.0	36.0	0.1	14.9	118.8	119.0	-36.9	-36.3
ALTA0545	10/21/2024 14:09	33.0	52.7	0.0	14.3	126.5	126.4	-2.0	-1.9
ALTA0551	10/23/2024 13:41	42.7	34.8	4.5	18.0	88.3	88.3	-9.3	-9.5
ALTA0578	10/14/2024 9:55	50.3	38.9	0.6	10.2	103.8	104.4	-40.7	-54.7
ALTA0579	10/9/2024 11:25	35.8	41.4	1.6	21.2	97.1	99.7	-75.1	-75.1
ALTA0589	10/23/2024 12:52	52.8	40.5	0.1	6.6	100.6	101.7	-5.1	-8.0
ALTA0611	10/9/2024 8:34	48.1	38.2	0.0	13.7	123.6	123.7	-71.4	-71.2
ALTA0612	10/9/2024 8:28	55.6	44.4	0.0	0.0	122.7	123.6	-76.0	-76.1
ALTA0624	10/22/2024 10:45	36.7	33.1	0.0	30.2	83.9	84.1	-27.6	-24.7
ALTA0629	10/9/2024 8:40	52.5	38.5	0.0	9.0	114.5	115.2	-59.9	-63.6
ALTA0639	10/21/2024 11:08	44.5	42.5	0.0	13.0	139.1	139.1	-77.8	-77.8
ALTA0650	10/15/2024 10:14	41.0	35.8	4.7	18.5	74.3	74.3	-71.8	-71.8
ALTA0651	10/15/2024 10:18	54.9	45.1	0.0	0.0	95.1	95.3	-67.3	-67.3
ALTA0652	10/21/2024 11:03	50.6	42.0	0.0	7.4	137.7	137.8	-21.8	-21.7
ALTA0654	10/14/2024 13:50	48.7	48.1	0.5	2.7	126.2	125.3	-75.4	-74.1
ALTA0664	10/15/2024 10:02	56.6	42.0	0.4	1.0	72.6	72.6	-71.7	-71.8
ALTA0669	10/14/2024 9:39	27.4	30.8	2.1	39.7	73.2	73.1	-68.4	-68.4
ALTA0678	10/4/2024 10:43	53.3	46.7	0.0	0.0	109.6	110.3	-80.3	-81.0
ALTA0682	10/8/2024 10:19	58.5	39.6	0.0	1.9	123.9	124.0	-59.1	-59.1
ALTA0686	10/14/2024 9:49	32.8	29.7	3.3	34.2	78.6	77.7	-66.0	-67.5
ALTA0712	10/9/2024 9:58	54.8	43.0	0.0	2.2	128.8	129.0	-75.6	-73.8
ALTA0713									
		50 /	1 396	1 00	9.7	123.6	123 9	-77 6	-78.8
-	10/9/2024 9:43	50.7 57.8	39.6 41.2	0.0	9.7	123.6 127.2	123.9 127.6	-77.6 -77.4	-78.8 -77.4
ALTA0714	10/9/2024 9:22	57.8	39.6 41.2	0.0	9.7	127.2	123.9 127.6	-77.6 -77.4	-78.8 -77.4
ALTA0714 ALTA0733	10/9/2024 9:22 10/14/2024 1:42	57.8	41.2	0.0	1.0	127.2 CO was 20 ppm	127.6	-77.4	-77.4
ALTA0714 ALTA0733 ALTA0733	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42	57.8 49.3	41.2	0.0	9.3	127.2 CO was 20 ppm 143.2	127.6 143.3	-77.4 -7.8	-77.4 -7.8
ALTA0714 ALTA0733 ALTA0733 ALTA0751	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54	57.8 49.3 36.7	41.2 41.4 37.0	0.0	9.3 26.3	127.2 CO was 20 ppm 143.2 110.5	127.6 143.3 110.0	-77.4 -7.8 -4.0	-77.4 -7.8 -3.1
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54	57.8 49.3 36.7 54.4	41.2 41.4 37.0 44.4	0.0 0.0 0.0 0.0	9.3 26.3 1.2	127.2 CO was 20 ppm 143.2 110.5 126.9	127.6 143.3 110.0 127.7	-77.4 -7.8 -4.0 -7.6	-77.4 -7.8 -3.1 -9.2
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48	57.8 49.3 36.7 54.4 48.1	41.2 41.4 37.0 44.4 46.2	0.0 0.0 0.0 0.0	9.3 26.3 1.2 5.7	127.2 CO was 20 ppm 143.2 110.5 126.9	127.6 143.3 110.0 127.7 112.2	-77.4 -7.8 -4.0 -7.6 -1.5	-77.4 -7.8 -3.1 -9.2 -1.5
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/11/2024 11:08	57.8 49.3 36.7 54.4 48.1 52.4	41.4 37.0 44.4 46.2 46.3	0.0 0.0 0.0 0.0 0.0	9.3 26.3 1.2 5.7	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3	127.6 143.3 110.0 127.7 112.2 112.4	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/11/2024 11:08 10/9/2024 13:45	57.8 49.3 36.7 54.4 48.1 52.4 48.5	41.2 41.4 37.0 44.4 46.2 46.3 43.3	0.0 0.0 0.0 0.0 0.0 0.0	9.3 26.3 1.2 5.7 1.3	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2	127.6 143.3 110.0 127.7 112.2 112.4 128.0	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0756 ALTA0760	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/11/2024 11:08 10/9/2024 13:45 10/9/2024 13:49	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0756 ALTA0760 ALTA0761	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0756 ALTA0760 ALTA0761 ALTA0762	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 11:08 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 9:54	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6	41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0	9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 11:08 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:54 10/9/2024 9:54 10/9/2024 13:51	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0756 ALTA0760 ALTA0761 ALTA0762	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 11:08 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 9:54	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6	41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0	9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 11:08 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:54 10/9/2024 9:54 10/9/2024 13:51	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 11:08 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 13:51 10/15/2024 13:51	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 11:08 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 13:51 10/9/2024 13:51 10/15/2024 9:40 10/11/2024 11:01	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0766	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 9:54 10/9/2024 9:54 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 13:51 10/15/2024 9:40 10/11/2024 11:01 10/11/2024 11:01 10/11/2024 10:38	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0766 ALTA0766 ALTA0766	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/11/2024 11:08 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 13:51 10/15/2024 9:40 10/11/2024 11:01 10/11/2024 10:38 10/14/2024 13:35	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0765 ALTA0766 ALTA0766 ALTA0767 ALTA0767	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/11/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 13:51 10/15/2024 13:51 10/15/2024 13:51 10/11/2024 11:01 10/11/2024 11:38 10/14/2024 13:35 10/14/2024 13:35	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0766 ALTA0767 ALTA0767 ALTA0770 ALTA0771	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/11/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 13:51 10/15/2024 9:40 10/11/2024 13:51 10/15/2024 13:51 10/15/2024 9:40 10/11/2024 13:35 10/14/2024 13:35 10/14/2024 13:35 10/9/2024 9:16 10/9/2024 9:16	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0765 ALTA0765 ALTA0766 ALTA0767 ALTA0767 ALTA0767 ALTA0770 ALTA0771	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 9:54 10/11/2024 13:51 10/15/2024 9:40 10/11/2024 11:01 10/11/2024 13:35 10/14/2024 9:40 10/11/2024 10:38 10/14/2024 9:40 10/11/2024 13:55 10/9/2024 9:16 10/9/2024 9:16	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1 47.2	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9 37.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0 15.3	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7 124.5	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8 125.0	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0 -16.2	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8 -14.5
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0762 ALTA0765 ALTA0766 ALTA0766 ALTA0767 ALTA0767 ALTA0770 ALTA0771 ALTA0772 ALTA0851	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 9:54 10/15/2024 13:51 10/15/2024 9:40 10/11/2024 11:01 10/11/2024 11:01 10/11/2024 13:35 10/9/2024 9:16 10/9/2024 9:16 10/9/2024 10:58 10/14/2024 9:22 10/21/2024 13:43	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1 47.2 45.6	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9 37.1 42.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0 15.3 11.8	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7 124.5 117.4	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8 125.0 117.3	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0 -16.2 -10.6	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8 -14.5 -10.0
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0767 ALTA0767 ALTA0770 ALTA0770 ALTA0771 ALTA0772 ALTA0851 ALTA0852	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 9:54 10/21/2024 13:51 10/15/2024 9:40 10/11/2024 11:01 10/11/2024 11:01 10/11/2024 11:01 10/11/2024 11:05 10/9/2024 9:16 10/9/2024 9:16 10/9/2024 10:58 10/14/2024 13:43 10/11/2024 13:43 10/11/2024 13:43 10/11/2024 10:57	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1 47.2 45.6 46.3	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9 37.1 42.6 42.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0 15.3 11.8 10.5	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7 124.5 117.4 124.7	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8 125.0 117.3 125.3	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0 -16.2 -10.6 -2.2	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8 -14.5 -10.0 -2.7
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0766 ALTA0770 ALTA0770 ALTA0771 ALTA0772 ALTA0851 ALTA0853	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 9:54 10/9/2024 9:54 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 9:54 10/21/2024 13:51 10/15/2024 9:40 10/11/2024 10:38 10/14/2024 10:58 10/9/2024 9:16 10/9/2024 10:58 10/14/2024 13:43 10/14/2024 13:51	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1 47.2 45.6 46.3 41.8	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9 37.1 42.6 42.6 40.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0 15.3 11.8 10.5 17.9	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7 124.5 117.4 124.7	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8 125.0 117.3 125.3 121.3	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0 -16.2 -10.6 -2.2 -20.1	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8 -14.5 -10.0 -2.7 -18.4
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0759 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0766 ALTA0770 ALTA0770 ALTA0771 ALTA0772 ALTA0851 ALTA0853 ALTA0854	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 9:54 10/9/2024 9:54 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 13:51 10/9/2024 13:51 10/15/2024 9:40 10/11/2024 11:01 10/11/2024 10:38 10/14/2024 9:16 10/9/2024 10:58 10/14/2024 10:58 10/14/2024 10:57 10/11/2024 10:52 10/11/2024 10:52 10/11/2024 10:52 10/11/2024 10:52 10/11/2024 10:52 10/11/2024 10:52	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1 47.2 45.6 46.3 41.8 49.5	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9 37.1 42.6 40.3 47.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0 15.3 11.8 10.5 17.9 2.6	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7 124.5 117.4 124.7 121.0 129.4	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8 125.0 117.3 125.3 121.3 128.0	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0 -16.2 -10.6 -2.2 -20.1 -0.9	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8 -14.5 -10.0 -2.7 -18.4 -0.9
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0756 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0766 ALTA0770 ALTA0770 ALTA0771 ALTA0772 ALTA0851 ALTA0852 ALTA0856	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 8:54 10/9/2024 9:54 10/9/2024 9:48 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 13:51 10/9/2024 13:51 10/15/2024 9:54 10/21/2024 13:51 10/15/2024 9:10 10/11/2024 11:01 10/11/2024 10:38 10/14/2024 10:58 10/14/2024 10:58 10/14/2024 10:57 10/11/2024 10:52 10/11/2024 10:52 10/11/2024 10:52 10/11/2024 10:52 10/11/2024 10:52 10/11/2024 10:52 10/11/2024 10:52	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1 47.2 45.6 46.3 41.8 49.5 34.5	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9 37.1 42.6 42.6 40.3 47.9 37.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0 15.3 11.8 10.5 17.9 2.6 28.0	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7 124.5 117.4 124.7 121.0 129.4 128.3	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8 125.0 117.3 125.3 121.3 128.0 128.3	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0 -16.2 -10.6 -2.2 -20.1 -0.9 -0.7	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8 -14.5 -10.0 -2.7 -18.4 -0.9 -0.7
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0756 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0767 ALTA0770 ALTA0771 ALTA0771 ALTA0772 ALTA0851 ALTA0853 ALTA0854 ALTA0856 ALTA0857 ALTA0858	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 9:54 10/9/2024 9:54 10/9/2024 9:48 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 9:54 10/15/2024 13:51 10/15/2024 9:40 10/11/2024 11:01 10/11/2024 11:01 10/11/2024 11:01 10/11/2024 10:38 10/14/2024 10:58 10/14/2024 13:43 10/11/2024 10:57 10/11/2024 10:57 10/11/2024 10:52 10/4/2024 10:06 10/4/2024 10:17 10/4/2024 8:47 10/4/2024 8:52	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1 47.2 45.6 46.3 41.8 49.5 34.5 48.6 37.1	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9 37.1 42.6 40.3 47.9 37.5 42.2 41.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0 15.3 11.8 10.5 17.9 2.6 28.0 8.9 20.9	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7 124.5 117.4 124.7 121.0 129.4 128.3 117.8 134.0	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8 125.0 117.3 125.3 121.3 128.0 128.3 118.0 133.9	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0 -16.2 -10.6 -2.2 -20.1 -0.9 -0.7 -73.0 -5.1	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8 -14.5 -10.0 -2.7 -18.4 -0.9 -0.7 -72.5 -3.6
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0756 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0767 ALTA0767 ALTA0770 ALTA0770 ALTA0771 ALTA0771 ALTA0851 ALTA0852 ALTA0853 ALTA0854 ALTA0856 ALTA0857 ALTA0858	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 9:54 10/9/2024 9:54 10/9/2024 9:48 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 9:54 10/21/2024 13:51 10/15/2024 9:40 10/11/2024 11:01 10/11/2024 11:01 10/11/2024 10:38 10/14/2024 10:58 10/14/2024 10:58 10/14/2024 10:57 10/11/2024 10:52 10/4/2024 10:60 10/4/2024 8:52 10/4/2024 8:52 10/9/2024 10:10	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1 47.2 45.6 46.3 41.8 49.5 34.5 48.6 37.1 49.5	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9 37.1 42.6 42.6 40.3 47.9 37.5 42.2 41.9 50.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0 15.3 11.8 10.5 17.9 2.6 28.0 8.9 20.9 0.0	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7 124.5 117.4 124.7 121.0 129.4 128.3 117.8 134.0 107.7	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8 125.0 117.3 125.3 121.3 128.0 128.3 118.0 133.9 119.5	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0 -16.2 -10.6 -2.2 -20.1 -0.9 -0.7 -73.0 -5.1 -1.3	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8 -14.5 -10.0 -2.7 -18.4 -0.9 -0.7 -72.5 -3.6 -5.7
ALTA0714 ALTA0733 ALTA0733 ALTA0751 ALTA0753 ALTA0755 ALTA0756 ALTA0756 ALTA0760 ALTA0761 ALTA0762 ALTA0764 ALTA0765 ALTA0766 ALTA0767 ALTA0770 ALTA0771 ALTA0771 ALTA0772 ALTA0851 ALTA0853 ALTA0854 ALTA0856 ALTA0857 ALTA0858	10/9/2024 9:22 10/14/2024 1:42 10/14/2024 13:42 10/9/2024 9:54 10/9/2024 9:54 10/9/2024 9:48 10/9/2024 13:45 10/9/2024 13:45 10/9/2024 13:49 10/9/2024 9:10 10/9/2024 9:54 10/15/2024 13:51 10/15/2024 9:40 10/11/2024 11:01 10/11/2024 11:01 10/11/2024 11:01 10/11/2024 10:38 10/14/2024 10:58 10/14/2024 13:43 10/11/2024 10:57 10/11/2024 10:57 10/11/2024 10:52 10/4/2024 10:06 10/4/2024 10:17 10/4/2024 8:47 10/4/2024 8:52	57.8 49.3 36.7 54.4 48.1 52.4 48.5 48.0 34.9 57.6 49.2 46.2 56.1 38.6 46.6 41.7 44.1 47.2 45.6 46.3 41.8 49.5 34.5 48.6 37.1	41.2 41.4 37.0 44.4 46.2 46.3 43.3 42.9 32.9 42.4 41.4 35.8 43.9 38.1 51.1 36.2 36.9 37.1 42.6 40.3 47.9 37.5 42.2 41.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 9.3 26.3 1.2 5.7 1.3 8.2 7.8 32.2 0.0 9.4 17.6 0.0 23.3 1.5 22.1 19.0 15.3 11.8 10.5 17.9 2.6 28.0 8.9 20.9	127.2 CO was 20 ppm 143.2 110.5 126.9 112.1 112.3 128.2 135.8 117.6 125.8 114.4 98.3 90.1 133.4 107.6 121.4 120.7 124.5 117.4 124.7 121.0 129.4 128.3 117.8 134.0	127.6 143.3 110.0 127.7 112.2 112.4 128.0 135.9 117.4 126.0 115.0 98.4 90.1 133.1 107.7 121.4 120.8 125.0 117.3 125.3 121.3 128.0 128.3 118.0 133.9	-77.4 -7.8 -4.0 -7.6 -1.5 -78.8 -16.9 -45.8 -29.0 -66.3 -3.9 -23.1 -83.1 -5.4 -82.6 -12.2 -63.0 -16.2 -10.6 -2.2 -20.1 -0.9 -0.7 -73.0 -5.1	-77.4 -7.8 -3.1 -9.2 -1.5 -79.9 -14.1 -45.8 -22.9 -67.5 -5.0 -23.1 -83.2 -5.2 -82.5 -11.0 -52.8 -14.5 -10.0 -2.7 -18.4 -0.9 -0.7 -72.5 -3.6

ALTA0862	10/9/2024 10:25	50.0	43.7	0.0	6.3	111.1	114.6	-1.1	-2.2
ALTA0863	10/14/2024 14:08	44.4	36.2	0.2	19.2	109.3	109.3	-83.3	-83.3
ALTA0864	10/18/2024 10:41	59.0	40.9	0.1	0.0	95.0	95.3	-85.6	-85.6
ALTA0865	10/21/2024 10:29	52.3	40.4	1.7	5.6	85.0	84.8	-74.0	-74.0
ALTA0866	10/21/2024 10:52	51.4	45.9	0.0	2.7	125.6	127.3	-7.4	-13.0
ALTA0867	10/21/2024 10:58	52.1	44.6	0.0	3.3	133.0	133.4	-19.9	-22.8
ALTA0868	10/22/2024 10:32	47.1	43.5	0.9	8.5	79.5	79.3	-81.7	-80.8
ALTA0870	10/15/2024 10:55	56.0	44.0	0.0	0.0	118.0	118.1	-80.2	-81.0
ALTA0872	10/9/2024 10:05	37.1	34.1	1.8	27.0	86.1	86.2	-83.3	-83.4
ALTA0873	10/9/2024 10:13	57.1	42.9	0.0	0.0	122.4	122.9	-71.1	-71.0
ALTA0875	10/15/2024 10:07	45.8	37.0	2.7	14.5	89.6	89.7	-72.0	-72.0
ALTA0877	10/15/2024 9:14	57.6	41.3	0.7	0.4	64.3	64.2	-74.4	-73.8
ALTA0878	10/8/2024 10:04	59.1	40.1	0.0	0.8	93.9	93.9	-55.9	-55.8
ALTA0879	10/8/2024 10:38	44.0	34.7	0.0	21.3	108.7	108.9	-17.7	-14.3
ALTA0880	10/15/2024 8:52	34.0	66.0	0.0	0.0	128.6	128.6	-55.1	-55.1

Wellfield Monitoring Report - November 2024 REPORT PREPARED BY: Rajan Phadnis UPDATED DATE: 12/1/2024

FLOW SENSING DEVICE: LANDTEC GEM

MODEL: 5000

ellhead ID Number	Date and Time	CH₄ (% by Volume)	CO ₂ (% by Volume)	O ₂ (% by Volume)	BALANCE GAS (% by Volume)	INITIAL TEMPERATURE (°F)	ADJUSTED TEMPERATURE (°F)	INITIAL STATIC PRESSURE ("WC)	ADJUSTED STATI PRESSURE ("WC)
ALHC0824	11/13/2024 9:45	45.0	40.6	3.8	10.6	67.6	68.0	-0.2	-0.2
ALLC0695	11/7/2024 9:14	48.4	37.9	0.0	13.7	116.2	116.6	-52.2	-53.1
ALLC0700	11/6/2024 10:22	59.5	40.4	0.1	0.0	74.9	74.5	-67.9	-67.5
ALLC0709	11/5/2024 10:06	45.8	34.8	0.0	19.4	122.3	122.8	-31.0	-21.4
ALLC0734	11/5/2024 8:25	52.3	39.4	1.0	7.3	105.9	107.7	-31.4	-42.0
ALLC0736	11/5/2024 8:54	48.6	37.5	0.0	13.9	103.8	104.9	-17.1	-20.8
ALLC0737	11/5/2024 8:57	56.9	39.7	1.0	2.4	109.5	109.5	-66.1	-66.7
ALLC0738	11/8/2024 10:48	45.7	40.4	3.0	10.9	110.3	114.1	-84.7	-80.2
ALLC0739	11/7/2024 13:58	49.8	35.6	3.0	11.6	78.2	75.1	-84.9	-84.9
ALLC0740	11/8/2024 9:55	47.1	42.6	0.0	10.3	126.6	127.3	-3.4	-8.4
ALLC0743	11/8/2024 10:43	53.4	46.6	0.0	0.0	123.2	123.2	-79.7	-82.6
ALLC0744	11/7/2024 13:52	48.3	39.0	0.0	12.7	111.1	111.1	-77.1	-75.8
ALLC0745	11/8/2024 9:48	35.8	37.0	0.0	27.2	117.2	118.5	-2.4	-2.8
ALLC0746	11/7/2024 14:03	55.3	44.7	0.0	0.0	115.1	115.1	-84.2	-84.2
ALLC0747	11/6/2024 10:32	47.3	39.2	0.0	13.5	119.0	119.1	-65.7	-65.6
ALLC0747	11/6/2024 10:32	51.5	37.6	0.0	10.9	101.6	102.1	-66.8	-66.8
ALLC0748 ALLC0749	11/6/2024 10:24	53.9	38.1	0.0	8.0	120.7	120.8	-12.6	-18.1
ALLC0749 ALLC0777	11/5/2024 10:13	54.9	44.3	0.0	0.8	111.9	113.5	-12.6	-10.1
ALLC0778	11/5/2024 9:51	53.7	46.3	0.0	0.0	91.3	94.8	-4.7	-18.1
ALLC0779	11/4/2024 13:45	47.3	45.6	0.0	7.1	109.5	109.5	-2.4	-2.4
ALLC0780	11/4/2024 13:40	33.0	35.8	0.0	31.2	112.3	110.9	-4.1	-2.3
ALLC0781	11/4/2024 13:49	44.1	41.4	0.0	14.5	110.5	110.6	-0.5	-0.5
ALLC0783	11/4/2024 13:16	50.9	44.0	0.0	5.1	114.5	115.2	0.0	-0.2
ALLC0784	11/5/2024 9:19	33.3	33.4	0.0	33.3	92.7	92.7	-0.2	-0.2
ALLC0785	11/5/2024 9:28	53.5	46.5	0.0	0.0	98.8	101.7	-0.2	-1.8
ALLC0786	11/4/2024 13:05	46.3	41.0	0.0	12.7	122.2	122.4	-8.2	-6.4
ALLC0787	11/4/2024 13:30	49.7	44.1	0.0	6.2	110.5	110.5	-8.1	-8.5
ALLC0788	11/4/2024 13:26	43.3	37.8	2.2	16.7	108.5	107.9	-19.1	-13.5
ALLC0789	11/4/2024 13:35	43.5	40.5	0.0	16.0	117.8	117.1	-3.7	-3.0
ALLC0790	11/11/2024 14:00	49.5	37.2	0.0	13.3	99.5	99.6	-72.3	-67.1
ALLC0791	11/6/2024 10:15	51.4	44.0	0.0	4.6	104.1	103.9	-33.2	-43.2
ALLC0792	11/11/2024 14:07	52.8	39.5	0.1	7.6	117.0	118.3	-4.0	-7.4
ALLC0793	11/6/2024 9:49	38.4	36.6	0.0	25.0	107.3	107.3	-64.8	-60.1
ALLC0794	11/5/2024 10:28	51.4	44.7	0.0	3.9	115.8	115.8	-8.5	-8.6
ALLC0796	11/6/2024 10:01	49.5	46.0	0.0	4.5	128.4	128.5	-20.8	-20.8
ALLC0797	11/6/2024 10:05	41.6	51.6	0.0	6.8	107.6	107.6	-1.0	-1.0
ALLC0798	11/6/2024 10:10	45.5	45.0	0.0	9.5	106.6	107.1	0.0	-0.1
ALLC0800	11/6/2024 11:15	51.2	46.8	0.0	2.0	111.6	112.1	-2.5	-4.0
ALLC0801	11/6/2024 11:45	46.4	48.8	0.0	4.8	125.2	124.9	-8.3	-5.6
ALLC0803	11/4/2024 12:51	41.3	42.7	0.1	15.9	111.9	112.1	-0.2	-0.2
ALLC0804	11/4/2024 12:47	44.4	44.8	0.0	10.8	107.3	107.2	-0.6	-0.5
ALLC0805	11/7/2024 13:10	44.0	34.9	0.0	21.1	85.6	85.7	-1.0	-0.9
ALLC0806	11/7/2024 13:14	42.4	37.2	0.0	20.4	106.6	106.6	-1.1	-1.1
ALLC0807	11/7/2024 13:18	40.7	39.1	2.2	18.0	89.9	90.0	-0.8	-0.8
ALLC0811	11/5/2024 10:03	47.3	42.8	0.0	9.9	102.4	101.7	-0.7	-0.5
ALLC0812	11/5/2024 10:19	52.6	45.8	0.0	1.6	106.1	111.1	-0.3	-1.5
ALLC0813	11/6/2024 11:26	26.0	30.6	0.0	43.4	101.0	101.0	-1.4	-1.3
ALLC0814	11/4/2024 13:56	16.7	16.2	12.4	54.7	98.0	98.1	-1.2	-0.6
ALLC0815	11/11/2024 14:14	47.8	40.6	0.0	11.6	109.9	108.5	-7.5	-6.4
ALLC0816	11/6/2024 9:20	58.4	41.6	0.0	0.0	91.1	92.2	-75.4	-75.8
ALLC0817	11/12/2024 8:35	51.0	42.0	0.0	7.0	119.7	120.2	-7.8	-11.7
ALLC0817 ALLC0819	11/6/2024 10:49	50.8	47.2		1.0	99.8	99.9	-0.8	-0.8
ALLC0819 ALLC0820	11/6/2024 10:49	51.1	44.6	1.0	2.9	102.5	103.0	-63.2	-63.2

							ı		
ALLC0821	11/6/2024 9:52	56.6	37.7	0.2	5.5	104.3	104.9	-14.6	-26.3
ALLC0822	11/14/2024 10:51	9.6	64.6	0.0	25.8	128.1	129.3	-1.8	-7.3
ALLC0822	11/14/2024 10:58	9.9	65.4	0.0	24.7	129.5	128.5	-9.0	-3.0
ALLC0826	11/7/2024 13:40	44.3	35.8	0.0	19.9	99.9	100.0	-84.9	-84.9
ALLC0827	11/6/2024 10:59	53.6	44.4	0.9	1.1	88.3	88.4	-72.5	-71.9
ALLC0830	11/1/2024 13:33	55.1	39.9	0.0	5.0	106.5	106.8	-84.6	-82.8
ALLC0831	11/7/2024 13:34	16.5	26.6	0.0	56.9	109.0	109.0	-1.9	-1.9
ALLC0832	11/6/2024 9:44	45.0	40.4	0.0	14.6	124.2	124.3	-9.0	-9.1
ALLC0833	11/8/2024 9:11	43.8	38.7	0.0	17.5	114.5	114.4	-0.1	-0.1
ALLC0834	11/8/2024 13:43	55.4	44.6	0.0	0.0	124.3	124.3	-84.7	-83.3
ALLC0835	11/8/2024 11:18	50.6	44.7	0.0	4.7	124.4	124.4	-84.7	-84.9
ALLC0836	11/8/2024 11:13	50.1	46.2	0.0	3.7	128.2	128.3	-84.8	-84.8
ALLC0837	11/8/2024 11:09	53.4	46.6	0.0	0.0	128.5	128.5	-84.4	-84.4
ALLC0838	11/13/2024 9:29	41.6	45.5	3.9	9.0	67.7	67.3	-59.9	-58.8
ALLC0839	11/12/2024 10:16	42.7	44.1	0.0	13.2	128.4	128.4	-4.2	-4.2
ALLC0840	11/12/2024 10:11	39.9	40.8	0.0	19.3	124.1	124.1	-1.9	-1.9
ALLC0841	11/13/2024 9:02	53.9	41.1	0.0	5.0	62.9	62.9	-86.6	-86.6
ALLC0842	11/12/2024 10:04	39.5	37.6	0.0	22.9	113.1	113.4	-4.5	-3.9
ALLC0843	11/1/2024 10:04	42.5	33.2	0.0	24.0	74.6	74.8	-57.9	-5.9 -51.5
ALLC0844	11/1/2024 13:12	33.7	30.8	0.0	35.5	87.2	87.2	-6.6	-51.5 -4.8
ALLC0845	11/1/2024 13:16	60.8	39.2	0.0	0.0	79.6	79.6	-83.7	-4.8 -83.7
ALL C0847	11/12/2024 8:45	54.1	33.9	2.2	9.8	63.3	60.6	-71.5	-71.2
ALL C0847	11/5/2024 9:16	47.3	34.0	1.1	17.6	113.5	113.7	-1.7	-1.6
ALLC0848	11/5/2024 9:13	41.0	33.5	0.0	25.5	104.4	104.4	-11.2	-11.2
ALLC0849	11/5/2024 9:06	37.3	32.9	0.0	29.8	118.8	120.4	-35.6	-69.3
ALLC0849	11/5/2024 9:09	38.7	33.8	0.0	27.5	120.9	121.4	-70.4	-39.6
ALT20001	11/5/2024 8:14	51.8	40.6	0.1	7.5	99.9	100.1	-0.9	-0.9
ALT20003	11/1/2024 10:31	48.5	41.3	0.0	10.2	123.9	124.0	-14.8	-14.8
ALT20004	11/1/2024 10:25	31.4	31.0	2.6	35.0	92.1	91.9	-4.7	-4.8
ALT20005	11/1/2024 10:28	42.2	39.9	0.0	17.9	96.4	96.7	-2.7	-2.8
ALT20006	11/1/2024 10:22	49.6	40.3	0.0	10.1	123.8	124.0	-13.3	-15.2
ALT20007	11/1/2024 10:34	51.6	39.2	0.0	9.2	105.7	105.9	-2.0	-2.0
ALT20008	11/1/2024 11:05	23.8	27.2	3.8	45.2	129.4	128.4	-3.6	-3.5
ALT20009	11/1/2024 10:48	46.5	40.6	0.0	12.9	129.8	129.9	-28.0	-28.6
ALT20010	11/1/2024 10:41	45.4	40.2	0.0	14.4	129.4	129.3	-4.5	-4.5
ALT20011	11/1/2024 10:44	42.7	38.4	0.0	18.9	124.2	124.2	-2.1	-2.1
ALT20012	11/1/2024 10:51	32.6	32.7	3.6	31.1	129.5	129.6	-1.7	-1.7
ALT20013	11/1/2024 10:54	42.0	40.0	0.0	18.0	127.7	128.5	-1.0	-1.0
ALT20014	11/1/2024 10:58	41.9	38.9	0.0	19.2	108.2	108.2	-0.6	-0.6
ALT20015	11/1/2024 11:01	41.3	37.1	1.0	20.6	124.0	124.0	-4.0	-2.6
ALT20016	11/4/2024 12:49	47.9	43.4	0.0	8.7	129.2	129.3	-8.8	-8.8
ALT20017	11/4/2024 12:53	39.8	40.1	0.0	20.1	137.3	138.0	-3.8	-5.1
ALT20017	11/4/2024 12:56	41.1	41.2	0.0	17.7	138.2	138.3	-5.6	-5.6
ALT20018	11/4/2024 13:00	44.5	40.9	0.0	14.6	133.4	133.4	-5.9	-5.9
ALT20019	11/4/2024 13:03	40.4	38.7	0.0	20.9	134.4	134.4	-2.5	-2.4
ALT20020	11/4/2024 12:45	52.7	44.1	0.0	3.2	129.8	129.8	-6.8	-6.8
ALT20021	11/4/2024 11:46	53.0	41.6	0.0	5.4	120.1	120.4	-4.6	-5.1
ALT20022	11/4/2024 11:50	48.1	41.9	0.0	10.0	117.7	117.7	-5.9	-5.9
ALT20023	11/4/2024 11:54	48.3	44.0	0.1	7.6	124.4	124.4	-13.6	-12.8
ALT20024	11/4/2024 11:58	42.9	41.6	0.0	15.5	128.7	128.8	-6.9	-5.6
ALT20025	11/4/2024 12:02	51.0	43.1	0.0	5.9	124.4	124.3	-6.5	-9.2
ALT20026	11/4/2024 12:06	46.7	40.3	0.8	12.2	127.1	126.7	-1.0	-0.9
ALT20027	11/4/2024 12:09	54.9	43.1	0.0	2.0	119.4	119.4	-14.9	-13.9
ALT20028	11/4/2024 12:42	55.9	44.1	0.0	0.0	124.9	125.0	-7.0	-7.0
ALT20029	11/4/2024 12:39	57.0	43.0	0.0	0.0	122.9	123.2	-2.9	-3.6
ALTA0003	11/12/2024 11:05	56.4	43.6	0.0	0.0	109.7	109.7	-83.4	-85.3
ALTA0054	11/7/2024 13:20	56.5	38.5	0.2	4.8	78.7	78.7	-44.4	-44.4
ALTA0056	11/7/2024 13:15	59.5	40.4	0.2	-0.1	107.6	108.1	-64.5	-64.5
ALTA0059	11/13/2024 10:24	47.5	52.5	0.0	0.0	89.7	89.8	-81.9	-80.6
ALTA0087	11/12/2024 10:54	55.9	43.9	0.0	0.2	125.5	125.6	-82.4	-82.4
	1	1 00.0	1 .0.0	U	L	1	1	J	J

ALTA0108	11/7/2024 9:36	50.8	40.8	0.1	8.3	72.2	65.4	-5.5	-6.6
ALTA0201	11/11/2024 9:35	56.5	37.1	0.5	5.9	109.1	109.6	-86.8	-86.5
ALTA0472	11/4/2024 12:41	49.8	43.5	0.0	6.7	126.4	126.7	-82.8	-83.4
ALTA0483	11/7/2024 8:25	53.8	41.2	0.0	5.0	102.1	103.0	-82.9	-85.2
ALTA0488	11/6/2024 9:29	51.2	43.3	0.0	5.5	119.9	120.9	-76.0	-76.0
ALTA0491	11/1/2024 13:30	57.9	40.8	0.2	1.1	118.5	118.6	-86.6	-86.6
ALTA0508	11/5/2024 8:41	58.8	39.8	0.0	1.4	108.9	109.2	-66.8	-66.8
ALTA0517	11/5/2024 8:46	57.4	38.6	0.0	4.0	108.4	108.4	-74.1	-72.4
ALTA0517	11/7/2024 9:19	47.4	38.5	0.0	14.1	121.5	121.6	-4.9	-4.3
ALTA0518 ALTA0529	11/12/2024 9:19		32.5	4.2	22.3	68.2	68.2	-85.6	-85.6
		41.0							
ALTA0541	11/5/2024 9:27	49.0	36.3	0.0	14.7	119.4	119.6	-31.4	-30.3
ALTA0545	11/12/2024 9:58	32.9	53.8	0.0	13.3	123.7	123.9	-2.8	-2.8
ALTA0551	11/26/2024 8:26	53.5	46.5	0.0	0.0	56.1	55.2	-2.7	-7.8
ALTA0578	11/6/2024 10:38	50.9	37.6	0.5	11.0	87.2	87.6	-60.4	-60.4
ALTA0579	11/6/2024 9:35	42.0	45.9	0.0	12.1	88.6	88.6	-76.8	-76.8
ALTA0589	11/13/2024 8:57	42.1	40.7	1.1	16.1	103.2	102.6	-14.0	-10.6
ALTA0611	11/5/2024 9:54	46.2	36.0	0.0	17.8	122.6	123.3	-64.4	-62.8
ALTA0612	11/5/2024 9:50	45.0	34.3	3.0	17.7	116.8	117.9	-63.3	-64.0
ALTA0624	11/12/2024 10:17	37.5	36.4	0.0	26.1	82.9	83.1	-22.1	-19.5
ALTA0629	11/5/2024 10:03	48.5	36.2	0.0	15.3	113.5	113.7	-60.9	-60.9
ALTA0639	11/8/2024 14:02	43.3	43.1	0.0	13.6	138.3	138.5	-80.7	-80.7
ALTA0650	11/12/2024 10:01	41.7	39.4	4.2	14.7	68.5	68.4	-86.5	-86.0
ALTA0651	11/12/2024 10:06	51.9	48.1	0.0	0.0	100.1	100.0	-81.2	-81.2
ALTA0652	11/8/2024 13:57	49.4	42.4	0.0	8.2	137.2	137.3	-21.7	-21.7
ALTA0654	11/8/2024 10:38	45.2	49.7	1.1	4.0	122.2	121.2	-77.9	-76.1
ALTA0664	11/12/2024 9:55	44.7	37.7	2.3	15.3	75.4	75.3	-87.2	-87.4
ALTA0669	11/6/2024 10:28	20.3	19.1	3.4	57.2	80.9	79.4	-69.3	-69.3
ALTA0678	11/8/2024 9:04	55.5	42.9	1.2	0.4	92.5	92.2	-84.4	-84.8
ALTA0682	11/5/2024 8:49	58.4	41.6	0.0	0.0	119.9	120.0	-71.9	-72.7
ALTA0686	11/6/2024 10:18	60.4	39.6	0.0	0.0	55.2	55.2	-62.6	-65.2
ALTA0712	11/12/2024 8:49	53.8	46.2	0.0	0.0	129.2	129.4	-78.0	-79.2
ALTA0712 ALTA0713	11/12/2024 8:39	52.2	42.3	0.0	5.5	123.5	123.6	-81.9	-84.1
ALTA0714	11/7/2024 8:05	60.6	36.7	0.8	1.9	126.8	127.2	-81.2	-83.2
ALTA0733	11/8/2024 10:29	48.6	45.0	0.0	6.4	143.5	143.3	-7.0	-7.1
ALTA0733	11/8/2024 10:29				ı	CO was 20 ppm			
ALTA0751	11/7/2024 13:30	40.2	37.0	0.0	22.8	111.5	110.3	-2.4	-1.0
ALTA0753	11/8/2024 10:00	49.6	43.7	0.0	6.7	127.8	127.7	-12.5	-12.5
ALTA0755	11/7/2024 13:22	49.2	45.9	0.0	4.9	111.9	116.7	-0.7	-1.8
ALTA0756	11/6/2024 11:50	50.0	50.0	0.0	0.0	111.9	111.9	-79.8	-80.2
ALTA0759	11/6/2024 10:43	50.2	48.2	0.0	1.6	125.9	126.2	-9.3	-11.1
ALTA0760	11/6/2024 10:24	48.2	46.5	1.0	4.3	134.9	134.8	-40.0	-40.0
ALTA0761	11/12/2024 8:23	42.0	36.1	0.0	21.9	117.1	117.1	-10.7	-9.0
ALTA0762	11/12/2024 8:45	54.1	45.9	0.0	0.0	126.3	126.5	-69.3	-69.6
ALTA0764	11/7/2024 13:04	48.0	39.7	0.0	12.3	115.1	114.8	-5.4	-4.4
ALTA0765	11/1/2024 13:26	45.3	36.4	0.1	18.2	89.4	88.2	-25.6	-22.7
ALTA0766	11/6/2024 11:39	53.3	46.7	0.0	0.0	81.9	82.0	-83.0	-83.4
ALTA0767	11/7/2024 12:59	42.9	37.2	0.1	19.8	133.0	132.4	-3.6	-3.2
ALTA0769	11/8/2024 10:22	40.9	49.8	2.5	6.8	110.3	110.1	-84.4	-84.4
ALTA0770	11/12/2024 8:31	49.9	41.2	0.0	8.9	121.7	121.5	-9.7	-10.8
ALTA0771	11/7/2024 8:20	47.3	36.1	0.1	16.5	121.9	122.2	-57.4	-55.6
ALTA0772	11/6/2024 10:09	52.0	37.4	0.0	10.6	125.6	125.8	-12.5	-13.3
ALTA0851	11/6/2024 12:03	48.7	48.6	0.0	2.7	115.5	114.4	-5.3	-4.6
ALTA0852	11/6/2024 11:34	46.3	53.7	0.0	0.0	117.8	118.7	-0.7	-0.7
ALTA0853	11/5/2024 9:13	38.6	40.8	0.0	20.6	127.0	127.2	0.0	0.0
ALTA0853 ALTA0853	1	50.2	47.1	0.0	20.0	114.0	118.0	-5.9	-11.2
	11/6/2024 11:30								
ALTA0854	11/5/2024 9:07	46.3	53.7	0.0	0.0	122.3	123.6	-0.1	-0.1
ALTA0856	11/11/2024 13:48	39.6	35.8	0.0	24.6	127.2	127.1	-0.8	-0.8
ALTA0857	11/4/2024 13:00	48.7	45.9	0.0	5.4	117.5	117.7	-81.5	-81.6
ALTA0858	11/4/2024 12:56	42.3	47.6	0.0	10.1	134.6	134.6	-2.6	-2.0

ALTA0859	11/8/2024 9:41	50.0							
	11/0/2024 9.41	53.0	47.0	0.0	0.0	129.4	129.6	-10.4	-10.7
ALTA0860	11/8/2024 9:32	35.9	38.1	0.2	25.8	126.5	126.5	-36.7	-37.2
ALTA0861	11/8/2024 9:22	36.3	40.1	0.0	23.6	125.7	125.7	-0.6	-0.5
ALTA0862	11/8/2024 9:18	37.8	39.5	0.0	22.7	116.0	116.1	-3.3	-3.3
ALTA0863	11/8/2024 10:58	41.9	37.1	0.0	21.0	108.4	108.4	-85.4	-84.7
ALTA0864	11/12/2024 9:20	47.0	39.1	3.6	10.3	81.9	85.8	-85.8	-85.8
ALTA0865	11/8/2024 11:05	52.0	40.7	1.8	5.5	86.2	86.9	-80.8	-80.6
ALTA0866	11/8/2024 13:48	38.8	40.8	0.0	20.4	126.4	125.8	-22.1	-16.0
ALTA0867	11/8/2024 13:52	40.6	39.6	0.0	19.8	134.6	134.5	-39.4	-39.4
ALTA0868	11/6/2024 9:40	51.3	48.5	0.2	0.0	76.3	76.8	-73.1	-71.7
ALTA0870	11/12/2024 10:45	53.3	46.7	0.0	0.0	116.0	116.0	-83.9	-83.3
ALTA0872	11/6/2024 9:01	46.9	36.7	2.5	13.9	64.9	64.8	-76.5	-76.3
ALTA0873	11/6/2024 8:56	56.4	41.6	0.0	2.0	122.9	123.7	-76.9	-76.8
ALTA0875	11/12/2024 9:49	52.8	47.0	0.2	0.0	100.0	99.7	-84.2	-84.6
ALTA0877	11/12/2024 9:38	54.4	41.7	1.6	2.3	59.1	59.1	-86.4	-86.4
ALTA0878	11/5/2024 8:29	55.4	36.4	2.1	6.1	62.6	62.6	-67.7	-67.7
ALTA0879	11/5/2024 9:03	56.3	39.4	0.0	4.3	107.8	108.4	-10.9	-15.1
ALTA0880	11/8/2024 10:07	32.1	67.9	0.0	0.0	129.4	129.4	-63.8	-63.8

There are 181 vertical LFG wells, 2 horixontal LFG collection well, and 2 leachate cleanout riser system at ALRRF. A Well Decommissioning Notification for two wells was submitted to the BAAQMD on March 14, 2023, as required by PTO Condition 19235 Part (1)(b)(iv). A Well Decommissioning Notification for one well was submitted to the BAAQMD on April 18, 2023 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Decommissioning Notification for one well was submitted to the BAAQMD on May 12, 2023 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Decommissioning Notification for one well was submitted to the BAAQMD on August 31, 2023 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Startup Notification Letter for eleven new wells was submitted to the BAAQMD on December 7, 2023 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Startup Notification Letter for one new well was submitted to the BAAQMD on December 22, 2023 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Decommissioning Notification for one well was submitted to the BAAQMD on March 1, 2024 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Decommissioning Notification for one well was submitted to the BAAQMD on April 18, 2024 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Decommissioning Notification for one well was submitted to the BAAQMD on April 18, 2024 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Decommissioning Notification for one well was submitted to the BAAQMD on September 23, 2024 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Decommissioning Notification for one well was submitted to the BAAQMD on September 23, 2024 as required by PTO Condition 19235 Part (1)(b)(iv). A Well Decommissioning Notification for one well was submitted to the BAAQMD on September 23, 2024 as required by PTO Condition 19235 Part (1)(b)(iv).

% - percent CH ₄ - methane CO ₂ - carbon dioxide	O ₂ - oxygen °F - degrees Fahrenheit "WC - inches water column				
*Wells permitted to be on the	HOV list, summarized in the table below.				
Wells Approved for High	ner Operating Value for Temperature				
Approved HOV Wells*	HOV Wells Approval/Notification Date				
501, 559, 562 , 565, 566, 570, 574 , and 576	4/29/2010				
564 and 571	5/25/2010				
513, 579, 601, and 611	1/22/2011				
500 , 525 , 569, 612	3/3/2011				
633 -and 639	12/10/2014				
652	6/7/2016				
654 and 667	1/16/2017				
718, 719, 720 , 721, 723, 724 , and 732	3/21/2017				
510 and 733	10/31/2017				
661	3/7/2018				
745	7/19/2018				
589	10/1/2018				
755	2/19/2019				
740	6/10/2019				
799	3/29/2021				
835	9/23/2021				
836	9/23/2021				
837	9/23/2021				
798	7/29/2022				
760	1/31/2023				
850	3/14/2023				
859	3/14/2023				
867	3/14/2023				
* Crossed-out wel	s have been decommissioned.				

APPENDIX N WELLHEAD DEVIATION REPORT

ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY June 1, 2024 THROUGH November 30, 2024 WELLFIELD DEVIATION REPORT

REPORT PREPARED BY: Rajan Phadnis/Dan San Jose/Garry Carpenter UPDATED DATE: December 1, 2024

FLOW SENSING DEVICE: LANDTEC GEM

MODEL: 5000 DATE LAST CALIBRATED: DAILY

		CH₄	CO2	O ₂	Balance	Initial	Adjusted	Initial Static	Adjusted Static		Downton of
Well ID	Time	(%)	(%)	(%)	Gas (%)	Temperature (°F)	Temperature (°F)	Pressure ("WC)	Pressure ("WC)	Comments	Duration of Exceedance (Days)
ALLC0775	6/14/2024 13:20	23.6	19.8	8.2	48.4	113.9	114.6	-63.3	-63.7	NSPS/EG CAI	
ALLC0775	6/19/2024 13:59				NSPS/EG Cor	rective Action Comple	ted (CAC)- Well deco	mmissioned		NSPS/EG Corrective Action Completed (CAC)	117
Well ALLC0775 had oxyge	n exceedance during June	2024. Well	was decon	nmissione	d on June 19, 2	2024.					
ALLC0776	6/13/2024 12:40	2.2	5.0	15.8	77.0	81.8	81.6	-74.3	-75.0	NSPS/EG CAI	63
ALLC0776	6/19/2024 14:09				NSPS/EG Cor	rective Action Comple	eted (CAC)- Well deco	mmissioned		NSPS/EG Corrective Action Completed (CAC)	
Well ALTA0776 had oxyge		2024.Well v			d on June 19, 2						
ALLC0828	6/12/2024 10:57	60.7	36.9	1.1	1.3	86.2	86.2	-67.3	-67.3	Fully Open;No Adj. Made;Watered In	
ALLC0828	6/19/2024 14:23						ted (CAC)- Well deco	mmissioned		NSPS/EG Corrective Action Completed (CAC)	69
Well ALLC0828 had oxyge											
ALLC0838	7/11/2024 10:42	32.2	25.7	7.9	34.2	106.8	106.7	-68.7	-68.5	NSPS/EG CAI;Fully Open;Watered In	
ALLC0838	7/11/2024 10:46	30.9	23.7	8.6	36.8	106.7	106.7	-70.5	-65.8	NSPS/EG CAI;Fully Open;Watered In	
ALLC0838	7/25/2024 8:04	46.9	36.9	4.0	12.2	79.8	79.9	-69.9	-68.5	Fully Open;No Adj. Made;Watered In	14
Well ALLC0838 had oxyge						05.0	25.0	22.2	20.0		
ALTA0868 ALTA0868	6/10/2024 12:22	18.9	16.6	13.2	51.3	95.6	95.3	-26.6	-26.6	NSPS/EG CAI;Watered In	
ALTA0868 ALTA0868	6/10/2024 12:24	19.6 49.7	16.7 48.1	13.3	50.4	94.9 78.4	94.9	-26.4 -82.7	-26.4 -82.0	NSPS/EG CAI;Watered In	
	7/8/2024 7:17				1.5		78.1	-82.7	-82.0	No Adj. Made;Watered In	28
Well ALTA0868 had oxyge ALLC0703	7/3/2024 5:54	4. Adjustme 8.4	7.9	15.7	68.0	100.8	101.8	-8.7	-23.7	NCDC/FC CAlibra FlavyA/sa	
ALLC0703	7/3/2024 5:54	10.7	8.9	15.7	65.3	101.3	101.8	-0.7	-6.9	NSPS/EG CAI;Inc. Flow/Vac. NSPS/EG CAI;Dec. Flow/Vac.	
ALLC0703	7/16/2024 9:03	8.8	8.5	15.1	66.9	100.1	101.7	-20.2	-0.9	NSPS/EG CAI;Inc. Flow/Vac.	
ALLC0703	7/16/2024 9:07	10.2	9.4	15.2	65.2	102.0	101.7	-23.1	-4.0	NSPS/EG CAI,IIIC. Flow/Vac.	
ALLC0703	8/7/2024 8:42	9.1	10.0	13.1	67.8	102.0	107.8	-23.1	-17.9	NSPS/EG CAI;Inc. Flow/Vac.	
ALLC0703	8/7/2024 8:44	10.9	10.4	13.2	65.5	108.3	108.7	-20.2	-1.4	NSPS/EG CAI; Dec. Flow/Vac.	
ALLC0703	9/11/2024 8:37	6.5	10.4	12.1	71.1	99.0	102.4	-3.8	-22.9	NSPS/EG CAI;Inc. Flow/Vac.	
ALLC0703	9/11/2024 8:40	6.4	10.0	12.5	71.1	103.1	103.6	-22.4	-3.4	NSPS/EG CAI; Dec. Flow/Vac.	82
ALLC0703	9/23/2024 13:37	0.1	10.0	12.0			tion Completed (CAC)		0.1	1101 0/20 0/11,500.11011/140.	- 92
Well ALLC0703 had oxyge		and August 2	2024. Wel	LALLC070			1 ()				
ALT20012	6/5/2024 11:14	48.3	40.9	0.0	10.8	133.3	132.6	-2.0	-1.2	NSPS/EG CAl:Dec. Flow/Vac.	5
ALT20012	6/5/2024 11:14					CO was 4	10 ppm			,	
Well ALT20012 had tempe	rature exceedance during	June 2024. (CO was 10	0 ppm. H	OV letter was s	submitted on June 10,	2024, and well was a	ded to the HOV lis	it.		
ALT20018	6/5/2024 9:33	54.4	44.4	0.0	1.2	132.9	132.9	-5.3	-5.7	NSPS/EG CAI;Inc. Flow/Vac.	
ALT20018	6/5/2024 9:34	54.0	44.4	0.0	1.6	132.9	132.9	-6.1	-6.1	NSPS/EG CAI	
ALT20018	6/5/2024 9:40					CO was 2					
ALT20018	6/10/2024 9:55	53.3	43.8	0.0	2.9	132.3	132.3	-4.7	-4.9	NSPS/EG CAI;Inc. Flow/Vac.	
ALT20018	6/10/2024 10:00					CO was 2					
ALT20018	6/18/2024 10:45	51.3	43.7	0.2	4.8	132.5	132.5	-6.5	-6.5	NSPS/EG CAI;Fully Open	
ALT20018	6/18/2024 10:50					CO was 2					
ALT20018 ALT20018	7/2/2024 9:33 7/2/2024 9:38	50.2	42.6	0.0	7.2	132.9 CO was 2	132.9	-6.0	-6.0	NSPS/EG CAI;Fully Open	34
		l 0004 (20 40	0 11	0)/1-#						
Well ALT20018 had tempe ALT20019	6/5/2024 10:03	June 2024. 0 54.6	45.2	0.0 0.0	0.2	132.4	132.3	-3.1	-3.2	NSPS/EG CAI;Inc. Flow/Vac.	
ALT20019 ALT20019	6/5/2024 10:03	54.6	45.2	0.0	0.2	132.4	132.3	-3.1	-3.2 -3.5	NSPS/EG CAI;Inc. Flow/vac. NSPS/EG CAI	
ALT20019 ALT20019	6/5/2024 10:05	34.4	40.2	0.0	U.4	132.4 CO was 2		-3.3	-3.0	NOFO/EG CAI	
ALT20019 ALT20019	6/10/2024 10:10	53.5	44.0	0.0	2.5	132.0	132.1	-3.1	-3.4	NSPS/EG CAI;Inc. Flow/Vac.	+
ALT20019 ALT20019	6/10/2024 10:12	55.5	74.0	0.0	2.0	CO was 2		-5.1	-0.4	1101 0/20 O/Ljillo. I low/vac.	
ALT20019 ALT20019	6/18/2024 10:55	49.8	43.0	0.2	7.0	132.3	132.3	-4.6	-4.6	NSPS/EG CAI;Fully Open	
ALT20019	6/19/2024 11:00				1	CO was 2				not ofto orall any open	
ALT20019	7/2/2024 9:42	48.0	40.9	0.2	10.9	132.6	132.6	-4.1	-4.1	NSPS/EG CAI;Fully Open	
ALT20019	7/2/2024 9:50					CO was 2					34
Well ALT20019 had tempe	rature exceedance during	June 2024. 0	CO was 10	0 ppm. H	OV letter was s	submitted on July 9, 2	024, and well was add	ed to the HOV list.			
ALT20008	9/5/2024 8:23	18.1	19.7	8.8	53.4	120.1	126.9	-1.0	-1.8	NSPS/EG CAI;Inc. Flow/Vac.	
ALT20008	9/5/2024 8:28	24.8	27.3	4.1	43.8	127.8	127.4	-2.0	-2.0	No Adj. Made	<1
Well ALT20008 had oxyger	n exceedance during Septe	ember 2024.	Exceedan	ice cleared	d during the sar	me month.					
EG CAI= Emissions Guide	lines Corrective Action Initi	iated	-								

APPENDIX O CONTROL DEVICE MONTHLY LANDFILL GAS FLOW RATES AND CO EMISSION CALCULATIONS

ALTAMONT LANDFILL & RESOURCE RECOVERY FACILITY, Livermore, CA MONTHLY LFG INPUT TO A-15 AND A-16 FLARES

A-15 (Flare)

Month	Total Available Runtime (Hours)	Total Downtime (Hours)	Total Runtime (Hours)	Average Flow (scfm)	Average CH ₄ (%) ²	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Total Heat Input (MMBtu)	CO Emission Factor ² (lb/MMBTU)	Total CO (Tons)
June 24	720.0	692.1	27.9	1,726	45.7	2,834,132	1,293,781	1,291	0.053	0.034
July 24	744.0	744.0	0.0	0	45.7	0	0	0	0.053	0.000
August 24	744.0	433.3	310.7	1,503	45.7	28,003,414	12,783,558	12,754	0.053	0.335
September 24	720.0	719.5	0.5	853	45.7	27,286	12,456	12	0.053	0.000
October 24	744.0	727.6	16.4	1,748	45.7	1,689,861	771,422	770	0.053	0.020
November 24	721.0	721.0	0.0	0	45.7	0	0	0	0.053	0.000
TOTAL/AVG 2023-2024	8,784.0	8,201.9	582.1	1,541	47.6	53,210,826	25,278,725	25,154	0.097	1.200
June 1, 2024 - Novemebr 30, 2024	4,393.0	4,037.5	355.5	1,457	45.7	32,554,693	14,861,217	14,827	0.053	0.390
TOTAL/AVG 2024-Partial	8,040.0	7,627.4	412.6	1,548	47.3	38,285,632	17,751,502	17,644	0.089	0.501

A-16 (Flare)

Month	Total Available Runtime (Hours)	Total Downtime (Hours)	Total Runtime (Hours)	Average Flow (scfm)	Average CH ₄ (%) ³	LFG Volume (scf)	BPG Volume (scf)	Total Throughput (scf)	Total CH₄ Volume (scf)	Total Heat Input (MMBtu)	CO Emission Factor ³ (lb/MMBTU)	Total CO (Tons)
June 24	720.0	27.03	693.0	2,359	49.4	98,169,944	0.0	98,169,944	48,471,410	48,360	0.027	0.647
July 24	744.0	2.27	741.7	2,336	49.4	104,001,098	0.0	104,001,098	51,350,542	51,232	0.027	0.685
August 24	744.0	15.70	728.3	2,120	49.4	92,745,530	0.0	92,745,530	45,793,105	45,688	0.027	0.611
September 24	720.0	35.70	684.3	2,132	49.4	87,053,690	0.0	87,053,690	42,982,759	42,884	0.027	0.574
October 24	744.0	21.50	722.5	1,934	49.4	83,692,937	0.0	83,692,937	41,323,388	41,228	0.027	0.551
November 24	721.0	24.87	696.1	1,632	49.4	67,931,182	0.0	67,931,182	33,541,021	33,464	0.027	0.448
TOTAL/AVG 2023-2024	8,784.0	424.1	8,359.9	2,069	48.4	1,039,426,789	0.0	1,039,426,789	503,525,349	502,367	0.017	4.323
June 1, 2024 - Novemebr 30, 2024	4,393.0	127.1	4,265.9	2,086	49.4	533,594,381	0.0	533,594,381	263,462,226	262,856	0.027	3.516
TOTAL/AVG 2024-Partial	8,040.0	231.1	7,808.9	2,084	48.5	976,071,505	0.0	976,071,505	473,691,345	472,602	0.018	4.289

NOTES: 1) Pursuant to Permit Condition No. 19235, Part 4, the yearly heat input limit to the A-15 and A-16 Flares are 621,785 and 1,156,320 MMBtu, respectively.

LFG - Landfill Gas BPG - By-Product Gas scfm - standard cubic feet per minute % - Percent CH₄ - methane scf - standard cubic feet MMBTU - million British thermal units CO - carbon monoxide lb - pounds

²⁾ Starting April 2023, the average methane percentage and CO emission rate from the March 1, 2023 source test will be used. It is an average of the methane percentages taken during the test. Starting May 2024, the average methane percentage and CO emission rate from the February 28, 2024 source test will be used. It is an average of the methane percentages taken during the test.

³⁾Starting May 2024, the highest CO emission rate from the March 6, 2024 source test is used pursuant to PTO Condition Number 24373, Part 3(a)(i). Starting May 2023, the highest CO emission rate from the March 8, 9, and 13, 2023 source test is used pursuant to PTO Condition Number 24373, Part 3(a)(i).

MONTHLY LFG INPUT TO TURBINES (S-6 & S-7)

Altamont Landfill and Resource Recovery Facility, Livermore, CA

S-6 (Turbine)

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	Average CH₄ (%)	Total LFG Volume (scf)	Total CH₄ Volume (scf)	Total Heat Input (MMBtu)	CO Emission Factor ² (lb/MMBTU)	Total CO (Tons)
June-24	720.0	8.6	711.4	1,345	51.5	57,409,139	29,543,932	29,928	0.106	1.586
July-24	744.0	5.3	738.7	1,370	48.6	60,713,286	29,513,204	29,897	0.106	1.585
August-24	744.0	3.7	740.3	1,087	48.7	48,236,583	23,526,941	23,833	0.106	1.263
September-24	720.0	17.2	702.8	1,401	49.1	59,130,911	29,020,408	29,398	0.106	1.558
October-24	744.0	7.2	736.8	1,451	47.9	64,128,038	30,704,288	31,103	0.106	1.648
November-24	721.0	9.0	712.0	1,509	47.8	64,475,677	30,838,410	31,239	0.106	1.656
TOTAL/AVG 2023-2023	8,784.0	99.8	8,684.2	1,374	50.2	715,526,753	358,837,221	363,502	0.110	19.970
June 1, 2024 - November 30, 2024	4,393.0	51.0	4,342.0	1,360	48.9	354,093,633	173,147,182	175,398	0.106	9.296
TOTAL/AVG 2024-Partial	8,040.0	83.6	7,956.4	1,366	50.3	651,727,977	327,430,730	331,687	0.108	17.933

S-7 (Turbine)

Month	Total Available Runtime (hours)	Total Downtime (hours)	Total Runtime (hours)	Average Flow (scfm)	Average CH₄ (%)	Total Throughput (scf)	Total CH₄ Volume (scf)	Total Heat Input (MMBtu)	CO Emission Factor ² (Ib/MMBTU)	Total CO (Tons)
June-24	720.0	8.7	711.3	1,341	51.5	57,263,601	29,453,238	29,836	0.093	1.387
July-24	744.0	5.8	738.2	1,408	48.6	62,374,493	30,323,767	30,718	0.093	1.428
August-24	744.0	339.1	404.9	1,409	48.7	34,275,528	16,763,193	16,981	0.093	0.790
September-24	720.0	13.0	707.0	1,399	49.1	59,355,891	29,140,340	29,519	0.093	1.373
October-24	744.0	14.2	729.8	1,500	47.9	65,732,888	31,472,202	31,881	0.093	1.482
November-24	721.0	5.2	715.8	1,516	47.8	65,102,510	31,139,019	31,544	0.093	1.467
TOTAL/AVG 2023-2023	8,784.0	490.9	8,293.1	1,408	50.2	701,250,255	351,757,353	356,329	0.095	16.885
June 1, 2024 - November 30, 2024	4,393.0	386.1	4,006.9	1,429	48.9	344,104,909	168,291,759	170,479	0.093	7.927
TOTAL/AVG 2024-Partial	8,040.0	475.5	7,564.5	1,403	50.3	637,309,362	320,284,378	324,447	0.094	15.243
							12-Month Combined Heat	719.831		

Notes:

Input

scfm - standard cubic feet per minute % - Percent CH₄ - methane scf - standard cubic feet MMBTU - million British thermal units CO - carbon monoxide lb - pounds

¹⁾ The 12-month consecutive heat input limit for both turbines combined pursuant to Permit Condition No. 18773, Part 8 is 838,480 MMBTU. The daily heat input limit for S-6 and S-7 pursuant to Permit Condition No. 18773, Part 8 is 1,378 MMBTU/day.

²⁾ The CO Emission Factors for S-6 and S-7 were obtained from results of the source tests, pursuant to PTO Condition Number 24373 Part 3(a)(ii). Starting February 2023 results from the December 14, 2022, Source Test will be used. Starting February 2024, results from the December 6, 2023 Source Test will be used.

12-MONTH CONSECUTIVE HEAT INPUT TO TURBINES (S-6 & S-7)

Altamont Landfill and Resource Recovery Facility, Livermore, CA

S-6 (Turbine)

Month	Total Heat Input (MMBTU)	12-Month Consecutive Total (MMBTU)
June-24	29,928	368,214
July-24	29,897	367,821
August-24	23,833	361,476
September-24	29,398	361,012
October-24	31,103	363,123
November-24	31,239	363,502

S-7 (Turbine)

Month	Total Heat Input (MMBTU)	Consecutive Total (MMBTU)	Combined 12-Month Consecutive Total (MMBTU)
June-24	29,836	427,213	795,427
July-24	30,718	365,239	733,060
August-24	16,981	351,873	713,349
September-24	29,519	411,739	772,751
October-24	31,881	355,474	718,597
November-24	31,544	356,329	719,831

Note: The 12-month consecutive heat input limit for both turbines combined pursuant to Permit Condition No. 18773, Part 8 is 838,480 MMBTU.

MMBTU - million British thermal units

Altamont Landfill and Resource Recovery Facility Consecutive 12-Month LNG Plant Summary Page S-210 LNG Plant

Month	Average CH ₄ (%)	Maximum Daily Heat Input (MMBTU/day)	Total LFG Volume (scf)	Total CH4 Volume (scf)	Total Monthly Heat Input (MMBTU)	12-Month Consecutive Total (MMBTU)
June-24	NA*	NA*	NA*	NA*	NA*	NA*
July-24	NA*	NA*	NA*	NA*	NA*	NA*
August-24	NA*	NA*	NA*	NA*	NA*	NA*
September-24	NA*	NA*	NA*	NA*	NA*	NA*
October-24	NA*	NA*	NA*	NA*	NA*	NA*
November-24	NA*	NA*	NA*	NA*	NA*	NA*
TOTAL/AVG 2022-2023	NA*	NA*	NA*	NA*	NA*	
December 1, 2023 - November 1, 2024	NA*	NA*	NA*	NA*	NA*	-

Notes: 1) The LNG Plant (S-210) heat input log is maintained pursuant to Permit Condition No. 24255, Part 4.

²⁾ The daily heat input limit for S-210 pursuant to Permit Condition No. 24255, Part 2 is 1,950 MMBtu/Day.

³⁾ According to correspondence between ALRRF and the BAAQMD, the LNG Plant commenced testing activities in August 3, 2009.

^{4) *}LNG Plant was shut down on June 30, 2023.

^{% -} Percent CH₄ - methane MMBTU - million British thermal units scf - standard cubic feet

APPENDIX P BAAQMD CORRESPONDENCE

June 28, 2024

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Attn: Title V Reports

Re: Section I.F Title V 10-Day Report for Exceedance of VOC Laden Soil, Plant Number

A2066, Altamont Landfill and Resource Recovery Facility, Livermore, California

Dear Sir or Madam:

The Altamont Landfill and Resource Recovery Facility (ALRRF) is submitting this 10-day notice to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for Waste Management of Alameda County Inc. (WMAC) facility in Livermore, CA.

The ALRRF Title V Permit Condition No. 19235 Part 20 (a) states that "ALRRF shall limit the quantity of Volatile Organic Compound (VOC) laden soil handled per day such that no more than 15 pounds of total carbon could be emitted to the atmosphere per day."

During routine data review on June 19, 2024, it was discovered that the ALRRF site potentially exceeded the daily VOC limit on both June 15 and 18, 2024. ALRRF assumes all VOCs in soils utilized for daily cover are emitted to the atmosphere on the day the soil is managed at the facility regardless of the activities where the soil is generated — including loading and transporting the soil to the landfill. As such, ALRRF calculates the potential emissions from VOC laden soil to the atmosphere. In an abundance of caution and in accordance with permit conditions, this notification is being submitted within 10 calendar days of discovery of the exceedance of daily VOC limit. The exceedance was caused due to inadvertent miscommunication between WMAC staff. As required, a 30-day follow-up letter will confirm the contents of this submittal and provide additional details as appropriate.

ALRRF is committed to operating its landfill in compliance with applicable regulations. If you have any questions, please do not hesitate to contact Rajan Phadnis via email at rphadnis@wm.com.

Sincerely,

Waste Management of Alameda County, Inc.

Marcus Nettz Area Director

July 17, 2024

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Attn: Title V Reports

Re: Section I.F Title V 30-Day Follow-up Report

Plant Number A2066, Altamont Landfill and Resource Recovery Facility,

Livermore, California

Dear Sir or Madam:

The Altamont Landfill and Resource Recovery Facility (ALRRF) is submitting this 30-day follow-up report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for Waste Management of Alameda County Inc. (WMAC) facility in Livermore, CA.

The ALRRF Title V Permit Condition No. 19235 Part 20 (a) states that "ALRRF shall limit the quantity of Volatile Organic Compound (VOC) laden soil handled per day such that no more than 15 pounds of total carbon could be emitted to the atmosphere per day."

During routine data review on June 19, 2024, it was discovered that the ALRRF site potentially exceeded the daily VOC limit on both June 15 and 18, 2024. ALRRF conservatively assumes all VOCs in soils utilized for daily cover are emitted to the atmosphere on the day the soil is managed at the facility regardless of the activities where the soil is generated — including loading and transporting the soil to the landfill. As such, ALRRF calculates the potential emissions from VOC laden soil to the atmosphere. In an abundance of caution and in accordance with permit conditions, ALRRF submitted the 10-day notification on June 28, 2024, within 10 calendar days of discovery of the exceedance of daily VOC limit. The exceedance was caused due to inadvertent miscommunication between WMAC staff.

This letter serves as the 30-day follow-up written report including corrective and preventative actions taken by ALRRF. Upon discovery of the soil daily VOC daily exceedance ALRRF immediately took the following actions:

6/19/2024: During routine data review, it was discovered that ALRRF had exceeded the soil VOC limit on June 15 and 18, 2024.

6/21/2024: ALRRF team discussed corrective action items and determined necessary changes to daily operations.

6/21/2024: Supervisors and scale house personnel were retrained on scheduling and acceptance practices for VOC laden soils

6/21/2024: The facility initiated updating the site material handling process.

6/24/2024: The facility implemented process of mid-day communication between Operations Team, Site EP, and Sales Team.

6/28/2024: The facility submitted 10-day written report via email.

ALRRF is committed to operating its landfill in compliance with all applicable regulations. If you have any questions, please contact Rajan Phadnis at rphadnis@wm.com.

Sincerely,

Waste Management of Alameda County, Inc.

Marcus Nettz Area Director

10840 Altamont Pass Road Livermore, CA 94551

September 23, 2024

Janet Carrasco
Air Quality Specialist
Compliance and Enforcement Division
Bay Area Air Quality Management District
375 Beale Street, Suite 600
San Francisco, California 94105

Re: Facility Number A2066 - Waste Management of Alameda County, Inc.
Altamont Landfill and Resource Recovery Facility
Request for Limited Exemption (for construction activities) from Regulation 8, Rule 34
(Solid Waste Disposal Sites), Section 303 (Landfill Surface Requirements)Construction work for installation of LFG horizontal collectors and laterals and upgrades to existing condensate system

Dear Ms. Carrasco:

This letter requests a limited exemption from the requirements of Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 303 (Landfill Surface Requirements) during wellfield and landfill construction activities to be conducted from October 1, 2024, through December 31, 2024, at the Altamont Landfill and Resource Recovery Facility (ALRRF), which is owned and operated by Waste Management of Alameda County, Inc. (WMAC). This notification is submitted pursuant to the BAAQMD Regulation 8, Rule 34, Section 118, "Limited Exemptions for Construction Activities."

The work consists of installation of new horizontal landfill gas (LFG) collectors and installation of new piping to upgrade and improve the existing condensate conveyance systems. This notification is submitted pursuant to the BAAQMD Regulation 8, Rule 34, Section 118, "Limited Exemptions for Construction Activities." The project work is scheduled to be completed during October 1, 2024, through December 31, 2024, and is covered by BAAQMD Permit to Operate (PTO) Condition Number 19235 Part 1(b)(i), as updated by Application Number (AN) 30563.

The construction work includes installation of new horizontal collectors and piping that will connect to the existing gas collection and control system (GCCS) and installation of new condensate piping system to improve the flow of liquids. The work will include excavation of the affected areas to remove previously placed waste during installation of piping. The affected areas will be backfilled with tires and/or soil and drainage material and covered. This letter also transmits the BAAQMD-required construction plan (work plan) for the proposed work. The work plan contains information required pursuant to Regulation 8, Rule 34, Section 118.1 and includes:

- Description of actions being taken;
- Description of landfill areas affected;
- Description of LFG components affected;
- Map showing the above areas and components;
- Reason requiring the action;
- Construction schedule; and
- Description of air quality mitigation measures planned.

No significant interruption of the current site LFG extraction and control operations is anticipated due to the work. The construction is anticipated to begin on or around October 1, 2024. We anticipate construction activities to conclude by December 31, 2024.

Unless notified otherwise, ALRRF will proceed in accordance with the attached work plan. We deem submittal of this plan as approval by the BAAQMD to take necessary action to ensure compliance with regulations, which may include taking additional wells offline for an extended period pursuant to Regulation 8, Rule 34, Section 118.

If you have any questions, please do not hesitate to contact me at rphadnis@wm.com. Thank you for your consideration.

Sincerely,

Rajan Phadnis

Environmental Protection Specialist

Waste Management of Alameda County, Inc.

Attachment: BAAQMD Regulation 8, Rule 34 Construction Plan

CC: Perry Ng, BAAQMD

Ben Tarver, ALRRF

BAAQMD REGULATION 8, RULE 34 CONSTRUCTION PLAN ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY CONSTRUCTION FOR LFG EXTRACTION HORIZONTAL COLLECTORS AND UPGRADES TO CONDENSATE SYSTEM

October 1, 2024, through December 31, 2024

INTRODUCTION

This Construction Work Plan is submitted pursuant to Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 34, Section 118: Limited Exemptions for Construction Activities. To obtain an exemption from BAAQMD Regulation 8, Rule 34, Section 303: Landfill Surface Requirements, the operator shall submit a construction plan in writing to the Air Pollution Control Officer (APCO) prior to beginning any construction activities.

BAAQMD Section 303 requires maintaining the concentration of organic compounds and methane below 500 parts per million by volume (ppmv) at all points on the landfill surface. Section 118 provides an exemption from the surface emission standard for "....areas of the landfill surface where the landfill cover material has been removed and refuse has been exposed for the express purpose of installing, expanding, replacing, or repairing components of the landfill gas, leachate, or gas condensate collection and removal systems."

Pursuant to Regulation 8, Rule 34, Section 118, this work plan includes:

- Description of actions being taken;
- Description of landfill areas affected;
- Description of landfill gas (LFG) components affected;
- Map showing the affected areas and components;
- Reason requiring the action;
- Construction schedule; and
- Description of air quality mitigation measures planned.

ACTIONS BEING TAKEN

The work consists of installation of up to 5 new LFG horizontal collectors and additional pipelines that will connect the wells to the existing gas collection and control system (GCCS) and upgrades on condensate force main to improve the flow of liquids. In addition, the work will include excavation and backfilling activities with tires and/or soil and drainage material.

AFFECTED LANDFILL AREAS

The construction activities will occur in the Fill Area 1 and Fill Area 2 of the landfill, as shown on the attached figure. The construction activities will be executed in phases.

AFFECTED LFG COMPONENTS

ALRRF will conduct landfill GCCS construction activities in compliance with the Rule 8-34-116 and 8-34-117, if applicable.

Please see below for list of proposed GCCS installations and repairs:

- Installation of up to 5 new horizontal collectors and associated piping,
- Installation and tie-ins of piping and laterals at new LFG collectors,
- Condensate force main upgrades in FA1 and piping; and

Pursuant to Rule 8-34-117, ALRRF will take the GCCS wells offline, as necessary. ALRRF will ensure that no more than 5 gas wells are shut down at any time, and that no gas collection well may be down for more than 24 hours.

It is anticipated that the construction will have no significant impact on the routine operation of the existing GCCS. Installation of new LFG collectors, piping and laterals is independent of the ongoing operations of the GCCS. When connecting LFG extraction wells, isolation valves installed within the existing GCCS piping network will be used to minimize the number of existing LFG extraction wells offline at any given time while the newly installed LFG laterals are connected to the GCCS.

REASONS FOR ACTIONS

The proposed construction work is intended to:

- Install new LFG horizontal collectors and piping to increase collection efficiency to further reduce the potential for surface emissions, and
- Upgrade existing of condensate system to improve the flow of liquids

CONSTRUCTION SCHEDULE

The anticipated construction period will be between October 1, 2024, through December 31, 2024. The construction will be executed in phases during this period. The anticipated schedule for the construction activities is summarized in the table below:

Table 1 - Preliminary Construction Schedule

Task	Project Week and Duration
Mobilize crew, equipment, and materials to site	1 week
Excavation, Installation of collectors, piping and laterals, excavation, and backfilling work.	Up to 10 weeks
Clean-up and demobilize crew and materials	1 week

AIR QUALITY MITIGATION MEASURES

Emission of raw LFG will be minimized during construction. We anticipate minimal interruption of the overall site LFG extraction and control operations during the work. Installation of new collectors and piping is independent of ongoing operations of the existing GCCS. Air quality mitigation will be provided during the installation of wells and connection of wells to existing GCCS piping network.

An Asbestos Dust Mitigation Plan will not be prepared pursuant to California Code of Regulation (CCR) Title 17, Section 93105 and 93106 because the ALRRF is not in a geographic ultramafic rock unit, no portion of the landfill has naturally- occurring asbestos or serpentine, and no wells will be constructed in the asbestos monofill designated for friable asbestos disposal.

Due to the minimal amount of excavation planned for this work, air quality impacts are also anticipated to be minimal. Air quality mitigation will be provided during the following work tasks:

- Installation of horizontal collectors and piping,
- Connection of collectors to GCCS,
- Upgrades to condensate system, and
- Excavation and backfill of pipe trenches

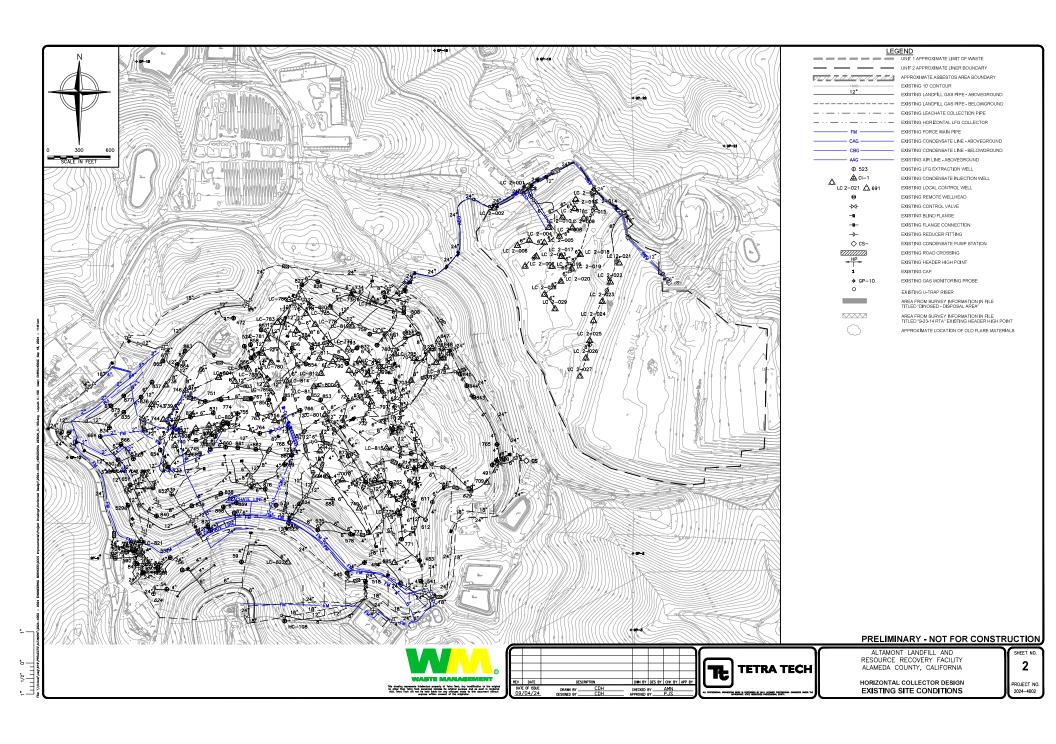
During excavation through waste and soil cover, air emission will be controlled by implementing the following measures:

- Minimizing the installation time for each component;
- Minimizing the quantity of open borings or trench excavations at any one time;
- Relocating excavated refuse to the active waste disposal area within 24 hours; and
- Not leaving well borings open overnight or for more than 8 hours.

During connection of collectors to the existing LFG piping, and installation of new piping, air emissions will be controlled by implementing the following measures:

- Capping or blind flanging of all pipes and collector openings, which will remain sealed until time of connection to a vacuum source;
- Using isolation valves;
- Minimizing installation time for making each connection; and
- Minimizing the amount of open pipe during each installation, by using flange joints and flexible couplings.

The construction and initial operating dates and times for each horizontal collector shall be recorded pursuant to requirements for documenting individual well shutdown times in Regulation 8, Rule 34. Per the Permit to Operate (PTO) Condition Number 19235 Part 1(b)(iv), as updated by


Application Number (AN) 30563 a start-up letter will be provided to the BAAQMD 3 days prior to applying a vacuum to the new wells.

RECORDKEEPING

The following records will be retained during the project:

- Construction start and end dates, projected and actual installation dates, and projected shut down times for individual gas collection system components.
- GCCS downtime and individual well shutdown times will be documented in accordance with the ALRRF's Startup, Shutdown, and Malfunction (SSM) Plan.
- Mitigation measures taken to minimize methane emissions and other potential air quality impacts will be documented.

Attachments: Figure 1 – Gas Collection and Control System Layout

Altamont Landfill & Resource Recovery Facility 10840 Altamont Pass Road Livermore, CA 94551

May 3, 2024

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Attn: Title V Reports

Re: Section I.F – 10-Day Title V Report – Flare A-16 Total Reduced Sulfur Results

Altamont Landfill and Resource Recovery Facility, Livermore, CA

Facility Number A2066

Dear Sir/Madam:

Altamont Landfill and Resource Recovery Facility (ALRRF) is submitting this 10-day written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for Monitoring Reports.

ALRRF Title V Permit Requirement states that "All instances of non-compliance with the permit shall be reported in writing to the District's Compliance and Enforcement Division within 10 calendar days of the discovery of the incident. Within 30 calendar days of the discovery of any incident of non-compliance, the facility shall submit a written report including the probable cause of non-compliance and any corrective or preventative actions".

On April 25, 2024, ALRRF received the draft source test report for the flare A-16 source test conducted on March 6, 2024. This report states the average inlet landfill gas at the time of the test was 266 ppmv as H₂S, which exceeds the 200 ppmv total reduced sulfur (TRS) limit specified in PTO Condition 19235, Part 11. However, these results do not appear to be representative of site conditions over the years. Therefore, ALRRF is currently conducting further investigations. ALRRF will include additional information in the 30-Day Title V report.

ALRRF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. If you have any questions or need any additional information, please do not hesitate to contact Rajan Phadnis at rphadnis@wm.com.

Sincerely, Altamont Landfill and Resource Recovery Facility

Marcus Nettz Area Director cc: Jay Patel, BAAQMD

May 23, 2024

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Attn: Title V Reports

Re: Section I.F – 30-Day Title V Report -Flare A-16 Total Reduced Sulfur Results

Altamont Landfill and Resource Recovery Facility, Livermore, CA

Facility Number A2066

Dear Sir/Madam:

Altamont Landfill and Resource Recovery Facility (ALRRF) is submitting this 30-day written report to the Bay Area Air Quality Management District (BAAQMD) as required under Title V Permit Condition Section I.F for Monitoring Reports.

ALRRF Title V Permit Requirement states that "All instances of non-compliance with the permit shall be reported in writing to the District's Compliance and Enforcement Division within 10 calendar days of the discovery of the incident. Within 30 calendar days of the discovery of any incident of non-compliance, the facility shall submit a written report including the probable cause of non-compliance and any corrective or preventative actions".

On April 25, 2024, ALRRF received the draft report for the annual source test performed at flare A-16 on March 6, 2024. This report states the average inlet landfill gas at the time of the test was 266 ppmv as H₂S, which exceeds the 200 ppmv total reduced sulfur (TRS) limit specified in PTO Condition 19235, Part 11. However, these results are inconsistent with prior sample results. Source test results at flare A-15 (on February 28, 2024) had an average of 107 ppmv TRS as H₂S and the source test results at turbines S-6 and S-7 (on December 6, 2023) had an average of 71 ppmv TRS as H₂S. Therefore, ALRRF conducted further investigation and performed additional sampling at flare A-16. Results showed readings below the 200 ppmv permit limit. ALRRF has tentatively scheduled the source re-test for June 10, 2024. The recent TRS results from sampling conducted on May 7, 2024, demonstrate that the original results with TRS exceedance are not representative of current site conditions and appears to be an anomaly.

This letter serves as the 30-day written report including corrective and preventative actions taken by ALRRF. Upon discovery of the TRS exceedance ALRRF immediately took the following actions:

May 23, 2024 Page 2 of 2

4/25/2024: ALRRF received draft report for the flare A-16 source test conducted on March 6, 2024.

4/29/2024: ALRRF reviewed the source report for the flare A-16 and noticed TRS exceedance.

5/1/2024: ALRRF team discussed corrective action items and initiated investigation into this matter.

5/1/2024: ALRRF conducted Draeger-tube sampling at flare A-16 and sulfur values were below 100 ppmv.

5/3/2024: ALRRF submitted the flare A-16 source test report to the BAAQMD Source Test Division.

5/3/2024: ALRRF submitted 10-day written report for TRS exceedance.

5/7/2024: ALRRF conducted laboratory sampling at flare A-16.

5/14/2024: ALRRF received laboratory sampling results and sulfur values were below 50 ppmv which is below the permit limit.

5/15/2024: ALRRF requested a quote for flare A-16 source re-test for TRS compounds.

5/23/2024: ALRRF submitted Title V 30-day written report.

ALRRF will submit the revised source test results within 60-days of source re-test and submit an addendum to the flare A-16 source test report submitted on 5/3/2024.

ALRRF is committed to operating its landfill in compliance with applicable regulations and will ensure that compliance is achieved. If you have any questions or need any additional information, please do not hesitate to contact Rajan Phadnis at rphadnis@wm.com.

Sincerely,

Altamont Landfill and Resource Recovery Facility

Marcus Nettz Area Director

cc: Jay Patel, BAAQMD

10840 Altamont Pass Road Livermore, CA 94551

September 23, 2024

Perry Ng Permit Service Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California, 94105

Re: Well Decommissioning Notification for one Landfill Gas Well

Altamont Landfill and Resource Recovery Facility, Livermore, California, Plant Number A2066

Dear Sir/Madam:

This letter is to notify the Bay Area Air Quality Management District (BAAQMD) of the decommissioning of one landfill gas (LFG) well ALLC0703 at the Altamont Landfill and Resource Recovery Facility (ALRRF) on September 23, 2024, pursuant to Permit to Operate (PTO) Condition Number 19235 Part 1(b) as updated by AN 30563.

This notification is being made pursuant to Waste Management of Alameda County, Inc. (WMAC) Permit to Operate (PTO) Condition 19235 Parts (1)(b)(v), which states that a decommissioning notice shall be submitted to the BAAQMD within three (3) working days of the component(s) having been disconnected from the system. Vertical well ALLC0703 was decommissioned on September 23, 2024, as outlined below:

Well ID	Date and Time Decommissioned	Reason	Туре
ALLC0703	09/23/2024; 1:32 PM	Low Flow	Vertical LFG Well

PTO Condition 19235 Part (1)(b)(vii) states that if the Permit Holder has a net reduction of more than five (5) components within a 120-day period, the Permit Holder shall submit a more comprehensive notice to the BAAQMD. The time period starting 120 days prior to the original submittal date (09/23/2024) starts on May 26, 2024. Since May 26, 2024, ALRRF has installed 0 LFG vertical wells and 0 horizontal collectors and 0 leachate cleanout riser system (LCRS). ALRRF has decommissioned 4 vertical LFG wells. The total net decrease is therefore 4 LFG components.

The decrease of LFG wells is not expected to result in surface emission leaks, as the GCCS will undergo tuning to accommodate the revised number of wells, and each remaining vertical LFG well will have the necessary vacuum applied to facilitate required LFG collection.

There are no vertical LFG wells disconnected out of the five (5) wells allowed pursuant to BAAQMD Regulation 8-34-116 (Limited Exemption, Well Raising).

The following table shows the current status of replacements, decommissions, and installations for PTO Condition Number 19235 Part 1(b) as updated by AN 30563.

Well Action	PTO Condition Number 19235 Part 1(b) as updated by AN 30563	After Installations and Replacements in this Notification (Remaining)
New Vertical Well Installations	120	43
Vertical Well Decommissions	100	65
New Horizontal Collector Installations	20	17
New Leachate Cleanout Risers Installations	5	5
Horizontal Collector Decommissions	5	2
Leachate Cleanout Risers Decommissions	5	5
Vertical Well Replacements	Unlimited	Unlimited

Pursuant to the June 20, 2024, Well Decommissioning Notification the GCCS consisted of 182 vertical LFG collection wells, 2 horizontal collectors, and 2 leachate cleanout riser system (LCRS). With the decommissioning of one LFG vertical well ALLC0703, as indicated in this Well Decommissioning Notification Letter, there are currently 181 vertical LFG collection wells, 2 horizontal collectors, and 2 LCRS connected to the GCCS at the ALRRF.

If you have any questions, please do not hesitate to contact me at rphadnis@wm.com.

Sincerely,

Rajan Phadnis

Waste Management of Alameda County, Inc.

CC Mr. Ben Tarver (ALRRF)

June 20, 2024

Perry Ng Permit Service Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California, 94105

Re: Well Decommissioning Notification for three Landfill Gas Wells

Altamont Landfill and Resource Recovery Facility, Livermore, California, Plant Number A2066

Dear Sir/Madam:

This letter is to notify the Bay Area Air Quality Management District (BAAQMD) of the decommissioning of three landfill gas (LFG) wells ALLC0775, ALLC0776 and ALLC0828 at the Altamont Landfill and Resource Recovery Facility (ALRRF) on June 19, 2024, pursuant to Permit to Operate (PTO) Condition Number 19235 Part 1(b) as updated by AN 30563.

This notification is being made pursuant to Waste Management of Alameda County, Inc. (WMAC) Permit to Operate (PTO) Condition 19235 Parts (1)(b)(v), which states that a decommissioning notice shall be submitted to the BAAQMD within three (3) working days of the component(s) having been disconnected from the system. Vertical wells ALLC0775, ALLC0776, and ALLC0828 were decommissioned on June 19, 2024 as outlined below:

Well ID	Date and Time Decommissioned	Reason	Туре
ALLC0775	06/19/2024; 2:00 PM	Low Flow	Vertical LFG Well
ALLC0776	06/19/2024; 2:10 PM	Low Flow	Vertical LFG Well
ALLC0828	06/19/2024; 2:24 PM	Low Flow	Vertical LFG Well

PTO Condition 19235 Part (1)(b)(vii) states that if the Permit Holder has a net reduction of more than five (5) components within a 120-day period, the Permit Holder shall submit a more comprehensive notice to the BAAQMD. The time period starting 120 days prior to the original submittal date (06/20/2024) starts on February 10, 2024. Since February 10, 2024, ALRRF has installed 0 LFG vertical wells and 0 horizontal collectors and 0 leachate cleanout riser system (LCRS). ALRRF has decommissioned 7 vertical LFG wells. The total net decrease is therefore 7 LFG components.

The increase of LFG well is not expected to result in surface emission leaks, as the GCCS will undergo tuning to accommodate the revised number of wells, and each remaining vertical LFG well will have the necessary vacuum applied to facilitate required LFG collection.

There are no vertical LFG wells disconnected out of the five (5) wells allowed pursuant to BAAQMD Regulation 8-34-116 (Limited Exemption, Well Raising).

The following table shows the current status of replacements, decommissions, and installations for PTO Condition Number 19235 Part 1(b) as updated by AN 30563.

Well Action	PTO Condition Number 19235 Part 1(b) as updated by AN 30563	After Installations and Replacements in this Notification (Remaining)
New Vertical Well Installations	120	43
Vertical Well Decommissions	100	66
New Horizontal Collector Installations	20	17
New Leachate Cleanout Risers Installations	5	5
Horizontal Collector Decommissions	5	2
Leachate Cleanout Risers Decommissions	5	5
Vertical Well Replacements	Unlimited	Unlimited

Pursuant to the April 18, 2024, Well Decommissioning Notification the GCCS consisted of 185 vertical LFG collection wells, 2 horizontal collectors, and 2 leachate cleanout riser system (LCRS). With the decommissioning of three LFG vertical wells ALLC0775, ALLC0776, and ALLC0828, as indicated in this Well Decommissioning Notification Letter, there are currently 182 vertical LFG collection wells, 2 horizontal collectors, and 2 LCRS connected to the GCCS at the ALRRF.

If you have any questions, please do not hesitate to contact me at rphadnis@wm.com.

Sincerely,

Rajan Phadnis

Waste Management of Alameda County, Inc.

CC Mr. Ben Tarver (ALRRF)

10840 Altamont Pass Road Livermore, CA 94551

July 9, 2024

Perry Ng Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: Plant No. A2066 – Altamont Landfill and Resource Recovery Facility
Permit Modification Request to add two wells to list of Higher Operating Value Wells

Dear Sir/Madam:

This letter is to notify the Bay Area Air Quality Management District (BAAQMD) that Altamont Landfill and Resource Recovery Facility (ALRRF) is requesting to add two Wells ALT20018, and ALT20019 to the list of alternative temperature limit wells, also referred to as High Operating Value (HOV) wells.

This notification is being made pursuant to Waste Management of Alameda County Inc. (WMAC) Permit to Operate (PTO) Condition 19235 Parts (1)(d)(ii), which states that a notice shall be submitted to the BAAQMD within thirty (30) days of adding the component to the list of alternative temperature limit wells. ALRRF believes that it has satisfied all requirements listed under PTO Condition 19235 Parts (1)(d)(ii) to include Wells ALT20018, and ALT20019 to the list of alternative temperature limit wells.

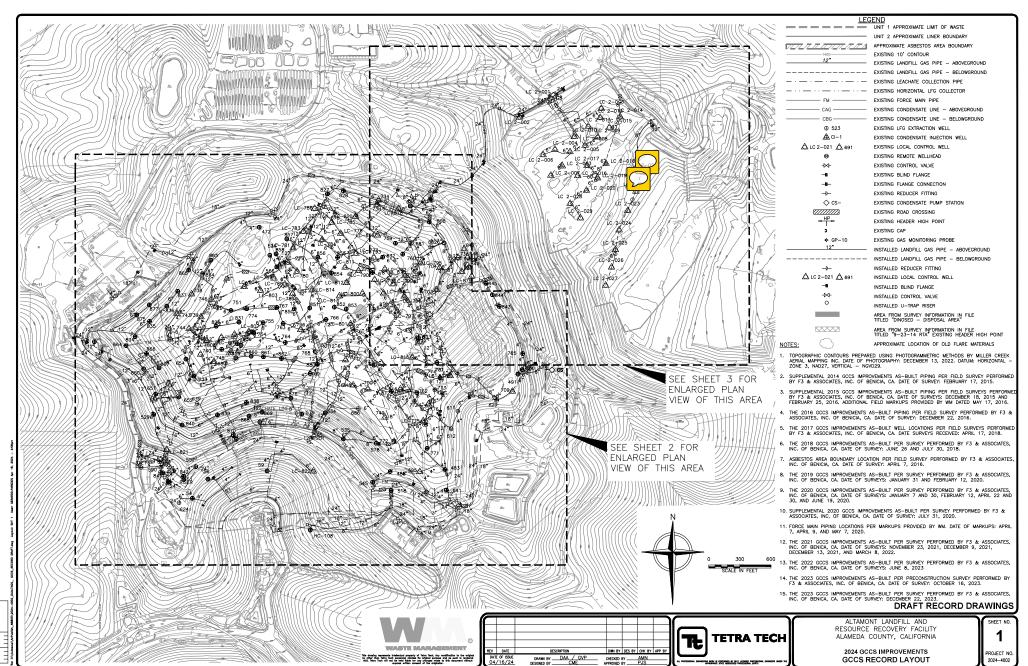
A review of monitoring data indicates that the wells had elevated operating temperatures, and recent oxygen data shows low level of oxygen has been detected at these wells. Upon discovering the elevated temperatures, ALRRF personnel monitored the well for carbon monoxide (CO), which is an early indicator of subsurface fire. Typically, CO concentrations of greater than 1,000 parts per million by volume (ppmv) will indicate a subsurface fire, with CO concentrations greater than 500 ppmv being of concern. Initial monitoring at Well ALT20018 indicated CO readings of 20 ppmv. Subsequent monitoring at Well ALT20018 indicated CO concentrations of 20 ppmv, 20 ppmv and 20 ppmv. Methane concentration at Well ALT20018 did not appear to be affected by operation at the higher temperatures. Initial monitoring at Well ALT20019 indicated CO concentrations of 20 ppmv, 20 ppmv, and 20 ppmv. Methane concentration at Well ALT20019 did not appear to be affected by operation at the higher temperatures. See attached table for recent historical monitoring data and CO monitoring results for Wells ALT20018, and ALT20019.

WMAC will consider Wells ALT20018, and ALT20019 on the HOV list for a temperature of 145°F as of July 9, 2024. Should the temperature measured at Wells ALT20018, and ALT20019 during routine monitoring exceed 145°F, WMAC will consider it an exceedance and will track in accordance with the NSPS/EG and BAAQMD requirements.

If you have any questions, please do not hesitate to contact me.

Sincerely,

Rajan Phadnis


Waste Management of Alameda County, Inc.

Attachments:

Table 1 –Wellfield Data- Wells ALT20018, and ALT20019 ALRRF GCCS Drawing

Table 1. Well Data for Wells ALT20018 and ALT20019

Device Name	Date Time	CH4 (Methane)(%)	CO2 (Carbon Dioxide)(%)	O2 (Oxygen)(%)	Balance Gas(%)	Initial Temperature(oF)	Adjusted Temperature(oF)	Initial Static Pressure("H2O)	Adjusted Static Pressure("H2O)
ALT20018	2/6/2024 8:41	53.2	46.8	0.0	0.0	85.9	127.0	-0.7	-1.2
ALT20018	3/22/2024 8:32	55.0	44.9	0.1	0.0	125.0	126.1	-2.3	-2.9
ALT20018	4/1/2024 9:38	54.4	45.6	0.0	0.0	129.1	129.0	-5.2	-5.3
ALT20018	5/1/2024 9:30	49.9	50.1	0.0	0.0	129.3	129.1	-5.0	-5.1
ALT20018	6/5/2024 9:33	54.4	44.4	0.0	1.2	132.9	132.9	-5.3	-5.7
ALT20018	6/5/2024 9:34	54.0	44.4	0.0	1.6	132.9	132.9	-6.1	-6.1
ALT20018	6/5/2024 9:40					CO was 20 ppm			
ALT20018	6/10/2024 9:55	53.3	43.8	0.0	2.9	132.3	132.3	-4.7	-4.9
ALT20018	6/10/2024 10:00		-			CO was 20 ppm			
ALT20018	6/18/2024 10:45	51.3	43.7	0.2	4.8	132.5	132.5	-6.5	-6.5
ALT20018	6/18/2024 10:50		CO was 20 ppm						
ALT20018	7/2/2024 9:33	50.2	42.6	0.0	7.2	132.9	132.9	-6.0	-6.0
ALT20018	7/2/2024 9:38					CO was 20 ppm			
ALT20019	1/2/2024 11:51	54.1	45.9	0.0	0.0	124.7	125.8	-0.2	-0.2
ALT20019	2/6/2024 8:47	53.8	46.2	0.0	0.0	125.4	126.1	-0.2	-0.3
ALT20019	3/8/2024 9:55	52.3	47.7	0.0	0.0	127.5	127.9	-1.4	-1.5
ALT20019	3/27/2024 10:20	55.2	44.8	0.0	0.0	126.5	127.8	-1.0	-1.5
ALT20019	4/1/2024 9:48	54.0	46.0	0.0	0.0	129.4	129.2	-2.9	-3.1
ALT20019	5/1/2024 9:24	50.0	50.0	0.0	0.0	128.7	128.5	-3.2	-3.2
ALT20019	6/5/2024 10:03	54.6	45.2	0.0	0.2	132.4	132.3	-3.1	-3.2
ALT20019	6/5/2024 10:05	54.4	45.2	0.0	0.4	132.4	132.4	-3.5	-3.5
ALT20019	6/5/2024 10:10		CO was 20 ppm						
ALT20019	6/10/2024 10:06	53.5	44.0	0.0	2.5	132.0	132.1	-3.1	-3.4
ALT20019	6/10/2024 10:12					CO was 20 ppm			
ALT20019	6/18/2024 10:55	49.8	43.0	0.2	7.0	132.3	132.3	-4.6	-4.6
ALT20019	6/19/2024 11:00		CO was 20 ppm						
ALT20019	7/2/2024 9:42	48.0	40.9	0.2	10.9	132.6	132.6	-4.1	-4.1
ALT20019	7/2/2024 9:50					CO was 20 ppm			

1/2" 0"

10840 Altamont Pass Road Livermore, CA 94551

June 10, 2024

Perry Ng Air Quality Engineer Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, CA 94105

Re: Plant No. A2066 – Altamont Landfill and Resource Recovery Facility
Permit Modification Request to add one well to list of Higher Operating Value Wells

Dear Sir/Madam:

This letter is to notify the Bay Area Air Quality Management District (BAAQMD) that Altamont Landfill and Resource Recovery Facility (ALRRF) is requesting to add one Well ALT20012 to the list of alternative temperature limit wells, also referred to as High Operating Value (HOV) wells.

This notification is being made pursuant to Waste Management of Alameda County Inc. (WMAC) Permit to Operate (PTO) Condition 19235 Parts (1)(d)(ii), which states that a notice shall be submitted to the BAAQMD within thirty (30) days of adding the component to the list of alternative temperature limit wells. ALRRF believes that it has satisfied all requirements listed under PTO Condition 19235 Parts (1)(d)(ii) to include Well ALT20012 to the list of alternative temperature limit wells.

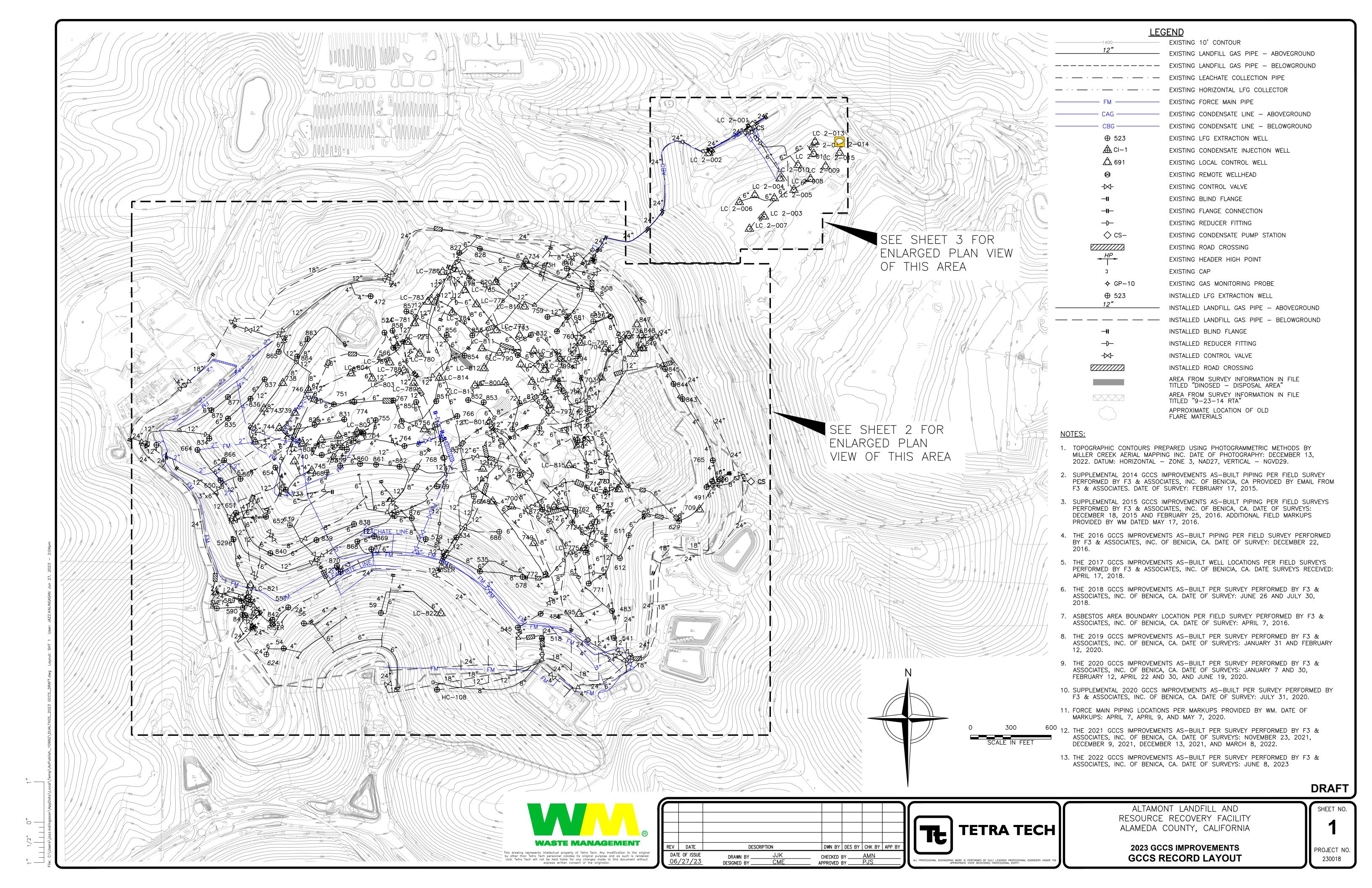
A review of monitoring data indicates that the well had elevated operating temperatures, and recent oxygen data shows low level of oxygen has been detected at this wells. Upon discovering the elevated temperatures, ALRRF personnel monitored the well for carbon monoxide (CO), which is an early indicator of subsurface fire. Typically, CO concentrations of greater than 1,000 parts per million by volume (ppmv) will indicate a subsurface fire, with CO concentrations greater than 500 ppmv being of concern. Initial monitoring at ALT20012 indicated CO reading of 20 ppmv. Subsequent monitoring at Well ALT20012 indicated CO concentrations of 20 ppmv, and 40 ppmv. Methane concentration at Well ALT20012 did not appear to be affected by operation at the higher temperatures. See attached table for recent historical monitoring data and CO monitoring results for Well ALT20012.

WMAC will consider Well ALT20012 on the HOV list for a temperature of 145°F as of June 10, 2024. Should the temperature measured at Well ALT20012 during routine monitoring exceed 145°F, WMAC will consider it an exceedance and will track in accordance with the NSPS/EG and BAAQMD requirements.

If you have any questions, please do not hesitate to contact me.

Sincerely,

Rajan Phadnis


Waste Management of Alameda County, Inc.

Attachments:

Table 1 –Wellfield Data- Well ALT20012 ALRRF GCCS Drawing

Table 1. Wellfield Data

Device Nam	Date Time	CH4 (Methane)(%)	CO2 (Carbon Dioxide) (%)	O2 (Oxygen) (%)	Balance Gas(%)	Initial Temperature (oF)	Adjusted Temperature(oF)	Initial Static Pressure("H2O)	Adjusted Static Pressure("H2O)
ALT20012	1/2/2024 10:43	41.9	42.5	0.0	15.6	128.4	127.3	-0.6	-0.5
ALT20012	2/8/2024 9:09	45.0	43.6	0.0	11.4	127.3	127.3	-1.3	-1.3
ALT20012	3/8/2024 10:52	47.3	45.4	0.0	7.3	127.3	127.3	-1.4	-1.4
ALT20012	4/1/2024 10:40	48.7	42.9	0.0	8.4	126.6	127.5	-1.4	-2.0
ALT20012	5/1/2024 9:33	38.8	39.1	0.2	21.9	131.1	131.0	-2.5	-2.0
ALT20012	5/1/2024 9:36	39.4	39.2	0.0	21.4	129.9	129.9	-2.0	-2.0
ALT20012	5/1/2024 9:40					CO was 20 p	pm		
ALT20012	5/15/2024 14:02	42	42	0.1	15.9	131.3	131.3	-1.34	-1.34
ALT20012	5/15/2024 14:02					CO was 20 p	ppm		
ALT20012	5/28/2024 14:27	43	47.4	0	9.6	80.1	80.1	-1.59	-1.52
ALT20012	5/28/2024 2:27	CO was 20 ppm							
ALT20012	6/5/2024 11:14	48.3	40.9	0	10.8	133.3	132.6	-2.01	-1.23
ALT20012	6/5/2024 11:14		•			CO was 40 p	pm	_	

July 28, 2024

Director of Compliance and Enforcement Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Re: Altamont Landfill and Resource Recovery Facility, Livermore, California Plant Number A2066, 10-Day NOV Response to BAAQMD Notice of Violation A-59768, Dated July 22, 2024

Dear Sir or Madam:

Although Waste Management of Alameda County Inc. (WMAC) for Altamont Landfill and Resource Recovery Facility, in Livermore, CA (ALRRF) strongly disagrees with the Notice of Violation (NOV) we are submitting this 10-day response to NOV Number A59768 dated July 22, 2024, (see attachment).

The ALRRF Title V Permit Condition No. 19235 Part 20 (a) states that "ALRRF shall limit the quantity of Volatile Organic Compound (VOC) laden soil handled per day such that no more than 15 pounds of total carbon could be emitted to the atmosphere per day."

WMAC self-reported that the ALRRF site potentially exceeded the daily VOC limit on both June 15 and 18, 2024. For purpose of reporting non-compliance, ALRRF conservatively assumes all VOCs in soils utilized for daily cover are emitted to the atmosphere on the day the soil is managed at the facility regardless of the activities where the soil is generated — including loading and transporting the soil to the landfill. As such, ALRRF calculates the potential emissions from VOC laden soil to the atmosphere. Obviously, much of the VOC contaminants in soil are released to the air during loading at the generating facility and in the transportation to the landfill. The ALRRF provided information to BAAQMD that we assume that at most 50 percent of the VOCs could be released from the cover soils at the landfill. However, in an abundance of caution and in accordance with permit conditions, ALRRF submitted the 10-day notification on June 28, 2024, within 10 calendar days of discovery of the potential exceedance of daily VOC limit. ALRRF submitted the 30-day notification on July 17, 2024. The potential exceedance was caused due to inadvertent miscommunication between WMAC staff.

Upon discovery of the soil daily VOC daily potential exceedance ALRRF immediately took the following actions:

6/19/2024: During routine data review, it was discovered that ALRRF had potentially exceeded the soil VOC limit on June 15 and 18, 2024.

6/21/2024: ALRRF team discussed corrective action items and determined necessary changes to daily operations.

6/21/2024: Supervisors and scale house personnel were retrained on scheduling and acceptance practices for low VOC laden soils

6/21/2024: The facility initiated updating the site material handling process.

6/24/2024: The facility implemented process of mid-day communication between Operations Team, Site EP, and Sales Team.

6/28/2024: The facility submitted 10-day written report via email.

7/17/2024: The facility submitted 30-day written report via email.

ALRRF is committed to operating its landfill in compliance with applicable regulations. If you have any questions, please contact Rajan Phadnis at rphadnis@wm.com.

Sincerely,

Waste Management of Alameda County, Inc.

Marcus Nettz Area Director

CC: Jay Patel

APPENDIX Q LFG CONDENSATE INJECTION DATA (A-15 AND A-16 FLARES)

CONDENSATE INJECTION (A-15 Flare)

June-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
6/1/2024	0.0	0.0	0.0
6/2/2024	0.0	0.0	0.0
6/3/2024	0.0	0.0	0.0
6/4/2024	0.0	0.0	0.0
6/5/2024	0.0	0.0	0.0
6/6/2024	0.0	0.0	0.0
6/7/2024	0.0	0.0	0.0
6/8/2024	0.0	0.0	0.0
6/9/2024	0.0	0.0	0.0
6/10/2024	0.0	0.0	0.0
6/11/2024	0.0	0.0	0.0
6/12/2024	0.0	0.0	0.0
6/13/2024	0.0	0.0	0.0
6/14/2024	0.0	0.0	0.0
6/15/2024	0.0	0.0	0.0
6/16/2024	0.0	0.0	0.0
6/17/2024	0.0	0.0	0.0
6/18/2024	0.0	0.0	0.0
6/19/2024	0.0	0.0	0.0
6/20/2024	0.0	0.0	0.0
6/21/2024	0.0	0.0	0.0
6/22/2024	0.0	0.0	0.0
6/23/2024	0.0	0.0	0.0
6/24/2024	0.0	0.0	0.0
6/25/2024	0.0	0.0	0.0
6/26/2024	0.0	0.0	0.0
6/27/2024	0.0	0.0	0.0
6/28/2024	0.0	0.0	0.0
6/29/2024	0.0	0.0	0.0
6/30/2024	0.0	0.0	0.0
Total/Average	0	0.0	0.00
	Max	0.0	0.00

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3, is 4,320 gallons per day.

CONDENSATE INJECTION (A-15 Flare) July-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
7/1/2024	0.0	0.0	0.0
7/2/2024	0.0	0.0	0.0
7/3/2024	0.0	0.0	0.0
7/4/2024	0.0	0.0	0.0
7/5/2024	0.0	0.0	0.0
7/6/2024	0.0	0.0	0.0
7/7/2024	0.0	0.0	0.0
7/8/2024	0.0	0.0	0.0
7/9/2024	0.0	0.0	0.0
7/10/2024	0.0	0.0	0.0
7/11/2024	0.0	0.0	0.0
7/12/2024	0.0	0.0	0.0
7/13/2024	0.0	0.0	0.0
7/14/2024	0.0	0.0	0.0
7/15/2024	0.0	0.0	0.0
7/16/2024	0.0	0.0	0.0
7/17/2024	0.0	0.0	0.0
7/18/2024	0.0	0.0	0.0
7/19/2024	0.0	0.0	0.0
7/20/2024	0.0	0.0	0.0
7/21/2024	0.0	0.0	0.0
7/22/2024	0.0	0.0	0.0
7/23/2024	0.0	0.0	0.0
7/24/2024	0.0	0.0	0.0
7/25/2024	0.0	0.0	0.0
7/26/2024	0.0	0.0	0.0
7/27/2024	0.0	0.0	0.0
7/28/2024	0.0	0.0	0.0
7/29/2024	0.0	0.0	0.0
7/30/2024	0.0	0.0	0.0
7/31/2024	0.0	0.0	0.0
Total/Average	0	0.0	0.00
	Max	0.0	0.00

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3, is 4,320 gallons per day.

CONDENSATE INJECTION (A-15 Flare)

August-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
8/1/2024	0.0	0.0	0.0
8/2/2024	0.0	0.0	0.0
8/3/2024	0.0	0.0	0.0
8/4/2024	0.0	0.0	0.0
8/5/2024	0.0	0.0	0.0
8/6/2024	0.0	0.0	0.0
8/7/2024	0.0	0.0	0.0
8/8/2024	0.0	0.0	0.0
8/9/2024	0.0	0.0	0.0
8/10/2024	0.0	0.0	0.0
8/11/2024	0.0	0.0	0.0
8/12/2024	0.0	0.0	0.0
8/13/2024	0.0	0.0	0.0
8/14/2024	0.0	0.0	0.0
8/15/2024	0.0	0.0	0.0
8/16/2024	0.0	0.0	0.0
8/17/2024	0.0	0.0	0.0
8/18/2024	0.0	0.0	0.0
8/19/2024	0.0	0.0	0.0
8/20/2024	0.0	0.0	0.0
8/21/2024	0.0	0.0	0.0
8/22/2024	0.0	0.0	0.0
8/23/2024	0.0	0.0	0.0
8/24/2024	0.0	0.0	0.0
8/25/2024	0.0	0.0	0.0
8/26/2024	0.0	0.0	0.0
8/27/2024	0.0	0.0	0.0
8/28/2024	0.0	0.0	0.0
8/29/2024	0.0	0.0	0.0
8/30/2024	0.0	0.0	0.0
8/31/2024	0.0	0.0	0.0
Total/Average	0	0.0	0.00
	Max	0.0	0.00

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3, is 4,320 gallons per day.

CONDENSATE INJECTION (A-15 Flare) September-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
9/1/2024	0.0	0.0	0.0
9/2/2024	0.0	0.0	0.0
9/3/2024	0.0	0.0	0.0
9/4/2024	0.0	0.0	0.0
9/5/2024	0.0	0.0	0.0
9/6/2024	0.0	0.0	0.0
9/7/2024	0.0	0.0	0.0
9/8/2024	0.0	0.0	0.0
9/9/2024	0.0	0.0	0.0
9/10/2024	0.0	0.0	0.0
9/11/2024	0.0	0.0	0.0
9/12/2024	0.0	0.0	0.0
9/13/2024	0.0	0.0	0.0
9/14/2024	0.0	0.0	0.0
9/15/2024	0.0	0.0	0.0
9/16/2024	0.0	0.0	0.0
9/17/2024	0.0	0.0	0.0
9/18/2024	0.0	0.0	0.0
9/19/2024	0.0	0.0	0.0
9/20/2024	0.0	0.0	0.0
9/21/2024	0.0	0.0	0.0
9/22/2024	0.0	0.0	0.0
9/23/2024	0.0	0.0	0.0
9/24/2024	0.0	0.0	0.0
9/25/2024	0.0	0.0	0.0
9/26/2024	0.0	0.0	0.0
9/27/2024	0.0	0.0	0.0
9/28/2024	0.0	0.0	0.0
9/29/2024	0.0	0.0	0.0
9/30/2024	0.0	0.0	0.0
Total/Average	0	0.0	0.00
	Max	0.0	0.00

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3, is 4,320 gallons per day.

CONDENSATE INJECTION (A-15 Flare) October-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
10/1/2024	0.0	0.0	0.0
10/2/2024	0.0	0.0	0.0
10/3/2024	0.0	0.0	0.0
10/4/2024	0.0	0.0	0.0
10/5/2024	0.0	0.0	0.0
10/6/2024	0.0	0.0	0.0
10/7/2024	0.0	0.0	0.0
10/8/2024	0.0	0.0	0.0
10/9/2024	0.0	0.0	0.0
10/10/2024	0.0	0.0	0.0
10/11/2024	0.0	0.0	0.0
10/12/2024	0.0	0.0	0.0
10/13/2024	0.0	0.0	0.0
10/14/2024	0.0	0.0	0.0
10/15/2024	0.0	0.0	0.0
10/16/2024	0.0	0.0	0.0
10/17/2024	0.0	0.0	0.0
10/18/2024	0.0	0.0	0.0
10/19/2024	0.0	0.0	0.0
10/20/2024	0.0	0.0	0.0
10/21/2024	0.0	0.0	0.0
10/22/2024	0.0	0.0	0.0
10/23/2024	0.0	0.0	0.0
10/24/2024	0.0	0.0	0.0
10/25/2024	0.0	0.0	0.0
10/26/2024	0.0	0.0	0.0
10/27/2024	0.0	0.0	0.0
10/28/2024	0.0	0.0	0.0
10/29/2024	0.0	0.0	0.0
10/30/2024	0.0	0.0	0.0
10/31/2024	0.0	0.0	0.0
Total/Average	0	0.0	0.00
	Max	0.0	0.00

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3, is 4,320 gallons per day.

CONDENSATE INJECTION (A-15 Flare)
November-24

November-24					
Start Date	Total Injection Time (min.)	Average GPM	Total Gallons		
11/1/2024	0.0	0.0	0.0		
11/2/2024	0.0	0.0	0.0		
11/3/2024	0.0	0.0	0.0		
11/4/2024	0.0	0.0	0.0		
11/5/2024	0.0	0.0	0.0		
11/6/2024	0.0	0.0	0.0		
11/7/2024	0.0	0.0	0.0		
11/8/2024	0.0	0.0	0.0		
11/9/2024	0.0	0.0	0.0		
11/10/2024	0.0	0.0	0.0		
11/11/2024	0.0	0.0	0.0		
11/12/2024	0.0	0.0	0.0		
11/13/2024	0.0	0.0	0.0		
11/14/2024	0.0	0.0	0.0		
11/15/2024	0.0	0.0	0.0		
11/16/2024	0.0	0.0	0.0		
11/17/2024	0.0	0.0	0.0		
11/18/2024	0.0	0.0	0.0		
11/19/2024	0.0	0.0	0.0		
11/20/2024	0.0	0.0	0.0		
11/21/2024	0.0	0.0	0.0		
11/22/2024	0.0	0.0	0.0		
11/23/2024	0.0	0.0	0.0		
11/24/2024	0.0	0.0	0.0		
11/25/2024	0.0	0.0	0.0		
11/26/2024	0.0	0.0	0.0		
11/27/2024	0.0	0.0	0.0		
11/28/2024	0.0	0.0	0.0		
11/29/2024	0.0	0.0	0.0		
11/30/2024	0.0	0.0	0.0		
Total/Average	0	0.0	0.00		
	Max	0.0	0.00		

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3, is 4,320 gallons per day.

CONDENSATE INJECTION (A-16 Flare)

June-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
6/1/2024	1,440	2.0	2,910
6/2/2024	1,440	2.1	2,970
6/3/2024	1,440	2.1	2,989
6/4/2024	804	2.1	1,677
6/5/2024	0	0.0	0
6/6/2024	902	2.5	2,248
6/7/2024	1,440	2.7	3,831
6/8/2024	1,398	2.5	3,425
6/9/2024	1,384	2.1	2,933
6/10/2024	778	2.1	1,620
6/11/2024	898	2.4	2,126
6/12/2024	1,440	2.4	3,435
6/13/2024	1,440	2.6	3,717
6/14/2024	1,416	2.6	3,707
6/15/2024	1,440	1.9	2,795
6/16/2024	1,440	2.0	2,929
6/17/2024	1,440	2.1	3,089
6/18/2024	1,440	2.2	3,227
6/19/2024	1,432	2.1	3,008
6/20/2024	1,430	2.2	3,146
6/21/2024	1,408	2.3	3,244
6/22/2024	1,368	2.2	3,075
6/23/2024	1,328	2.3	2,990
6/24/2024	1,384	2.2	3,103
6/25/2024	1,342	2.2	2,917
6/26/2024	1,064	2.2	2,349
6/27/2024	1,440	2.3	3,292
6/28/2024	1,440	2.3	3,345
6/29/2024	1,376	2.2	3,015
6/30/2024	1,336	2.2	2,974
Total/Average	38,328	2.2	86,085
Max	1,440	2.7	3,831

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3 is 7,200 gallons per day.

CONDENSATE INJECTION (A-16 Flare)

July-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
7/1/2024	1,384	2.2	3,048
7/2/2024	1,344	2.3	3,034
7/3/2024	1,328	2.3	3,020
7/4/2024	1,290	2.2	2,864
7/5/2024	1,358	2.2	3,021
7/6/2024	1,342	2.2	2,999
7/7/2024	1,336	2.2	2,876
7/8/2024	1,384	2.2	2,979
7/9/2024	1,336	2.1	2,783
7/10/2024	1,358	2.2	2,973
7/11/2024	1,416	1.9	2,685
7/12/2024	1,440	1.8	2,631
7/13/2024	1,440	2.2	3,174
7/14/2024	1,328	2.6	3,388
7/15/2024	1,376	1.9	2,654
7/16/2024	1,408	2.0	2,806
7/17/2024	1,440	1.7	2,482
7/18/2024	1,440	1.9	2,775
7/19/2024	1,440	2.2	3,165
7/20/2024	1,440	2.4	3,498
7/21/2024	1,424	2.3	3,207
7/22/2024	1,440	1.6	2,262
7/23/2024	1,440	2.0	2,836
7/24/2024	1,440	2.2	3,176
7/25/2024	1,440	2.3	3,365
7/26/2024	1,440	2.1	2,997
7/27/2024	1,440	1.7	2,498
7/28/2024	1,440	2.0	2,925
7/29/2024	1,440	2.2	3,158
7/30/2024	1,440	2.2	3,203
7/31/2024	1,424	1.8	2,628
Total/Average	43,436	2.1	91,109
Max	1,440	2.6	3,498

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3 is 7,200 gallons per day.

CONDENSATE INJECTION (A-16 Flare)

August-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
8/1/2024	1,440	1.5	2,097
8/2/2024	1,440	1.3	1,933
8/3/2024	1,440	1.3	1,939
8/4/2024	1,440	1.2	1,769
8/5/2024	1,096	2.7	3,001
8/6/2024	1,440	2.9	4,230
8/7/2024	1,412	2.9	4,083
8/8/2024	1,440	2.8	4,086
8/9/2024	1,440	2.8	4,025
8/10/2024	1,408	2.2	3,137
8/11/2024	1,440	1.1	1,602
8/12/2024	1,214	2.7	3,243
8/13/2024	1,440	2.9	4,130
8/14/2024	1,440	2.8	4,061
8/15/2024	1,194	1.7	2,007
8/16/2024	1,374	1.2	1,592
8/17/2024	898	1.3	1,185
8/18/2024	740	1.4	1,046
8/19/2024	1,056	2.9	3,064
8/20/2024	1,440	2.9	4,127
8/21/2024	1,400	1.7	2,429
8/22/2024	1,418	1.3	1,777
8/23/2024	1,440	1.4	2,083
8/24/2024	1,440	1.5	2,090
8/25/2024	1,440	1.4	2,012
8/26/2024	1,440	1.4	1,947
8/27/2024	1,440	1.2	1,796
8/28/2024	1,278	1.1	1,444
8/29/2024	1,012	3.0	2,992
8/30/2024	1,440	2.6	3,770
8/31/2024	1,440	2.4	3,504
Total/Average	41,420	2.0	82,200
Max	1,440	3.0	4,230

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3 is 7,200 gallons per day.

Altamont Landfill and Resource Recovery Facility

CONDENSATE INJECTION (A-16 Flare)

September-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
9/1/2024	1,420	2.1	3,004
9/2/2024	1,352	2.0	2,707
9/3/2024	1,440	2.1	3,003
9/4/2024	1,440	2.1	2,989
9/5/2024	1,440	2.0	2,941
9/6/2024	1,314	2.4	3,168
9/7/2024	1,440	2.4	3,398
9/8/2024	1,440	2.4	3,408
9/9/2024	1,410	2.2	3,161
9/10/2024	1,440	2.2	3,181
9/11/2024	1,440	1.9	2,761
9/12/2024	1,440	1.7	2,514
9/13/2024	1,440	1.8	2,534
9/14/2024	1,288	0.9	1,182
9/15/2024	1,056	2.6	2,767
9/16/2024	1,078	2.5	2,686
9/17/2024	806	2.9	2,310
9/18/2024	1,440	3.5	4,975
9/19/2024	1,440	3.1	4,506
9/20/2024	1,440	3.1	4,402
9/21/2024	1,440	1.2	1,795
9/22/2024	1,420	2.3	3,244
9/23/2024	1,440	3.0	4,291
9/24/2024	570	3.0	1,699
9/25/2024	352	2.9	1,024
9/26/2024	538	2.9	1,569
9/27/2024	976	3.0	2,882
9/28/2024	1,440	3.0	4,303
9/29/2024	1,440	2.7	3,880
9/30/2024	1,440	2.7	3,851
Total/Average	38,060	2.4	90,135
Max	1,440	3.5	4,975

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3 is 7,200 gallons per day. Note: Substitute data was used during 9/30/24 13:36 -10/1/24 8:38, when meter was switched off after maintenance. Meter **min.** - minute **GPM** - gallons per minute

Altamont Landfill and Resource Recovery Facility

CONDENSATE INJECTION (A-16 Flare)

October-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
10/1/2024	1,440	2.8	3,976
10/2/2024	1,440	2.5	3,664
10/3/2024	1,440	2.3	3,343
10/4/2024	1,426	2.7	3,861
10/5/2024	1,440	3.0	4,250
10/6/2024	1,440	2.3	3,288
10/7/2024	1,440	1.9	2,754
10/8/2024	1,440	1.6	2,263
10/9/2024	886	2.1	1,854
10/10/2024	668	3.1	2,076
10/11/2024	1,440	3.1	4,522
10/12/2024	1,440	3.1	4,520
10/13/2024	1,440	2.9	4,204
10/14/2024	1,440	2.8	3,973
10/15/2024	1,440	2.4	3,418
10/16/2024	1,440	1.8	2,603
10/17/2024	1,440	1.2	1,680
10/18/2024	1,420	2.3	3,329
10/19/2024	1,440	2.8	4,093
10/20/2024	814	2.6	2,146
10/21/2024	962	2.3	2,258
10/22/2024	1,440	2.6	3,741
10/23/2024	1,440	2.6	3,773
10/24/2024	1,440	2.6	3,685
10/25/2024	1,432	1.8	2,560
10/26/2024	1,440	2.5	3,544
10/27/2024	1,440	2.5	3,645
10/28/2024	1,440	1.7	2,493
10/29/2024	1,434	1.9	2,657
10/30/2024	1,440	2.7	3,847
10/31/2024	1,440	2.8	3,983
Total/Average	42,162	2.4	102,005
Max	1,440	3.1	4,522

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3 is 7,200 gallons per day.

min. - minute GPM - gallons per minute

Altamont Landfill and Resource Recovery Facility

CONDENSATE INJECTION (A-16 Flare)

November-24

Start Date	Total Injection Time (min.)	Average GPM	Total Gallons
11/1/2024	1,430	1.8	2,637
11/2/2024	1,440	2.3	3,278
11/3/2024	1,500	2.5	3,710
11/4/2024	1,440	2.4	3,448
11/5/2024	1,440	1.1	1,612
11/6/2024	1,440	1.3	1,826
11/7/2024	1,440	1.6	2,310
11/8/2024	1,428	2.7	3,913
11/9/2024	1,440	3.0	4,367
11/10/2024	1,440	2.6	3,685
11/11/2024	1,440	2.4	3,391
11/12/2024	1,440	2.3	3,379
11/13/2024	1,440	2.3	3,352
11/14/2024	1,440	2.3	3,311
11/15/2024	1,388	2.3	3,213
11/16/2024	1,440	2.3	3,340
11/17/2024	1,440	2.3	3,316
11/18/2024	1,440	2.3	3,352
11/19/2024	1,440	2.3	3,304
11/20/2024	1,440	2.3	3,275
11/21/2024	1,440	2.1	2,989
11/22/2024	1,440	2.1	3,033
11/23/2024	566	2.2	1,230
11/24/2024	820	2.4	1,942
11/25/2024	1,440	2.7	3,821
11/26/2024	1,440	2.7	3,932
11/27/2024	1,440	2.6	3,783
11/28/2024	1,440	2.6	3,675
11/29/2024	1,440	2.2	3,138
11/30/2024	1,440	1.8	2,607
Total/Average	41,692	2.3	94,170
Max	1,500	3.0	4,367

Note: The landfill gas condensate injection rate pursuant to Permit Condition No. 19235, Part 3 is 7,200 gallons per day.

min. - minute GPM - gallons per minute

APPENDIX R S-99 GASOLINE DISPENSING FACILITY RECORDS

S-99 - Gasoline Dispensing Facility Log of Fuel Usage per Title V (BAAQMD) - Permit Condition# 20813

Limit: 30,000 gallons per 12-month period

Month	Meter Reading	Date of Reading	Monthly Usage (Gallons)	12 Month Rolling Total (Gallons)
June-24	NA	31-Dec	0	0
July-24	NA	31-Jan	0	0
August-24	NA	29-Feb	0	0
September-24	NA	31-Mar	0	0
October-24	NA	30-Apr	0	0
November-24	NA	31-May	0	0
			6-Month Total Usage	Rolling 12-Month Max
			0	0

Note: The existing tank is out of service starting January 2022. ALRRF is currently using third party fuel dispensing truck to fuel site vehicles. ALRRF submitted the permit application to replace existing gasoline tank and it is in reviwe stage. BAAQMD approved the permit on August 8, 2023, and assigned ATC AN 31887. ALRRF plans to install the tank by Q1 2025.

APPENDIX S VOC LADEN SOIL RECORDS

m	1	659878CA 5	661148CA 2.8	657519CA 6534	2.5 65727	7CA 6616 1.9	3.1 6620	027CA 6	662882CA 663	391CA 26	663222CA 15	663262CA 1.9	663772CA 66 2.23	52750CA 2.2	664220CA 3.3	664412CA 4.47	664451CA 66	6.6	664835CA 21	664833CA 3	662550CA 2	664552CA 3	665107CA 3.3	5.41	1.8	9.3	661014CA 14	614971CA 3.4	665574CA T	otal "No": Emissions les:
te				Daily Tons																										Emissions less
un						54.88																								0.2
un					14	176.7 41.92		_																						0.7
lun						38.23																								0.1
lun		60.19						409.89										_												2.2
lun								227.87	15.46																					0.2
un										407.73																				21.2
un		518.6				00.85				697.54																				41.8
un					9	95.97		_		167.38								_	_											0.4 8.7
ın				45.27						107.50																				1.2
ın				51.29																										1.2 1.3
n n				36.18	10	94.57		_																						0.9
,					49	99.05					41.38																			3.1
1		18.69		19.1	71	15.65		459.47			63.24																			7.0
-						81.58					44.54																			3.5 3.7
_	79.33			41.13	55	59.46 34.24		_			47.57 64.61							_												3.7
				55.55		J4.24					60.62																			4.5 3.3 1.7
\neg				64.06																										1.7
+			203.33			85.7		_		-								_												0.3
\pm			203.33 440.99			91.4		_																						1.5 2.5
#			440.33			36.81		399.57			16.07																			2.1
			362.2	64.38				-																						3.7
+			206.14		1	158.8 47.03		_		-	13.69 14.54							-												2.2 0.6
\pm						**3					14.54	11.48						_	- +											8.7
												29.47	1654.73																	7.5
	134.7												1300.89																	12.5
\pm	165.08	577.3 23		17.32	_	_	_	-		\rightarrow			 					-	-											6.6 0.2
#	185.09	124.18										7.67																		1.6
	301.31				1	17.82																								0.7
+	333.96	422.0		—				-		-							 				-									0.7
+	197.39	132.84 159.52		11.81				_		\rightarrow			 																	1.7
1				36.25				373.45																						1.9 2.4
4	-	60.72		33.51				$ \top$		\neg				328.07				$ \top$	$ \Box$			- $=$							$ \top$	2.9
+		131.18 110.34		31.64 67.11	_	_		-		-+				240.38				-	-		-									3.2 2.8
#		110.34		19.13				-																						0.5
_				34.86																										0.5 0.9 0.7
	T							545.45						-	105.73				$ \top$					-						0.7
+	-	62.39				_		546.15		\rightarrow			-		276.7 299.82			-	-											3.9 2.6
П		220.51								+					295.72															4.2
\Box		398.66													125.44															4.8
_	T	56.09																												0.6 3.4
+		343.36							-					-	108.7	16.08	 	-	-+		 							-	-	0.9
															19.43	10.00														0.1
7	-							$ \top$		\neg							82.4	$ \top$	- $=$			- $=$							$ \mp$	1.2
+		192.14						278.86							219.11			_												1.9
\pm		110.96						270.00							215.11		81.06													2.5 2.3
		78.07												244.98																1.9
+								749.44		-				191.69			115.23	_												0.8 4.6
1								749.44									18.37	522.38	14.47											7.8
#																	10.57	322.50	20.92											0.9
																	150.34		16.62											2.9
+								-		-								-	-	16.11 18.4	-									0.1
\pm										-									17.02	10.4	761.48									0.1 3.8
\perp																					1336.27	800.09								10.1
4						20.02		_										20.52				1286.88								7.7
\pm					12	28.03		610.17									 	30.63	-		 	1850.14 1473.83		-						12.0 11.2
												12.43										2.73.03								0.0
1	-	297.11						$ \top$		\neg		20.11					128.73	28.7	$ \Box$			- $=$							-	0.0 5.3
\mp		4767				_	_	-		-			 	484.87		32.81	115.84	-	-		188.87 944.97									4.9
#		176.7														36.17 48.42					1233.95									5.9 5.4 6.9
#																					1735.05									6.9
+					11	16.91	-			-						58.83		10.4	-		737.09	1198.09	447							11.9 5.9
+							- 1 .	471.16		-						28.5		20.4	- +			426.39	447 441.86	750.4						12.8
4		34.43														35.37					452.99		456.75							5.5
\pm	-	20.33								_							123.93		-		352.78					\vdash				3.4 2.7
\pm					2/	51.59										56.32	 	10.21	-+		547.97					 		-		1.1
						55.62										19.91														1.1 0.8
Ţ	-							$ \top$		\neg						21.67	98.11	-T	$ \Box$			695.41							-	5.8
+				—		_		_		-			 				69.53	-	-			95.81								1.6 0.4
\pm							_	-									29.27 4.12	-+	\rightarrow		+									0.4
#																	8.68													0.1
Т	-							$ \top$		\neg							13.73	$ \top$	$ \Box$			- $=$							$ \top$	0.2
7		77.				_		1111 00		-							11.91		-											0.2
+	-	77.1 34.77					1	1111.92		_							 	_	-		255.47				61.24					5.0
\perp		34.77															8.2				49.4	252.08			13.44					1.6 1.9
																					46.45					131.12				2.6
+						_		-		-+			 	212.25			14.93		\rightarrow		-						43.35			1.4
						_				-+				212.39 341.91			7.52	-	-		 									1.0 1.5
														341.31	18.98															0.1
								-										-										275.11		0.1 1.9
1						-		-		-+						26.19	5.47	-	\rightarrow		-							109.24	53.91	1.0 3.7
\pm	-					_		_		-							7.4	_	-										33.91	0.1
								196.48													_									0.7

APPENDIX T TRANSFER TANK (S-19) OPERATING RECORDS

ALTAMONT LANDFILL RESOURCE & RECOVERY FACILITY S-19 Transfer Tank FOURTH QUARTER 2024 INSPECTION AND LEAK CHECK

Technician: Garry Carpenter Instrument: Photovac MicroFID

Date: Serial Number: CZPD312

S-19 Component	Good Condition	Fair Condition	Repairs Needed	Date Repairs Made	Leak Check (500 ppmv Limit)	Comments
Body of Tank	X				ND	
End Weldings	-	Х			ND	Metal erosion noted
Top Weldings	X				ND	
Center Opening Weldings	X				ND	
24" Gasket (center opening)	-	Х			ND	
4" Gasket (center opening)	-	Х			ND	
Level Gauge Connections	-				NA	
Influent Pipe Connections	X				ND	
Effluent Pipe Connections	X				ND	
Level Indicator	-				NA	

ppmv - parts per million by volume ND- Non-Detect NA- Not Applicable

ALTAMONT LANDFILL RESOURCE & RECOVERY FACILITY S-19 Transfer Tank THIRD QUARTER 2024 INSPECTION AND LEAK CHECK

Technician: Garry Carpenter Instrument: Photovac MicroFID

Date: 8/15/2024 Serial Number: CZPD312

S-19 Component	Good Condition	Fair Condition	Repairs Needed	Date Repairs Made	Leak Check (500 ppmv Limit)	Comments
Body of Tank	X				ND	
End Weldings	-	X			ND	
Top Weldings	X				ND	
Center Opening Weldings	Х				ND	
24" Gasket (center opening)	-	Х			ND	
4" Gasket (center opening)	-	Х			ND	
Level Gauge Connections	-				NA	
Influent Pipe Connections	X				ND	
Effluent Pipe Connections	Х				ND	
Level Indicator	-				NA	

ppmv - parts per million by volume ND- Non-Detect NA- Not Applicable

APPENDIX u DIESEL ENGINES RECORDS

Altamont Landfill and Resource Recovery Facility, Livermore, CA Log of Diesel Engine Use – Emergency Standby Generators – Hours of Operation

	S-1	99	S-2	00	S-2	01	
		В	Began Operation	n in March 200)8		Nature of Emergency*
2023-2024	Flare Statio	on (903323)	WWTP (903322)	Maintenand	e (903321)	
	EMERGENCY	TOTAL/RRA	EMERGENCY	TOTAL/RRA	EMERGENCY	TOTAL/RRA	
June-24	0.0	1.0	0.0	1.0	0.0	1.0	
July-24	0.0	2.0	0.0	1.0	0.0	1.0	
August-24	0.0	3.0	0.0	4.0	0.0	1.0	
September-24	3.0	0.0	1.0	0.0	1.0	0.0	Utility trip
October-24	2.0	0.0	0.0	1.0	1.0	0.0	Utility trip
November-24	0.0	3.0	0.0	4.0	0.0	1.0	
Total Hours (December 1-2023-November 30, 2024):	24.0	13.0	15.0	13.0	14.0	6.0	
Total Hours (June 1, 2024-November 30, 2024):	5.0	9.0	1.0	11.0	2.0	4.0	
		(ATCM) 50		(ATCM) 50		(ATCM) 50	

Notes:

^{*} See permit condition # 22850 for description of qualifying emergency conditions and reliability related activities (RRA).

Altamont Landfill and Resource Recovery Facility, Livermore, CA Log of Diesel Engine Use and Fuel Consumption for S-193

2023-2024	Fire Pum EMERGENCY Hours	S-193 p at Gas Plant (951358) TOTAL/RRA Hours	Gallons Fuel
June-24	0.0	1.0	0.0
July-24	0.0	1.0	0.0
August-24	0.0	1.0	0.0
September-24	0.0	1.0	0.0
October-24	0.0	1.0	0.0
November-24	0.0	1.0	3.0
Total Hours (December 1-2023-November 30, 2024):	0.0	12.0	3.0
Total Hours (June 1, 2024-November 30, 2024):	0.0	6.0	3.0
Fuel Limits (gal/yr) (Condition No. 20801, Part 1)			62,196

^{*}WM surrendered its permits for the S-197 and S-198 diesel engines on December 29, 2009.

Altamont Landfill and Resource Recovery Facility, Livermore, CA Log of Diesel Engine Use and Fuel Consumption for S-224, S-225, S-228, S-231, S-235, and S-238

	S-221	/S-231	S-222	/S-228	S-	224	S-	225	S-2	235	S-	238		-228, S-231,S-235 S-238
		er #83 6031)		Diesel Engine 5029)		5113 SF's ld Tipper #71)		5117 SF's ld Tipper #93)	Tipper (855		Tipper	(855007)		
2023-2024	CARB PERP Issua	ance April 25, 2022		CARI	B PERP Permits In	itial Issuance April	2020		CARB PERP Issu 1, 2	uance December 022		gistration 205632 ued.	Total Monthly Hours	Rolling 12-Month Hours
	PERP Registra	tion No. 196900	PERP Registra	tion No. 187512	PERP Registra	ition No. 187514	PERP Registra	tion No. 187513	PERP Registra	tion No. 200811	PERP Registra	ntion No. 205632		
	Hours	Gallons Fuel	Hours	Gallons Fuel	Hours	Gallons Fuel	Hours	Gallons Fuel	Hours	Gallons Fuel	Hours	Gallons Fuel		
June-24	196	206	182	117	0.0	0.0	0.0	0.0	400	443	204	204	982	11,876
July-24	279	301	182	137	0.0	0.0	0.0	0.0	454	539	185	205	1,100	12,091
August-24	0	0	188	117	0.0	0.0	0.0	0.0	592	566	524	545	1,304	12,458
September-24	0	0	163	67	0.0	0.0	0.0	0.0	461	469	446	452	1,070	12,624
October-24	307	264	213	128	0.0	0.0	0.0	0.0	621	596	245	248	1,386	13,145
November-24	46	63	177	110	0.0	0.0	0.0	0.0	531	511	510	642	1,264	13,537
Total Hours (December 1-2023- November 30, 2024):	3,537	3,181	2,211	1,406	0.0	0.0	0.0	0.0	5,604	5,710	2,185	2,576	13,537	
Total Hours (June 1, 2024-November 30, 2024):	828	834	1,105	676	0.0	0.0	0.0	0.0	3,059	3,124	2,114	2,296	7,106	
Limits				Comb	oined S-224 and S-	225 :14,600 Hours a	nd Individual S-23	1, 235, and S-228 :	7,300 Hours, during	consecutive 12-M	onths			

^{*}WM submitted surrender notification for S 208 for Tipper #70 in June 2014 and S206 for Tipper # 83 in January 2015.

^{*}WM submitted surrender notification for S 218 for Tipper #93 in March 2016 and S217 for Tipper # 71 in March 2016.

^{*}WM submitted startup notification for new Tippers S-224 and S-225 in March 2016.

^{*}WM submitted COC for replacement of S-222 (CNG Tipper #70) with new T4.4 engine in January 2018. BAAQMD Assigned new Source Number S-228.

^{*}WM submitted startup notification for new Tippers S-228 on June 13, 2018.

^{*} WM submitted PERP application June 2019. CARB issued PERP permits in April 2020. Initial inspection email to District Inspector was sent on May 15, 2020. BAAQMD initial Inspection was conducted on June 4, 2020.

^{*}S-221 Tipper engine was repowered. S-221 was decommissioned on February 17, 2023 and surrender notification was submitted on March 2, 2023.

APPENDIX V PORTABLE ENGINES CO EMISSION CALCULATIONS

Altamont Landfill and Resource Recovery Facility, Livermore, CA Portable Engines Operational Hours and Carbon Monoxide (CO) Emissions June 2024

Source / Asset	Engine Name	Fuel Used	Runtime (Hours)	CO Emission Factor (g/bhp-hr)	Total CO (Tons)
S-31 ¹	Diesel Engine for Green Waste Grinder	Diesel	N/A	0.70	N/A
S-193	Diesel Engine for Fire Pump at Gas Plant	Diesel	1	3.03	0.001
S-196 ²	Standby Diesel Engine Generator for Scale House	Diesel	N/A	3.03	N/A
S-197 ³	Standby Diesel Engine Generator for Break Trailer	Diesel	N/A	6.90	N/A
S-198 ³	Diesel Engine for Vacuum Truck Pump	Diesel	N/A	3.03	N/A
S-199	Emergency Standby Diesel Generator Set (Flare Station)	Diesel	1	1.34	0.000
S-200	Emergency Standby Diesel Generator Set (WWP)	Diesel	1	2.31	0.001
S-201	Emergency Standby Diesel Generator Set (Maintenance Shop)	Diesel	1	2.31	0.001
S-221/S-231	Repowered with T4 Diesel Engine for Tipper #83	Diesel	196	0.97	0.040
S-207 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.37	N/A
S-222/S-228	Diesel T4 Engine for Tipper #70	Diesel	182	0.97	0.022
S-209 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.37	N/A
S-214 ³	Portable Diesel Engine for Air Compressor	Diesel	N/A	3.03	N/A
S-217 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.97	N/A
S-218 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.97	N/A
S-224 ⁵	Diesel Engine for Tipper #5113	Diesel	0	0.97	0.000
S-225 ⁵	Diesel Engine for Tipper #5117	Diesel	0	0.97	0.000
S-235	Diesel Engine for Tipper #201	Diesel	400	0.97	0.054
S-238	Diesel Engine for Tipper #007	Diesel	204	0.97	0.028
WM# 741474	130 Air Compressor	Diesel	0	4.10	0.000
WM# 900767	Portable Pressure Washer	Diesel	0	3.03	0.000
WM# 900768	Track Cleaning Generator	Diesel	0	3.03	0.000
WM# 901653	MultiQuip 25 Gen Set	Diesel	1	4.10	0.000
WM# 902340	Light Unit	Diesel	0	3.03	0.000
WM# 902341	Light Unit	Diesel	0	6.00	0.000
WM# 902342	Light Unit	Diesel	0	6.00	0.000
WM# 902343	Light Unit	Diesel	0	6.00	0.000
WM# 902344	Light Unit	Diesel	0	3.03	0.000
WM# 902345	Light Unit	Diesel	0	3.03	0.000
WM# 902346	Light Unit	Diesel	0	3.03	0.000
WM# 903178	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903255	Magnum Pro Light Unit	Diesel	0	6.00	0.000
WM# 903304	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000
WM# 903305	Nite0Lite Pro 4000 Watt	Diesel	134	6.00	0.009
WM# 903306	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000

			Monthly To	tal CO Emissions	0.243
SN 3625101631	Kohler Command Pro 13 Air Compressor	Unleaded Gasoline	0	273.68	0.000
SN GCAFT2285062: 89-J	Honda GX160 Air Compressor	Unleaded Gasoline	0	347.50	0.000
SN GCAFT2524206: 9A-A	Honda GX160 Air Compressor	Unleaded Gasoline	0	409.40	0.000
WM# 951361	Portable Supv. Generator	Unleaded Gasoline	0	410.00	0.000
WM# 951360	3500 Wt Portable Magnet	Unleaded Gasoline	0	410.00	0.000
WM# 951359	Back-up Lube Compressor	Diesel	0	4.10	0.000
WM# 905068	Light Unit	Diesel	184	6.000	0.013
WM# 905067	Light Unit	Diesel	0	6.000	0.000
WM# 905025	Light Unit	Diesel	0	6.000	0.000
WM# 904664	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904663	4000 Watt Diesel Light Tower	Diesel	45	6.00	0.003
WM# 904662	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903686	24CFM-GX90 Air Compressor - Landfill	Unleaded Gasoline	0	409.40	0.000
WM# 904984	60Hz Light Unit	Diesel	124	6.00	0.009
WM# 904983	60Hz Light Unit	Diesel	202	6.00	0.018
WM# 904982	Magnum MLT3060 Light Unit	Diesel	112	6.00	0.009
WM# 904981	4000 Watt Diesel Light Tower Terex	Diesel	0	6.00	0.000
WM# 904858	Magnum MLT3060 Light Unit	Diesel	0	6.00	0.000
WM# 903660	XQ20-4 Generator	Diesel	242	4.90	0.035

Note: The Total CO emissions are calculated pursuant Permit Condition Number 24373, Part 3.a(iv and v)

- 2) Diesel Engine S-196 is no longer in use as of August 2009.
- 3) The S-197 Portable Generator, the S-198 Vacuum Truck Pump and the S-214 Portable Air Compressor were removed from service in December 2009. WM submitted a permit surrender
- 4) The S-206 Tipper Engine was replaced by the S-222 Tipper CNG Engine and the S-208Tipper Engine was replaced by the S-221 Tipper CNG Engine.
- 5) The S-217 Tipper was replaced by new Diesel engine Tipper S-224 and the S-218 was replaced by new Diesel engine Tipper S-225.
- 6) The S-222 Tipper was replaced by new Diesel engine Tipper S-228.
- g/bhp-hr Grams per brake horsepower-hour

¹⁾ Pursuant to ALRRF's October 2009 Compliance Plan to satisfy Alameda County Ordinance 2008-01 ("Alameda County Plant Debris Landfill Ban"), ALRRF no longer receives plant debris as of January 1, 2010. Therefore, the greenwaste grinding operation, including the S-31 Portable Diesel Engine for the Greenwaste Grinder, was not used in January 2010 and will not be used in the future.

Altamont Landfill and Resource Recovery Facility, Livermore, CA Portable Engines Operational Hours and Carbon Monoxide (CO) Emissions July 2024

Source / Asset	•		Runtime (Hours)	CO Emission Factor (g/bhp-hr)	Total CO (Tons)
S-31 ¹	Diesel Engine for Green Waste Grinder	Diesel N/A 0.70			N/A
S-193	Diesel Engine for Fire Pump at Gas Plant	Diesel	1	3.03	0.001
S-196 ²	Standby Diesel Engine Generator for Scale House	Diesel	N/A	3.03	N/A
S-197 ³	Standby Diesel Engine Generator for Break Trailer	Diesel	N/A	6.90	N/A
S-198 ³	Diesel Engine for Vacuum Truck Pump	Diesel	N/A	3.03	N/A
S-199	Emergency Standby Diesel Generator Set (Flare Station)	Diesel	2	1.34	0.001
S-200	Emergency Standby Diesel Generator Set (WWP)	Diesel	1	2.31	0.001
S-201	Emergency Standby Diesel Generator Set (Maintenance Shop)	Diesel	1	2.31	0.001
S-221/S-231	Repowered with T4 Diesel Engine for Tipper #83	Diesel	279	0.97	0.058
S-207 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.37	N/A
S-222/S-228	Diesel T4 Engine for Tipper #70	Diesel	182	0.97	0.022
S-209 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.37	N/A
S-214 ³	Portable Diesel Engine for Air Compressor	Diesel	N/A	3.03	N/A
S-217 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.97	N/A
S-218 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.97	N/A
S-224 ⁵	Diesel Engine for Tipper #5113	Diesel	0	0.97	0.000
S-225 ⁵	Diesel Engine for Tipper #5117	Diesel	0	0.97	0.000
S-235	Diesel Engine for Tipper #201	Diesel	454	0.97	0.062
S-238	Diesel Engine for Tipper #007	Diesel	185	0.97	0.025
WM# 741474	130 Air Compressor	Diesel	0	4.10	0.000
WM# 900767	Portable Pressure Washer	Diesel	0	3.03	0.000
WM# 900768	Track Cleaning Generator	Diesel	0	3.03	0.000
WM# 901653	MultiQuip 25 Gen Set	Diesel	1	4.10	0.000
WM# 902340	Light Unit	Diesel	0	3.03	0.000
WM# 902341	Light Unit	Diesel	0	6.00	0.000
WM# 902342	Light Unit	Diesel	0	6.00	0.000
WM# 902343	Light Unit	Diesel	0	6.00	0.000
WM# 902344	Light Unit	Diesel	0	3.03	0.000
WM# 902345	Light Unit	Diesel	0	3.03	0.000
WM# 902346	Light Unit	Diesel	0	3.03	0.000
WM# 903178	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903255	Magnum Pro Light Unit	Diesel	0	6.00	0.000
WM# 903304	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000
WM# 903305	Nite0Lite Pro 4000 Watt	Diesel	167	6.00	0.011

SN 3625101631	Kohler Command Pro 13 Air Compressor	Unleaded Gasoline	0	273.68	0.000
SN GCAFT2285062: 89-J	Honda GX160 Air Compressor	Unleaded Gasoline	0	347.50	0.000
SN GCAFT2524206: 9A-A	Honda GX160 Air Compressor	Unleaded Gasoline	0	409.40	0.000
WM# 951361	Portable Supv. Generator	Unleaded Gasoline	0	410.00	0.000
WM# 951360	3500 Wt Portable Magnet	Unleaded Gasoline	0	410.00	0.000
WM# 951359	Back-up Lube Compressor	Diesel	0	4.10	0.000
WM# 905068	Light Unit	Diesel	173	6.000	0.012
WM# 905067	Light Unit	Diesel	1	6.000	0.000
WM# 905025	Light Unit	Diesel	0	6.000	0.000
WM# 904664	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904663	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904662	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903686	24CFM-GX90 Air Compressor - Landfill	Unleaded Gasoline	0	409.40	0.000
WM# 904984	60Hz Light Unit	Diesel	114	6.00	0.008
WM# 904983	60Hz Light Unit	Diesel	268	6.00	0.024
WM# 904982	Magnum MLT3060 Light Unit	Diesel	46	6.00	0.004
WM# 904981	4000 Watt Diesel Light Tower Terex	Diesel	0	6.00	0.000
WM# 904858	Magnum MLT3060 Light Unit	Diesel	0	6.00	0.000
WM# 903660	XQ20-4 Generator	Diesel	270	4.90	0.039

Note: The Total CO emissions are calculated pursuant Permit Condition Number 24373, Part 3.a(iv and v)

- 1) Pursuant to ALRRF's October 2009 Compliance Plan to satisfy Alameda County Ordinance 2008-01 ("Alameda County Plant Debris Landfill Ban"), ALRRF no longer receives plant debris
- 2) Diesel Engine S-196 is no longer in use as of August 2009.
- 3) The S-197 Portable Generator, the S-198 Vacuum Truck Pump and the S-214 Portable Air Compressor were removed from service in December 2009. WM submitted a permit surrender
- 4) The S-206 Tipper Engine was replaced by the S-222 Tipper CNG Engine and the S-208Tipper Engine was replaced by the S-221 Tipper CNG Engine.
- 5) The S-217 Tipper was replaced by new Diesel engine Tipper S-224 and the S-218 was replaced by new Diesel engine Tipper S-225.
- 6) The S-222 Tipper was replaced by new Diesel engine Tipper S-228.
- g/bhp-hr Grams per brake horsepower-hour

Altamont Landfill and Resource Recovery Facility, Livermore, CA Portable Engines Operational Hours and Carbon Monoxide (CO) Emissions August 2024

Source / Asset			Runtime (Hours)	CO Emission Factor (g/bhp-hr)	Total CO (Tons)
S-31 ¹	Diesel Engine for Green Waste Grinder	Diesel	N/A	0.70	N/A
S-193	Diesel Engine for Fire Pump at Gas Plant	Diesel	1	3.03	0.001
S-196 ²	Standby Diesel Engine Generator for Scale House	Diesel	N/A	3.03	N/A
S-197 ³	Standby Diesel Engine Generator for Break Trailer	Diesel	N/A	6.90	N/A
S-198 ³	Diesel Engine for Vacuum Truck Pump	Diesel	N/A	3.03	N/A
S-199	Emergency Standby Diesel Generator Set (Flare Station)	Diesel	3	1.34	0.001
S-200	Emergency Standby Diesel Generator Set (WWP)	Diesel	4	2.31	0.004
S-201	Emergency Standby Diesel Generator Set (Maintenance Shop)	Diesel	1	2.31	0.001
S-221/S-231	Repowered with T4 Diesel Engine for Tipper #83	Diesel	0	0.97	0.000
S-207 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.37	N/A
S-222/S-228	Diesel T4 Engine for Tipper #70	Diesel	188	0.97	0.023
S-209 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.37	N/A
S-214 ³	Portable Diesel Engine for Air Compressor	Diesel	N/A	3.03	N/A
S-217 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.97	N/A
S-218 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.97	N/A
S-224 ⁵	Diesel Engine for Tipper #5113	Diesel	0	0.97	0.000
S-225 ⁵	Diesel Engine for Tipper #5117	Diesel	0	0.97	0.000
S-235	Diesel Engine for Tipper #201	Diesel	592	0.97	0.080
S-238	Diesel Engine for Tipper #007	Diesel	524	0.97	0.071
WM# 741474	130 Air Compressor	Diesel	0	4.10	0.000
WM# 900767	Portable Pressure Washer	Diesel	0	3.03	0.000
WM# 900768	Track Cleaning Generator	Diesel	0	3.03	0.000
WM# 901653	MultiQuip 25 Gen Set	Diesel	2	4.10	0.000
WM# 902340	Light Unit	Diesel	0	3.03	0.000
WM# 902341	Light Unit	Diesel	0	6.00	0.000
WM# 902342	Light Unit	Diesel	0	6.00	0.000
WM# 902343	Light Unit	Diesel	0	6.00	0.000
WM# 902344	Light Unit	Diesel	0	3.03	0.000
WM# 902345	Light Unit	Diesel	0	3.03	0.000
WM# 902346	Light Unit	Diesel	0	3.03	0.000
WM# 903178	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903255	Magnum Pro Light Unit	Diesel	0	6.00	0.000
WM# 903304	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000
WM# 903305	NiteOLite Pro 4000 Watt	Diesel	326	6.00	0.022
WM# 903306	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000

			Monthly To	otal CO Emissions	0.290
SN 3625101631	Kohler Command Pro 13 Air Compressor	Unleaded Gasoline	0	273.68	0.000
SN GCAFT2285062: 89-J	Honda GX160 Air Compressor	Unleaded Gasoline	0	347.50	0.000
SN GCAFT2524206: 9A-A	Honda GX160 Air Compressor	Unleaded Gasoline	0	409.40	0.000
WM# 951361	Portable Supv. Generator	Unleaded Gasoline	0	410.00	0.000
WM# 951360	3500 Wt Portable Magnet	Unleaded Gasoline	0	410.00	0.000
WM# 951359	Back-up Lube Compressor	Diesel	0	4.10	0.000
WM# 905068	Light Unit	Diesel	18	6.000	0.001
WM# 905067	Light Unit	Diesel	2	6.000	0.000
WM# 905025	Light Unit	Diesel	94	6.000	0.007
WM# 904664	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904663	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904662	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903686	24CFM-GX90 Air Compressor - Landfill	Unleaded Gasoline	0	409.40	0.000
WM# 904984	60Hz Light Unit	Diesel	120	6.00	0.008
WM# 904983	60Hz Light Unit	Diesel	309	6.00	0.028
WM# 904982	Magnum MLT3060 Light Unit	Diesel	93	6.00	0.007
WM# 904981	4000 Watt Diesel Light Tower Terex	Diesel	0	6.00	0.000
WM# 904858	Magnum MLT3060 Light Unit	Diesel	0	6.00	0.000
WM# 903660	XQ20-4 Generator	Diesel	246	4.90	0.036

Note: The Total CO emissions are calculated pursuant Permit Condition Number 24373, Part 3.a(iv and v)

g/bhp-hr - Grams per brake horsepower-hour

¹⁾ Pursuant to ALRRF's October 2009 Compliance Plan to satisfy Alameda County Ordinance 2008-01 ("Alameda County Plant Debris Landfill Ban"), ALRRF no longer receives plant debris as of January 1, 2010. Therefore, the greenwaste grinding operation, including the S-31 Portable Diesel Engine for the Greenwaste Grinder, was not used in January 2010 and will not be

²⁾ Diesel Engine S-196 is no longer in use as of August 2009.

³⁾ The S-197 Portable Generator, the S-198 Vacuum Truck Pump and the S-214 Portable Air Compressor were removed from service in December 2009. WM submitted a permit surrender

⁴⁾ The S-206 Tipper Engine was replaced by the S-222 Tipper CNG Engine and the S-208Tipper Engine was replaced by the S-221 Tipper CNG Engine.

⁵⁾ The S-217 Tipper was replaced by new Diesel engine Tipper S-224 and the S-218 was replaced by new Diesel engine Tipper S-225.

⁶⁾ The S-222 Tipper was replaced by new Diesel engine Tipper S-228.

Altamont Landfill and Resource Recovery Facility, Livermore, CA Portable Engines Operational Hours and Carbon Monoxide (CO) Emissions September 2024

Source / Asset	Source / Asset Engine Name		Runtime (Hours)	CO Emission Factor (g/bhp-hr)	Total CO (Tons)
S-31 ¹	Diesel Engine for Green Waste Grinder	Diesel	N/A	0.70	N/A
S-193	Diesel Engine for Fire Pump at Gas Plant	Diesel	1	3.03	0.001
S-196 ²	Standby Diesel Engine Generator for Scale House	Diesel	N/A	3.03	N/A
S-197 ³	Standby Diesel Engine Generator for Break Trailer	Diesel	N/A	6.90	N/A
S-198 ³	Diesel Engine for Vacuum Truck Pump	Diesel	N/A	3.03	N/A
S-199	Emergency Standby Diesel Generator Set (Flare Station)	Diesel	3	1.34	0.001
S-200	Emergency Standby Diesel Generator Set (WWP)	Diesel	1	2.31	0.001
S-201	Emergency Standby Diesel Generator Set (Maintenance Shop)	Diesel	1	2.31	0.001
S-221/S-231	Repowered with T4 Diesel Engine for Tipper #83	Diesel	0	0.97	0.000
S-207 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.37	N/A
S-222/S-228	Diesel T4 Engine for Tipper #70	Diesel	163	0.97	0.020
S-209 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.37	N/A
S-214 ³	Portable Diesel Engine for Air Compressor	Diesel	N/A		
S-217 ⁴	Diesel Engine for Tipper #71			0.97	N/A
S-218 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.97	N/A
S-224 ⁵	Diesel Engine for Tipper #5113	Diesel	0	0.97	0.000
S-225 ⁵	Diesel Engine for Tipper #5117	Diesel	0	0.97	0.000
S-235	Diesel Engine for Tipper #201	Diesel	461	0.97	0.063
S-238	Diesel Engine for Tipper #007	Diesel	446	0.97	0.061
WM# 741474	130 Air Compressor	Diesel	0	4.10	0.000
WM# 900767	Portable Pressure Washer	Diesel	0	3.03	0.000
WM# 900768	Track Cleaning Generator	Diesel	0	3.03	0.000
WM# 901653	MultiQuip 25 Gen Set	Diesel	1	4.10	0.000
WM# 902340	Light Unit	Diesel	0	3.03	0.000
WM# 902341	Light Unit	Diesel	0	6.00	0.000
WM# 902342	Light Unit	Diesel	0	6.00	0.000
WM# 902343	Light Unit	Diesel	0	6.00	0.000
WM# 902344	Light Unit	Diesel	0	3.03	0.000
WM# 902345	Light Unit	Diesel	0	3.03	0.000
WM# 902346	Light Unit	Diesel	0	3.03	0.000
WM# 903178	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903255	Magnum Pro Light Unit	Diesel	0	6.00	0.000
WM# 903304	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000
WM# 903305	Nite0Lite Pro 4000 Watt	Diesel	195	6.00	0.013

WM# 903306	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000
WM# 903660	XQ20-4 Generator	Diesel	161	4.90	0.023
WM# 904858	Magnum MLT3060 Light Unit	Diesel	0	6.00	0.000
WM# 904981	4000 Watt Diesel Light Tower Terex	Diesel	0	6.00	0.000
WM# 904982	Magnum MLT3060 Light Unit	Diesel	32	6.00	0.002
WM# 904983	60Hz Light Unit	Diesel	245	6.00	0.022
WM# 904984	60Hz Light Unit	Diesel	209	6.00	0.015
WM# 903686	24CFM-GX90 Air Compressor - Landfill	Unleaded Gasoline	0	409.40	0.000
WM# 904662	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904663	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904664	4000 Watt Diesel Light Tower	Diesel	15	6.00	0.001
WM# 905025	Light Unit	Diesel	229	6.000	0.016
WM# 905067	Light Unit	Diesel	0	6.000	0.000
WM# 905068	Light Unit	Diesel	252	6.000	0.018
WM# 951359	Back-up Lube Compressor	Diesel	0	4.10	0.000
WM# 951360	3500 Wt Portable Magnet	Unleaded Gasoline	0	410.00	0.000
WM# 951361	Portable Supv. Generator	Unleaded Gasoline	0	410.00	0.000
SN GCAFT2524206: 9A-A	Honda GX160 Air Compressor	Unleaded Gasoline	0	409.40	0.000
SN GCAFT2285062: 89-J	Honda GX160 Air Compressor	Unleaded Gasoline	0	347.50	0.000
SN 3625101631	Kohler Command Pro 13 Air Compressor	Unleaded Gasoline	0	273.68	0.000
			Monthly To	otal CO Emissions	0.256

Note: The Total CO emissions are calculated pursuant Permit Condition Number 24373, Part 3.a(iv and v)

g/bhp-hr - Grams per brake horsepower-hour

¹⁾ Pursuant to ALRRF's October 2009 Compliance Plan to satisfy Alameda County Ordinance 2008-01 ("Alameda County Plant Debris Landfill Ban"), ALRRF no longer receives plant debris as of January 1, 2010. Therefore, the greenwaste grinding operation, including the S-31 Portable Diesel Engine for the Greenwaste Grinder, was not used in January 2010 and will not be

²⁾ Diesel Engine S-196 is no longer in use as of August 2009.

³⁾ The S-197 Portable Generator, the S-198 Vacuum Truck Pump and the S-214 Portable Air Compressor were removed from service in December 2009. WM submitted a permit surrender

⁴⁾ The S-206 Tipper Engine was replaced by the S-222 Tipper CNG Engine and the S-208Tipper Engine was replaced by the S-221 Tipper CNG Engine.

⁵⁾ The S-217 Tipper was replaced by new Diesel engine Tipper S-224 and the S-218 was replaced by new Diesel engine Tipper S-225.

⁶⁾ The S-222 Tipper was replaced by new Diesel engine Tipper S-228.

Altamont Landfill and Resource Recovery Facility, Livermore, CA

Portable Engines Operational Hours and Carbon Monoxide (CO) Emissions October 2024

Source / Asset	rce / Asset Engine Name		Runtime (Hours)	CO Emission Factor (g/bhp-hr)	Total CO (Tons)
S-31 ¹	Diesel Engine for Green Waste Grinder	Diesel	N/A	0.70	N/A
S-193	Diesel Engine for Fire Pump at Gas Plant	Diesel	1	3.03	0.001
S-196 ²	Standby Diesel Engine Generator for Scale House	Diesel	N/A	3.03	N/A
S-197 ³	Standby Diesel Engine Generator for Break Trailer	Diesel	N/A	6.90	N/A
S-198 ³	Diesel Engine for Vacuum Truck Pump	Diesel	N/A	3.03	N/A
S-199	Emergency Standby Diesel Generator Set (Flare Station)	Diesel	2	1.34	0.001
S-200	Emergency Standby Diesel Generator Set (WWP)	Diesel	1	2.31	0.001
S-201	Emergency Standby Diesel Generator Set (Maintenance Shop)	Diesel	1	2.31	0.001
S-221/S-231	Repowered with T4 Diesel Engine for Tipper #83	Diesel	307	0.97	0.063
S-207 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.37	N/A
S-222/S-228	Diesel T4 Engine for Tipper #70	Diesel	213	0.97	0.025
S-209 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.37	N/A
S-214 ³	Portable Diesel Engine for Air Compressor	Diesel	N/A	3.03	N/A
S-217 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.97	N/A
S-218 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.97	N/A
S-224 ⁵	Diesel Engine for Tipper #5113	Diesel	0	0.97	0.000
S-225 ⁵	Diesel Engine for Tipper #5117	Diesel	0	0.97	0.000
S-235	Diesel Engine for Tipper #201	Diesel	621	0.97	0.084
S-238	Diesel Engine for Tipper #007	Diesel	245	0.97	0.033
WM# 741474	130 Air Compressor	Diesel	0	4.10	0.000
WM# 900767	Portable Pressure Washer	Diesel	0	3.03	0.000
WM# 900768	Track Cleaning Generator	Diesel	0	3.03	0.000
WM# 901653	MultiQuip 25 Gen Set	Diesel	0	4.10	0.000
WM# 902340	Light Unit	Diesel	0	3.03	0.000
WM# 902341	Light Unit	Diesel	0	6.00	0.000
WM# 902342	Light Unit	Diesel	0	6.00	0.000
WM# 902343	Light Unit	Diesel	0	6.00	0.000
WM# 902344	Light Unit	Diesel	0	3.03	0.000
WM# 902345	Light Unit	Diesel	0	3.03	0.000
WM# 902346	Light Unit	Diesel	0	3.03	0.000
WM# 903178	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903255	Magnum Pro Light Unit	Diesel	0	6.00	0.000
WM# 903304	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000

WM# 903305	Nite0Lite Pro 4000 Watt	Diesel	329	6.00	0.022
WM# 903306	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000
WM# 903660	XQ20-4 Generator	Diesel	332	4.90	0.048
WM# 904858	Magnum MLT3060 Light Unit	Diesel	0	6.00	0.000
WM# 904981	4000 Watt Diesel Light Tower Terex	Diesel	0	6.00	0.000
WM# 904982	Magnum MLT3060 Light Unit	Diesel	52	6.00	0.004
WM# 904983	60Hz Light Unit	Diesel	382	6.00	0.034
WM# 904984	60Hz Light Unit	Diesel	227	6.00	0.016
WM# 903686	24CFM-GX90 Air Compressor - Landfill	Unleaded Gasoline	0	409.40	0.000
WM# 904662	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904663	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904664	4000 Watt Diesel Light Tower	Diesel	72	6.00	0.005
WM# 905025	Light Unit	Diesel	368	6.000	0.026
WM# 905067	Light Unit	Diesel	0	6.000	0.000
WM# 905068	Light Unit	Diesel	229	6.000	0.016
WM# 951359	Back-up Lube Compressor	Diesel	0	4.10	0.000
WM# 951360	3500 Wt Portable Magnet	Unleaded Gasoline	0	410.00	0.000
WM# 951361	Portable Supv. Generator	Unleaded Gasoline	0	410.00	0.000
SN GCAFT2524206: 9A-A	Honda GX160 Air Compressor	Unleaded Gasoline	0	409.40	0.000
SN GCAFT2285062: 89-J	Honda GX160 Air Compressor	Unleaded Gasoline	0	347.50	0.000
SN 3625101631	Kohler Command Pro 13 Air Compressor	Unleaded Gasoline	0	273.68	0.000
			Monthly To	otal CO Emissions	0.380

Note: The Total CO emissions are calculated pursuant Permit Condition Number 24373, Part 3.a(iv and v)

g/bhp-hr - Grams per brake horsepower-hour

¹⁾ Pursuant to ALRRF's October 2009 Compliance Plan to satisfy Alameda County Ordinance 2008-01 ("Alameda County Plant Debris Landfill Ban"), ALRRF no longer receives plant debris as of January 1, 2010. Therefore, the greenwaste grinding operation, including the S-31 Portable Diesel Engine for the Greenwaste Grinder, was not used in January 2010 and will not be

²⁾ Diesel Engine S-196 is no longer in use as of August 2009.

³⁾ The S-197 Portable Generator, the S-198 Vacuum Truck Pump and the S-214 Portable Air Compressor were removed from service in December 2009. WM submitted a permit surrender

⁴⁾ The S-206 Tipper Engine was replaced by the S-222 Tipper CNG Engine and the S-208Tipper Engine was replaced by the S-221 Tipper CNG Engine.

⁵⁾ The S-217 Tipper was replaced by new Diesel engine Tipper S-224 and the S-218 was replaced by new Diesel engine Tipper S-225.

⁶⁾ The S-222 Tipper was replaced by new Diesel engine Tipper S-228.

Altamont Landfill and Resource Recovery Facility, Livermore, CA Portable Engines Operational Hours and Carbon Monoxide (CO) Emissions November 2024

Source / Asset			Runtime (Hours)	CO Emission Factor (g/bhp-hr)	Total CO (Tons)
S-31 ¹	Diesel Engine for Green Waste Grinder	Diesel	N/A	0.70	N/A
S-193	Diesel Engine for Fire Pump at Gas Plant	Diesel	1	3.03	0.001
S-196 ²	Standby Diesel Engine Generator for Scale House	Diesel	N/A	3.03	N/A
S-197 ³	Standby Diesel Engine Generator for Break Trailer	Diesel	N/A	6.90	N/A
S-198 ³	Diesel Engine for Vacuum Truck Pump	Diesel	N/A	3.03	N/A
S-199	Emergency Standby Diesel Generator Set (Flare Station)	Diesel	3	1.34	0.001
S-200	Emergency Standby Diesel Generator Set (WWP)	Diesel	4	2.31	0.004
S-201	Emergency Standby Diesel Generator Set (Maintenance Shop)	Diesel	1	2.31	0.001
S-221/S-231	Repowered with T4 Diesel Engine for Tipper #83	Diesel	46	0.97	0.009
S-207 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.37	N/A
S-222/S-228	Diesel T4 Engine for Tipper #70	Diesel	177	0.97	0.021
S-209 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.37	N/A
S-214 ³	Portable Diesel Engine for Air Compressor	Diesel	N/A	3.03	N/A
S-217 ⁴	Diesel Engine for Tipper #71	Diesel	N/A	0.97	N/A
S-218 ⁴	Diesel Engine for Tipper #93	Diesel	N/A	0.97	N/A
S-224 ⁵	Diesel Engine for Tipper #5113	Diesel	0	0.97	0.000
S-225 ⁵	Diesel Engine for Tipper #5117	Diesel	0	0.97	0.000
S-235	Diesel Engine for Tipper #201	Diesel	531	0.97	0.072
S-238	Diesel Engine for Tipper #007	Diesel	510	0.97	0.069
WM# 741474	130 Air Compressor	Diesel	0	4.10	0.000
WM# 900767	Portable Pressure Washer	Diesel	0	3.03	0.000
WM# 900768	Track Cleaning Generator	Diesel	0	3.03	0.000
WM# 901653	MultiQuip 25 Gen Set	Diesel	0	4.10	0.000
WM# 902340	Light Unit	Diesel	0	3.03	0.000
WM# 902341	Light Unit	Diesel	0	6.00	0.000
WM# 902342	Light Unit	Diesel	0	6.00	0.000
WM# 902343	Light Unit	Diesel	0	6.00	0.000
WM# 902344	Light Unit	Diesel	0	3.03	0.000
WM# 902345	Light Unit	Diesel	0	3.03	0.000
WM# 902346	Light Unit	Diesel	0	3.03	0.000
WM# 903178	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903255	Magnum Pro Light Unit	Diesel	0	6.00	0.000
WM# 903304	Nite0Lite Pro 4000 Watt	Diesel	0	6.00	0.000
WM# 903305	Nite0Lite Pro 4000 Watt	Diesel	323	6.00	0.021
WM# 903306	Nite0Lite Pro 4000 Watt	Diesel 0 6.00		0.000	

·		-	Monthly To	otal CO Emissions	0.291
SN 3625101631	Kohler Command Pro 13 Air Compressor	Unleaded Gasoline	0	273.68	0.000
SN GCAFT2285062: 89-J	Honda GX160 Air Compressor	Unleaded Gasoline	0	347.50	0.000
SN GCAFT2524206: 9A-A	Honda GX160 Air Compressor	Unleaded Gasoline	0	409.40	0.000
WM# 951361	Portable Supv. Generator	Unleaded Gasoline	0	410.00	0.000
WM# 951360	3500 Wt Portable Magnet	Unleaded Gasoline	0	410.00	0.000
WM# 951359	Back-up Lube Compressor	Diesel	0	4.10	0.000
WM# 905068	Light Unit	Diesel	46	6.000	0.003
WM# 905067	Light Unit	Diesel	0	6.000	0.000
WM# 905025	Light Unit	Diesel	85	6.000	0.006
WM# 904664	4000 Watt Diesel Light Tower	Diesel	74	6.00	0.005
WM# 904663	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 904662	4000 Watt Diesel Light Tower	Diesel	0	6.00	0.000
WM# 903686	24CFM-GX90 Air Compressor - Landfill	Unleaded Gasoline	0	409.40	0.000
WM# 904984	60Hz Light Unit	Diesel	195	6.00	0.014
WM# 904983	60Hz Light Unit	Diesel	233	6.00	0.021
WM# 904982	Magnum MLT3060 Light Unit	Diesel	171	6.00	0.013
WM# 904981	4000 Watt Diesel Light Tower Terex	Diesel	0	6.00	0.000
WM# 904858	Magnum MLT3060 Light Unit	Diesel	0	6.00	0.000
WM# 903660	XQ20-4 Generator	Diesel	197	4.90	0.029

Note: The Total CO emissions are calculated pursuant Permit Condition Number 24373, Part 3.a(iv and v)

¹⁾ Pursuant to ALRRF's October 2009 Compliance Plan to satisfy Alameda County Ordinance 2008-01 ("Alameda County Plant Debris Landfill Ban"), ALRRF no longer receives plant debris as of January 1, 2010. Therefore, the greenwaste grinding operation, including the S-31 Portable Diesel Engine for the Greenwaste Grinder, was not used in January 2010 and will not be

²⁾ Diesel Engine S-196 is no longer in use as of August 2009.

³⁾ The S-197 Portable Generator, the S-198 Vacuum Truck Pump and the S-214 Portable Air Compressor were removed from service in December 2009. WM submitted a permit surrender

⁴⁾ The S-206 Tipper Engine was replaced by the S-222 Tipper CNG Engine and the S-208Tipper Engine was replaced by the S-221 Tipper CNG Engine.

⁵⁾ The S-217 Tipper was replaced by new Diesel engine Tipper S-224 and the S-218 was replaced by new Diesel engine Tipper S-225.

⁶⁾ The S-222 Tipper was replaced by new Diesel engine Tipper S-228.

g/bhp-hr - Grams per brake horsepower-hour

WASTE MANAGEMENT of ALAMEDA COUNTY ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY BAAQMD PLANT NO. 2066

PORTABLE ENGINES POTENTIAL CARBON MONOXIDE (CO) EMISSIONS

Source / Asset	Engine Name	Fuel Used	Model Year	Capacity (bhp)	Annual Potential Runtime (Hours)	CO Emission Factor (g/bhp-hr)	Annual Potential Total CO (Tons)	Monthly Potential Total CO (Tons)
S-31 ¹	Diesel Engine for Green Waste Grinder	Diesel	2000	860	N/A	0.700	N/A	N/A
S-193	Diesel Engine for Fire Pump at Gas Plant	Diesel	N/A	159	100.0	3.030	0.053	0.004
S-196 ²	Standby Diesel Engine Generator for Scale House	Diesel	1990	78	N/A	3.030	N/A	N/A
S-190	Standby Diesel Engine Generator for Scale House Standby Diesel Engine Generator for Break Trailer	Diesel	2000	78	N/A	6.900	N/A	N/A
S-197 S-198 ³	, ,		1974	177	N/A	3.030	N/A	N/A
S-198 S-199	Diesel Engine for Vacuum Truck Pump Emergency Standby Diesel Generator Set (Flare Station)	Diesel Diesel	2007	230	50.0	1.342	0.017	0.001
S-200	Emergency Standby Diesel Generator Set (WWTP)	Diesel	2007	420	50.0	2.312	0.054	0.001
S-200	Emergency Standby Diesel Generator Set (WWYTP) Emergency Standby Diesel Generator Set (Maintenance Shop)	Diesel	2007	420	50.0	2.312	0.054	0.004
S-206 ⁴ /S221	CNG Engine for Tipper #83	Diesel	2007	127	8,760.0	0.969	1.189	0.099
S-207 ^{4,5}		Diesel	2007	137.4		0.373	0.412	0.034
	Diesel Engine for Tipper #93				7,300.0		1.189	0.034
S-208 ⁴ /S-222/S-228	Diesel Engine for Tipper #70	Diesel	2017	127	8,760.0	0.969		
S-209 ^{4,5}	Diesel Engine for Tipper #71	Diesel	2004	137.4	7,300.0	0.373	0.412	0.034
S-214 ³	Portable Diesel Engine for Air Compressor	Diesel	1998	60	N/A	3.030	N/A	N/A
S-217 ^{4,5}	Diesel Engine for Tipper #93	Diesel	2007	127	8,760.0	0.969	1.189	0.099
S-218 ^{4,5}	Diesel Engine for Tipper #71	Diesel	2007	127	8,760.0	0.969	1.189	0.099
S-224 ⁵	Diesel Engine for Tipper #5113	Diesel	2015	124	8,760.0	0.969	1.189	0.099
S-225 ⁵	Diesel Engine for Tipper #5117	Diesel	2015	124	8,760.0	0.969	1.189	0.099
S-235	Diesel Engine for Tipper -New	Diesel	2021	124	8,760.0	0.969	1.189	0.099
S-238	Diesel Engine for Tipper -New	Diesel	2021	124	8,760.0	0.969	1.189	0.099
WM# 741474	130 Air Compressor	Diesel	2000	48	N/A	4.100	N/A	N/A
WM# 900767	Portable Pressure Washer	Diesel	1991	10	8,760.0	3.030	0.293	0.024
WM# 900768	Track Cleaning Generator	Diesel	1994	10	8,760.0	3.030	0.293	0.024
WM# 901653	MultiQuip 25 Gen Set	Diesel	1999	31	8,760.0	4.100	1.227	0.102
WM# 902340	Light Unit	Diesel	1999	10.5	8,760.0	3.030	0.307	0.026
WM# 902341	Light Unit	Diesel	2000	10.5	8,760.0	6.000	0.608	0.051
WM# 902342	Light Unit	Diesel	2000	10.5	8,760.0	6.000	0.608	0.051
WM# 902343	Light Unit	Diesel	2000	10.5	8,760.0	6.000	0.608	0.051
WM# 902344	Light Unit	Diesel	1998	10.5	8,760.0	3.030	0.307	0.026
WM# 902345	Light Unit	Diesel	1998	10.5	8,760.0	3.030	0.307	0.026
WM# 902346	Light Unit	Diesel	1998	10.5	8,760.0	3.030	0.307	0.026
WM# 903178	4000 Watt Diesel Light Tower	Diesel	2006	10.5	8,760.0	6.000	0.608	0.051
WM# 903255	Magnum Pro Light Unit	Diesel	2003	10.5	8,760.0	6.000	0.608	0.051
WM# 903304	Nite0Lite Pro 4000 Watt	Diesel	2008	10	8,760.0	6.000	0.579	0.048
WM# 903305	Nite0Lite Pro 4000 Watt	Diesel	2008	10	8,760.0	6.000	0.579	0.048
WM# 903306	Nite0Lite Pro 4000 Watt	Diesel	2008	10	8,760.0	6.000	0.579	0.048
WM# 903660	XQ20-4 Generator	Diesel	2010	27	8,760.0	4.900	1.278	0.106
WM# 904858	Magnum MLT3060 Light Unit	Diesel	2016	11.7	8,760.0	6.000	0.579	0.048
WM# 904981 WM# 904982	4000 Watt Diesel Light Tower Terex	Diesel Diesel	2016 2016	10.5 11.7	8,760.0 8,760.0	6.000	0.608 0.579	0.051 0.048
WM# 904982 WM# 904983	Magnum MLT3060 Light Unit 60Hz Light Unit	Diesel	2016	11.7	8,760.0	6.000	0.579	0.048
WM# 904983 WM# 904984	60Hz Light Unit	Diesel	2016	13.6	8,760.0 8,760.0	6.000	0.579	0.048
WM# 904964 WM# 903686	24CFM-GX90 Air Compressor - Landfill	Unleaded Gasoline	2010	13	8,760.0	409.396	51.392	4.283
WM# 951359	Back-up Lube Compressor	Diesel	2010	48	8,760.0	4.100	1.900	0.158
WM# 904662	4000 Watt Diesel Light Tower	Diesel	2003	10.5	8,760.0	6.000	0.608	0.150
WM# 904663	4000 Watt Diesel Light Tower	Diesel	2015	10.5	8,760.0	6.000	0.608	0.051
WM# 904664	4000 Watt Diesel Light Tower	Diesel	2015	10.5	8,760.0	6.000	0.608	0.051
WM# 905025	Light Unit	Diesel	2009	10.5	8,760.0	6.000	0.608	0.051
WM# 905067	Light Unit	Diesel	2010	10.5	8,760.0	6.000	0.608	0.051
WM# 905068	Light Unit	Diesel	2010	10.5	8,760.0	6.000	0.608	0.051
WM# 951360	3500 Wt Portable Magnet	Unleaded Gasoline	2003	10	8,760.0	410.000	39.591	3.299
WM# 951361	Postable Supv. Generator	Unleaded Gasoline	2002	11	8,760.0	410.000	43.550	3.629
SN GCAFT2524206: 9A-A	Honda GX160 Air Compressor	Unleaded Gasoline	2009	4.8	8,760.0	409.396	19.085	1.590
SN GCAFT2285062: 89-J	Honda GX160 Air Compressor	Unleaded Gasoline	2008	4.8	8,760.0	347.502	16.199	1.350
SN 3625101631 ⁶	Kohler Command Pro 13 Air Compressor	Unleaded Gasoline	2006	13.0	8,760.0	273.676	34.355	2.863

1) Pursuant to ALRRF's October 2009 Compliance Plan to satisfy Alameda County Ordinance 2008-01 ("Alameda County Plant Debris Landfill Ban"), ALRRF no longer receives plant debris as of January 1, 2010. Therefore, the

²⁾ Diesel Engine S-196 is no longer in use as of August 2009.

³⁾ The S-197 Portable Generator, the S-198 Vacuum Truck Pump and the S-214 Portable Air Compressor were removed from service in December 2009. WM submitted a permit surrender letter on December 29, 2009.

A) Pursuant of ballow 24578, Tippers 70, 71, 83, and 93 are limited to 29,200 hours per consecutive 15-hour period. The maximum potential operating hours are the worst case scenario of each tipper ceptaing all year 5) The S-207 Tipper Engine was replaced by the S-218 are purple. The scenario of each tipper ceptaing all year 5) The S-207 Tipper Engine was replaced by the S-218 are purple. The scenario of each tipper ceptaing all year 5) The S-207 Tipper Engine was replaced by the S-218 are purple. The scenario of each tipper ceptaing all year 5) The S-207 Tipper Engine was replaced by the S-218 are purple. The scenario of each tipper ceptaing all year 5) The S-207 Tipper Engine was replaced by the S-218 are purple. The scenario of each tipper ceptaing all year 5) The S-207 Tipper Engine was replaced by the S-218 are purple. The scenario of each tipper ceptaing all year 5) The S-207 Tipper Engine was replaced by the S-218 are purple. The scenario of each tipper ceptaing all year 5) The scenario of each t

⁷⁾ The S-222 Tipper was replaced by new Diesel engine Tipper S-228.

N/A - Not Applicable SN - Serial Number

APPENDIX W ROLLING 12-MONTH AND MAXIMUM POTENTIAL CO EMISSIONS PERMIT RECORD

WASTE MANAGEMENT of ALAMEDA COUNTY ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY BAAQMD PLANT NO. 2066

ROLLING 12- MONTH CO EMISSIONS PERMIT RECORD

For Month/Year	A-15 Flare (Tons)	A-16 Flare (Tons)	S-6 Turbine (Tons)	S-7 Turbine (Tons)	Portable Engines (Tons)	Monthly Total CO Emissions (Tons)	Rolling 12-Month Total CO Emissions (Tons)
June-24	0.03395	0.647	1.586	1.387	0.243	3.897	49.344
July-24	0.00000	0.685	1.585	1.428	0.268	3.966	49.448
August-24	0.33543	0.611	1.263	0.790	0.290	3.289	46.155
September-24	0.00033	0.574	1.558	1.373	0.256	3.761	45.338
October-24	0.02024	0.551	1.648	1.482	0.380	4.083	45.836
November-24	0.00000	0.448	1.656	1.467	0.291	3.861	45.857
12-Month Total	1.200	4.323	19.970	16.885	3.478	45.857	
Rolling 12- Month Total Permit Limit (Cond. No. 24373, Parts 1 and 2)	93.268	115.632	56.064	56.064		22	5.000

Not 1) The Rolling 12-month CO Emissions Permit Record is maintained pursuant to Permit Condition No. 24373, Part 3.

²⁾ The A-16 Flare was started up on July 16, 2009.

³⁾ Pursuant to PTO Condition# 24373, Part 2, the rolling 12-month site-wide CO emissions did not exceed 225.00 Tons.

APPENDIX X S-140/S-141 VOC RESULTS AND FLOW RECORDS

ALTAMONT LANDFILL FILL AREA 1 & 2 MONTHLY CONDENSATE AND LEACHATE FLOW REPORT

JANUARY THROUGH NOVEMBER 2024

GALLONS BY SOURCE

	THROUGH		UNIT 2**				Fill A	ea 1 LFG		Fill Area 2 LFG	UNIT 1 **			LSI-1*	LSI-2	LSI-3*
MONTH-2024	DATE	SUBDRAIN (VD2) (Gallons/Month)	LCRS (LS2) (Gallons/Month)	LCRS (LS2) DAILY AVG (Gallons/Day)	VADOSE (VZM-A)	COND. To Injection Trench (Gallons/Mo nth)	COND. To FLARE A15 (decommissioned) (Gallons/Month)	COND. To FLARE A16 (Gallons/Month)	CONDENSATE TOTAL (Gallons/Month)	CONDENSATE To injection system (Gallons/Month)	LCRS (LS) (Gallons/Month)	VALLEY SUBDRAIN (VD) (Gallons/Month)	LS and VD DAILY AVG (Gallons/Day)	INFLUENT (Gallons/ Month)	INFLUENT (Gallons/ Month)	INFLUENT (Gallons/ Month)
JAN	31-Jan	106,216	266,407	8,594	0	26,169	0	112,848	139,017	176,186	122,190	16,670	3,942	388,597	122,886	661,100
FEB	29-Feb	117,250	242,099	8,348	0	19,395	0	111,878	131,273	167,184	144,574	96,800	4,985	386,673	214,050	547,600
MAR	31-Mar	133,540	245,283	7,912	0	30,075	0	102,306	132,381	152,932	167,134	152,300	5,391	412,417	285,840	404,100
QUARTER	Total	357,006	753,789	8,375	0	75,638	0	327,033	402,671	496,302	433,898	265,770	4,821	1,187,687	622,776	1,612,800
APR	30-Apr	129,036	197,589	6,586	0	28,518	0	91,508	120,026	118,844	105,474	60,520	3,402	303,063	189,556	136,700
MAY	31-May	124,340	193,617	6,246	0	21,348	0	93,706	115,054	80,718	115,085	1	3,712	308,702	124,341	102,000
JUN	30-Jun	115,913	182,377	6,079	0	32,439	0	86,085	118,524	182,567	103,502	0	3,450	285,879	115,913	73,200
QUARTER	Total	369,289	573,583	6,303	0	82,305	0	271,299	353,604	382,129	324,061	60,521	3,561	897,644	429,810	311,900
JUL	31-Jul	111,007	180,318	5,817	0	29,984	0	91,109	121,093	109,059	107,584	0.0	3,470	287,902	111,007	96,500
AUG	31-Aug	106,183	136,694	4,409	0	34,210	0	82,200	116,410	122,234	114,687	3.0	3,700	251,381	106,186	68,200
SEP	30-Sep	100,879	199,508	6,650	0	41,689	0	90,135	131,824	124,522	113,886	0.0	3,796	313,394	100,879	58,600
QUARTER	Total	318,069	516,520	5,614	0	105,884	0	263,443	369,327	355,815	336,157	3	3,654	852,677	318,072	223,300
ОСТ	31-Oct	97,609	178,791	5,767	0	28,062	0	102,005	130,067	143,976	112,384	0.0	3,625	291,175	97,609	67,300
NOV	30-Nov	90,718	168,291	5,610	0	26,717	0	94,170	120,887	152,117	109,836	0	3,661	278,127	90,718	55,400
QUARTER	Total	188,327	347,082	3,773	0	54,779	0	196,175	250,954	296,093	222,220	0	2,415	569,302	188,327	122,700
2024_PART		1,232,691	2,190,974	6,003	0	318,606	0	1,057,950	1,376,556	1,530,339	1,316,336	326,294	3,606	3,507,310	1,558,985	2,270,700

Altamont Landfill and Resource Recovery Facility, Livermore, CA S-140 and S-141 Analytical Results

		Quarter 1, 2024	Quarter 1, 2024	Quarter 2, 2024	Quarter 2, 2024	Quarter 3, 2024	Quarter 3, 2024	Quarter 4 2024	Quarter 4 2024	Fourth Quarter 2024	Annual 2024
Employ Company Compa				5/21/2024		8/22/2024		11/19/2024	11/19/2024		
Commonship		Sample Location LCRS		Sample Location LCRS	Sample Location S-140	Sample Location LCRS		Sample Location LCRS	Sample Location S-140	(ppb)	(ppb)
1.1.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2	Compound	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)
1.1.1		89.0		69.0				110.0		110.0	89.3
11.1.2	1,1,1,2-Tetrachloroethane										
1.1.2-incondument	1,1,1-Trichloroethane										
10.00000000000000000000000000000000000	1,1,2,2-Tetrachloroethane										
15-00-10-20-20-20-20-20-20-20-20-20-20-20-20-20	1,1,2-I richioroethane										
10.504.pages	1.1-Dichloroethene	+									
1.5 Francisco 1.5 1.4 1.5	1.1-Dichloropropene										
34.1 14.2 14.2 15.2	1.2.3-Trichlorobenzene										
1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.7 1.6											
	1,2,4-Trimethylbenzene	1.0		1.4		1.6		0.92		0.9	1.2
Differentiation	1,2-Dibromo-3-chloropropane										
	1,2-Dibromoethane										
	1,2-Dichlorobenzene										
13 Octoorgous	1,2-Dibromoethane										
13.5 Temple placement	1,2-Dichloroethane										
13-Districtoriesment 13-Districtoriesment 14	1,2-Dichloropropane										
15-District programme	1,3,5-Trimethylbenzene										
14.Districtorience	1,3-Dichlorobenzene	1									
2 Descriptographies	1,3-Dichloropropane	10	-			64				F.0	5.0
Salaceonstation Salaceonst	1,4-Dichiorobenzene	4.0	+			6.1		5.0		5.0	5.0
2-Tricocolyships date	2,2-Dichioropropane	57.0						42.0		42.0	50.0
Chrostophane	2-Butanone(MEK)	57.0						43.0		43.0	50.0
2-teacone	2 Chlorotolyono										
Echinocopies											
Submitted MINIC)	4-Chlorotoluene										
Becomes 16 21 27 27 21 27 21 27 21 27	4-Methyl-2-pentanone (MIBK)										
Bernecksone		1.6		2.1		2.7					2.1
Bernockforomethane											
Brownedman											
Bommethate	Bromodichloromethane										
Carbon standarbides											
Carbon tetrachrone											
1.5		8.5		20.0	1.4	11.0		15.0		15.0	11.2
Chicordinate											
Chicrotrom						1.5					1.5
Chloromethane Chloromethan											
Cit 2 Cubrisordenee Cit	Chlorotorm										
Cest-13, Orbitotopropense Ditromoreshame Ditromores											
District Properties											
Disconnecimation Disconnecim											
Dichlorodifuctoremenane											
Ethylenzene 2.4 3.4 3.9 2.7 2.7 3.1 Hexachloroblateine Isocropylenzene MTSE MTSE Naphthalene n-Butylenzene	Dichlorodifluoromethane										
Hecarionobutatione		2.4		3.4		3.9		2.7		2.7	3.1
Sooroptkerzene											
Methylane chloride	Isopropylbenzene										
MTBE	Methylene chloride										
FishtyPenzere FishtyPenzer	MTBE										
In-Propry In-P											
Elsopropyloluene	n-Butylbenzene										
Alsographyloluse	n-Propylbenzene										
Sec-Buylenzers Stylene		+	+			—		-			
Styrene	4-isopropyltoluene	+	+	1.1		1.6		-			1.4
tert-Butyberzene 1 Teflachlorethene 2.0 Total vylene 2.0 Total vylene 3.8 1,2-Dichlorethene trans-1,2-Dichlorethene trans-1,3-Dichlorethene Trichlorethene		+	1								
Tetrachroethene		+	1								
Total yelene 2.0 2.5 2.5 2.9 2.5 2.9 2.0 2.0 2.1 2.0 2	Tetrachlomethene	+	<u> </u>								
Total typines 2.3 2.1 6.0 3.8 3.6 3.6 1 1 1 1 1 1 1 1 1		2.0	1			4.1		2.5		2.5	29
Earn-1;-2-Dichlorechene		2.3		21				3.8		3.8	
Itans-13-Dichloropropene	trans-1.2-Dichloroethene	1 2.0	1					1			2.0
Trichlorosthene Trichlorosthen	trans-1.3-Dichloropropene										
Trichlorofluoromethane	Trichloroethene										
Vinyl acetate Vinyl chloride Vinyl	Trichlorofluoromethane										
Viny chloride	Trichlorotrifluoroethane										
Viny chloride	Vinyl acetate										
	Vinyl chloride										
Note: ALRRF made a process change in which condensate is no longer sent to the water treatment plant.	Total TOC Concentration (ppb)			99.1	1.4	38.5	0.0	182.9	0.0	182.9	171.3

		Compound	Concentration Limit (ppb)	Fourth Quarter 2024 Average (ppbw)	Annual Average Results (ppbw)
Annual Average TOC Conc. (ppm)	0.171	Benzene	80	ND	2.1
Fourth Quarter 2024 TOC Conc. (ppm)	0.183	Chloroform	470	ND	ND
Maximum Daily TOC Concentration =		1,4 Dichlorobenzene	1,020	5.0	5.0
Quarterly Average TOC Concentration Lim	t = 52 ppm	Methylene Chloride	2,530	ND	ND
		Naphthalene	3,590	ND	ND
		Perchloroethylene/ Tetrachloroethene	430	ND	ND
		Tricholoroethylene/ Trichloroethene	1,290	ND	ND
		Vinyl Chloride	30	ND	ND
Limits set by Permit Condition No. 20922, Part 1 through 5					

Altamont Landfill and Resource Recovery Facility, Livermore, CA S-140 and S-141 Analytical Results

	11/6/2023	11/6/2023	2/13/2024	2/13/2024	5/21/2024	5/21/2024	8/22/2024	8/22/2024	8/22/2024	Average
C	Sample Location LCRS	Sample Location S-140	Sample Location LCRS	Sample Location S-140	Sample Location LCRS	Sample Location S-140	Sample Location LCRS	Sample Location S-140	(ppb)	(ppb)
Compound	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw) 89.0	Concentration (ppbw)	Concentration (ppbw) 69.0	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)	Concentration (ppbw)
Acetone 1,1,1,2-Tetrachloroethane			89.0		69.0					79.0
1,1,1-Trichloroethane										
1,1,2,2-Tetrachloroethane										
1,1,2-Trichloroethane										
1,1-Dichloroethane										
1,1-Dichloroethene										
1,1-Dichloropropene 1,2,3-Trichlorobenzene										
1,2,4-Trichlorobenzene										
1,2,4-Trimethylbenzene			1.0		1.4		1.6		1.6	1.3
1,2-Dibromo-3-chloropropane										
1,2-Dibromoethane										
1,2-Dichlorobenzene										
1,2-Dibromoethane 1,2-Dichloroethane										
1,2-Dichloropropane										
1,3,5-Trimethylbenzene										
1,3-Dichlorobenzene										
1,3-Dichloropropane										
1,4-Dichlorobenzene	4.4		4.0				6.1		6.1	4.8
2,2-Dichloropropane 2-Butanone(MEK)	+		57.0							57.0
2-Chloroethylvinyl ether			57.0							57:0
2-Chlorotoluene										
2-Hexanone										
4-Chlorotoluene										
4-Methyl-2-pentanone (MIBK)										
Benzene Bromobenzene			1.6		2.1		2.7		2.7	2.1
Bromochloromethane										
Bromodichloromethane										
Bromoform										
Bromomethane										
Carbon disulfide		17.0	8.5		20.0	1.4	11.0		11.0	11.6
Carbon tetrachloride Chlorobenzene							1.5		1.5	1.5
Chloroethane							1.5		1.5	1.5
Chloroform										
Chloromethane										
cis-1,2-Dichloroethene										
cis-1,3-Dichloropropene										
Dibromochloromethane										
Dibromomethane Dichlorodifluoromethane										
Ethylbenzene			2.4		3.4		3.9		3.9	3.2
Hexachlorobutadiene										
Isopropylbenzene										
Methylene chloride							1			
MTBE							-			
Naphthalene n-Butylbenzene							 			
n-Propylbenzene										
p-Isopropyltoluene										
4-Isopropyltoluene					1.1		1.6		1.6	1.4
sec-Butylbenzene										
Styrene							-			
tert-Butylbenzene Tetrachloroethene										
Toluene			2.0				4.1		4.1	3.1
Total xylenes			2.3		2.1		6.0		6.0	3.5
trans-1,2-Dichloroethene										
trans-1,3-Dichloropropene										
Trichloroethene										
Trichlorofluoromethane										
Trichlorotrifluoroethane Vinyl acetate										
Vinyl chloride							 			
Total TOC Concentration (ppb)		17.0		0.0	99.1	1.4	38.5	0.0	38.5	26.0
lote: Al RRF made a process change i	The second									

Note: ALRRF made a process change in which condensate is no longer sent to the water treatment plant.

t to the water treatment plant.					
		Compound	Concentration Limit (ppb)	Third Quarter 2024 Average (ppbw)	Annual Average Results (ppbw)
Annual Average TOC Conc. (ppm)	0.026	Benzene	80	2.7	2.1
Third Quarter 2024 TOC Conc. (ppm)	0.039	Chloroform	470	ND	ND
Maximum Daily TOC Concentration = 5	52 ppm	1,4 Dichlorobenzene	1,020	6.1	4.8
Quarterly Average TOC Concentration Limit	t = 52 ppm	Methylene Chloride	2,530	ND	ND
		Naphthalene	3,590	ND	ND
		Perchioroeutylene/	430	ND	ND
		Tricholoroethylene/ Trichloroethene	1,290	ND	ND
		Vinyl Chloride	30	ND	ND
Limits set by Permit Condition No. 20922, Part 1 through 5					

WASTE MANAGEMENT of ALAMEDA COUNTY ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY BAAQMD PLANT NO. 2066

LANDFILL GAS CONDENSATE TREATMENT SYSTEM PERMIT RECORD

Record Month/Year	Monthly Gallons S-12	Condensate Gallons Injection A-15	Condensate Gallons Injection A-16	Monthly Gallons S-19	Rolling 12 Month Gallons S-19
Jun-24	118,524	0	86,050	0	0
Jul-24	121,093	0	91,109	0	0
Aug-24	116,410	0	82,200	0	0
Sep-24	131,824	0	90,135	0	0
Oct-24	130,067	0	102,005	0	0
Nov-24	120,887	0	94,170	0	0

Note: The landfill gas condensate injection rate to the A-15 and A-16 Flares pursuant to Permit Condition No. 19235, Part 3 is 4,320 and 7,200 gallons per day, respectively.

Altamont Landfill and Resource Recovery Facility Monthly Throughput to S-140 and S-141

Month	Combined S-140 and S-141 (gallons)	Consecutive 12-Month Total (gallons)	Rolling 12-Month POC Total (lb)
Jun-24	0	0.00	0.00
Jul-24	0	0.00	0.00
Aug-24	0	0.00	0.00
Sep-24	0	0.00	0.00
Oct-24	0	0.00	0.00
Nov-24	0	0.00	0.00

Pursuant to Permit Condition No. 20922, Part 2,

¹⁾ The total combined wastewater throughput to S-140 and S-141 shall not exceed 6,460,000 gallons during any consecutive 12-month period.

²⁾ The total volatile organic compound (VOC) concentration in the wastewater shall not exceed 52 ppm by weight OR 1,230 lbs precursor organic (POC) compounds during any consecutive 12-month period.

Report Prepared by: Rajan Phadnis

Month: June 2024

Day	Time	Duration (min)	Totalizer Reading (gals)	S-140 (gals)	S-141 (gals)	Comments					
6/1/2024		0	,• ,	0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/2/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/3/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/4/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/5/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/6/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/7/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/8/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/9/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/10/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/11/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/12/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/13/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/14/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/15/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/16/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/17/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/18/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/19/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/20/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/21/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/22/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/23/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/24/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/25/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/26/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/27/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/28/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/29/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
6/30/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.					
	C	ombined Volume To	otal (gals) =	()	POC (lb/day)					

Notes:

Per WM starting March 2010,

1) When operating, liquid is manually sent to the reactors. The difference between two daily readings can be attributed to throughput for the first day. Personnel either sent liquid to S-140 alone or to S-140 and S-141 together. Tank level records determine whether liquids were sent to S-140 alone or to both S-140 and S-141. When liquids were sent to both reactors at once, the throughput was split evenly between the two reactors.

Pursuant to Permit Condition No. 20922, Part 1,

- 2) The waste water throughput to each reactor (S-140 and S-141) shall not exceed 52,400 gallons during any one day and the total volatile organic compound concentration in the wastewater shall not exceed 54 ppm by weight.
- 3) The 52 ppm volatile organic compound limit = 10 lbs precursor organic compounds (POC)/day

Max Daily

4) Please refer to Condition 20922 Part 1 (b) if daily throughput limit is breached

Report Prepared by: Rajan Phadnis

Month: July 2024

Day	Time	Duration (min)	Totalizer Reading (gals)	S-140 (gals)	S-141 (gals)	Comments
7/1/2024		0	, ,	0	0	The WWTP did not operate, so a daily reading was not obtained.
7/2/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/3/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/4/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/5/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/6/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/7/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/8/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/9/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/10/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/11/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/12/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/13/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/14/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/15/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/16/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/17/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/18/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/19/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/20/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/21/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/22/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/23/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/24/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/25/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/26/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/27/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/28/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/29/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/30/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
7/31/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
	С	ombined Volume T	otal (gals) =	()	POC (lb/day)

Notes:

Per WM starting March 2010,

1) When operating, liquid is manually sent to the reactors. The difference between two daily readings can be attributed to throughput for the first day. Personnel either sent liquid to S-140 alone or to S-140 and S-141 together. Tank level records determine whether liquids were sent to S-140 alone or to both S-140 and S-141. When liquids were sent to both reactors at once, the throughput was split evenly between the two reactors.

0

Pursuant to Permit Condition No. 20922, Part 1,

- 2) The waste water throughput to each reactor (S-140 and S-141) shall not exceed 52,400 gallons during any one day and the total volatile organic compound concentration in the wastewater shall not exceed 54 ppm by weight.
- 3) The 52 ppm volatile organic compound limit = 10 lbs precursor organic compounds (POC)/day

Max Daily

4) Please refer to Condition 20922 Part 1 (b) if daily throughput limit is breached

Report Prepared by: Rajan Phadnis

Month: August 2024

Day	Time	Duration (min)	Totalizer Reading (gals)	S-140 (gals)	S-141 (gals)	Comments
8/1/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/2/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/3/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/4/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/5/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/6/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/7/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/8/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/9/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/10/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/11/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/12/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/13/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/14/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/15/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/16/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/17/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/18/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/19/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/20/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/21/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/22/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/23/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/24/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/25/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/26/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/27/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/28/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/29/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/30/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
8/31/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.
	С	ombined Volume T	otal (gals) =	()	POC (lb/day)

Notes:

Per WM starting March 2010,

1) When operating, liquid is manually sent to the reactors. The difference between two daily readings can be attributed to throughput for the first day. Personnel either sent liquid to S-140 alone or to S-140 and S-141 together. Tank level records determine whether liquids were sent to S-140 alone or to both S-140 and S-141. When liquids were sent to both reactors at once, the throughput was split evenly between the two reactors.

Pursuant to Permit Condition No. 20922, Part 1,

- 2) The waste water throughput to each reactor (S-140 and S-141) shall not exceed 52,400 gallons during any one day and the total volatile organic compound concentration in the wastewater shall not exceed 54 ppm by weight.
- 3) The 52 ppm volatile organic compound limit = 10 lbs precursor organic compounds (POC)/day

Max Daily

4) Please refer to Condition 20922 Part 1 (b) if daily throughput limit is breached

Report Prepared by: Rajan Phadnis

Month: September 2024

Time	Duration (min)	Totalizer Reading (gals)	S-140 (gals)	S-141 (gals)	Comments				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
	Time	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Time Duration (min) Reading (gals) 0 0 0 0 0 0 0 0 0 0 0 0 0	Time Duration (min) Reading (gals) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Time Duration (min) Reading (gals) S-144 (gals) (gals) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				

Notes:

Per WM starting March 2010,

1) When operating, liquid is manually sent to the reactors. The difference between two daily readings can be attributed to throughput for the first day. Personnel either sent liquid to S-140 alone or to S-140 and S-141 together. Tank level records determine whether liquids were sent to S-140 alone or to both S-140 and S-141. When liquids were sent to both reactors at once, the throughput was split evenly between the two reactors.

Pursuant to Permit Condition No. 20922, Part 1,

0

2) The waste water throughput to each reactor (S-140 and S-141) shall not exceed 52,400 gallons during any one day and the total volatile organic compound concentration in the wastewater shall not exceed 54 ppm by weight.

3) The 52 ppm volatile organic compound limit = 10 lbs precursor organic compounds (POC)/day

Max Daily

4) Please refer to Condition 20922 Part 1 (b) if daily throughput limit is breached

Report Prepared by: Rajan Phadnis

Month: October 2024

Day	Time	Duration (min)	Totalizer Reading (gals)	S-140 (gals)	S-141 (gals)	Comments				
10/1/2024		0	,,	0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/2/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/3/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/4/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/5/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/6/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/7/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/8/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/9/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/10/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/11/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/12/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/13/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/14/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/15/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/16/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/17/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/18/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/19/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/20/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/21/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/22/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/23/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/24/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/25/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/26/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/27/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/28/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/29/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/30/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
10/31/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
		Combined Volume T	otal (gals) =	(Ó	POC (lb/day)				

Notes:

Per WM starting March 2010,

Pursuant to Permit Condition No. 20922, Part 1,

Max Daily

¹⁾ When operating, liquid is manually sent to the reactors. The difference between two daily readings can be attributed to throughput for the first day. Personnel either sent liquid to S-140 alone or to S-140 and S-141 together. Tank level records determine whether liquids were sent to S-140 alone or to both S-140 and S-141. When liquids were sent to both reactors at once, the throughput was split evenly between the two reactors.

²⁾ The waste water throughput to each reactor (S-140 and S-141) shall not exceed 52,400 gallons during any one day and the total volatile organic compound concentration in the wastewater shall not exceed 54 ppm by weight.

³⁾ The 52 ppm volatile organic compound limit = 10 lbs precursor organic compounds (POC)/day

⁴⁾ Please refer to Condition 20922 Part 1 (b) if daily throughput limit is breached

Report Prepared by: Rajan Phadnis

Month: November 2024

Day	Time	Duration (min)	Totalizer Reading (gals)	S-140 (gals)	S-141 (gals)	Comments				
11/1/2024		0	ν ,	0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/2/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/3/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/4/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/5/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/6/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/7/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/8/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/9/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/10/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/11/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/12/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/13/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/14/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/15/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/16/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/17/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/18/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/19/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/20/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/21/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/22/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/23/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/24/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/25/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/26/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/27/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/28/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/29/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
11/30/2024		0		0	0	The WWTP did not operate, so a daily reading was not obtained.				
		ombined Volume To	-4-1/1-1		i .	POC (lh/day)				

 Combined Volume Total (gals) =
 0
 POC (lb/day)

 Max Daily
 0
 0
 0

Notes:

Per WM starting March 2010,

1) When operating, liquid is manually sent to the reactors. The difference between two daily readings can be attributed to throughput for the first day. Personnel either sent liquid to S-140 alone or to S-140 and S-141 together. Tank level records determine whether liquids were sent to S-140 alone or to both S-140 and S-141. When liquids were sent to both reactors at once, the throughput was split evenly between the two reactors.

Pursuant to Permit Condition No. 20922, Part 1,

- 2) The waste water throughput to each reactor (S-140 and S-141) shall not exceed 52,400 gallons during any one day and the total volatile organic compound concentration in the wastewater shall not exceed 54 ppm by weight.
- 3) The 52 ppm volatile organic compound limit = 10 lbs precursor organic compounds (POC)/day
- 4) Please refer to Condition 20922 Part 1 (b) if daily throughput limit is breached

12

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Sonam Kaur Waste Management 10840 Altamont Pass Road Livermore, California 94550

Generated 9/16/2024 1:55:59 PM

JOB DESCRIPTION

236|Altamont Landfill- LCRS LCRS for 8260B

JOB NUMBER

280-195717-1

Eurofins Denver 4955 Yarrow Street Arvada CO 80002

Eurofins Denver

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Generated 9/16/2024 1:55:59 PM

Authorized for release by Janice Collins, Project Manager <u>Janice.Collins@et.eurofinsus.com</u> (303)736-0100

anice S. Collin

13

Client: Waste Management Project/Site: 236|Altamont Landfill- LCRS Laboratory Job ID: 280-195717-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Method Summary	7
Sample Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association	17
Chronicle	18
Chain of Custody	19
Receipt Checklists	20

3

4

6

Ω

9

11

Definitions/Glossary

Client: Waste Management Job ID: 280-195717-1

Project/Site: 236|Altamont Landfill- LCRS

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

PQL Practical Quantitation Limit
PRES Presumptive
QC Quality Control

NC

ND

NEG POS

RER Relative Error Ratio (Radiochemistry)

Not Calculated

Negative / Absent

Positive / Present

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

6

9

10

12

13

Case Narrative

Client: Waste Management

Project: 236|Altamont Landfill- LCRS

Job ID: 280-195717-1 Eurofins Denver

Job Narrative 280-195717-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.
- Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

This report may include reporting limits (RLs) lower than Eurofins Environmental Testing standard reporting limits. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 8/23/2024 9:10 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.6°C.

GC/MS VOA

Method 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 280-666335. The laboratory control sample (LCS) was performed in duplicate (LCSD) to provide precision data for this batch. LCRS (280-195717-1)

Method 8260B: The following sample(s) was collected in a properly preserved vial; however, the pH of 7 was outside the required criteria of <2 when verified by the laboratory. The sample was analyzed outside the 7-day holding time specified for unpreserved samples but within the 14-day holding time specified for preserved samples: LCRS (280-195717-1).

Method 8260B: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: LCRS (280-195717-1). Elevated reporting limits (RLs) are provided.

Method 8260B: Reporting Limit - Estimated; Outside Calibration Range: The reporting limit provided for the following analyte(s) falls below the laboratory's lowest calibration standard: Chlorodibromomethane, Carbon tetrachloride, Vinyl chloride, Trichloroethene, trans-1,3-Dichloropropene, trans-1,2-Dichloroethene, Toluene, Tetrachloroethene, Styrene, Methyl tert-butyl ether, Isopropylbenzene, Ethylene Dibromide, Ethylbenzene, Dichlorodifluoromethane, Dichlorobromomethane, Dibromomethane, cis-1,2-Dichloroethene, cis-1,3-Dichloropropene, Benzene, 4-Chlorotoluene, 2-Chlorotoluene, 2,2-Dichloropropene, 1,4-Dichlorobenzene, 1,3-Dichlorobenzene, 1,3-Dichlorobenzene, 1,2-Dichloropropene, 1,2-Dichloroethane, 1,2-Dichloroethane, 1,2-Dichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,1,2-Trichloroethane, 1,1,2-Trichloroethane, 1,1,2-Tetrachloroethane, 1,1,2-Tetrachloroethane (1.0 RL .5). Results reported below the lowest calibration standard are estimated. LCRS (280-195717-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Comments

For samples requiring analysis at a dilution, the dilution factor has been multiplied by the Method Detection Limit (MDL) for each analyte and evaluated versus the project-specific reporting limit (PSRL). If the obtained value is below the PSRL, then the PSRL is preserved as the reporting limit for the diluted result, otherwise, the obtained value becomes the reporting limit. This is done in order to maintain the PSRL to meet permit requirements at the request of the client and to report the lowest possible RL for each analyte.

Eurofins Denver

Job ID: 280-195717-1

Page 5 of 20 9/16/2024

Detection Summary

Client: Waste Management

Client Sample ID: LCRS

Project/Site: 236|Altamont Landfill- LCRS

Lab Sample ID: 280-195717-1

Job ID: 280-195717-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,2,4-Trimethylbenzene	1.6	0.75	0.75	ug/L		8260B	Total/NA
1,4-Dichlorobenzene	6.1	1.9	1.9	ug/L	5	8260B	Total/NA
4-Isopropyltoluene	1.6	1.0	0.93	ug/L	5	8260B	Total/NA
Benzene	2.7	0.72	0.72	ug/L	5	8260B	Total/NA
Carbon disulfide	11	5.0	1.3	ug/L	5	8260B	Total/NA
Chlorobenzene	1.5	0.50	0.46	ug/L	5	8260B	Total/NA
Ethylbenzene	3.9	0.72	0.72	ug/L	5	8260B	Total/NA
Toluene	4.1	1.6	1.6	ug/L	5	8260B	Total/NA
Xylenes, Total	6.0	0.57	0.57	ug/L	5	8260B	Total/NA

4

6

9

10

12

13

1/

Method Summary

Client: Waste Management

Project/Site: 236|Altamont Landfill- LCRS

MethodMethod DescriptionProtocolLaboratory8260BVolatile Organic Compounds (GC/MS)SW846EET DEN5030BPurge and TrapSW846EET DEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Eurofins Denver

Job ID: 280-195717-1

Sample Summary

Client: Waste Management Project/Site: 236|Altamont Landfill- LCRS Job ID: 280-195717-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
280-195717-1	LCRS	Water	08/22/24 11:20	08/23/24 09:10

Client Sample Results

Client: Waste Management Job ID: 280-195717-1

Project/Site: 236|Altamont Landfill- LCRS

Client Sample ID: LCRS

Method: SW846 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 280-195717-1

Date Received: 08/23/24 09:10	B		ъ.		11	_	D	A 1 1	D:: -
Analyte 1,1,1,2-Tetrachloroethane	Result O	Qualifier	RL 0.78		Unit ug/L	D	Prepared	Analyzed 09/05/24 16:56	Dil Fac
1,1,1-Trichloroethane	ND		2.0		ug/L			09/05/24 16:56	5
1,1,2,2-Tetrachloroethane	ND		1.1		ug/L			09/05/24 16:56	5
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		3.6		ug/L			09/05/24 16:56	5
1,1,2-Trichloroethane	ND		1.4		ug/L			09/05/24 16:56	5
1.1-Dichloroethane	ND		1.1		ug/L			09/05/24 16:56	5
1,1-Dichloroethene	ND		1.2		ug/L ug/L			09/05/24 16:56	5 5
1,1-Dichloropropene	ND		0.95	0.95				09/05/24 16:56	5
1,2,3-Trichlorobenzene	ND		6.0		ug/L			09/05/24 16:56	5
1,2,3-Trichloropenzene	ND		1.4		ug/L ug/L			09/05/24 16:56	5
···	ND		2.9					09/05/24 16:56	5
1,2,4-Trichlorobenzene			0.75		ug/L ug/L			09/05/24 16:56	5
1,2,4-Trimethylbenzene	1.6		2.1						
1,2-Dibromo-3-Chloropropane	ND		0.72		ug/L			09/05/24 16:56	5
1,2-Dichlorobenzene	ND			0.72	-			09/05/24 16:56	5 5
1,2-Dichloroethane	ND		1.4		ug/L			09/05/24 16:56	
1,2-Dichloropropane	ND		1.2		ug/L			09/05/24 16:56	5
1,3,5-Trimethylbenzene	ND		0.61	0.61	-			09/05/24 16:56	5
1,3-Dichlorobenzene	ND		1.7		ug/L			09/05/24 16:56	5
1,3-Dichloropropane	ND		1.0		ug/L			09/05/24 16:56	5
1,4-Dichlorobenzene	6.1		1.9		ug/L			09/05/24 16:56	5
2,2-Dichloropropane	ND		0.84	0.84				09/05/24 16:56	5
2-Butanone (MEK)	ND		50		ug/L			09/05/24 16:56	5
2-Chlorotoluene	ND		1.7		ug/L			09/05/24 16:56	5
2-Hexanone	ND		50		ug/L			09/05/24 16:56	5
4-Chlorotoluene	ND		1.1		ug/L			09/05/24 16:56	5
4-Isopropyltoluene	1.6		1.0		ug/L			09/05/24 16:56	5
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			09/05/24 16:56	5
Acetone	ND		50		ug/L			09/05/24 16:56	5
Benzene	2.7		0.72	0.72	-			09/05/24 16:56	5
Bromobenzene	ND		1.0	0.95				09/05/24 16:56	5
Bromoform	ND		1.2		ug/L			09/05/24 16:56	5
Bromomethane	ND		12		ug/L			09/05/24 16:56	5
Carbon disulfide	11		5.0		ug/L			09/05/24 16:56	5
Carbon tetrachloride	ND		1.1		ug/L			09/05/24 16:56	5
Chlorobenzene	1.5		0.50	0.46	ug/L			09/05/24 16:56	5
Chlorobromomethane	ND		2.0		ug/L			09/05/24 16:56	5
Chlorodibromomethane	ND		1.4	1.4	ug/L			09/05/24 16:56	5
Chloroethane	ND		3.2	3.2	ug/L			09/05/24 16:56	5
Chloroform	ND		1.8	1.8	ug/L			09/05/24 16:56	5
Chloromethane	ND		1.1	1.1	ug/L			09/05/24 16:56	5
cis-1,2-Dichloroethene	ND		1.6	1.6	ug/L			09/05/24 16:56	5
cis-1,3-Dichloropropene	ND		0.78	0.78	ug/L			09/05/24 16:56	5
Dibromomethane	ND		1.7	1.7	ug/L			09/05/24 16:56	5
Dichlorobromomethane	ND		0.94	0.94	ug/L			09/05/24 16:56	5
Dichlorodifluoromethane	ND		1.5	1.5	ug/L			09/05/24 16:56	5
Ethylbenzene	3.9		0.72	0.72	ug/L			09/05/24 16:56	5
Ethylene Dibromide	ND		0.92	0.92	-			09/05/24 16:56	5
Hexachlorobutadiene	ND		2.6	2.6	ug/L			09/05/24 16:56	5
Isopropylbenzene	ND		0.79		ug/L			09/05/24 16:56	5

Eurofins Denver

Page 9 of 20 9/16/2024

Client Sample Results

Client: Waste Management Job ID: 280-195717-1

Project/Site: 236|Altamont Landfill- LCRS

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: LCRS						Lab San	iple ID: 280-19	95717-1
Date Collected: 08/22/24 11	l:20						Matrix	: Water
Date Received: 08/23/24 09	9:10							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	1.3	1.3	ug/L			09/05/24 16:56	5
Methylene Chloride	ND	5.0	4.7	ug/L			09/05/24 16:56	5
Naphthalene	ND	5.0	5.0	ug/L			09/05/24 16:56	5
n-Butylbenzene	ND	1.2	1.2	ug/L			09/05/24 16:56	5
N-Propylbenzene	ND	1.0	0.92	ug/L			09/05/24 16:56	5
sec-Butylbenzene	ND	1.0	1.0	ug/L			09/05/24 16:56	5
Styrene	ND	0.63	0.63	ug/L			09/05/24 16:56	5
tert-Butylbenzene	ND	1.0	0.89	ug/L			09/05/24 16:56	5
Tetrachloroethene	ND	2.0	2.0	ug/L			09/05/24 16:56	5
Toluene	4.1	1.6	1.6	ug/L			09/05/24 16:56	5
trans-1,2-Dichloroethene	ND	1.8	1.8	ug/L			09/05/24 16:56	5
trans-1,3-Dichloropropene	ND	0.72	0.72	ug/L			09/05/24 16:56	5
Trichloroethene	ND	1.5	1.5	ug/L			09/05/24 16:56	5
Trichlorofluoromethane	ND	1.0	0.99	ug/L			09/05/24 16:56	5
Vinyl acetate	ND	10	1.8	ug/L			09/05/24 16:56	5
Vinyl chloride	ND	1.1					09/05/24 16:56	5
Xylenes, Total	6.0	0.57	0.57	ug/L			09/05/24 16:56	5
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	70 - 12	77	09/05/24 16:56	5
4-Bromofluorobenzene (Surr)	102	78 - 12	0	09/05/24 16:56	5
Dibromofluoromethane (Surr)	103	77 - 12	0	09/05/24 16:56	5
Toluene-d8 (Surr)	101	80 - 12	5	09/05/24 16:56	5

Surrogate Summary

Client: Waste Management Job ID: 280-195717-1

Project/Site: 236|Altamont Landfill- LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(70-127)	(78-120)	(77-120)	(80-125)
280-195717-1	LCRS	103	102	103	101
LCS 280-666335/4	Lab Control Sample	101	98	98	100
LCSD 280-666335/6	Lab Control Sample Dup	97	98	100	99
MB 280-666335/9	Method Blank	99	99	98	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

2

4

__

6

8

9

10

12

4 /

Client: Waste Management Job ID: 280-195717-1

Project/Site: 236|Altamont Landfill- LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 280-666335/9

Matrix: Water

Analysis Batch: 666335

Client	Sample	ID:	Meth	od Bla	ınk
	Pr	ep '	Type:	Total/	NA

		МВ							
Analyte		Qualifier	RL _	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	0.16	-			09/05/24 09:43	1
1,1,1-Trichloroethane	ND		0.50	0.39	-			09/05/24 09:43	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.21				09/05/24 09:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.73	0.73	-			09/05/24 09:43	1
1,1,2-Trichloroethane	ND		0.50	0.27	ug/L			09/05/24 09:43	1
1,1-Dichloroethane	ND		0.50	0.22	ug/L			09/05/24 09:43	1
1,1-Dichloroethene	ND		0.50	0.23	ug/L			09/05/24 09:43	1
1,1-Dichloropropene	ND		0.50	0.19	ug/L			09/05/24 09:43	1
1,2,3-Trichlorobenzene	ND		1.2	1.2	ug/L			09/05/24 09:43	1
1,2,3-Trichloropropane	ND		1.0	0.28	ug/L			09/05/24 09:43	1
1,2,4-Trichlorobenzene	ND		1.0	0.58	ug/L			09/05/24 09:43	1
1,2,4-Trimethylbenzene	ND		0.50	0.15	ug/L			09/05/24 09:43	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.42	ug/L			09/05/24 09:43	1
1,2-Dichlorobenzene	ND		0.50	0.14	ug/L			09/05/24 09:43	1
1,2-Dichloroethane	ND		0.50	0.28	ug/L			09/05/24 09:43	1
1,2-Dichloropropane	ND		0.50	0.24	ug/L			09/05/24 09:43	1
1,3,5-Trimethylbenzene	ND		0.50	0.12	-			09/05/24 09:43	1
1,3-Dichlorobenzene	ND		0.50	0.33	-			09/05/24 09:43	1
1,3-Dichloropropane	ND		1.0	0.17				09/05/24 09:43	1
1,4-Dichlorobenzene	ND		0.50	0.39	-			09/05/24 09:43	1
2,2-Dichloropropane	ND		0.50	0.17	-			09/05/24 09:43	1
2-Butanone (MEK)	ND		50		ug/L			09/05/24 09:43	1
2-Chlorotoluene	ND		0.50	0.34	-			09/05/24 09:43	1
2-Hexanone	ND		50	0.81	-			09/05/24 09:43	1
4-Chlorotoluene	ND		0.50		ug/L			09/05/24 09:43	
4-Isopropyltoluene	ND		1.0	0.19	-			09/05/24 09:43	1
4-Methyl-2-pentanone (MIBK)	ND		50	0.98	-			09/05/24 09:43	1
Acetone	ND		50		ug/L			09/05/24 09:43	
Benzene	ND		0.50		ug/L			09/05/24 09:43	1
Bromobenzene	ND		1.0	0.19	-			09/05/24 09:43	1
Bromoform	ND		1.0	0.25				09/05/24 09:43	·
Bromomethane	ND		2.4		ug/L			09/05/24 09:43	1
Carbon disulfide	ND		5.0	0.26	-			09/05/24 09:43	1
Carbon tetrachloride	ND		0.50	0.23				09/05/24 09:43	1
Chlorobenzene	ND		0.50	0.092	-			09/05/24 09:43	1
Chlorobromomethane	ND		1.0	0.40	-			09/05/24 09:43	1
Chlorodibromomethane	ND		0.50					09/05/24 09:43	
Chloroethane	ND ND		1.0		ug/L			09/05/24 09:43	
	ND ND				ug/L				1
Chloromothono			1.0		ug/L			09/05/24 09:43	1
Chloromethane	ND		1.0		ug/L			09/05/24 09:43	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			09/05/24 09:43	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			09/05/24 09:43	
Dibromomethane	ND		0.50		ug/L			09/05/24 09:43	1
Dichlorobromomethane	ND		0.50		ug/L			09/05/24 09:43	1
Dichlorodifluoromethane	ND		0.50		ug/L			09/05/24 09:43	
Ethylbenzene	ND		0.50		ug/L			09/05/24 09:43	1
Ethylene Dibromide	ND		0.50		ug/L			09/05/24 09:43	1
Hexachlorobutadiene	ND		1.0	0.53	ug/L			09/05/24 09:43	1

Eurofins Denver

Client: Waste Management

Project/Site: 236|Altamont Landfill- LCRS

Job ID: 280-195717-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 280-666335/9

Matrix: Water

Analysis Batch: 666335

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		0.50	0.16	ug/L			09/05/24 09:43	1
Methyl tert-butyl ether	ND		0.50	0.25	ug/L			09/05/24 09:43	1
Methylene Chloride	ND		5.0	0.94	ug/L			09/05/24 09:43	1
Naphthalene	ND		1.0	0.99	ug/L			09/05/24 09:43	1
n-Butylbenzene	ND		1.0	0.23	ug/L			09/05/24 09:43	1
N-Propylbenzene	ND		1.0	0.18	ug/L			09/05/24 09:43	1
sec-Butylbenzene	ND		1.0	0.20	ug/L			09/05/24 09:43	1
Styrene	ND		0.50	0.13	ug/L			09/05/24 09:43	1
tert-Butylbenzene	ND		1.0	0.18	ug/L			09/05/24 09:43	1
Tetrachloroethene	ND		0.50	0.40	ug/L			09/05/24 09:43	1
Toluene	ND		0.50	0.32	ug/L			09/05/24 09:43	1
trans-1,2-Dichloroethene	ND		0.50	0.37	ug/L			09/05/24 09:43	1
trans-1,3-Dichloropropene	ND		0.50	0.14	ug/L			09/05/24 09:43	1
Trichloroethene	ND		0.50	0.30	ug/L			09/05/24 09:43	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			09/05/24 09:43	1
Vinyl acetate	ND		10	0.36	ug/L			09/05/24 09:43	1
Vinyl chloride	ND		0.50	0.23	ug/L			09/05/24 09:43	1
Xylenes, Total	ND		0.50		ug/L			09/05/24 09:43	1

MB MB

Surrogate	%Recovery Qua	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	70 - 127		09/05/24 09:43	1
4-Bromofluorobenzene (Surr)	99	78 - 120		09/05/24 09:43	1
Dibromofluoromethane (Surr)	98	77 - 120		09/05/24 09:43	1
Toluene-d8 (Surr)	100	80 - 125		09/05/24 09:43	1

Lab Sample ID: LCS 280-666335/4

Matrix: Water

Analysis Batch: 666335

Client Sample ID: Lab Control Sample	
Prep Type: Total/NA	

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	50.0	48.5		ug/L		97	80 - 124
1,1,1-Trichloroethane	50.0	46.5		ug/L		93	80 - 123
1,1,2,2-Tetrachloroethane	50.0	49.4		ug/L		99	74 - 123
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	45.8		ug/L		92	73 - 132
ne							
1,1,2-Trichloroethane	50.0	46.4		ug/L		93	80 - 120
1,1-Dichloroethane	50.0	46.3		ug/L		93	78 - 121
1,1-Dichloroethene	50.0	45.3		ug/L		91	77 - 121
1,1-Dichloropropene	50.0	46.6		ug/L		93	77 - 123
1,2,3-Trichlorobenzene	50.0	47.0		ug/L		94	65 - 129
1,2,3-Trichloropropane	50.0	48.8		ug/L		98	80 - 120
1,2,4-Trichlorobenzene	50.0	46.1		ug/L		92	74 - 126
1,2,4-Trimethylbenzene	50.0	45.9		ug/L		92	79 - 124
1,2-Dibromo-3-Chloropropane	50.0	46.8		ug/L		94	73 - 128
1,2-Dichlorobenzene	50.0	46.1		ug/L		92	80 - 120
1,2-Dichloroethane	50.0	45.7		ug/L		91	71 - 121
1,2-Dichloropropane	50.0	47.9		ug/L		96	78 - 120
1,3,5-Trimethylbenzene	50.0	46.1		ug/L		92	80 - 122
1,3-Dichlorobenzene	50.0	46.0		ug/L		92	80 - 120

Eurofins Denver

Page 13 of 20

LCS LCS

Client: Waste Management

Project/Site: 236|Altamont Landfill- LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-666335/4

Matrix: Water

Analysis Batch: 666335

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

Job ID: 280-195717-1

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,3-Dichloropropane	50.0	46.5		ug/L		93	77 - 122	
1,4-Dichlorobenzene	50.0	46.0		ug/L		92	80 - 120	
2,2-Dichloropropane	50.0	43.8		ug/L		88	75 - 131	
2-Butanone (MEK)	200	206		ug/L		103	58 - 135	
2-Chlorotoluene	50.0	45.7		ug/L		91	80 - 120	
2-Hexanone	200	205		ug/L		102	62 - 137	
4-Chlorotoluene	50.0	45.1		ug/L		90	80 - 120	
4-Isopropyltoluene	50.0	46.7		ug/L		93	80 - 122	
4-Methyl-2-pentanone (MIBK)	200	207		ug/L		104	66 - 135	
Acetone	200	191		ug/L		95	61 - 134	
Benzene	50.0	45.9		ug/L		92	80 - 120	
Bromobenzene	50.0	46.3		ug/L		93	80 - 120	
Bromoform	50.0	50.3		ug/L		101	79 - 138	
Bromomethane	50.0	56.7		ua/l		113	20 1/18	

Spike

Bromomethane 50.0 56.7 ug/L 113 29 - 148 Carbon disulfide 50.0 46.3 ug/L 93 70 - 121 46.9 Carbon tetrachloride 50.0 ug/L 94 79 - 127 Chlorobenzene 50.0 46.0 92 80 - 120 ug/L Chlorobromomethane 50.0 48.0 96 ug/L 80 - 123 98 Chlorodibromomethane 50.0 48.8 ug/L 80 - 125 Chloroethane 50.0 51.3 ug/L 103 56 - 141 Chloroform 50.0 46.6 ug/L 93 80 - 120 Chloromethane 50.0 52.0 ug/L 104 56 - 133 cis-1,2-Dichloroethene 50.0 46.6 ug/L 93 80 - 120 cis-1,3-Dichloropropene 50.0 49.0 98 76 - 129 ug/L 50.0 48.2 ug/L 96 Dibromomethane 80 - 120 Dichlorobromomethane 50.0 49.6 99 80 - 123 ug/L 50.0 52.6 105 47 - 135 Dichlorodifluoromethane ug/L Ethylbenzene 50.0 44.5 ug/L 89 80 - 120 Ethylene Dibromide 50.0 47.0 ug/L 94 80 - 120 Hexachlorobutadiene 50.0 46.7 ug/L 93 73 - 128 Isopropylbenzene 50.0 45.8 ug/L 92 78 - 122 Methyl tert-butyl ether 50.0 47.6 ug/L 95 80 - 120 Methylene Chloride 50.0 46.6 ug/L 93 78 - 120 Naphthalene 50.0 48.7 ug/L 97 60 - 124 n-Butylbenzene 50.0 46.1 ug/L 92 59 - 140 N-Propylbenzene 50.0 46.3 ug/L 93 80 - 123 93 sec-Butylbenzene 50.0 46.7 ug/L 80 - 12350.0 92 Styrene 46.0 ug/L 80 - 120 tert-Butylbenzene 50.0 45.5 ug/L 91 80 - 120 Tetrachloroethene 50.0 45.0 90 80 - 121 ug/L Toluene 50.0 46.5 ug/L 93 80 - 120 50.0 46.1 92 trans-1,2-Dichloroethene ug/L 79 - 121 trans-1,3-Dichloropropene 50.0 48.7 ug/L 97 80 - 12350.0 47.1 94 Trichloroethene ug/L 80 - 12099 Trichlorofluoromethane 50.0 49.4 ug/L 54 - 144 Vinyl acetate 100 106 ug/L 106 55 - 161 Vinyl chloride 50.0 52.3 ug/L 105 67 - 127Xylenes, Total 100 92.8 ug/L 93 80 - 120

Eurofins Denver

Client: Waste Management Job ID: 280-195717-1

Project/Site: 236|Altamont Landfill- LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-666335/4

Lab Sample ID: LCSD 280-666335/6

Matrix: Water

Analysis Batch: 666335

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		70 - 127
4-Bromofluorobenzene (Surr)	98		78 - 120
Dibromofluoromethane (Surr)	98		77 - 120
Toluene-d8 (Surr)	100		80 - 125

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 666335

Analysis Batch: 666335	0						0/ 🗖		555
	Spike		LCSD		_	0/5	%Rec		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	50.0	50.9		ug/L		102	80 - 124	5	20
1,1,1-Trichloroethane	50.0	47.9		ug/L		96	80 - 123	3	20
1,1,2,2-Tetrachloroethane	50.0	49.4		ug/L		99	74 - 123	0	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	46.1		ug/L		92	73 - 132	1	23
ne 1,1,2-Trichloroethane	50.0	47.4		ug/L		95	80 - 120	2	20
1,1-Dichloroethane	50.0	47.7		ug/L		95	78 - 121	3	20
1.1-Dichloroethene	50.0	46.4		ug/L		93	77 - 121	2	21
1,1-Dichloropropene	50.0	47.3		ug/L		95	77 - 123	2	20
1,2,3-Trichlorobenzene	50.0	48.5		ug/L		97	65 - 129	3	20
1,2,3-Trichloropropane	50.0	50.9		ug/L		102	80 - 120	4	20
1,2,4-Trichlorobenzene	50.0	48.1		ug/L		96	74 - 126	4	20
1,2,4-Trimethylbenzene	50.0	47.7		ug/L		95	79 - 124	4	20
1,2-Dibromo-3-Chloropropane	50.0	49.5		ug/L		99	73 - 128	6	21
1,2-Dichlorobenzene	50.0	47.2		ug/L		94	80 - 120	2	20
1,2-Dichloroethane	50.0	46.5		ug/L		93	71 - 121	2	20
1,2-Dichloropropane	50.0	49.2		ug/L		98	78 - 120	3	20
1,3,5-Trimethylbenzene	50.0	48.0		ug/L		96	80 - 122	4	20
1,3-Dichlorobenzene	50.0	47.5		ug/L		95	80 - 120	3	20
1,3-Dichloropropane	50.0	48.2		ug/L		96	77 - 122	4	20
1,4-Dichlorobenzene	50.0	47.9		ug/L		96	80 - 120	4	20
2,2-Dichloropropane	50.0	45.8		ug/L		92	75 - 131	5	22
2-Butanone (MEK)	200	209		ug/L		105	58 - 135	2	20
2-Chlorotoluene	50.0	47.4		ug/L		95	80 - 120	4	20
2-Hexanone	200	212		ug/L		106	62 - 137	3	21
4-Chlorotoluene	50.0	46.1		ug/L		92	80 - 120	2	20
4-Isopropyltoluene	50.0	47.8		ug/L		96	80 - 122	2	20
4-Methyl-2-pentanone (MIBK)	200	209		ug/L		105	66 - 135	1	20
Acetone	200	195		ug/L		97	61 - 134	2	21
Benzene	50.0	47.7		ug/L		95	80 - 120	4	20
Bromobenzene	50.0	47.0		ug/L		94	80 - 120	1	20
Bromoform	50.0	51.4		ug/L		103	79 - 138	2	20
Bromomethane	50.0	55.8		ug/L		112	29 - 148	1	40
Carbon disulfide	50.0	47.4		ug/L		95	70 - 121	2	20
Carbon tetrachloride	50.0	47.3		ug/L		95	79 - 127	1	20
Chlorobenzene	50.0	48.8		ug/L		98	80 - 120	6	20
Chlorobromomethane	50.0	49.1		ug/L		98	80 - 123	2	20
Chlorodibromomethane	50.0	50.6		ug/L		101	80 - 125	4	20
Chloroethane	50.0	51.2		ug/L		102	56 - 141	0	30

Eurofins Denver

Page 15 of 20

6

8

10

12

Client: Waste Management

Project/Site: 236|Altamont Landfill- LCRS

Job ID: 280-195717-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 280-666335/6

Matrix: Water

Analysis Batch: 666335

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloroform	50.0	47.7		ug/L		95	80 - 120	2	20	
Chloromethane	50.0	50.8		ug/L		102	56 - 133	2	20	
cis-1,2-Dichloroethene	50.0	48.0		ug/L		96	80 - 120	3	20	
cis-1,3-Dichloropropene	50.0	51.2		ug/L		102	76 - 129	5	20	
Dibromomethane	50.0	47.7		ug/L		95	80 - 120	1	20	
Dichlorobromomethane	50.0	50.9		ug/L		102	80 - 123	2	20	
Dichlorodifluoromethane	50.0	51.4		ug/L		103	47 - 135	2	21	
Ethylbenzene	50.0	46.8		ug/L		94	80 - 120	5	20	
Ethylene Dibromide	50.0	49.1		ug/L		98	80 - 120	4	20	
Hexachlorobutadiene	50.0	48.5		ug/L		97	73 - 128	4	20	
Isopropylbenzene	50.0	47.4		ug/L		95	78 - 122	3	20	
Methyl tert-butyl ether	50.0	48.8		ug/L		98	80 - 120	2	20	
Methylene Chloride	50.0	47.7		ug/L		95	78 - 120	2	20	
Naphthalene	50.0	50.3		ug/L		101	60 - 124	3	21	
n-Butylbenzene	50.0	48.0		ug/L		96	59 - 140	4	20	
N-Propylbenzene	50.0	47.9		ug/L		96	80 - 123	3	20	
sec-Butylbenzene	50.0	48.4		ug/L		97	80 - 123	3	20	
Styrene	50.0	48.7		ug/L		97	80 - 120	6	20	
tert-Butylbenzene	50.0	47.8		ug/L		96	80 - 120	5	20	
Tetrachloroethene	50.0	47.5		ug/L		95	80 - 121	5	20	
Toluene	50.0	48.1		ug/L		96	80 - 120	3	20	
trans-1,2-Dichloroethene	50.0	47.1		ug/L		94	79 - 121	2	20	
trans-1,3-Dichloropropene	50.0	50.2		ug/L		100	80 - 123	3	20	
Trichloroethene	50.0	49.3		ug/L		99	80 - 120	5	20	
Trichlorofluoromethane	50.0	49.0		ug/L		98	54 - 144	1	28	
Vinyl acetate	100	96.8		ug/L		97	55 - 161	9	23	
Vinyl chloride	50.0	51.6		ug/L		103	67 - 127	1	25	
Xylenes, Total	100	97.3		ug/L		97	80 - 120	5	20	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 127
4-Bromofluorobenzene (Surr)	98		78 - 120
Dibromofluoromethane (Surr)	100		77 - 120
Toluene-d8 (Surr)	99		80 - 125

Eurofins Denver

QC Association Summary

Client: Waste Management

Job ID: 280-195717-1 Project/Site: 236|Altamont Landfill- LCRS

GC/MS VOA

Analysis Batch: 666335

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-195717-1	LCRS	Total/NA	Water	8260B	
MB 280-666335/9	Method Blank	Total/NA	Water	8260B	
LCS 280-666335/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 280-666335/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Lab Chronicle

Client: Waste Management Job ID: 280-195717-1

Project/Site: 236|Altamont Landfill- LCRS

Lab Sample ID: 280-195717-1 **Client Sample ID: LCRS** Date Collected: 08/22/24 11:20

Matrix: Water

Date Received: 08/23/24 09:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	5 mL	5 mL	666335	09/05/24 16:56	TAW	EET DEN

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Chain of Custody Record

Eurofins Denver						;	;	
4955 Yarrow Street Arvada, CO 80002	Chain of (ain of Custody Record	cord				💸 eurotins	Environment Testing
			Lab PM:	Carrier	Carrier Tracking No(s):	00.0	COC No:	
-	- 1		Janice S			28(280-142245-39001.1	01.1
Client Contact: Ms. Fierma Nourot	Phone:		E-Mail: Janice.Collins@et.eurofinsus.com		State of Origin:	Pag Pa	Page: Page 1 of 1	
Company: Waste Management	PWSID:		Ana	Analysis Requested	pə	qor	;# c	
Address: 10840 Altamont Pass Road	Due Date Requested:					Pre A	Preservation Codes: A - HCL	es:
City: Livermore	TAT Requested (days):							
State, Zip: CA, 94550	Compliance Project: A Yes A No							
Phone:	Po #: Purchase Order Requested							
Email: TNourot@wm.eem A.A. P. J. C. A.M. C.C.	WO#:	ON 10	Aprileon Major Strategy			s		
	Project #: 28002302	Sa _M a	10 sa			ıənistr		
Site: California	:#MOSS	dmes	A) as				Other:	
Samula Idantification	Sample	Sample Matrix ed Warner Type Saning Cacomp, Caromb, Caromb, Caromb, Caromb, Caromb Matrix	ASM ATIONS) L			redmuM lsto	<u></u>	Special Institute digns (M) 460
Campre definitions	,	tion Code:	X		-	×	Coccia	
LCRS	7 0211 1/21/8	Q Water	×					
(OBS		Water						
889		Water						
- Och		Water						
S-140		Water		- =				
944		Water						
				280	280-195717 Chain	Chain of Custody		
					- -	cal country		
			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	se may be assess	ed if samples a	re retained I	longer than 1	month)
Non-Hazard Flammable Skin Irritant Poison B Deliverable Requested: I, II, III, IV, Other (specify)	Unknown	Radiological	Special Instructions/QC Requirements:	Dispos Requirements:	Disposal By Lab	Archive For DEC	For Def	Months
The section of the se				Г	Mothod of Chiomont			
Enipty Nt Neiligalan by. Relination that hy:		- Managar	Inne.		Detection			Jacamo
Reinquished by:	P 7 2 Date/Time:	Company	Received by		Date/Time	123/24	0160	EET DEN
D-18	į							funding)
	Date/Time:	Company	Received by:		Date/Time:	.e.		Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No			Cooler Temperature(s) °C and Other Remarks:	and Other Remarks:				
			1	1				Ver: 04/02/2024

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-195717-1

Login Number: 195717 List Source: Eurofins Denver

List Number: 1

Creator: Roehsner, Karen P

Cleator. Roensiler, Railen P		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	Refer to job narrative for details
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	False	Refer to job narrative for details
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins Denver

9/16/2024

12

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Sonam Kaur Waste Management 10840 Altamont Pass Road Livermore, California 94550

Generated 12/4/2024 10:30:09 AM

JOB DESCRIPTION

236|Altamont Landfill - LCRS LCRS for 8260B

JOB NUMBER

280-199842-1

Eurofins Denver 4955 Yarrow Street Arvada CO 80002

Eurofins Denver

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Generated 12/4/2024 10:30:09 AM

Authorized for release by Janice Collins, Project Manager Janice.Collins@et.eurofinsus.com (303)736-0100

anice S. Collin

Client: Waste Management Project/Site: 236|Altamont Landfill - LCRS Laboratory Job ID: 280-199842-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	7
Method Summary	8
Sample Summary	9
Client Sample Results	10
Surrogate Summary	12
QC Sample Results	13
QC Association	21
Chronicle	22
Chain of Custody	23
Receipt Checklists	24

4

5

6

0

10

10

13

Definitions/Glossary

Client: Waste Management Job ID: 280-199842-1

Project/Site: 236|Altamont Landfill - LCRS

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

F1 MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Denver

3

Page 4 of 24 12/4/2024

Case Narrative

Client: Waste Management

Project: 236|Altamont Landfill - LCRS

Job ID: 280-199842-1 Eurofins Denver

Job Narrative 280-199842-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.
- Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some
 cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the
 reporting limits are adjusted relative to the dilution required.

This report may include reporting limits (RLs) lower than Eurofins Environmental Testing standard reporting limits. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/20/2024 9:10 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.3°C.

GC/MS VOA

Method 8260B: The method requirement for no headspace was not met. The following volatile sample was analyzed with significant headspace in the sample container(s): LCRS (280-199842-1). Significant headspace is defined as a bubble greater than 6 mm in diameter.

Method 8260B: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed outside the 7-day holding time specified for unpreserved samples but within the 14-day holding time specified for preserved samples: LCRS (280-199842-1). The affected sample has a reported pH of 7.

Method 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 280-677129 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits. The associated samples are: (280-199987-B-4 MS) and (280-199987-B-4 MSD).

Method 8260B: The following sample was diluted due to the foamy nature of the sample matrix: LCRS (280-199842-1). Elevated reporting limits (RLs) are provided.

Method 8260B: The following compounds were outside control limits of 35%D in the continuing calibration verification (CCV) associated with batch 280-677129: Bromomethane (-48.3%D). This compound is considered a poor performer and has recovered within LCS/LCSD limits. The following samples are affected: LCRS (280-199842-1) and (CCV 280-677129/2).

Method 8260B: Reporting Limit - Estimated; Outside Calibration Range: The reporting limit provided for the following analyte(s) falls below the laboratory's lowest calibration standard: 1,1,2-Trichloro-1,2,2-trifluoroethane (0.73 ug/L requested RL, 2.0 ug/L lab method RL), 1,2,3-trichloropropane (1.0 ug/L requested RL, 2.50 ug/L lab method RL), 1,2-dibromo-3-chloropropane (1.0 ug/L requested RL, 5.0 ug/L lab method RL), 1,4-dichlorobenzene (0.50 ug/L requested RL, 1.0 ug/L lab method RL), and vinyl chloride (0.50 ug/L requested RL, 1.0 ug/L lab method RL). Results reported below the lowest calibration standard are estimated. The associated sample is impacted: LCRS (280-199842-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Comments

Eurofins Denver

2d

Job ID: 280-199842-1

12

13

Case Narrative

Client: Waste Management

Job ID: 280-199842-1 Project: 236|Altamont Landfill - LCRS

Job ID: 280-199842-1 (Continued)

Eurofins Denver

For samples requiring analysis at a dilution, the dilution factor has been multiplied by the Method Detection Limit (MDL) for each analyte and evaluated versus the project-specific reporting limit (PSRL). If the obtained value is below the PSRL, then the PSRL is preserved as the reporting limit for the diluted result, otherwise, the obtained value becomes the reporting limit. This is done in order to maintain the PSRL to meet permit requirements at the request of the client and to report the lowest possible RL for each

Eurofins Denver

Page 6 of 24 12/4/2024

Detection Summary

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

Client Sample ID: LCRS

Lab Sample ID: 280-199842-1

Job ID: 280-199842-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,2,4-Trimethylbenzene	0.92	0.75	0.75	ug/L		8260B	Total/NA
1,4-Dichlorobenzene	5.0	1.9	1.9	ug/L	5	8260B	Total/NA
2-Butanone (MEK)	43 J	50	23	ug/L	5	8260B	Total/NA
Acetone	110	50	33	ug/L	5	8260B	Total/NA
Carbon disulfide	15	5.0	1.3	ug/L	5	8260B	Total/NA
Ethylbenzene	2.7	0.72	0.72	ug/L	5	8260B	Total/NA
Toluene	2.5	1.6	1.6	ug/L	5	8260B	Total/NA
Xylenes, Total	3.8	0.57	0.57	ug/L	5	8260B	Total/NA

- 5

4

7

10

11

13

4 /

Method Summary

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

MethodMethod DescriptionProtocolLaboratory8260BVolatile Organic Compounds (GC/MS)SW846EET DEN5030BPurge and TrapSW846EET DEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

5

Job ID: 280-199842-1

3

4

5

9

10

4.0

13

Sample Summary

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 280-199842-1
 LCRS
 Water
 11/19/24 11:30
 11/20/24 09:10

Job ID: 280-199842-1

2

7

9

10

40

13

Client Sample Results

Client: Waste Management Job ID: 280-199842-1

Project/Site: 236|Altamont Landfill - LCRS

Client Sample ID: LCRS

Method: SW846 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 280-199842-1

Result	Qualifier	DI.	MADI	11-4:4		Duamanal	A	
	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
ND		0.78	0.78	-			12/03/24 15:34	
				-				
				-				Ę
				_				į.
								į.
				_				ţ
				_				Ę
				-				ţ
								5
				-				5
				-				5
				-				5
				-				5
								5
				-				Ę
				_				Ę
	J			-				Ę
ND		1.7		-			12/03/24 15:34	Ę
ND		50						
ND		1.1		-			12/03/24 15:34	Ę
ND		1.0		-				Ę
ND		50					12/03/24 15:34	5
110		50		-			12/03/24 15:34	5
ND		0.72		-			12/03/24 15:34	5
ND		1.0					12/03/24 15:34	
ND		1.2					12/03/24 15:34	5
ND		12	12	ug/L			12/03/24 15:34	5
15		5.0	1.3	ug/L			12/03/24 15:34	5
ND		1.1		-			12/03/24 15:34	5
ND		0.50	0.46	ug/L			12/03/24 15:34	5
ND		2.0					12/03/24 15:34	5
ND		1.4	1.4	ug/L			12/03/24 15:34	5
ND		3.2	3.2	ug/L			12/03/24 15:34	5
ND		1.8	1.8	ug/L			12/03/24 15:34	5
ND		1.1	1.1	ug/L			12/03/24 15:34	5
ND		1.6	1.6	ug/L			12/03/24 15:34	5
ND		0.78	0.78	ug/L			12/03/24 15:34	5
ND		1.7	1.7	ug/L			12/03/24 15:34	5
ND		0.94	0.94	ug/L			12/03/24 15:34	5
ND		1.5	1.5	ug/L			12/03/24 15:34	5
2.7		0.72	0.72	ug/L			12/03/24 15:34	
ND		0.92	0.92	ug/L			12/03/24 15:34	5
ND		2.6	2.6	ug/L			12/03/24 15:34	5
	ND N	ND N	ND 2.0 ND 1.1 ND 3.6 ND 1.4 ND 1.1 ND 1.2 ND 0.95 ND 6.0 ND 1.4 ND 2.9 0.92 0.75 ND 2.1 ND 0.61 ND 1.4 ND 1.2 ND 0.61 ND 1.7 ND 1.0 ND 1.7 ND 1.7 ND 50 ND 1.1 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.2 ND 1.0 ND 1.1 ND 1.2 ND 1.1 ND 0.50 ND 1.4 ND 1.4 ND 1.5 2.7 0.72	ND	ND 2.0 2.0 ug/L ND 1.1 1.1 ug/L ND 3.6 3.6 ug/L ND 1.4 1.4 ug/L ND 1.1 1.1 ug/L ND 1.1 1.1 ug/L ND 1.2 1.2 ug/L ND 0.95 0.95 ug/L ND 0.95 0.95 ug/L ND 0.90 0.95 ug/L ND 1.4 1.4 ug/L ND 1.4 1.4 ug/L ND 2.9 2.9 ug/L ND 2.9 2.9 ug/L ND 0.72 0.72 ug/L ND 1.4 1.4 ug/L ND 1.2 1.2 ug/L ND 0.72 0.72 ug/L ND 1.4 1.4 ug/L ND 1.7 1.7 ug/L ND 0.61 0.61 ug/L ND 1.0 0.87 ug/L ND 1.0 0.84 ug/L ND 1.7 1.7 ug/L ND 0.84 0.84 ug/L ND 1.1 1.1 ug/L ND 1.1 1.1 ug/L ND 1.1 1.1 ug/L ND 1.0 0.93 ug/L ND 1.1 1.1 ug/L ND 1.0 0.93 ug/L ND 1.1 1.1 ug/L ND 1.0 0.93 ug/L ND 1.1 1.1 ug/L ND 1.0 0.95 ug/L ND 1.1 1.1 ug/L ND 1.2 1.2 ug/L ND 1.3 ug/L ND 1.4 1.4 ug/L ND 1.5 0.3 ug/L ND 1.1 1.1 ug/L ND 1.1 1.1 ug/L ND 1.1 1.1 ug/L ND 1.2 1.2 ug/L ND 1.3 ug/L ND 1.1 1.1 ug/L ND 1.1 1.1 ug/L ND 1.2 1.2 ug/L ND 1.3 ug/L ND 1.1 1.1 ug/L ND 1.1 1.1 ug/L ND 1.2 1.2 ug/L ND 1.3 ug/L ND 1.1 1.1 ug/L ND 0.95 ug/L ND 1.1 1.1 ug/L ND 0.95 ug/L ND 1.1 1.1 ug/L ND 0.95 ug/L ND 1.1 1.1 ug/L ND 0.96 ug/L ND 1.1 1.1 ug/L ND 0.99 ug/L ND 1.5 1.5 ug/L ND 0.99 ug/L	ND	ND	ND 2.0 2.0 ug/L 12/03/24 15:34 ND 1.1 1.1 ug/L 12/03/24 15:34 ND 1.1 1.1 ug/L 12/03/24 15:34 ND 3.6 3.6 ug/L 12/03/24 15:34 ND 1.4 1.4 ug/L 12/03/24 15:34 ND 1.1 1.1 ug/L 12/03/24 15:34 ND 1.1 1.1 ug/L 12/03/24 15:34 ND 1.2 1.2 ug/L 12/03/24 15:34 ND 0.95 0.95 ug/L 12/03/24 15:34 ND 0.95 0.95 ug/L 12/03/24 15:34 ND 0.95 0.95 ug/L 12/03/24 15:34 ND 2.9 2.9 ug/L 12/03/24 15:34 ND 2.9 2.9 ug/L 12/03/24 15:34 ND 2.9 2.9 ug/L 12/03/24 15:34 ND 2.1 2.1 ug/L 12/03/24 15:34 ND 2.1 2.1 ug/L 12/03/24 15:34 ND 2.1 2.1 ug/L 12/03/24 15:34 ND 0.72 0.72 ug/L 12/03/24 15:34 ND 1.4 1.4 ug/L 12/03/24 15:34 ND 1.4 1.4 ug/L 12/03/24 15:34 ND 1.2 1.2 ug/L 12/03/24 15:34 ND 1.2 1.2 ug/L 12/03/24 15:34 ND 1.1 1.2 1.2 ug/L 12/03/24 15:34 ND 1.1 1.2 1.2 ug/L 12/03/24 15:34 ND 1.1 1.0 0.81 ug/L 12/03/24 15:34 ND 1.1 1.0 0.81 ug/L 12/03/24 15:34 ND 1.0 0.81 ug/L 12/03/24 15:34 ND 1.0 0.84 ug/L 12/03/24 15:34 ND 1.0 0.84 ug/L 12/03/24 15:34 ND 1.0 0.84 ug/L 12/03/24 15:34 ND 1.1 0.0 0.87 ug/L 12/03/24 15:34 ND 1.1 0.0 0.81 ug/L 12/03/24 15:34 ND 1.1 0.0 0.81 ug/L 12/03/24 15:34 ND 1.1 0.0 0.81 ug/L 12/03/24 15:34 ND 1.7 1.7 ug/L 12/03/24 15:34 ND 1.1 1.1 ug/L 12/03/24 15:34 ND 1.0 0.93 ug/L 12/03/24 15:34 ND 1.1 1.1 ug/L 12/03/24 15:34 ND 1.2 1.2 ug/L 12/03/24 15:34 ND 1.1 1.1 ug/L 12/03/24 15:34 ND 1.2 2 ug/L 12/03/24 15:34 ND 1.1 1.1 ug

Eurofins Denver

Page 10 of 24

Client Sample Results

Client: Waste Management Job ID: 280-199842-1

Project/Site: 236|Altamont Landfill - LCRS

Client Sample ID: LCRS

Trichlorofluoromethane

Vinyl acetate

Vinyl chloride

Xylenes, Total

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ND

ND

ND

3.8

						Matrix	: Water
Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND -	1.3	1.3	ug/L			12/03/24 15:34	5
ND	5.0	4.7	ug/L			12/03/24 15:34	5
ND	5.0	5.0	ug/L			12/03/24 15:34	5
ND	1.2	1.2	ug/L			12/03/24 15:34	5
ND	1.0	0.92	ug/L			12/03/24 15:34	5
ND	1.0	1.0	ug/L			12/03/24 15:34	5
ND	0.63	0.63	ug/L			12/03/24 15:34	5
ND	1.0	0.89	ug/L			12/03/24 15:34	5
ND	2.0	2.0	ug/L			12/03/24 15:34	5
2.5	1.6	1.6	ug/L			12/03/24 15:34	5
ND	1.8	1.8	ug/L			12/03/24 15:34	5
ND	0.72	0.72	ug/L			12/03/24 15:34	5
ND	1.5	1.5	ug/L			12/03/24 15:34	5
	ND N	ND 1.3 ND 5.0 ND 5.0 ND 1.2 ND 1.0 ND 1.0 ND 0.63 ND 1.0 ND 2.0 2.5 1.6 ND 1.8 ND 0.72	ND 1.3 1.3 ND 5.0 4.7 ND 5.0 5.0 ND 1.2 1.2 ND 1.0 0.92 ND 1.0 1.0 ND 0.63 0.63 ND 1.0 0.89 ND 2.0 2.0 2.5 1.6 1.6 ND 1.8 1.8 ND 0.72 0.72	ND 1.3 1.3 ug/L ND 5.0 4.7 ug/L ND 5.0 5.0 ug/L ND 1.2 1.2 ug/L ND 1.0 0.92 ug/L ND 1.0 1.0 ug/L ND 0.63 0.63 ug/L ND 1.0 0.89 ug/L ND 2.0 2.0 ug/L ND 1.6 1.6 ug/L ND 1.8 1.8 ug/L ND 0.72 0.72 ug/L	ND 1.3 1.3 ug/L ND 5.0 4.7 ug/L ND 5.0 5.0 ug/L ND 1.2 1.2 ug/L ND 1.0 0.92 ug/L ND 1.0 1.0 ug/L ND 0.63 0.63 ug/L ND 1.0 0.89 ug/L ND 2.0 2.0 ug/L ND 1.6 1.6 ug/L ND 1.8 1.8 ug/L ND 0.72 0.72 ug/L	ND 1.3 1.3 ug/L ND 5.0 4.7 ug/L ND 5.0 5.0 ug/L ND 1.2 1.2 ug/L ND 1.0 0.92 ug/L ND 1.0 1.0 ug/L ND 0.63 0.63 ug/L ND 1.0 0.89 ug/L ND 2.0 2.0 ug/L ND 1.6 1.6 ug/L ND 1.8 1.8 ug/L ND 0.72 0.72 ug/L	Result ND Qualifier RL MDL Unit D Prepared Analyzed ND 1.3 1.3 ug/L 12/03/24 15:34 ND 5.0 4.7 ug/L 12/03/24 15:34 ND 5.0 5.0 ug/L 12/03/24 15:34 ND 1.2 1.2 ug/L 12/03/24 15:34 ND 1.0 0.92 ug/L 12/03/24 15:34 ND 1.0 1.0 ug/L 12/03/24 15:34 ND 0.63 0.63 ug/L 12/03/24 15:34 ND 1.0 0.89 ug/L 12/03/24 15:34 ND 2.0 2.0 ug/L 12/03/24 15:34 ND 2.0 2.0 ug/L 12/03/24 15:34 ND 1.8 1.8 ug/L 12/03/24 15:34 ND 1.8 1.8 ug/L 12/03/24 15:34 ND 0.72 0.72 ug/L 12/03/24 15:34

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	87		70 - 127		12/03/24 15:34	5
	4-Bromofluorobenzene (Surr)	95		78 - 120		12/03/24 15:34	5
	Dibromofluoromethane (Surr)	100		77 - 120		12/03/24 15:34	5
İ	Toluene-d8 (Surr)	96		80 - 125		12/03/24 15:34	5

1.0

10

1.1

0.57

0.99 ug/L

1.8 ug/L

1.1 ug/L

0.57 ug/L

9

3

4

Lab Sample ID: 280-199842-1

12/03/24 15:34

12/03/24 15:34

12/03/24 15:34

12/03/24 15:34

6

8

9

11

5

5

13

14

Surrogate Summary

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(70-127)	(78-120)	(77-120)	(80-125)
280-199842-1	LCRS	87	95	100	96
280-199987-B-4 MS	Matrix Spike	89	97	102	96
280-199987-B-4 MSD	Matrix Spike Duplicate	87	96	99	94
LCS 280-677129/4	Lab Control Sample	88	96	98	94
LCSD 280-677129/5	Lab Control Sample Dup	89	97	100	97
MB 280-677129/9	Method Blank	89	95	101	95
Currogoto Logond					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

4

Job ID: 280-199842-1

4

6

0

9

11

14

Client: Waste Management Job ID: 280-199842-1

Project/Site: 236|Altamont Landfill - LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 280-677129/9

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Method Blank

Prep Type: Total/NA

		MB							
Analyte		Qualifier	RL _	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			12/03/24 09:45	1
1,1,1-Trichloroethane	ND		0.50		ug/L			12/03/24 09:45	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			12/03/24 09:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.73		ug/L			12/03/24 09:45	1
1,1,2-Trichloroethane	ND		0.50	0.27	-			12/03/24 09:45	1
1,1-Dichloroethane	ND		0.50		ug/L			12/03/24 09:45	1
1,1-Dichloroethene	ND		0.50	0.23	ug/L			12/03/24 09:45	1
1,1-Dichloropropene	ND		0.50		ug/L			12/03/24 09:45	1
1,2,3-Trichlorobenzene	ND		1.2		ug/L			12/03/24 09:45	1
1,2,3-Trichloropropane	ND		1.0		ug/L			12/03/24 09:45	1
1,2,4-Trichlorobenzene	ND		1.0	0.58	ug/L			12/03/24 09:45	1
1,2,4-Trimethylbenzene	ND		0.50	0.15	ug/L			12/03/24 09:45	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.42	ug/L			12/03/24 09:45	1
1,2-Dichlorobenzene	ND		0.50	0.14	ug/L			12/03/24 09:45	1
1,2-Dichloroethane	ND		0.50	0.28	ug/L			12/03/24 09:45	1
1,2-Dichloropropane	ND		0.50	0.24	ug/L			12/03/24 09:45	1
1,3,5-Trimethylbenzene	ND		0.50	0.12	ug/L			12/03/24 09:45	1
1,3-Dichlorobenzene	ND		0.50	0.33	ug/L			12/03/24 09:45	1
1,3-Dichloropropane	ND		1.0	0.17	ug/L			12/03/24 09:45	1
1,4-Dichlorobenzene	ND		0.50	0.39	ug/L			12/03/24 09:45	1
2,2-Dichloropropane	ND		0.50	0.17	ug/L			12/03/24 09:45	1
2-Butanone (MEK)	ND		50	4.6	ug/L			12/03/24 09:45	1
2-Chlorotoluene	ND		0.50	0.34	ug/L			12/03/24 09:45	1
2-Hexanone	ND		50	0.81	ug/L			12/03/24 09:45	1
4-Chlorotoluene	ND		0.50	0.21	ug/L			12/03/24 09:45	1
4-Isopropyltoluene	ND		1.0	0.19	ug/L			12/03/24 09:45	1
4-Methyl-2-pentanone (MIBK)	ND		50	0.98	ug/L			12/03/24 09:45	1
Acetone	ND		50	6.6	ug/L			12/03/24 09:45	1
Benzene	ND		0.50	0.14	ug/L			12/03/24 09:45	1
Bromobenzene	ND		1.0	0.19	ug/L			12/03/24 09:45	1
Bromoform	ND		1.0	0.25	ug/L			12/03/24 09:45	1
Bromomethane	ND		2.4	2.4	ug/L			12/03/24 09:45	1
Carbon disulfide	ND		5.0	0.26	ug/L			12/03/24 09:45	1
Carbon tetrachloride	ND		0.50	0.23	ug/L			12/03/24 09:45	1
Chlorobenzene	ND		0.50	0.092	ug/L			12/03/24 09:45	1
Chlorobromomethane	ND		1.0	0.40	ug/L			12/03/24 09:45	1
Chlorodibromomethane	ND		0.50	0.28	ug/L			12/03/24 09:45	1
Chloroethane	ND		1.0	0.64	ug/L			12/03/24 09:45	1
Chloroform	ND		1.0	0.36	ug/L			12/03/24 09:45	1
Chloromethane	ND		1.0	0.23	ug/L			12/03/24 09:45	1
cis-1,2-Dichloroethene	ND		0.50	0.32	ug/L			12/03/24 09:45	1
cis-1,3-Dichloropropene	ND		0.50	0.16	ug/L			12/03/24 09:45	1
Dibromomethane	ND		0.50	0.34	ug/L			12/03/24 09:45	1
Dichlorobromomethane	ND		0.50		ug/L			12/03/24 09:45	1
Dichlorodifluoromethane	ND		0.50		ug/L			12/03/24 09:45	1
Ethylbenzene	ND		0.50		ug/L			12/03/24 09:45	1
Ethylene Dibromide	ND		0.50		ug/L			12/03/24 09:45	1
Hexachlorobutadiene	ND		1.0		ug/L			12/03/24 09:45	1

Eurofins Denver

12/4/2024

Page 13 of 24

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 280-677129/9

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 280-199842-1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		0.50	0.16	ug/L			12/03/24 09:45	1
Methyl tert-butyl ether	ND		0.50	0.25	ug/L			12/03/24 09:45	1
Methylene Chloride	ND		5.0	0.94	ug/L			12/03/24 09:45	1
Naphthalene	ND		1.0	0.99	ug/L			12/03/24 09:45	1
n-Butylbenzene	ND		1.0	0.23	ug/L			12/03/24 09:45	1
N-Propylbenzene	ND		1.0	0.18	ug/L			12/03/24 09:45	1
sec-Butylbenzene	ND		1.0	0.20	ug/L			12/03/24 09:45	1
Styrene	ND		0.50	0.13	ug/L			12/03/24 09:45	1
tert-Butylbenzene	ND		1.0	0.18	ug/L			12/03/24 09:45	1
Tetrachloroethene	ND		0.50	0.40	ug/L			12/03/24 09:45	1
Toluene	ND		0.50	0.32	ug/L			12/03/24 09:45	1
trans-1,2-Dichloroethene	ND		0.50	0.37	ug/L			12/03/24 09:45	1
trans-1,3-Dichloropropene	ND		0.50	0.14	ug/L			12/03/24 09:45	1
Trichloroethene	ND		0.50	0.30	ug/L			12/03/24 09:45	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			12/03/24 09:45	1
Vinyl acetate	ND		10	0.36	ug/L			12/03/24 09:45	1
Vinyl chloride	ND		0.50	0.23	ug/L			12/03/24 09:45	1
Xylenes, Total	ND		0.50	0.11	ug/L			12/03/24 09:45	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	l Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	70 - 127	12/03/24 09	:45 1
4-Bromofluorobenzene (Surr)	95	78 - 120	12/03/24 09	:45 1
Dibromofluoromethane (Surr)	101	77 - 120	12/03/24 09	:45 1
Toluene-d8 (Surr)	95	80 - 125	12/03/24 09	:45 1

Lab Sample ID: LCS 280-677129/4

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	51.6		ug/L		103	80 - 124	
1,1,1-Trichloroethane	50.0	50.4		ug/L		101	80 - 123	
1,1,2,2-Tetrachloroethane	50.0	47.9		ug/L		96	74 - 123	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	46.1		ug/L		92	73 - 132	
ne								
1,1,2-Trichloroethane	50.0	51.5		ug/L		103	80 - 120	
1,1-Dichloroethane	50.0	49.0		ug/L		98	78 - 121	
1,1-Dichloroethene	50.0	47.5		ug/L		95	77 - 121	
1,1-Dichloropropene	50.0	48.0		ug/L		96	77 - 123	
1,2,3-Trichlorobenzene	50.0	52.0		ug/L		104	65 - 129	
1,2,3-Trichloropropane	50.0	48.6		ug/L		97	80 - 120	
1,2,4-Trichlorobenzene	50.0	53.3		ug/L		107	74 - 126	
1,2,4-Trimethylbenzene	50.0	49.2		ug/L		98	79 - 124	
1,2-Dibromo-3-Chloropropane	50.0	54.4		ug/L		109	73 - 128	
1,2-Dichlorobenzene	50.0	48.9		ug/L		98	80 - 120	
1,2-Dichloroethane	50.0	44.1		ug/L		88	71 - 121	
1,2-Dichloropropane	50.0	48.5		ug/L		97	78 - 120	
1,3,5-Trimethylbenzene	50.0	49.0		ug/L		98	80 - 122	
1,3-Dichlorobenzene	50.0	47.4		ug/L		95	80 - 120	

Eurofins Denver

Page 14 of 24

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

Job ID: 280-199842-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-677129/4

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyte	Spike Added		LCS Qualifier Unit	D %Rec	%Rec Limits
1,3-Dichloropropane	50.0	47.9	ug/L	96	77 - 122
1,4-Dichlorobenzene	50.0	48.1	ug/L	96	80 - 120
2,2-Dichloropropane	50.0	52.3	ug/L	105	75 - 131
2-Butanone (MEK)	200	208	ug/L	104	58 - 135
2-Chlorotoluene	50.0	49.0	ug/L	98	80 - 120
2-Hexanone	200	196	ug/L	98	62 - 137
4-Chlorotoluene	50.0	49.3	ug/L	99	80 - 120
4-Isopropyltoluene	50.0	50.3	ug/L	101	80 - 122
4-Methyl-2-pentanone (MIBK)	200	208	ug/L	104	66 - 135
Acetone	200	191	ug/L	95	61 - 134
Benzene	50.0	49.8	ug/L	100	80 - 120
Bromobenzene	50.0	49.1	ug/L	98	80 - 120
Bromoform	50.0	54.8	ug/L	110	79 - 138
Bromomethane	50.0	25.9	ug/L	52	29 - 148
Carbon disulfide	50.0	47.6	ug/L	95	70 - 121
Carbon tetrachloride	50.0	50.6	ug/L	101	79 - 127
Chlorobenzene	50.0	46.9	ug/L	94	80 - 120
Chlorobromomethane	50.0	48.9	ug/L	98	80 - 123
Chlorodibromomethane	50.0	52.4	ug/L	105	80 - 125
Chloroethane	50.0	52.5	ug/L	105	56 - 141
Chloroform	50.0	47.8	ug/L	96	80 - 120
Chloromethane	50.0	45.4	ug/L	91	56 - 133
cis-1,2-Dichloroethene	50.0	50.1	ug/L	100	80 - 120
cis-1,3-Dichloropropene	50.0	47.1	ug/L	94	76 - 129
Dibromomethane	50.0	46.5	ug/L	93	80 - 120
Dichlorobromomethane	50.0	48.6	ug/L	97	80 - 123
Dichlorodifluoromethane	50.0	44.1	ug/L	88	47 - 135
Ethylbenzene	50.0	48.6	ug/L	97	80 - 120
Ethylene Dibromide	50.0	46.9	ug/L	94	80 - 120
Hexachlorobutadiene	50.0	52.1	ug/L	104	73 - 128
Isopropylbenzene	50.0	49.3	ug/L	99	78 - 122
Methyl tert-butyl ether	50.0	50.3	ug/L	101	80 - 120
Methylene Chloride	50.0	47.8	ug/L	96	78 - 120
Naphthalene	50.0	52.8	ug/L	106	60 - 124
n-Butylbenzene	50.0	48.5	ug/L	97	59 - 140
N-Propylbenzene	50.0	49.9	ug/L	100	80 - 123
sec-Butylbenzene	50.0	50.5	ug/L	101	80 - 123
Styrene	50.0	49.9	ug/L	100	80 - 120
tert-Butylbenzene	50.0	49.9	ug/L	100	80 - 120
Tetrachloroethene	50.0	48.4	ug/L	97	80 - 121
Toluene	50.0	51.1	ug/L	102	80 - 120
trans-1,2-Dichloroethene	50.0	50.0	ug/L	100	79 - 121
trans-1,3-Dichloropropene	50.0	49.8	ug/L	100	80 - 123
Trichloroethene	50.0	51.3	ug/L	103	80 - 120
Trichlorofluoromethane	50.0	49.9	ug/L	100	54 - 144
Vinyl acetate	100	139	ug/L	139	55 - 161
Vinyl chloride	50.0	52.7	ug/L	105	67 - 127
Xylenes, Total	100	96.3	ug/L	96	80 - 120

Eurofins Denver

Client: Waste Management Job ID: 280-199842-1

Project/Site: 236|Altamont Landfill - LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-677129/4

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		70 - 127
4-Bromofluorobenzene (Surr)	96		78 - 120
Dibromofluoromethane (Surr)	98		77 - 120
Toluene-d8 (Surr)	94		80 - 125

Lab Sample ID: LCSD 280-677129/5

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 677129	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	50.0	51.8		ug/L		104	80 - 124	0	20
1,1,1-Trichloroethane	50.0	49.6		ug/L		99	80 - 123	2	20
1,1,2,2-Tetrachloroethane	50.0	47.8		ug/L		96	74 - 123	0	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	45.3		ug/L		91	73 - 132	2	23
ne									
1,1,2-Trichloroethane	50.0	50.9		ug/L		102	80 - 120	1	20
1,1-Dichloroethane	50.0	48.2		ug/L		96	78 - 121	1	20
1,1-Dichloroethene	50.0	46.1		ug/L		92	77 - 121	3	21
1,1-Dichloropropene	50.0	46.9		ug/L		94	77 - 123	2	20
1,2,3-Trichlorobenzene	50.0	52.1		ug/L		104	65 - 129	0	20
1,2,3-Trichloropropane	50.0	48.6		ug/L		97	80 - 120	0	20
1,2,4-Trichlorobenzene	50.0	52.1		ug/L		104	74 - 126	2	20
1,2,4-Trimethylbenzene	50.0	47.5		ug/L		95	79 - 124	3	20
1,2-Dibromo-3-Chloropropane	50.0	54.0		ug/L		108	73 - 128	1	21
1,2-Dichlorobenzene	50.0	47.2		ug/L		94	80 - 120	4	20
1,2-Dichloroethane	50.0	42.4		ug/L		85	71 - 121	4	20
1,2-Dichloropropane	50.0	48.2		ug/L		96	78 - 120	1	20
1,3,5-Trimethylbenzene	50.0	47.6		ug/L		95	80 - 122	3	20
1,3-Dichlorobenzene	50.0	46.6		ug/L		93	80 - 120	2	20
1,3-Dichloropropane	50.0	48.5		ug/L		97	77 - 122	1	20
1,4-Dichlorobenzene	50.0	47.0		ug/L		94	80 - 120	2	20
2,2-Dichloropropane	50.0	50.5		ug/L		101	75 - 131	3	22
2-Butanone (MEK)	200	204		ug/L		102	58 - 135	2	20
2-Chlorotoluene	50.0	47.5		ug/L		95	80 - 120	3	20
2-Hexanone	200	197		ug/L		99	62 - 137	1	21
4-Chlorotoluene	50.0	48.3		ug/L		97	80 - 120	2	20
4-Isopropyltoluene	50.0	49.1		ug/L		98	80 - 122	2	20
4-Methyl-2-pentanone (MIBK)	200	205		ug/L		102	66 - 135	1	20
Acetone	200	183		ug/L		91	61 - 134	4	21
Benzene	50.0	48.6		ug/L		97	80 - 120	3	20
Bromobenzene	50.0	46.9		ug/L		94	80 - 120	5	20
Bromoform	50.0	56.3		ug/L		113	79 - 138	3	20
Bromomethane	50.0	28.6		ug/L		57	29 - 148	10	40
Carbon disulfide	50.0	46.5		ug/L		93	70 - 121	2	20
Carbon tetrachloride	50.0	50.0		ug/L		100	79 - 127	1	20
Chlorobenzene	50.0	47.4		ug/L		95	80 - 120	1	20
Chlorobromomethane	50.0	48.2		ug/L		96	80 - 123	1	20
Chlorodibromomethane	50.0	52.3		ug/L		105	80 - 125	0	20
Chloroethane	50.0	52.3		ug/L		105	56 - 141	0	30

Eurofins Denver

Page 16 of 24

2

3

4

6

8

10

. . 12

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

Job ID: 280-199842-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 280-677129/5

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	50.0	47.8		ug/L		96	80 - 120	0	20
Chloromethane	50.0	45.0		ug/L		90	56 - 133	1	20
cis-1,2-Dichloroethene	50.0	49.3		ug/L		99	80 - 120	2	20
cis-1,3-Dichloropropene	50.0	47.8		ug/L		96	76 - 129	1	20
Dibromomethane	50.0	46.7		ug/L		93	80 - 120	0	20
Dichlorobromomethane	50.0	47.8		ug/L		96	80 - 123	2	20
Dichlorodifluoromethane	50.0	44.0		ug/L		88	47 - 135	0	21
Ethylbenzene	50.0	48.8		ug/L		98	80 - 120	0	20
Ethylene Dibromide	50.0	47.0		ug/L		94	80 - 120	0	20
Hexachlorobutadiene	50.0	50.6		ug/L		101	73 - 128	3	20
Isopropylbenzene	50.0	48.9		ug/L		98	78 - 122	1	20
Methyl tert-butyl ether	50.0	49.4		ug/L		99	80 - 120	2	20
Methylene Chloride	50.0	47.2		ug/L		94	78 - 120	1	20
Naphthalene	50.0	53.5		ug/L		107	60 - 124	1	21
n-Butylbenzene	50.0	46.9		ug/L		94	59 - 140	3	20
N-Propylbenzene	50.0	48.9		ug/L		98	80 - 123	2	20
sec-Butylbenzene	50.0	48.9		ug/L		98	80 - 123	3	20
Styrene	50.0	49.9		ug/L		100	80 - 120	0	20
tert-Butylbenzene	50.0	48.5		ug/L		97	80 - 120	3	20
Tetrachloroethene	50.0	48.9		ug/L		98	80 - 121	1	20
Toluene	50.0	50.0		ug/L		100	80 - 120	2	20
trans-1,2-Dichloroethene	50.0	48.6		ug/L		97	79 - 121	3	20
trans-1,3-Dichloropropene	50.0	49.6		ug/L		99	80 - 123	0	20
Trichloroethene	50.0	50.6		ug/L		101	80 - 120	1	20
Trichlorofluoromethane	50.0	48.5		ug/L		97	54 - 144	3	28
Vinyl acetate	100	138		ug/L		138	55 - 161	1	23
Vinyl chloride	50.0	52.4		ug/L		105	67 - 127	1	25
Xylenes, Total	100	96.0		ug/L		96	80 - 120	0	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		70 - 127
4-Bromofluorobenzene (Surr)	97		78 - 120
Dibromofluoromethane (Surr)	100		77 - 120
Toluene-d8 (Surr)	97		80 - 125

Lab Sample ID: 280-199987-B-4 MS

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Matrix S	ріке
Prep Type: Tota	I/NA

, , , , , , , , , , , , , , , , , , , ,	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	ND		25.0	24.4		ug/L		98	80 - 124
1,1,1-Trichloroethane	0.53		25.0	24.2		ug/L		95	80 - 123
1,1,2,2-Tetrachloroethane	ND		25.0	23.4		ug/L		94	74 - 123
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	21.9		ug/L		88	73 - 132
ne									
1,1,2-Trichloroethane	ND		25.0	24.7		ug/L		99	80 - 120
1,1-Dichloroethane	2.4		25.0	26.2		ug/L		95	78 - 121
1,1-Dichloroethene	3.4		25.0	25.2		ug/L		87	77 - 121
1,1-Dichloropropene	ND		25.0	22.4		ug/L		90	77 - 123

Eurofins Denver

Page 17 of 24

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ND

ND

ND

ND

ND

ND

ND

Lab Sample ID: 280-199987-B-4 MS

Matrix: Water

2-Butanone (MEK)

2-Chlorotoluene

4-Chlorotoluene

4-Isopropyltoluene

2-Hexanone

Styrene

tert-Butylbenzene

Analysis Batch: 677129

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Job ID: 280-199842-1

•	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3-Trichlorobenzene	ND		25.0	25.2		ug/L		101	65 - 129	
1,2,3-Trichloropropane	ND		25.0	24.5		ug/L		98	80 - 120	
1,2,4-Trichlorobenzene	ND		25.0	24.9		ug/L		100	74 - 126	
1,2,4-Trimethylbenzene	ND		25.0	23.5		ug/L		94	79 - 124	
1,2-Dibromo-3-Chloropropane	ND		25.0	24.1		ug/L		96	73 - 128	
1,2-Dichlorobenzene	ND		25.0	23.1		ug/L		92	80 - 120	
1,2-Dichloroethane	ND		25.0	21.0		ug/L		84	71 - 121	
1,2-Dichloropropane	ND		25.0	23.6		ug/L		95	78 - 120	
1,3,5-Trimethylbenzene	ND		25.0	23.1		ug/L		92	80 - 122	
1,3-Dichlorobenzene	ND		25.0	22.7		ug/L		91	80 - 120	
1,3-Dichloropropane	ND		25.0	23.6		ug/L		94	77 - 122	
1,4-Dichlorobenzene	ND		25.0	22.8		ug/L		91	80 - 120	
2,2-Dichloropropane	ND		25.0	20.4		ug/L		82	75 - 131	

25.0 20.4 ug/L 82 75 - 131100 99.6 100 ug/L 58 - 135 25.0 23.6 ug/L 94 80 - 120 100 92.6 ug/L 93 62 - 13725.0 24.0 ug/L 96 80 - 120 25.0 23.1 92 80 - 122 ug/L 100 97.2 97 66 - 135

4-Methyl-2-pentanone (MIBK) ND ug/L Acetone ND 100 88.7 ug/L 89 61 - 134 Benzene ND 25.0 25.2 ug/L 101 80 - 120 Bromobenzene ND 25.0 23.1 ug/L 92 80 - 120**Bromoform** ND 25.0 24.9 ug/L 100 79 - 138

Bromomethane ND 25.0 8.32 ug/L 33 29 - 148 Carbon disulfide 25.0 22.7 91 ND ug/L 70 - 121 Carbon tetrachloride ND 25.0 23.4 94 79 - 127 ug/L Chlorobenzene ND 25.0 22.9 92 80 - 120 ug/L Chlorobromomethane ND 25.0 25.0 ug/L 100 80 - 123 80 - 125 Chlorodibromomethane ND 25.0 24.1 ug/L 96 Chloroethane ND 25.0 24.8 ug/L 99 56 - 141 Chloroform ND 25.0 23.5 ug/L 94 80 - 120

25.0 Chloromethane ND 20.9 ug/L 84 56 - 133 cis-1,2-Dichloroethene 110 25.0 115 4 ug/L 27 80 - 120 87 cis-1,3-Dichloropropene ND 25.0 21.8 ug/L 76 - 129 ND 25.0 Dibromomethane 22.6 ug/L 80 - 120 Dichlorobromomethane ND 25.0 23.2 ug/L 93 80 - 123 47 - 135 Dichlorodifluoromethane ND 25.0 20.1 ug/L 81 Ethylbenzene ND 25.0 96 80 - 120 23.9 ug/L Ethylene Dibromide ND 25.0 23.0 ug/L 92 80 - 120 Hexachlorobutadiene ND 25.0 22.4 ug/L 90 73 - 128

Isopropylbenzene ND 25.0 23.4 ug/L 94 78 - 122 ND 25.0 24.5 98 Methyl tert-butyl ether ug/L 80 - 120Methylene Chloride ND 25.0 23.4 ug/L 94 78 - 120Naphthalene ND 25.0 26.0 104 60 - 124 ug/L ND 25.0 n-Butylbenzene 21.4 ug/L 86 59 - 140 N-Propylbenzene ND 25.0 23.7 ug/L 95 80 - 123 sec-Butylbenzene ND 92 80 - 123 25.0 23.0 ug/L

25.0

25.0

Eurofins Denver

95

94

80 - 120

80 - 120

23.7

23.4

ug/L

ug/L

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 280-199987-B-4 MS

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Job ID: 280-199842-1

MS MS %Rec Sample Sample Spike D %Rec **Result Qualifier** Added Result Qualifier Unit Limits Tetrachloroethene 72 F1 25.0 78.7 F1 27 80 - 121 ug/L Toluene ND 25.0 25.8 ug/L 103 80 - 120 trans-1,2-Dichloroethene 2.0 79 - 121 25.0 25.5 ug/L 94 trans-1,3-Dichloropropene ND 25.0 22.8 ug/L 91 80 - 123 Trichloroethene 25 F1 25.0 44.2 F1 ug/L 77 80 - 120 Trichlorofluoromethane 25.0 ND 21.1 ug/L 84 54 - 144 Vinyl acetate ND 50.0 62.3 ug/L 125 55 - 161 Vinyl chloride ND 25.0 24.4 ug/L 98 67 - 127 Xylenes, Total ND 50.0 48.0 96 80 - 120 ug/L

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		70 - 127
4-Bromofluorobenzene (Surr)	97		78 - 120
Dibromofluoromethane (Surr)	102		77 - 120
Toluene-d8 (Surr)	96		80 - 125

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: 280-199987-B-4 MSD

Analysis Batch: 677129											
	•	Sample	Spike		MSD				%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	24.6		ug/L		99	80 - 124	1	20
1,1,1-Trichloroethane	0.53		25.0	25.5		ug/L		100	80 - 123	5	20
1,1,2,2-Tetrachloroethane	ND		25.0	22.8		ug/L		91	74 - 123	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	22.9		ug/L		92	73 - 132	4	23
ne										_	
1,1,2-Trichloroethane	ND		25.0	24.8		ug/L		99	80 - 120	0	20
1,1-Dichloroethane	2.4		25.0	26.4		ug/L		96	78 - 121	1	20
1,1-Dichloroethene	3.4		25.0	25.7		ug/L		89	77 - 121	2	21
1,1-Dichloropropene	ND		25.0	23.4		ug/L		94	77 - 123	4	20
1,2,3-Trichlorobenzene	ND		25.0	25.4		ug/L		102	65 - 129	1	20
1,2,3-Trichloropropane	ND		25.0	23.3		ug/L		93	80 - 120	5	20
1,2,4-Trichlorobenzene	ND		25.0	25.2		ug/L		101	74 - 126	1	20
1,2,4-Trimethylbenzene	ND		25.0	23.6		ug/L		94	79 - 124	0	20
1,2-Dibromo-3-Chloropropane	ND		25.0	24.1		ug/L		96	73 - 128	0	21
1,2-Dichlorobenzene	ND		25.0	23.5		ug/L		94	80 - 120	2	20
1,2-Dichloroethane	ND		25.0	21.5		ug/L		86	71 - 121	2	20
1,2-Dichloropropane	ND		25.0	24.1		ug/L		96	78 - 120	2	20
1,3,5-Trimethylbenzene	ND		25.0	23.2		ug/L		93	80 - 122	0	20
1,3-Dichlorobenzene	ND		25.0	22.8		ug/L		91	80 - 120	1	20
1,3-Dichloropropane	ND		25.0	23.3		ug/L		93	77 - 122	1	20
1,4-Dichlorobenzene	ND		25.0	23.1		ug/L		92	80 - 120	1	20
2,2-Dichloropropane	ND		25.0	20.5		ug/L		82	75 - 131	0	22
2-Butanone (MEK)	ND		100	95.4		ug/L		95	58 - 135	4	20
2-Chlorotoluene	ND		25.0	23.5		ug/L		94	80 - 120	1	20
2-Hexanone	ND		100	88.8		ug/L		89	62 - 137	4	21
4-Chlorotoluene	ND		25.0	24.0		ug/L		96	80 - 120	0	20
4-Isopropyltoluene	ND		25.0	23.0		ug/L		92	80 - 122	0	20
4-Methyl-2-pentanone (MIBK)	ND		100	95.5		ug/L		96	66 - 135	2	20

Eurofins Denver

Page 19 of 24

Client: Waste Management

Project/Site: 236|Altamont Landfill - LCRS

Job ID: 280-199842-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 280-199987-B-4 MSD

Matrix: Water

Analysis Batch: 677129

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Analyte	Sample Samp Result Quali	•		MSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Acetone	ND ND	100	87.2		ug/L		87	61 - 134	2	21
Benzene	ND	25.0	24.6		ug/L		98	80 - 120	2	20
Bromobenzene	ND	25.0	23.7		ug/L		95	80 - 120	3	20
Bromoform	ND	25.0	25.0		ug/L		100	79 - 138	0	20
Bromomethane	ND	25.0	11.4		ug/L		45	29 - 148	31	40
Carbon disulfide	ND	25.0	23.1		ug/L		93	70 - 121	2	20
Carbon tetrachloride	ND	25.0	24.2		ug/L		97	79 - 127	3	20
Chlorobenzene	ND	25.0	23.3		ug/L		93	80 - 120	2	20
Chlorobromomethane	ND	25.0	24.8		ug/L		99	80 - 123	1	20
Chlorodibromomethane	ND	25.0	24.7		ug/L		99	80 - 125	2	20
Chloroethane	ND	25.0	25.4		ug/L		102	56 - 141	2	30
Chloroform	ND	25.0	24.0		ug/L		96	80 - 120	2	20
Chloromethane	ND	25.0	22.1		ug/L		88	56 - 133	5	20
cis-1,2-Dichloroethene	110	25.0	116	4	ug/L		32	80 - 120	1	20
cis-1,3-Dichloropropene	ND	25.0	21.8		ug/L		87	76 - 129	0	20
Dibromomethane	ND	25.0	22.3		ug/L		89	80 - 120	1	20
Dichlorobromomethane	ND	25.0	23.7		ug/L		95	80 - 123	2	20
Dichlorodifluoromethane	ND	25.0	20.9		ug/L		84	47 - 135	4	21
Ethylbenzene	ND	25.0	23.6		ug/L		94	80 - 120	1	20
Ethylene Dibromide	ND	25.0	22.2		ug/L		89	80 - 120	3	20
Hexachlorobutadiene	ND	25.0	22.6		ug/L		91	73 - 128	1	20
Isopropylbenzene	ND	25.0	23.9		ug/L		96	78 - 122	2	20
Methyl tert-butyl ether	ND	25.0	24.3		ug/L		97	80 - 120	1	20
Methylene Chloride	ND	25.0	23.7		ug/L		95	78 - 120	1	20
Naphthalene	ND	25.0	25.9		ug/L		104	60 - 124	1	21
n-Butylbenzene	ND	25.0	21.5		ug/L		86	59 - 140	1	20
N-Propylbenzene	ND	25.0	23.6		ug/L		94	80 - 123	0	20
sec-Butylbenzene	ND	25.0	23.6		ug/L		94	80 - 123	2	20
Styrene	ND	25.0	23.3		ug/L		93	80 - 120	2	20
tert-Butylbenzene	ND	25.0	23.7		ug/L		95	80 - 120	1	20
Tetrachloroethene	72 F1	25.0	78.3	F1	ug/L		25	80 - 121	1	20
Toluene	ND	25.0	25.2		ug/L		101	80 - 120	2	20
trans-1,2-Dichloroethene	2.0	25.0	25.6		ug/L		94	79 - 121	0	20
trans-1,3-Dichloropropene	ND	25.0	22.9		ug/L		92	80 - 123	0	20
Trichloroethene	25 F1	25.0	45.2		ug/L		81	80 - 120	2	20
Trichlorofluoromethane	ND	25.0	23.5		ug/L		94	54 - 144	11	28
Vinyl acetate	ND	50.0	62.1		ug/L		124	55 - 161	0	23
Vinyl chloride	ND	25.0	25.6		ug/L		102	67 - 127	5	25
Xylenes, Total	ND	50.0	47.0		ug/L		94	80 - 120	2	20

MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87	-	70 - 127
4-Bromofluorobenzene (Surr)	96		78 - 120
Dibromofluoromethane (Surr)	99		77 - 120
Toluene-d8 (Surr)	94		80 - 125

Eurofins Denver

QC Association Summary

Client: Waste Management Job ID: 280-199842-1

Project/Site: 236|Altamont Landfill - LCRS

GC/MS VOA

Analysis Batch: 677129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-199842-1	LCRS	Total/NA	Water	8260B	
MB 280-677129/9	Method Blank	Total/NA	Water	8260B	
LCS 280-677129/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 280-677129/5	Lab Control Sample Dup	Total/NA	Water	8260B	
280-199987-B-4 MS	Matrix Spike	Total/NA	Water	8260B	
280-199987-B-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

2

4

5

__

8

46

11

13

112

Lab Chronicle

Client: Waste Management Job ID: 280-199842-1

Project/Site: 236|Altamont Landfill - LCRS

Analysis

Lab Sample ID: 280-199842-1 **Client Sample ID: LCRS**

Date Collected: 11/19/24 11:30 **Matrix: Water** Date Received: 11/20/24 09:10

5 mL

5 mL

677129

12/03/24 15:34 MD

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Run **Factor** Number or Analyzed Analyst Type **Amount Amount** Lab

5

Laboratory References:

Total/NA

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

8260B

EET DEN

Client: Waste Management Job Number: 280-199842-1

Login Number: 199842 List Source: Eurofins Denver

List Number: 1

Creator: Rystrom, Joshua R

Creator. Rystrom, Joshua R		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

6

8

10

10

13

14

APPENDIX Y SOURCE TEST SUMMARY RESULTS

Waste Management of Alameda County, Inc. Altamont Landfill & Resource Recovery Facility

BAAQMD Facility #2066

Annual Compliance Emissions Test Report #23411 Two – Landfill Gas Turbines (S-6 and S-7)

Located at:

Waste Management of Alameda County, Inc.
Altamont Landfill

10840 Altamont Pass Road Livermore, CA 94551

Prepared for:
SCS Engineers
3117 Fite Circle Suite 108
Sacramento, CA 95827
Attn: Maria Bowen
mbowen@scsengineers.com

For Submittal to:

Bay Area Air Quality Management District

375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Gloria Espena and Marco Hernandez gespena@baaqmd.gov/mhernandez@baaqmd.gov sourcetest@baaqmd.gov

Testing Performed on: **December 6, 2023**

Final Report Submitted on: February 2, 2024

Performed and Reported by:
Blue Sky Environmental, Inc.
2273 Lobert Street
Castro Valley, CA 94546
bluesky@blueskyenvironmental.com
Office (510) 525-1261 / Cell (810) 923-3181

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923-3181.

Jeramie Richardson

Project Manager

Blue Sky Environmental, Inc.

TABLE of CONTENTS

SECTION	1. INTRODUCTION	4
1.1.	Summary	4
SECTION	2. SOURCE TEST PROGRAM	6
2.1.	Overview	6
2.2.	POLLUTANTS TESTED	6
2.3.	TEST DATE(S)	6
2.4.	SAMPLING AND OBSERVING PERSONNEL	
2.5.	SOURCE/PROCESS DESCRIPTION	
2.6.	Source Operating Conditions	7
SECTION	3. SAMPLING AND ANALYSIS PROCEDURES	8
3.1.	PORT LOCATION	8
3.2.	POINT DESCRIPTION/LABELING – PORTS/STACK	8
3.3.	SAMPLE TRAIN DESCRIPTION	8
3.4.	SAMPLING PROCEDURE DESCRIPTION	8
3.5.	INSTRUMENTATION AND ANALYTICAL PROCEDURES	1
3.6.	COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS	2
SECTION	4. APPENDICES1	3
A.	Tabulated Results	
B.	Calculations	
С.	Laboratory Reports	
D.	Field Data Sheets	
E.	Strip Chart Records	
F.	Process Information	
G.	QC Calibration Certificates and Quality Assurance Records	
Н.	Sample Train Configuration and Stack Diagrams	
I.	Related Correspondence (Source Test Plan)	
J.	Permit to Operate	

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, Inc. was contracted by SCS Engineers to perform emissions testing for Waste Management of Alameda County, Inc. (WMAC), at the Altamont Landfill & Resource Recovery Facility (ALRRF) in Livermore, California. Testing was conducted to demonstrate that Landfill Gas Turbines S-6 and S-7 are operating in compliance with condition 18773 of the Bay Area Air Quality Management District (BAAQMD) permit to operate for Facility #2066.

Results of the test program are presented in this report. The source test information is summarized in Table 1-1. Test results derived from the source test are summarized in Tables 1-2 and 1-3. Results for individual test runs are included in Appendix A. The turbines met all compliance emission criteria.

Table 1-1 Source Test Information

Test Location:	Altamont Landfill and Resource Recovery Facility 10840 Altamont Pass Road, Livermore, CA 94551
Source Contact:	Maria Bowen, SCS Engineers (619) 455-9518
Source Tested:	Turbine S-6 – 3,950 hp Solar Centaur, Model T-4500 landfill gas-fired turbine Turbine S-7 – 3,950 hp Solar Centaur, Model T-4500 landfill gas-fired turbine
Source Test Date:	December 6, 2023
Test Objective:	Determine compliance with condition 18773 of the Bay Area Air Quality Management District (BAAQMD) permit to operate for Plant #2066
Test Performed by:	Blue Sky Environmental, Inc 2273 Lobert Street, Castro Valley, CA 94546 Jeramie Richardson (810) 923-3181 jrichardson@blueskyenvironmental.com
Test Parameters:	Landfill Gas Fuel Analysis O ₂ , N ₂ , CO ₂ , Btu, THC, CH ₄ , NMOC, HHV, F-Factor, sulfur & volumetric flow rate <u>Turbine Emissions</u> THC, CH ₄ , NMOC, NO _x , CO, O ₂ , SO ₂ & volumetric flow rate

Table 1-2 Emissions Summary Turbine S-6

Emission Parameter	Average Test Results	Permit Limits (Regulation Limit)	Compliance Status
Heat Input (fuel), MMBtu/day	996	1,378	In Compliance
Combustion Temperature, °F	1,168		
NO _x , lb/MMBtu	0.0999	0.1567	In Compliance
NO _x , ppmvd @ 15% O ₂	25.1	42	In Compliance
NO _x , lb/MW-hr	1.35	2.34	In Compliance
CO, lb/MMBtu	0.106	0.2229	In Compliance
NMOC, ppmvd @ 3% O ₂	4.6	120	1 0 1
NMOC Removal Efficiency, %	>99.37	or >98%	In Compliance
CH ₄ Removal Efficiency, %	>99.95	>99%	In Compliance
TRS in Fuel, ppmv as H ₂ S	56.7	150	In Compliance
SO ₂ , ppmvd	2.61	300	In Compliance

Table 1-3 Emissions Summary Turbine S-7

Emission Parameter	Average Test Results	Permit Limits (Regulation Limit)	Compliance Status
Heat Input (fuel), MMBtu/day	1,027	1,378	In Compliance
Combustion Temperature, °F	1,170		
NO _x , lb/MMBtu	0.0970	0.1567	In Compliance
NO _x , ppmvd @ 15% O ₂	24.2	42	In Compliance
NO _x , lb/MW-hr	1.35	2.34	In Compliance
CO, lb/MMBtu	0.093	0.2229	In Compliance
NMOC, ppmvd @ 3% O ₂	<4.2	120	In Camaliana
NMOC Removal Efficiency, %	>99.30	or >98%	In Compliance
CH4 Removal Efficiency, %	>99.95	>99%	In Compliance
TRS in Fuel, ppmv as H ₂ S	85.3	150	In Compliance
SO ₂ , ppmvd	3.87	300	In Compliance

SECTION 2. SOURCE TEST PROGRAM

2.1. Overview

This annual source test was performed to demonstrate that landfill gas turbines S-6 and S-7 are operating in accordance with the Bay Area Air Quality Management District (BAAQMD) permit to operate (PTO) for Plant #2066, condition 18773.

2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA), Bay Area Air Quality Management District (BAAQMD) and ASTM International sampling and analytical methods were used:

EPA Method 1 Sample and Traverse Point Determination EPA Method 3A O₂ and CO₂, Stack Gas Molecular Weight

EPA Method 10 CC

EPA Method 7E NO_x and NO₂ Converter Check

EPA Method 4 Moisture Calculation

EPA Method 19 Flow Rate Calculation, DSCFM

EPA Method 25C Analysis of landfill gas for TNMHC (NMOC)

EPA Method 25A THC Emissions

EPA Method 18 THC/CH₄/NMHC Emissions

ASTM D-1945/3588 Fuel Analysis for BTU, F-Factors & Fixed Gases ASTM D-5504 Sulfur Species, Hydrogen Sulfide (H₂S) and TRS

2.3. Test Date(s)

Testing was conducted on December 6, 2023.

2.4. Sampling and Observing Personnel

Testing was performed by Jeramie Richardson representing Blue Sky Environmental, Inc.

John Silva of SCS Engineers and Larry LaCerra of Waste Management were present to oversee turbine operations and assist in coordinating testing and the collection of process data to verify the accuracy of digitally recorded data collected during testing.

BAAQMD was notified of the scheduled source test in a Source Test Protocol submitted by SCS Engineering on behalf of Waste Management, on November 3, 2023. A Source Test Protocol acknowledgement was received on November 3, 2023 (NST-8878 (S-6) and NST-8879 (S-7)). No agency observers from the District were present during the test program. A copy of the source test protocol and email correspondence are provided in Appendix I.

2.5. Source/Process Description

The Altamont Landfill and Resource Recovery Facility operates two identical Solar Centaur T-4500 landfill gas-fired turbines at their site in Livermore, California. The turbines are each rated for 3,300 Kilowatts. Emissions vent through mufflers on the outside of the building and through 47-inch diameter stacks. The turbines were previously equipped with fogging systems; however, they have not been used during turbine operation in recent history. The fogging systems are not required for compliance.

2.6. Source Operating Conditions

The turbines were operated on landfill gas under normal operating conditions during testing. The normal operating range is approximately 80 - 100% load. Turbine S-6 was operated at 93.1% of rated kilowatt output and Turbine S-7 was operated at 93.1% of rated kilowatt output during the test period.

The average exhaust temperature at the normal operating condition was 1,168 °F for Turbine S-6 and 1,170 °F for Turbine S-7. The operating kilowatt, exhaust temperature, and flow records are provided in Appendix F.

The fuel volumetric flow rate was continuously measured and recorded by the facility at two-minute intervals in accordance with 40 CFR 60.756(b)(2), BAAQMD Regulation 8-34-508, and permit condition 18773 Part 11.

Landfill gas samples collected at the header of Turbine S-6 showed an average methane content of 47.5% and an oxygen range of 1.7 to 2.8%. Samples collected at the header of Turbine S-7 showed an average methane content of 46.7% and an oxygen range of 1.3 to 1.5%.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port Location

Sampling was conducted at the 47-inch diameter ID exhaust stack of each turbine through ports that were accessed with a 40-foot boom lift. The two two-inch ports on each turbine were located 25-feet above grade, approximately three stack diameters downstream from the muffler and approximately 0.75 stack diameters upstream from the exhaust.

3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental conducted two perpendicular eight-point traverses of each turbine exhaust stack to check for the presence of cyclonic flow. O₂ stratification was less than 10%; therefore, subsequent CEM sampling was conducted using an average representative point in the stack.

3.3. Sample Train Description

Sampling system diagrams are provided in Appendix H. Additional descriptive information is included in the following section.

3.4. Sampling Procedure Description

Three consecutive thirty-minute gaseous emissions tests were performed for oxides of nitrogen (NOx), nitrogen oxide (NO), carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂), and total hydrocarbons (THC) at each turbine exhaust stack. The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using equation 100-3 from CARB Method 100. A NO_X analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky Environmental collected a total of six fuel samples (three from each unit) for %CH₄, %CO₂, %N2, BTU and F-factor by ASTM D-1945, C₁ to C₆₊ hydrocarbons by EPA Method 25C, and sulfur compounds using method ASTM D-5504. The samples were collected in 6-liter SUMMA cannisters and analyzed by Atmospheric Analysis & Consulting, Inc (AAC) in Ventura, California. Laboratory test results are provided in Appendix C.

Exhaust flow rates were calculated from fuel analysis. Fuel flow rates were determined from a dedicated fuel meter and stack O₂ values.

The sampling and analysis methods are summarized below:

EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. A small portion of the sample is passed through a fuel cell type paramagnetic oxygen analyzer which measures the electrical current generated by the oxidation reaction at the gas/fuel cell interface. Carbon dioxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon dioxide absorbs infrared radiation.

EPA Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Nitric oxide is determined by passing the sample through a chemiluminescent analyzer. The chemiluminescent process is based on the light given off when nitric oxide and ozone react. Nitrogen dioxide (NO_2) concentrations are determined by passing the sample through a catalyst which reduces the NO_2 to NO. The total oxides of nitrogen concentration ($NO_2 + NO$) is then determined by chemiluminescence.

Section 16.2.2 of the method is used to determine the NO_X analyzer NO₂ to NO conversion efficiency.

EPA Method 10 - Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Carbon monoxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon monoxide absorbs infrared radiation.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless-steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

System Performance Criteria

Instrument Linearity≤2% Full ScaleInstrument Bias≤5% Full ScaleSystem Response Time≤ \pm 2 minutes

 NO_X Converter Efficiency (EPA Method 7E) $\geq 90\%$

Instrument Zero Drift≤± 3% Full ScaleInstrument Span Drift≤± 3% Full Scale

EPA Method 4 - Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5, SCAQMD Method 201.7 or BAAQMD ST-32. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively. QA/QC procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D-1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. Gases are collected in a pre-evacuated 6-Liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs. The sample is injected into a GC column where the methane and CO₂ are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO₂ then reduced to methane and analyzed.

EPA Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. All data is corrected according to the method.

ASTM D-1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 72 hours.

3.5. Instrumentation and Analytical Procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle	
TECO Model 42C	NO/NO ₂ /NO _X	Chemiluminescence	
TECO Model 48C	CO	Gas Filter Correlation/Infrared	
Ratfisch Model RS-55	THC	Flame Ionization (FID)	
Servomex Model 1400	CO_2	Infrared	
Servomex Model 1400	O_2	Paramagnetic	

3.6. System Performance Criteria

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of a Honeywell DPR 3000 chart recorder, supported by a Data Acquisition System (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using CARB Method 100 and EPA Method 7E equations.

Instrument Linearity $\leq 2\%$ Full ScaleInstrument Bias $\leq 5\%$ Full ScaleSystem Response Time $\leq \pm 2$ minutes

NOx Converter Efficiency (EPA Method 7E) $\geq 90\%$

Instrument Zero Drift ≤± 3% Full Scale
Instrument Span Drift ≤± 3% Full Scale

3.7. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to BAAQMD. No deviations from the protocol or anomalies were observed during testing. The turbines met all emissions compliance criteria.

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text

Review of calculations

Review of CEMS data

Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. APPENDICES

A.	Tabulated Results
В.	Calculations
C.	Laboratory Reports
D.	Field Data Sheets
E.	Strip Chart Records
F.	Process Information
G.	QC Calibration Certificates and Quality Assurance Records
н.	Sample Train Configuration and Stack Diagrams
I.	Related Correspondence (Source Test Plan)
T.	Permit to Operate

A Tabulated Results

TABLE 1

Altamont Landfill & Resource Recovery Facility
Turbine S-6

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	12/06/23	12/06/23	12/06/23		
Test Time	1040-1117	1132-1207	1219-1254		
Standard Temperature, °F	70	70	70	70	
Process Parameters:					
Turbine Rating, kW	3,300	3,300	3,300	3,300	
Turbine, kW	3,104	3,068	3,048	3,073	
Turbine, % Rated Power	94.1	93.0	92.4	93.1	
Average Combustion Temperature, °F	1,168	1,168	1,168	1,168	
Fuel:	· ·			-	
Fuel Flow Rate, DSCFM	1,467	1,434	1,419	1,440	
Fuel Btu/CF @ 68°F	483.6	476.7	459.7	473.3	
Fuel Fd-Factor @ 68°F	9,530	9,247	9,515	9,431	
Heat Input, MMBtu/day	1,037	999	953	996	1,378
Total Reduced Sulfur, ppmv in Fuel	22.3	98.7	49.0	56.7	150
Stack Gas:	22.5	70.7	77.0	30.7	150
	35,105	30,956	20.010	22.024	
Exhaust Flow Rate, DSCFM (EPA Method 19) Oxygen (O ₂), % volume dry	16.8	16.6	30,010 16.5	32,024 16.6	
Carbon Dioxide (CO ₂), % volume dry	3.6	3.7	3.7	3.7	
Carbon Dioxide (CO_2), % volume dry CO_2 , lb/hr	8,682	7,900	7,670	8,084	
Water Vapor (H ₂ O), % volume	4.8	5.4	5.4	5.2	
NO _X Emissions (reported as NO ₂):	4.0	J. 4	J. 1	J.4	
NO ₂ , ppmvd	3.5	3.3	2.4	3.4	
NO, ppmvd	14.9	15.0	3.4	14.8	
NO/NO ₂ Ratio	4.3	4.6	14.5		
NOx, ppmvd	18.4	18.3	4.3 17.9	4.4 18.2	
NOx, ppmvd @ 15% O ₂	26.5	24.8	24.0	25.1	42
NOx, lb/MMBtu	0.1067	0.0969	0.0962	0.0999	0.1567
NOx, lb/hr	4.62	4.04	3.83	4.16	0.1307
NOx, lb/MW-hr	1.49	1.32	1.26	1.35	2.34
CO Emissions:	1.47	1.32	1.20	1.55	2.34
CO, ppmvd	31.1	33.0	31.6	31.9	
CO, ppmvd @ 15% O ₂	44.7	44.7	42.3	43.9	
CO, lb/hr	4.74	4.43	4.12	4.43	
CO, lb/MMBtu	0.109	0.106	0.103	0.106	0.2229
SO ₂ Emissions:	0.109	0.100	0.103	0.100	0.2229
SO ₂ , ppmvd (calculated)	0.93	4.57	2.32	2.61	300
SO_2 , ppmvd (automate) SO_2 , ppmvd (2015) O_2	1.34	6.20		3.55	300
SO ₂ , ppinva @ 1370 O ₂ SO ₂ , lb/hr	0.33	1.41	3.10 0.69	0.81	
Methane (CH ₄) Emissions:	0.55	1.41	0.09	0.01	
	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd @ 15% O ₂	<14.39	<13.57	<13.40	<13.79	
CH ₄ , lb/hr	< 0.871	< 0.768	< 0.745	< 0.795	
THC Emissions (reported as CH ₄):	-44.0	-444	-4.4 ^	-44.4	
THC, ppmv wet (EPA Method 25A)	<11.2	<11.1	<11.0	<11.1	
THC, ppmvd	<11.8	<11.7	<11.6	<11.7	
THC, lb/hr	<1.03	< 0.90	< 0.87	< 0.93	
NMOC Emissions (reported as CH ₄):					
NMOC, ppmv (EPA Method 25A)	1.2	1.1	<1.0	1.1	
NMOC, ppmvd @ 3% O ₂	5.3	4.3	<4.1	4.6	120
NMOC, lb/hr	0.11	0.08	< 0.07	0.09	
Inlet:				-	
Inlet CH ₄ , % (ASTM D-1945 & EPA Method 25C)	48.5	47.8	46.1	47.5	
Inlet CH ₄ , lb/hr	1,766	1,701	1,624	1,697	
CH ₄ Destruction Efficiency, %	>99.95%	>99.95%	>99.95%	>99.95%	>99%
Inlet THC (TOC), %	48.9	48.2	46.5	47.9	
Inlet THC (TOC), lb/hr	1,781	1,715	1,636	1,711	
THC (TOC) Destruction Efficiency, %	>99.94%	>99.95%	>99.95%	>99.95%	>98%
Inlet NMOC, ppmvd (EPA Method 25C)	4,171	3,866	3,564	3,867	
Inlet NMOC, lb/hr	15.18	13.76	12.55	13.83	
NMOC Destruction Efficiency, %	>99.30%	>99.41%	>99.41%	>99.37%	>98%*

TABLE 2

Altamont Landfill & Resource Recovery Facility
Turbine S-7

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	12/06/23	12/06/23	12/06/23		
Test Time	0812-0850	0905-0940	0952-1027		
Standard Temperature, °F	70	70	70	70	
Process Parameters:	•				
Turbine Rating, kW	3,300	3,300	3,300	3,300	
Turbine, kW	3,104	3,068	3,048	3,073	
Turbine, % Rated Power	94.1	93.0	92.4	93.1	
Average Combustion Temperature, °F	1,170	1,170	1,170	1,170	
Fuel:	•			· · · · · · · · · · · · · · · · · · ·	
Fuel Flow Rate, DSCFM	1,522	1,515	1,485	1,508	
Fuel Btu/CF @ 68°F	457.7	481.7	458.7	466.0	
Fuel Fd-Factor @ 68°F	9,505	9,510	9,509	9,508	
Heat Input, MMBtu/day	1,018	1,067	996	1,027	1,378
Total Reduced Sulfur, ppmv in Fuel	114	99.9	42.1	85.3	150
Stack Gas:			1=1-	0010	
Exhaust Flow Rate, DSCFM (EPA Method 19)	33,375	34,189	31,465	33,010	
Oxygen (O ₂), % volume dry	16.7	16.6	16.5	16.6	
Carbon Dioxide (CO ₂), % volume dry	3.3	3.7	3.4	3.5	
CO ₂ , lb/hr	7,612	8,597	7,289	7,833	
Water Vapor (H ₂ O), % volume	4.4	4.5	4.7	4.5	
NO _x Emissions (reported as NO ₂):	1	ı	ı		
NO ₂ , ppmvd	2.6	2.8	2.7	2.7	
NO, ppmvd	15.4	14.7	14.9	15.0	
NO/NO ₂ Ratio	6.0	5.3	5.5	5.6	
NOx, ppmvd	18.0	17.4	17.6	17.7	
NOx, ppmvd @ 15% O ₂	25.1	23.8	23.7	24.2	42
NOx, lb/MMBtu	0.1006	0.0954	0.0951	0.0970	0.1567
NOx, lb/hr	4.28	4.25	3.95	4.16	
NOx, lb/MW-hr	1.38	1.39	1.30	1.35	2.34
CO Emissions:					
CO, ppmvd	27.8	28.1	27.1	27.7	
CO, ppmvd @ 15% O ₂	38.8	38.3	36.5	37.9	
CO, lb/hr	4.03	4.17	3.71	3.97	
CO, lb/MMBtu	0.095	0.094	0.089	0.093	0.2229
SO ₂ Emissions:					
SO ₂ , ppmvd (calculated)	5.20	4.43	1.99	3.87	300
SO ₂ , ppmvd @ 15% O ₂	7.26	6.04	2.67	5.33	
SO ₂ , lb/hr	1.73	1.51	0.62	1.28	
Methane (CH ₄) Emissions:					
CH ₄ , ppmvd (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd @ 15% O ₂	<13.96	<13.64	<13.46	<13.69	
CH ₄ , lb/hr	< 0.829	< 0.849	< 0.781	< 0.819	
THC Emissions (reported as CH ₄):					
THC, ppmv wet (EPA Method 25A)	<11.0	<11.0	<11.0	<11.0	
THC, ppmvd	<11.5	<11.5	<11.5	<11.5	
THC, lb/hr	< 0.95	< 0.98	< 0.90	< 0.94	
NMOC Emissions (reported as CH ₄):		T	T		
NMOC, ppmv (EPA Method 25A)	<1.0	<1.0	<1.0	<1.0	2
NMOC, ppmvd @ 3% O ₂	<4.2	<4.1	<4.1	<4.2	120*
NMOC, lb/hr	< 0.08	< 0.08	< 0.08	< 0.08	
Inlet:					
Inlet CH ₄ , % (ASTM D-1945 & EPA Method 25C)	45.9	48.3	46.0	46.7	
Inlet CH ₄ , lb/hr	1,734	1,817	1,696	1,749	
CH ₄ Destruction Efficiency, %	>99.95%	>99.95%	>99.95%	>99.95%	>99%
Inlet THC (TOC), %	46.2	48.6	46.3	47.0	
Inlet THC (TOC), lb/hr	1,746	1,829	1,707	1,761	
THC (TOC) Destruction Efficiency, %	>99.95%	>99.95%	>99.95%	>99.95%	>98%
Inlet NMOC, ppmvd (EPA Method 25C)	3,191	3,051	3,090	3,111	
Inlet NMOC, lb/hr	12.06	11.48	11.39	11.64	
NMOC Destruction Efficiency, %	>99.31%	>99.26%	>99.31%	>99.30%	>98%*

Definitions and Calculations

DEFINITIONS:

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rate

Tstd. = standard temperature (${}^{\circ}R = {}^{\circ}F+460$)

MW = molecular weight

DSCFM = dry standard cubic feet per minute

 $NOx = oxides of nitrogen, reported as <math>NO_2$ (MW = 46)

CO = carbon monoxide (MW = 28)

 SO_2 = sulfur dioxide (MW = 64.1)

 CH_4 = methane (MW = 12)

THC = total hydrocarbons, reported as methane

NMOC = non-methane organic compounds, reported as methane (MW = 16)

CALCULATIONS:

15% O_2 correction = ppm · 5.9 / (20.9 - % O_2)

 $3\% O_2 \text{ correction} = ppm \cdot 17.9 / (20.9 - \%O_2)$

 $lb/hr = ppmvd \cdot 8.223 E-05 \cdot DSCFM \cdot MW / Tstd. \circ R$

lb/MW-hr = lb/hr / megawatt output

 $lb/MMBtu = Fd \cdot MW \cdot ppm \cdot 2.59E-9 \cdot 20.9/(20.9 - \%O_2)$

 $MMBtu/day = Btu/CF \cdot DSCFM_{fuel} \cdot 60 \cdot 24/1,000,000$

moisture correction - ppmvd (dry) = ppmv (wet) \cdot 100 / (100 - H₂O%)

 SO_2 , ppmvd = (TRS in fuel as $H_2S \cdot fuel DSCFM$) /exhaust DSCFM

Waste Management of Alameda County BAAQMD Facility #2066

Compliance Test Report #24086 Landfill Gas Flare A-15

Located at:
Altamont Landfill
10840 Altamont Pass Road
Livermore, CA 94551

Prepared for:
SCS Engineers
3117 Fite Circle, Suite 108
Sacramento, CA 95827
Attn: Maria Bowen
mbowen@scsengineers.com

For Submittal to:

Bay Area Air Quality Management District

375 Beale Street, Suite 600 San Francisco, CA 94105 Attn: Gloria Espena and Marco Hernandez

gespena@baaqmd.gov/mhernandez@baaqmd.gov sourcetest@baaqmd.gov

Testing Performed on: **February 28, 2024**

Final Report Submitted on: **April 25, 2024**

Performed and Reported by:
Blue Sky Environmental, Inc.
2273 Lobert Street
Castro Valley, CA 94546

Office (510) 508-3469/Mobile (810) 923-3181 bluesky@blueskyenvironmental.com

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923-3181.

Jill

Jeramie Richardson

President

Blue Sky Environmental, Inc.

TABLE OF CONTENTS

SECTION	N 1. INTRODUCTION	4
1.1.	SUMMARY	4
SECTION	N 2. SOURCE TEST PROGRAM	6
2.1.	Overview	6
2.2.	POLLUTANTS TESTED	6
2.3.	TEST DATE	
2.4.	SAMPLING AND OBSERVING PERSONNEL	
2.5.	SOURCE/PROCESS DESCRIPTION	
2.6.	SOURCE OPERATING CONDITIONS	7
SECTION	N 3. SAMPLING AND ANALYSIS PROCEDURES	8
3.1.	PORT LOCATION	8
3.2.	POINT DESCRIPTION/LABELING – PORTS/STACK	8
3.3.	SAMPLE TRAIN DESCRIPTION	8
3.4.	SAMPLING PROCEDURE DESCRIPTION	8
3.5.	INSTRUMENTATION AND ANALYTICAL PROCEDURES	12
3.6.	System Performance Criteria	12
3.7.	COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS	12
SECTION	N 4. APPENDICES	14
A.	Tabulated Results	14
В.	Calculations.	
С.	Laboratory Reports	14
D.	Field Data Sheets	
E.	Strip Charts	14
F.	Process Information	
G.	QC Calibration Certificates and Quality Assurance Records	
Н.	Sample Train Configuration and Stack Diagrams	
I.	Related Correspondence (Source Test Plan and Email)	
J.	BAAQMD Permit Conditions.	
K	Flare Flow Meter Calibration Records	

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, Inc. was contracted by SCS Engineers to perform the emissions testing for Waste Management of Alameda County, Inc. (WMAC), at the Altamont Landfill in Livermore, California. Testing was conducted to demonstrate that Landfill Gas Flare A-15 is operating in compliance with Condition 19235 of Bay Area Air Quality Management District (BAAQMD) Permit to Operate A2066.

The results of the test program are presented in this report. The source test information is summarized in Table 1-1. Test results derived from the source test are summarized in Table 1-2. Results for individual test runs are provided in Appendix A. The flare met all compliance emission criteria.

Table 1-1. Source Test Information

Test Location: Altamont Landfill 10840 Altamont Pass Road, Livermore, CA 94551		
Source Contact: Maria Bowen, SCS Engineers (619) 455-9518		
Source Tested: Flare (A-15) - 71 MMBtu/hr LFG Specialties, Inc. enclosed l gas flare		
Source Test Date:	February 28, 2024	
Test Objective:	Determine compliance with Condition 19235 of the Bay Area Air Quality Management District (BAAQMD) Permit to Operate for Plant 2066; BAAQMD Regulation 8, Rule 34; and the State Landfill Methane Gas Rule under AB32 for flare performance.	
Test Performed By:	Blue Sky Environmental, Inc. 2273 Lobert Street, Castro Valley, CA 94546 Jaime Rios (925) 482-4504 bluesky@blueskyenvironmental.com	
Test Parameters:	Landfill Gas O ₂ , N ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-factor, sulfur species, volumetric flow rate Flare Emissions THC, CH ₄ , NMOC, NO _x , CO, O ₂ , SO ₂ , moisture, volumetric flow rate.	

Table 1-2. Compliance Summary

Emission Parameter	Average Results	Permit Limits	Compliance Status
NO _x , ppmvd @ 3% O ₂	26.8	45	In Compliance
NO _x , lb/MMBtu	0.0348	0.06	In Compliance
CO, ppmvd @ 3% O ₂	66.4	369	In Compliance
CO, lb/MMBtu	0.0526	0.30	In Compliance
TRS, ppmvd as H ₂ S in Fuel	107.0	200	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<2.4	30	In Compliance
NMOC Destruction Efficiency, %	>99.68	>98%	In Compliance
CH ₄ Destruction Efficiency, %	>99.97	>99%	In Compliance

SECTION 2. SOURCE TEST PROGRAM

2.1. Overview

This annual source test was performed to demonstrate that landfill gas Flare A-15 is operating in compliance with Condition 19235 of the Bay Area Air Quality Management District (BAAQMD) Permit to Operate for Facility #2066 and Regulation 8, Rule 34. This testing also satisfies the compliance requirements outlined in the State Landfill Methane Gas Rule under AB32 for Flare performance.

2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA Method 3A	O ₂ and CO ₂ , Stack Gas Molecular Weight

EPA Method 10 CO Emissions

EPA Method 7E NO_x and NO₂ Converter Check

EPA Method 4 Moisture

EPA Method 18 CH₄, THC, NMOC

EPA Method 19 Flow Rate Calculation DSCFM

EPA Method 25A VOC Emissions

EPA Method 25C TNMHC (NMOC) in fuel

ASTM D-1945/3588 BTU, F-Factor and Fixed Gases in Fuel

ASTM D-5504 Sulfur Species, Hydrogen Sulfide (H₂S) and TRS

EPA Method TO-15 Toxic Organic Compounds

2.3. Test Date

Testing was conducted on February 28, 2024.

2.4. Sampling and Observing Personnel

Testing was conducted by Jamie Rios and Vincent Gigli, representing Blue Sky Environmental, Inc.

Ben Tarver of Waste Management (WM) was present to operate the flare and assist in coordinating testing and the collection of process data during testing.

BAAQMD was notified of the scheduled testing in a source test plan submitted by SCS Engineering on behalf of Waste Management on January 26, 2024. A Source Test Protocol acknowledgement (NST-9041) was received on February 2, 2024. No agency observers from the District were present during the test program. A copy of the source test protocol and email correspondence are provided in Appendix I.

2.5. Source/Process Description

The Altamont Landfill, located in Livermore, California, is a multi-material landfill with a gas collection system that is abated by two industrial landfill gas flares. Flare A-15 has a 71

MMBtu/hr multiple nozzle burner. The flare shell is 45 feet high and 8.5 feet in diameter. The inside diameter (ID) is approximately 102 inches.

2.6. Source Operating Conditions

The flare was operated on landfill gas with no condensation injection under normal operating conditions during testing.

The average exhaust temperature at normal operating condition was 1,483 °F. The LFG flow rate ranged from 1,201 to 1,202 SCFM. The operating exhaust temperature, and LFG flow rate records are provided in Appendix F.

Landfill gas samples collected at the head of the flare showed an average methane content of 45.65% and an oxygen content of 3.45%.

The fuel sample collected during Run 3 of the test program (Condensate ON) had a relatively high oxygen content, suggesting that air had infiltrated the sample. These findings were excluded from calculations for heat value, TNMOC, CH₄, TRS, and toxic air pollutants. Results represent the average of Runs 1 and 2.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port Location

Sampling was conducted in the 102-inch diameter ID stack of the flare through ports that were accessed with a 60-foot boom lift. The four 4-inch flange ports were located 40 feet above grade, approximately four stack diameters downstream from the burners and approximately one stack diameters upstream from the exhaust.

3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental, Inc. conducted two perpendicular 8-point traverses of the stack to check for the presence of stratification. The traverse points for the 102-inch diameter stack with 4-inch ports were 7.3, 14.7, 23.8, 36.9, 73.1, 86.2, 95.3 and 102.7 inches. O₂ stratification was greater than 10%; therefore, subsequent CEM sampling was conducted using all traverse points.

3.3. Sample Train Description

Sampling system diagrams are provided in Appendix H. Additional descriptive information is included in the following section.

3.4. Sampling Procedure Description

Three consecutive 36-minute gaseous emissions tests were performed for oxides of nitrogen (NO_x), nitric oxide (NO), carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂), methane (CH₄) and volatile organic compounds (VOC) at the flare exhaust stack.

The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using equation 100-3 from CARB Method 100. A NOx analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky Environmental, Inc. collected a total of three integrated fuel samples for off-site analysis by Atmospheric Analysis & Consulting, Inc. (AAC), in Ventura, California. The samples were collected in 6-liter SUMMA canisters and analyzed for hydrocarbons by EPA Method 25, sulfur species (incl. H₂S and TRS) by ASTM D-5504, and HHV, F-factor, fixed gases, volatile organic compounds (VOCs), nonmethane organic compounds (NMOCs) and C¹-C⁶⁺ hydrocarbons by EPA Method 25C and ASTM D-1945. The collected samples were also analyzed for toxic organic compounds by EPA Method TO-15 (AP-42 2.4-1).

The sampling and analysis procedures are summarized below:

EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. A small portion of the sample is passed through a fuel cell type paramagnetic oxygen analyzer which measures the electrical current generated by the oxidation reaction at the gas/fuel cell interface. Carbon dioxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon dioxide absorbs infrared radiation.

EPA Method 7E - Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Nitric oxide is determined by passing the sample through a chemiluminescent analyzer. The chemiluminescent process is based on the light given off when nitric oxide and ozone react. Nitrogen dioxide (NO_2) concentrations are determined by passing the sample through a catalyst which reduces the NO_2 to NO. The total oxides of nitrogen concentration $(NO_2 + NO)$ is then determined by chemiluminescence.

Section 16.2.2 of the method is used to determine the NO_X analyzer NO₂ to NO conversion efficiency.

EPA Method 10 - Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Carbon monoxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon monoxide absorbs infrared radiation.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 psi is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E

for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

EPA Method 4 – Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5, SCAQMD Method 201.7 or BAAQMD ST-32. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively.

QA/QC procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum of 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

EPA Method 18 – Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

This method is used to determine emissions of volatile organics by gas chromatograph/mass spectroscopy (GC/MS). Gaseous emissions are drawn through a Teflon sample transfer line to a Tedlar bag held in a rigid leak proof bag container. The sample is drawn into the bag by evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow for the collection time. The bag samples are taken to a laboratory and analyzed within 72 hours.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D-1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates.

EPA Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test.

EPA Method 25C - Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. The method is written for evacuated tank sampling but is adaptable to Tedlar bag sampling procedures. The sampling equipment consists of a stainless steel or glass lined probe with a short stainless-steel or Teflon transfer line to a Tedlar bag housed in a sealed chamber. The chamber is evacuated by pump at a prescribed rate for the test duration and the Tedlar bag capacity, so the sample is integrated over the test period. The sample is injected into a GC column where the methane and CO₂ are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO₂ then reduced to methane and analyzed.

ASTM D-1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C₁-C₇, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 7 days.

EPA Compendium Method TO-15 - Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

3.5. Instrumentation and Analytical procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO Model 42C	NO _x /NO	Chemiluminescence
TECO Model 48C	CO	Gas Filter Correlation/Infrared
TECO Model RSS66	NMOC/CH ₄	Flame Ionization
Servomex Model 1400	CO_2	Infrared
Servomex Model 1440	O_2	Paramagnetic

3.6. System Performance Criteria

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder, supported by a Data Acquisition System (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations. All system performance criteria were met.

Instrument Linearity $\leq 2\%$ Full ScaleInstrument Bias $\leq 5\%$ Full ScaleSystem Response Time $\leq \pm 2$ minutes

 NO_X Converter Efficiency (EPA Method 7E) $\geq 90\%$

Instrument Zero Drift ≤± 3% Full Scale
Instrument Span Drift ≤± 3% Full Scale

3.7. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to BAAQMD. The fuel sample collected during Run 3 of the test program (Condensate ON) had a relatively high oxygen content, suggesting that air had infiltrated the sample. These findings were excluded from calculations for heat value, TNMOC, CH₄, TRS, and toxic air pollutants. Results represent the average of Runs 1 and 2. No other deviations from the protocol or anomalies were observed during testing. Emissions measured from the flare meet permit limits.

Blue Sky Environmental has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text

Review of calculations

Review of CEMS data

Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters

indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. APPENDICES

A.	Tabulated Results
В.	Calculations
C.	Laboratory Reports
D.	Field Data Sheets
E.	Strip Charts
F.	Process Information
G.	QC Calibration Certificates and Quality Assurance Records
H.	Sample Train Configuration and Stack Diagrams
I.	Related Correspondence (Source Test Plan and Email)
J.	BAAQMD Permit Conditions
K.	Flare Flow Meter Calibration Records

A Tabulated Results

TABLE 1

Altamont Landfill Flare A-15 1,483°F

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	2/28/24	2/28/24	2/28/24		
Test Time	0856-0935	1013-1052	1113-1151		
Standard Temperature, °F	70	70	70		
Flare Temperature, °F	1,483	1,483	1,483	1,483	
Fuel:					
Fuel Flow Rate, DSCFM	1,202	1,202	1,201	1,201	
Fuel Heat Input, MMBtu/hr	34.9	31.8	33.3	33.3	
Stack Gas:					
Exhaust Flow Rate, DSCFM (EPA Method 19)	13,996	12,639	13,520	13,385	
Oxygen (O ₂), % volume dry	12.8	12.7	12.9	12.8	
Carbon Dioxide (CO ₂), % volume dry	7.27	7.27	6.95	7.16	
Water Vapor (H2O), % volume (EPA Method 4)	7.24	5.21	7.88	6.78	
NO _x Emissions (reported as NO ₂):	•				
NOx, ppmvd	12.0	12.4	12.1	12.1	
NOx, ppmvd @ 3% O ₂	26.4	27.0	26.9	26.8	45
NOx, lb/hr	1.19	1.12	1.166	1.160	
NOx, lb/MMBtu	0.0343	0.0351	0.0350	0.0348	0.06
CO Emissions:	•				
CO, ppmvd	45.4	23.9	21.2	30.2	
CO, ppmvd @ 3% O ₂	100.1	52.1	47.2	66.4	369
CO, lb/hr	2.76	1.31	1.24	1.77	
CO, lb/MMBtu	0.0792	0.0412	0.0373	0.0526	0.30
SO ₂ Emissions:					
Inlet TRS, ppmv as H ₂ S (ASTM D5504)	114	100	107.0*	107.0	200
SO ₂ , ppmv (calculated)	9.79	9.51	9.51	9.60	
THC Emissions (reported as CH ₄):					
THC, ppmvd	<11.9	<11.6	<11.9	<11.8	
THC, lb/hr	< 0.412	< 0.364	< 0.401	< 0.392	
Methane (CH ₄) Emissions:					
CH ₄ , ppmv wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<10.8	<10.6	<10.9	<10.7	
CH ₄ , lb/hr	< 0.375	< 0.331	< 0.364	< 0.357	
NMOC Emissions (reported as CH ₄):					
NMOC, ppmv wet (EPA Method 25A)	<1.0	<1.0	<1.0	<1.0	
NMOC, ppmvd	<1.1	<1.1	<1.1	<1.1	
NMOC, ppmvd @ 3% O ₂	<2.4	<2.3	<2.4	<2.4	30
NMOC, lb/hr	< 0.037	< 0.033	< 0.036	< 0.036	
Inlet Hydrocarbons:	•		•		
Inlet THC, ppmvd	481,645	439,079	460,362*	460,362	
Inlet THC, lb/hr	1,437	1,310	1,373*	1,373	
THC Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	
Inlet CH ₄ , ppmvd (ASTM D-1945)	477,000	436,000	456,500*	456,500	
Inlet CH ₄ , lb/hr	1,423	1,301	1,361*	1,362	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet NMOC, ppmvd (EPA Method 25C)	4,645	3,079	3,862*	3,862	
Inlet NMOC, lb/hr	13.86	9.19	11.51*	11.52	
NMOC Destruction Efficiency, %	>99.73%	>99.64%	>99.68%	>99.68%	>98%

DEFINITIONS:

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rate

Tstd. = standard temperature (°R = °F+460)

 $MW = molecular\ weight$

DSCFM = dry standard cubic feet per minute

 NO_X = oxides of nitrogen, reported as NO_2 (MW = 46)

CO = carbon monoxide (MW = 28)

 CH_4 = methane (MW = 16)

THC = total hydrocarbons, reported as CH₄ (MW = 16)

NMOC = non-methane organic compounds, reported as CH₄ (MW = 16)

CALCULATIONS:

15% O_2 Correction = ppm · 5.9 / (20.9 - % O_2)

3% O_2 Correction = ppm · 17.9 / (20.9 - % O_2)

lb/hr = ppm · 8.223 E-05 · DSCFM · MW / Tstd. °R

 $\label{eq:lb/MMBtu} $$lb/MMBtu = Fd \cdot MW \cdot ppm \cdot 2.59E-9 \cdot 20.9/(20.9 - \%O_2)$$ Destruction Efficiency = (inlet, lb/hr - outlet, lb/hr) / inlet, lb/hr$

SO₂, ppm (calculated) = inlet TRS, ppmv · fuel flow rate, DSCFM/exhaust flow rate, DSCFM

 \leq value = 2% of analyzer range

^{*} Results are the average of Runs 1 and 2 refer to section 3.7 of the report

TABLE 2 AP42 2.4-1 - Landfill Gas Samples

Altamont Landfill Flare A-15

Compound	Method	Run 1 (ppb)	Run 2 (ppb)	Run 3 (ppb)	Average * Results (ppb)	Permit Limits (ppb)
1,1,1-Trichloroethane	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
1,1,2,2-Tetrachloroethane	EPA TO-15	<53.7	<46.2	<44.9	<48.3	400
1,1-Dichloroethane (Ethylidene Dichloride)	EPA TO-15	<53.7	<46.2	<44.9	<48.3	1,000
1,1-Dichloroethene (Vinylidene Chloride)	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
1,2-Dichloroethane (Ethylene Dichloride)	EPA TO-15	186	212	85.4	199	1,500
1,2-Dichloropropane	EPA TO-15	<53.7	<46.2	<44.9	<48.3	-
2-Propanol (Isopropyl alcohol)	EPA TO-15	43,900	39,000	21,600	41,450	500,000
Acrylonitrile	EPA TO-15	<53.7	<46.2	<44.9	<48.3	300
Bromodichloromethane	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
Carbon Tetrachloride	EPA TO-15	<53.7	<46.2	<44.9	<48.3	100
Chlorobenzene	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
Chlorodifluoromethane	EPA TO-15	109	115	50.3	112	
Chloroethane (Ethyl Chloride)	EPA TO-15	87.0	88.7	<44.9	87.9	
Chloroform (Trichloromethane)	EPA TO-15	<53.7	<46.2	<44.9	<48.3	100
Chloromethane	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
1,2-Dichlorobenzene	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
1,3-Dichlorobenzene	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
1,4-Dichlorobenzene	EPA TO-15	493	613	301	553	7,500
Dichlorodifluoromethane (Freon 12)	EPA TO-15	112	116	51.2	114	
Dichlorofluoromethane	EPA TO-15	61.2	<46.2	<44.9	<50.8	
Dichloromethane (Methylene Chloride)	EPA TO-15	<107	<92.4	<89.9	<96.4	1,500
Ethanol	EPA TO-15	263,000	216,000	119,000	239,500	
Ethylbenzene	EPA TO-15	3,700	3,820	2,010	3,760	23,000
1,2-Dibromoethane (Ethylene dibromide)	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
Trichlorofluoromethane	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
n-Hexane	EPA TO-15	536	570	315	553	
2-Butanone (Methyl Ethyl Ketone)	EPA TO-15	38,100	33,700	17,200	35,900	350,000
4-Methyl-2-pentanone (MiBK)	EPA TO-15	2,010	2,080	970	2,045	
Perchloroethylene (Tetrachloroethene) PCE	EPA TO-15	146	148	68.3	147	1,500
trans-1,2-Dichloroethene	EPA TO-15	<53.7	<46.2	<44.9	<48.3	
Trichloroethylene (TCE)	EPA TO-15	81.7	89.6	<44.9	85.7	1,500
Vinyl Chloride (Chloroethene)	EPA TO-15	<53.7	<46.2	<44.9	<48.3	1,000
m/p-Xylenes	EPA TO-15	6,910	7,170	3,830	7,040	
o-Xylene	EPA TO-15	2,540	2,680	1,350	2,610	
Total Xylenes	EPA TO-15	9,450	9,850	5,180	9,650	90,000
Benzene	EPA TO-15	2,050	2,140	1,010	2,095	7,900
Benzyl Chloride (a-Chlorotoluene)	EPA TO-15	<53.7	<46.2	<44.9	<48.3	500
Methanol (Methyl Alcohol)	EPA TO-15	53,100	45,800	24,300	49,450	600,000
Toluene	EPA TO-15	6,840	6,760	3,770	6,800	80,000
		*	1 '	L	1 '	,

^{*} Due to air intrusiuon of the sample collected during Run 3, results are the average of Runs 1 and 2

SCS ENGINEERS

May 3, 2024 Project No. 01201101.02

Source Test Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

2024 ANNUAL SOURCE TEST REPORT A-16 FLARE Subject:

ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY

(FACILITY A2066)

To whom it may concern,

The 2024 Annual Source test at the A-16 Flare was completed on March 6, 2024. Preliminary results for the TRS as hydrogen sulfide (H₂S) indicated values above permit limit of 200 parts per million by volume (ppmv). However, these results do not appear to be representative of site conditions over the years. Therefore, Altamont Landfill and Resource Recovery Facility (ALRRF) is currently conducting further investigations.

Please contact the undersigned at (619) 455-9518 or at mbowen@scsengineers.com or Rajan Phadnis at (510) 875-9338 or at rphadnis@wm.com if you have any questions or require any additional information.

Sincerely,

Maria Bowen **Project Manager**

SCS Engineers

CC: Rajan Phadnis, Waste Management

Christian Colline, Waste Management

Attachment A: Annual Source Test Report A-16 2024

Annual Source Test Report ALRRF A-16 2024

Waste Management of Alameda County

BAAQMD Facility #2066

Compliance Test Report #24097 Landfill Gas Flare A-16

Located at:

Altamont Landfill

10840 Altamont Pass Road Livermore, CA 94551

Prepared for:

SCS Engineers

3117 Fite Circle, Suite 108 Sacramento, CA 95827

Attn: Maria Bowen mbowen@scsengineers.com

For Submittal to:

Bay Area Air Quality Management District

375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Gloria Espena and Marco Hernandez gespena@baaqmd.gov/mhernandez@baaqmd.gov sourcetest@baaqmd.gov

Testing Performed on: March 6, 2024

Final Report Submitted on: May 3, 2024

Performed and Reported by:

Blue Sky Environmental, Inc.

2273 Lobert Street Castro Valley, CA 94546

Office (510) 508-3469/Mobile (810) 923-3181 bluesky@blueskyenvironmental.com

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923-3181.

Jeramie Richardson

President

Blue Sky Environmental, Inc.

TABLE OF CONTENTS

SECTION	1. INTRODUCTION	4
1.1.	SUMMARY	4
SECTION	2. SOURCE TEST PROGRAM	6
2.1.	Overview	6
2.2.	POLLUTANTS TESTED	6
2.3.	TEST DATE	6
2.4.	SAMPLING AND OBSERVING PERSONNEL	6
2.5.	SOURCE/PROCESS DESCRIPTION	7
2.6.	SOURCE OPERATING CONDITIONS	7
SECTION	3. SAMPLING AND ANALYSIS PROCEDURES	8
3.1.	PORT LOCATION.	8
3.2.	POINT DESCRIPTION/LABELING - PORTS/STACK	8
3.3.	SAMPLE TRAIN DESCRIPTION	8
3.4.	SAMPLING PROCEDURE DESCRIPTION	8
3.5.	INSTRUMENTATION	12
3.6.	SYSTEM PERFORMANCE CRITERIA	
3.7.	COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS	12
SECTION	4. APPENDICES	14
A.	Tabulated Results	
B.	Calculations	
С.	Laboratory Reports	
D.	Field Data Sheets	
E.	Process Information	
F.	Flare Flow Meter Calibration Records	
	QC Calibration Certificates and Quality Assurance Records	
Н.	Sample Train Configuration and Stack Diagrams	
I.	Source Test Plan and Related Correspondence	
J.	Permit	

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, Inc. was contracted by SCS Engineers to perform emissions testing for Waste Management of Alameda County, Inc. at the Altamont Landfill and Resource Recovery Facility (ALRRF) in Livermore, California. Testing was conducted to demonstrate that landfill gas Flare A-16 is operating in compliance with Condition 19235 of Bay Area Air Quality Management District (BAAQMD) Permit to Operate A2066.

The results of the test program are presented in this report. The source test information is summarized in Table 1-1. Test results derived from the source test are summarized in Tables 1-2 and 1-3. Results for individual test runs are provided in Appendix A. The flare met all compliance emission criteria; however, the total reduced sulfur content of the landfill gas exceeded permitted limits.

Table 1-1 Source Test Information

Test Location:	Altamont Landfill and Resource Recovery Facility (ALRRF) 10840 Altamont Pass Road, Livermore CA 94551
Source Contact:	Maria Bowen, SCS Engineers (619) 455-9518
Source Tested:	Flare A-16 – 132 MMBtu/hr LFG Specialties, Inc. enclosed landfill gas flare
Source Test Date:	March 6, 2024
Test Objective:	Determine compliance with Condition 19235 of the Bay Area Air Quality Management District (BAAQMD) permit for Facility #2066; BAAQMD Regulation 8, Rule 34; and the State Landfill Methane Gas Rule under AB32 for flare performance.
Test Performed by: Blue Sky Environmental, Inc. 2273 Lobert Street, Castro Valley, CA 94546 Jaime Rios (925) 482-4504 bluesky@blueskyenvironmental.com	
Test Parameters:	Landfill Gas O ₂ , N ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-Factor, Sulfur and VOC Species, Volumetric Flow rate Flare Emissions THC, CH ₄ , NMOC, NO _x , CO, O ₂ , SO ₂ , Moisture, Volumetric Flow rate.

Table 1-2 Compliance Summary
Flare A-16 Condensate Injection - ON

Emission Parameter	Average Results (Condensate - ON)	Permit Limit	Compliance Status
NO _x , ppmvd @ 3% O ₂	38.9	45	In Compliance
NO _x , lb/MMBtu	0.0504	0.06	In Compliance
CO, ppmvd @ 3% O ₂	<21.7	246	In Compliance
CO, lb/MMBtu	< 0.0171	0.20	In Compliance
TRS as H ₂ S in Fuel, ppmvd	272	200	Exceeds Permit
SO ₂ , ppmvd	24.4	300	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<2.9	30	In Compliance
NMOC Destruction Efficiency, %	>99.19%	>98%	In Compliance

>99.97%

>99%

In Compliance

Table 1-3 Compliance Summary
Flare A-16 Condensate Injection - OFF

 $\mathrm{CH_{4}}$ Destruction Efficiency, %

Emission Parameter	Average Results (Condensate - OFF)	Permit Limit	Compliance Status
NO _x , ppmvd @ 3% O ₂	29.8	45	In Compliance
NO _x , lb/MMBtu	0.0387	0.06	In Compliance
CO, ppmvd @ 3% O ₂	46.0	246	In Compliance
CO, lb/MMBtu	0.0364	0.20	In Compliance
TRS as H ₂ S in Fuel, ppmvd	259	200	Exceeds Permit
SO ₂ , ppmvd	21.0	300	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<2.3	30	In Compliance
NMOC Destruction Efficiency, %	>99.46%	>98%	In Compliance
CH ₄ Destruction Efficiency, %	>99.97%	>99%	In Compliance

SECTION 2. SOURCE TEST PROGRAM

2.1. Overview

This annual source test was performed to demonstrate that landfill gas Flare A-16 is operating in accordance with Condition 19235 of the Bay Area Air Quality Management District (BAAQMD) Permit to Operate for Facility #2066 and BAAQMD Regulation 8, Rule 34. This testing also satisfies compliance requirements outlined in the State Landfill Methane Gas Rule under AB32 for flare performance.

2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA Method 3A	O ₂ and CO ₂ Emissions, Stack Gas Molecular Weight
EPA Method 10	CO Emissions
EPA Method 7E	NO _X Emissions and NO ₂ Converter Check
EPA Method 4	Moisture Content in Stack Gas
EPA Method 18	CH ₄ , THC, NMOC
EPA Method 19	Flow Rate Calculation DSCFM
EPA Method 25A	VOC Emissions
EPA Method 25C	TNMHC (NMOC) in Fuel
ASTM D-1945/3588	BTU, F-Factor and Fixed Gases in Fuel
ASTM D-5504	Sulfur Species, Hydrogen Sulfide (H ₂ S) and TRS

Toxic Organic Compounds

2.3. Test Date

Testing was conducted March 6, 2024.

2.4. Sampling and Observing Personnel

EPA Method TO-15

Testing was conducted by Jaime Rios and Timothy Eandi, representing Blue Sky Environmental, Inc.

Ben Tarver of Waste Management (WM) was present to operate the flare and assist in coordinating testing and the collection of process data during testing.

BAAQMD was notified of the scheduled testing in a source test plan submitted on February 5, 2024. A Source Test Protocol acknowledgement (NST-9045) was received the same day. No agency observers from the District were present during the test program. A copy of the source test protocol and email correspondence are provided in Appendix J.

2.5. Source/Process Description

The Altamont Landfill, located in Livermore, California, is a multi-material landfill with a gas collection system that is abated by two industrial landfill gas flares. Flare A-16 has a 132 MMBtu/hr multiple nozzle burner and a combustion zone temperature set-point of 1,600 °F. The flare shell is 50 feet high and 12.5 feet in diameter. The inside diameter (ID) is approximately 144 inches. Flare A-16 operates on landfill gas (LFG). Collected landfill gas condensate is periodically injected into the flare through one vertical nozzle positioned near the burner.

2.6. Source Operating Conditions

The flare was operated at or near maximum operating rates for each of the following operating conditions:

- 1) while the flare was burning landfill gas without any condensate injection,
- 2) while the flare was burning landfill gas and condensate was being injected into the flare at the maximum injection rate (0.98 gallons per minute).

The average exhaust temperature during the test program was 1,522 °F. The LFG flow rate ranged from 2,059 to 2,101 SCFM. Landfill gas samples collected at the head of the flare showed an average methane content of 49.8% and an oxygen content of 2.14%. The operating exhaust temperature and LFG flow rate records are provided in Appendix F.

The fuel sample collected during Run 3, condensate on, of the test program had a relatively high oxygen content, suggesting that air had infiltrated the sample. These findings were excluded from calculations for heat value, TNMOC, CH₄, TRS, and toxic air pollutants. Results represent the average of Runs 1 and 2.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port Location

Sampling was conducted at the 144-inch diameter ID stack of the flare through ports that were accessed with a 65-foot boom lift. The four 8-inch flange ports were located 45 feet above grade, approximately four stack diameters downstream from the burners and approximately one stack diameter upstream from the exhaust.

3.2. Point Description/Labeling - Ports/Stack

Blue Sky Environmental, Inc. conducted two perpendicular 8-point traverses to check for the presence of stratification and cyclonic flow. O₂ stratification was greater than 10%; therefore, subsequent CEM sampling was conducted using all traverse points. Sampling was performed for two minutes per point for a total of 16 points over 32-minute test run. The traverse points for the 144-inch diameter stack with offset 8-inch ports were 4.6, 15.1, 27.9, 46.5, 97.5, 116.1, 128.9 and 139.4 inches.

3.3. Sample Train Description

Sampling system diagrams are provided in Appendix I. Additional descriptive information is included in the following section.

3.4. Sampling Procedure Description

Six consecutive 32-minute gaseous emissions tests were performed for oxides of nitrogen (NO_x), nitric oxide (NO), carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂), methane (CH₄) and non-methane organic compounds (NMOC) at the flare exhaust stack. The first three tests were performed while the flare was burning landfill gas with the condensate injection system operating. The last three tests were performed while the flare was burning landfill gas with the condensate injection off. The gas flow was controlled with a critical orifice to collect the 32-minute integrated samples.

The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using equation 100-3 from CARB Method 100. A NO_X analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky Environmental, Inc. collected a total of six integrated fuel samples (one sample per test run) for HHV, F-factor, fixed gases, volatile organic compounds (VOCs), nonmethane organic compounds (NMOCs) and C₁-C₆₊ hydrocarbons by EPA Method 25C and ASTM D-1945, and sulfur compounds by ASTM D-5504. Additionally, the fuel samples were analyzed for toxic organic compounds by EPA Method TO-15. The

samples were collected in 6-liter SUMMA canisters and analyzed by Atmospheric Analysis & Consulting, Inc., located in Ventura, CA.

The sampling and analysis procedures are summarized below:

EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. A small portion of the sample is passed through a fuel cell type paramagnetic oxygen analyzer which measures the electrical current generated by the oxidation reaction at the gas/fuel cell interface. Carbon dioxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon dioxide absorbs infrared radiation.

EPA Method 7E - Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Nitric oxide is determined by passing the sample through a chemiluminescent analyzer. The chemiluminescent process is based on the light given off when nitric oxide and ozone react. Nitrogen dioxide (NO₂) concentrations are determined by passing the sample through a catalyst which reduces the NO₂ to NO. The total oxides of nitrogen concentration (NO₂ + NO) is then determined by chemiluminescence.

Section 16.2.2 of the method is used to determine the NO_X analyzer NO₂ to NO conversion efficiency.

EPA Method 10 - Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Carbon monoxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon monoxide absorbs infrared radiation.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless-steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and

calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

EPA Method 4 - Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5 or EPA 12. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively.

QA/QC procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum of 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

EPA Method 18 - Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

This method is used to determine emissions of volatile organics by gas chromatography (GC). Gases are collected in a pre-evacuated 6-Liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the target volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D-1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is

multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates. 301.

EPA Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test.

EPA Method 25C - Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. Gases are collected in a pre-evacuated 6-Liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs. The sample is injected into a GC column where the methane and CO₂ are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO₂ then reduced to methane and analyzed.

ASTM D-1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 7 days.

EPA Compendium Method TO-15 - Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

3.5. Instrumentation

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO Model 42C	NO _X /NO/NO ₂	Chemiluminescence
TECO Model 48C	CO	Gas Filter Correlation /Infrared
TECO Model 55C	NMOC/CH ₄	Flame Ionization (GC/FID)
Servomex Model 1440	CO_2	Infrared
Servomex Model 1440	O_2	Paramagnetic

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder, supported by a data acquisition system (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations. All system performance criteria were met.

3.6. System Performance Criteria

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder, supported by a Data Acquisition System (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations. All system performance criteria were met.

Instrument Linearity $\leq 2\%$ Full ScaleInstrument Bias $\leq 5\%$ Full ScaleSystem Response Time $\leq \pm 2$ minutesNOx Converter Efficiency (EPA Method 7E) $\geq 90\%$ Instrument Zero Drift $\leq \pm 3\%$ Full ScaleInstrument Span Drift $\leq \pm 3\%$ Full Scale

3.7. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to BAAQMD. The fuel sample collected during Run 3, condensate on, of the test program had a relatively high

oxygen content, suggesting that air had infiltrated the sample. These findings were excluded from calculations for heat value, TNMOC, CH₄, TRS, and toxic air pollutants. Results represent the average of Runs 1 and 2. No other deviations from the protocol or anomalies were observed during testing. No deviations from the protocol were observed during testing. The measured emissions from the flare comply with the permit limits; however, the total reduced sulfur as H2S content of the landfill gas exceeded permitted limits.

Blue Sky Environmental, Inc. has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. APPENDICES

Α.	Tabulated Results
В.	Calculations
C.	Laboratory Reports
D.	Field Data Sheets
E.	Process Information
F.	Flare Flow Meter Calibration Records
G.	QC Calibration Certificates and Quality Assurance Records
Н.	Sample Train Configuration and Stack Diagrams
I.	Source Test Plan and Related Correspondence
ī	Permit

A Tabulated Results

TABLE 1

Altamont Landfill Flare A-16 1,522 °F - Condensate ON

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	3/6/24	3/6/24	3/6/24		
Test Time	0744-0825	0852-0933	0959-1037		
Standard Temperature, °F	70	70	70		
Process Parameters:	•				
Flare Temperature, °F	1,522	1,521	1,522	1,522	
Condensate Injection, gpm	1.03	0.90	1.02	0.98	
Fuel:	· ·	•	I.	<u>'</u>	
Fuel Flow Rate, SCFM	2,066	2,059	2,071	2,065	
Fuel Heat Input, MMBtu/hr	57.8	59.9	59.1	58.9	
Stack Gas:	•	!	!	+ +	
Exhaust Flow Rate, DSCFM (EPA Method 19)	22,190	23,697	23,850	23,246	
Oxygen (O ₂), % volume dry	12.4	12.7	12.9	12.7	
Carbon Dioxide (CO ₂), % volume dry	7.88	7.24	7.55	7.56	
Water Vapor (H ₂ O), % volume dry (EPA Method 4)	6.89	6.37	5.80	6.35	
NO/NO ₂ /NO _X Emissions:	1	1		1	
NOx, ppmvd	18.7	17.7	17.4	17.9	
NOx, ppmvd @ 3% O ₂	39.5	38.6	38.6	38.9	45
NOx, lb/hr	2.96	3.00	2.96	2.97	
NOx, lb/day	71.0	71.9	71.0	71.3	
NOx, lb/MMBtu	0.0512	0.0500	0.0500	0.0504	0.06
CO Emissions:	0.0312	0.0300	0.0300	0.0301	0.00
CO, ppmvd	<10.0	<10.0	<10.0	<10.0	
CO, ppmvd @ 3% O ₂	<21.2	<21.8	<22.2	<21.7	246
CO, lb/hr	<0.964	<1.029	<1.036	<1.010	240
CO, lb/day	<23.1	<24.7	<24.9	<24.2	
CO, lb/MMBtu	<0.0167	<0.0172	<0.0175	<0.0171	0.20
TRS as H ₂ S, ppmvd in Fuel	269	274	272*	272	200
Sulfur Dioxide (SO ₂) Emissions, ppmvd (calculated)	25.0	23.8	24.4*	24.4	300
THC Emissions (reported as CH ₄):	23.0	23.0	24.4	24.4	300
	<11.0	<11.0	<11.0	<11.2	
THC, ppmv wet (Sum NMOC + CH ₄)	<11.8	<11.0	<11.0	<11.3	
THC, ppmvd dry	<12.7	<11.8	<11.8	<12.1	
THC, lb/hr Methane (CH ₄) Emissions:	< 0.698	< 0.695	< 0.699	< 0.697	
• •	*10.0	410.0	4100	410.0	
CH ₄ , ppmv wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<10.7	<10.7	<10.6	<10.7	
CH ₄ , lb/hr	< 0.592	< 0.628	< 0.629	< 0.616	
NMOC Emissions (reported as CH ₄):	1	T	T	T T	
NMOC, ppmv wet (EPA Method 25A)	1.8	<1.0	<1.0	<1.3	
NMOC, ppmvd	1.9	<1.1	<1.1	<1.4	20**
NMOC, ppmvd @ 3% O ₂	4.1	<2.3	<2.4	<2.9	30
NMOC, lb/hr	0.11	< 0.063	< 0.063	< 0.077	
Inlet Hydrocarbons (reported as CH ₄):		1	T		
Inlet NMOC, ppmvd (EPA Method 25C)	2,064	1,995	2,030*	2,030	
Inlet NMOC, lb/hr	10.6	10.2	10.4*	10.4	_ **
NMOC Destruction Efficiency, %	>98.99%	>99.38%	>99.19%	>99.19%	>98%
Inlet CH ₄ , ppmvd (ASTM D-1945)	461,000	480,000	470,500*	470,500	
Inlet CH ₄ , lb/hr	2,365	2,453	2,409*	2,409	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet THC (TOC), ppmvd (Sum NMOC + CH4)	463,064	481,995	472,530*	472,530	
Inlet THC (TOC), lb/hr	2,375	2,464	2,420*	2,420	
THC (TOC) Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	· · · · · · · · · · · · · · · · · · ·

DEFINITIONS:

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rate

Tstd. = standard temperature (°R = °F+460)

MW = molecular weight

DSCFM = dry standard cubic feet per minute NO_X = oxides of nitrogen, reported as NO_2 (MW = 46)

 $\mathrm{NMOC} = \mathrm{non\text{-}methane}$ organic compounds, reported as $\mathrm{CH_4}$ (MW = 16)

CO = carbon monoxide (MW = 28) THC = TOC = total hydrocarbons including CH_4 , reported as CH_4 (MW = 16)

CALCULATIONS:

ppm @ $3\% O_2 = ppm \cdot 17.9 / (20.9 - \%O_2)$

lb/hr = ppm \cdot 8.223 E-05 \cdot DSCFM \cdot MW / Tstd. °R

Destruction Efficiency (DE) = (inlet, lb/hr- outlet, lb/hr) / inlet, lb/hr SO_2 emission ppmvd = H_2S in fuel · fuel flow/stack gas flow

 SO_2 = sulfur dioxide as SO_2 (MW = 64.1)

< Value = 2% of Analyzer Range

^{*} Results are the average of Runs 1 and 2 ** NMOC permit limits are 30 ppmvd @ 3% O 2 or DE >98%

TABLE 2 AP42 2.4-1 - Landfill Gas Samples

Altamont Landfill Flare A-16 1,522 °F - Condensate ON

Compound	Method	Run 1 (ppb)	Run 2 (ppb)	Run 3 (ppb)	Average * Results (ppb)	Permit Limits (ppb)
1,1,1-Trichloroethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,1,2,2-Tetrachloroethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	400
1,1-Dichloroethane (Ethylidene Dichloride)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	1,000
1,1-Dichloroethene (Vinylidene Chloride)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,2-Dichloroethane (Ethylene Dichloride)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	1,500
1,2-Dichloropropane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
2-Propanol (Isopropyl alcohol)	EPA TO-15	10,200	13,000	2,480	11,600	500,000
Acrylonitrile	EPA TO-15	<47.8	<47.7	<51.3	<47.8	300
Bromodichloromethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Carbon Tetrachloride	EPA TO-15	<47.8	<47.7	<51.3	<47.8	100
Chlorobenzene	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Chlorodifluoromethane	EPA TO-15	62.1	60.1	<51.3	61.1	
Chloroethane (Ethyl Chloride)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Chloroform (Trichloromethane)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	100
Chloromethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,2-Dichlorobenzene	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,3-Dichlorobenzene	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,4-Dichlorobenzene	EPA TO-15	308	360	72.8	334	7,500
Dichlorodifluoromethane (Freon 12)	EPA TO-15	57.3	54.4	<51.3	55.9	
Dichlorofluoromethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Dichloromethane (Methylene Chloride)	EPA TO-15	<95.6	<95.4	<103	<95.5	1,500
Ethanol	EPA TO-15	41,600	43,300	7,960	42,450	
Ethylbenzene	EPA TO-15	2,680	2,770	634	2,725	23,000
1,2-Dibromoethane (Ethylene dibromide)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Trichlorofluoromethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
n-Hexane	EPA TO-15	305	295	153	300	
2-Butanone (Methyl Ethyl Ketone)	EPA TO-15	24,400	23,600	4,160	24,000	350,000
4-Methyl-2-pentanone (MiBK)	EPA TO-15	1,170	1,210	248	1,190	
Perchloroethylene (Tetrachloroethene) PCE	EPA TO-15	54.5	52.5	<51.3	53.5	1,500
trans-1,2-Dichloroethene	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Trichloroethylene (TCE)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	1,500
Vinyl Chloride (Chloroethene)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	1,000
m/p-Xylenes	EPA TO-15	4,350	4,490	992	4,420	
o-Xylene	EPA TO-15	1,570	1,660	361	1,615	
Total Xylenes	EPA TO-15	5,920	6,150	1,353	6,035	90,000
Benzene	EPA TO-15	1,490	1,490	298	1,490	7,900
Benzyl Chloride (a-Chlorotoluene)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	500
Methanol (Methyl Alcohol)	EPA TO-15	7,010	7,690	1,790	7,350	600,000
Toluene	EPA TO-15	4,790	4,750	1,210	4,770	80,000

TABLE 3

Altamont Landfill Flare A-16 1,522 °F - Condensate OFF

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	3/6/24	3/6/24	3/6/24		
Test Time	1102-1144	1204-1244	1302-1344		
Standard Temperature, °F	70	70	70		
Process Parameters:		•			
Flare Temperature, °F	1,522	1,522	1,522	1,522	
Condensate Injection, gpm	0.00	0.00	0.00	0.00	
Fuel:	•	I.	I.	1	
Fuel Flow Rate, SCFM	2,101	2,090	2,091	2,094	
Fuel Heat Input, MMBtu/hr	65.4	65.9	65.6	65.6	
Stack Gas:			<u>l</u>	-	
Exhaust Flow Rate, DSCFM (EPA Method 19)	25,613	26,422	25,782	25,939	
Oxygen (O ₂), % volume dry	12.6	12.8	12.6	12.7	
Carbon Dioxide (CO ₂), % volume dry	7.18	6.97	7.26	7.14	
Water Vapor (H ₂ O), % volume dry (EPA Method 4)	7.58	6.34	6.92	6.95	
NO/NO ₂ /NO _X Emissions:	7.50	0.51	0.72	0.75	
NOx, ppmvd	13.8	13.4	14.0	13.7	
NOx, ppmvd @ 3% O ₂	29.8	29.4	30.2	29.8	45
NOx, lb/hr	2.53	2.52	2.57	2.54	TJ.
NOx, lb/day	60.7	60.5	61.7	61.0	
NOx, lb/MMBtu	0.0387	0.0382	0.0392	0.0387	0.06
	0.0387	0.0382	0.0392	0.0387	0.06
CO Emissions:	10.2	45.2	20.2	21.2	
CO, ppmvd	19.3	15.3	29.2	21.2	211
CO, ppmvd @ 3% O ₂	41.5	33.6	63.1	46.0	246
CO, lb/hr	2.14	1.75	3.27	2.39	
CO, lb/day	51.4	42.0	78.6	57.3	
CO, lb/MMBtu	0.0328	0.0266	0.0499	0.0364	0.20
TRS as H ₂ S, ppmvd in Fuel	339	211	228	259	200
Sulfur Dioxide (SO ₂) Emissions, ppmvd (calculated)	27.8	16.7	18.5	21.0	300
THC Emissions (reported as CH ₄):					
THC, ppmv wet (Sum NMOC + CH ₄)	<11.0	<11.0	<11.0	<11.0	
THC, ppmvd dry	<11.9	<11.9	<11.9	<11.9	
THC, lb/hr	< 0.757	< 0.781	< 0.762	< 0.766	
Methane (CH ₄) Emissions:					
CH ₄ , ppmv wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<10.8	<10.7	<10.7	<10.7	
CH ₄ , lb/hr	< 0.688	< 0.700	< 0.688	< 0.692	
NMOC Emissions (reported as CH ₄):					
NMOC, ppmv wet (EPA Method 25A)	<1.0	<1.0	<1.0	<1.0	
NMOC, ppmvd	<1.1	<1.1	<1.1	<1.1	
NMOC, ppmvd @ 3% O ₂	<2.3	<2.3	<2.3	<2.3	30°
NMOC, lb/hr	< 0.069	< 0.070	< 0.069	< 0.069	
Inlet Hydrocarbons (reported as CH ₄):	•	•			
Inlet NMOC, ppmvd (EPA Method 25C)	2,350	2,358	2,714	2,474	
Inlet NMOC, lb/hr	12.3	12.2	14.1	12.9	
NMOC Destruction Efficiency, %	>99.44%	>99.43%	>99.51%	>99.46%	>98%
Inlet CH ₄ , ppmvd	513,000	520,000	518,000	517,000	
Inlet CH ₄ , lb/hr	2,676	2,698	2,688	2,688	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet THC (TOC), ppmvd	515,350	522,358	520,714	519,474	
Inlet THC (TOC), lb/hr	2,688	2,711	2,702	2,700	
THC (TOC) Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	

DEFINITIONS:

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rate

Tstd. = standard temperature (°R = °F+460)

MW = molecular weight

DSCFM = dry standard cubic feet per minute NO_X = oxides of nitrogen, reported as NO_2 (MW = 46)

 $\mathrm{NMOC} = \mathrm{non\text{-}methane}$ organic compounds, reported as $\mathrm{CH_4}$ (MW = 16)

CO = carbon monoxide (MW = 28) THC = TOC = total hydrocarbons including CH_4 , reported as CH_4 (MW = 16)

CALCULATIONS:

ppm @ $3\% O_2 = ppm \cdot 17.9 / (20.9 - \%O_2)$

lb/hr = ppm \cdot 8.223 E-05 \cdot DSCFM \cdot MW / Tstd. °R THC, ppm as CH₄ = NMOC + CH₄

Destruction Efficiency (DE) = (inlet, lb/hr- outlet, lb/hr) / inlet, lb/hr SO₂ emission ppmvd = H₂S in fuel · fuel flow/stack gas flow SO₂ = sulfur dioxide as SO₂ (MW = 64.1)

< Value = 2% of Analyzer Range

* NMOC permit limits are 30 ppmvd @ 3% O $_2\,$ or DE >98%

TABLE 4 AP42 2.4-1 - Landfill Gas Samples

Altamont Landfill Flare A-16 1,522 °F - Condensate OFF

Compound	Method	Run 1 (ppb)	Run 2 (ppb)	Run 3 (ppb)	Average Results (ppb)	Permit Limits (ppb)
1,1,1-Trichloroethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,1,2,2-Tetrachloroethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	400
1,1-Dichloroethane (Ethylidene Dichloride)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	1,000
1,1-Dichloroethene (Vinylidene Chloride)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,2-Dichloroethane (Ethylene Dichloride)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	1,500
1,2-Dichloropropane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
2-Propanol (Isopropyl alcohol)	EPA TO-15	15,700	19,300	20,900	18,633	500,000
Acrylonitrile	EPA TO-15	<47.3	<48.3	<46.4	<47.3	300
Bromodichloromethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
Carbon Tetrachloride	EPA TO-15	<47.3	<48.3	<46.4	<47.3	100
Chlorobenzene	EPA TO-15	105	102	97.4	101	
Chlorodifluoromethane	EPA TO-15	68.2	72.4	64.0	68.2	
Chloroethane (Ethyl Chloride)	EPA TO-15	<47.3	<48.3	<46.4	47.3	
Chloroform (Trichloromethane)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	100
Chloromethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,2-Dichlorobenzene	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,3-Dichlorobenzene	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,4-Dichlorobenzene	EPA TO-15	360	391	391	381	7,500
Dichlorodifluoromethane (Freon 12)	EPA TO-15	64.4	59.9	59.4	61.2	
Dichlorofluoromethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
Dichloromethane (Methylene Chloride)	EPA TO-15	<94.7	<96.5	<92.8	<94.7	1,500
Ethanol	EPA TO-15	56,900	62,900	68,700	62,833	
Ethylbenzene	EPA TO-15	2,920	2,920	2,840	2,893	23,000
1,2-Dibromoethane (Ethylene dibromide)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
Trichlorofluoromethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
n-Hexane	EPA TO-15	342	345	333	340	
2-Butanone (Methyl Ethyl Ketone)	EPA TO-15	27,900	29,300	31,000	29,400	350,000
4-Methyl-2-pentanone (MiBK)	EPA TO-15	1,340	1,370	1,330	1,347	
Perchloroethylene (Tetrachloroethene) PCE	EPA TO-15	60.6	62.7	59.4	60.9	1,500
trans-1,2-Dichloroethene	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
Trichloroethylene (TCE)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	1,500
Vinyl Chloride (Chloroethene)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	1,000
m/p-Xylenes	EPA TO-15	4,780	4,840	4,650	4,757	
o-Xylene	EPA TO-15	1,740	1,800	1,730	1,757	
Total Xylenes	EPA TO-15	6,520	6,640	6,380	6,513	90,000
Benzene	EPA TO-15	1,660	1,620	1,560	1,613	7,900
Benzyl Chloride (a-Chlorotoluene)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	500
Methanol (Methyl Alcohol)	EPA TO-15	9,110	11,000	10,500	10,203	600,000
Toluene	EPA TO-15	5,170	5,140	4,970	5,093	80,000

SCS ENGINEERS

August 5, 2024 Project No. 01201101.02

Source Test Division Bay Area Air Quality Management District 375 Beale Street, Suite 600 San Francisco, California 94105

Subject: 2024 ANNUAL SOURCE TEST AMENDED REPORT A-16 FLARE

ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY

(FACILITY A2066)

To Whom It May Concern,

The 2024 Annual Source Test at the A-16 Flare was completed on March 6, 2024, the final report was submit to the Bay Area Air Quality Management District (BAAQMD or District) on May 3, 2024. Preliminary results for total reduced sulfur (TRS) as hydrogen sulfide (H₂S) indicated values above the permit limit of 200 parts per million by volume (ppmv). Altamont Landfill and Resource Recovery Facility (ALRRF) completed additional testing at the A-16 Flare to confirm the H₂S results on June 10, 2024. The retesting results show that the site is in compliance with the permitted limit of 200 ppmv for TRS. Attached, please find the amended report and contractor supplemental form, which includes the June 10, 2024 test result.

Please contact the undersigned at (619) 455-9518 or at mbowen@scsengineers.com or Rajan Phadnis at (510) 875-9338 or at rphadnis@wm.com if you have any questions or require any additional information.

Sincerely,

Maria Bowen **Project Manager**

SCS Engineers

CC: Rajan Phadnis, Waste Management

Attachment A: Annual Source Test Amended Report A-16 Flare 2024

Annual Source Test Amended Report ALRRF A-16 Flare 2024

Waste Management of Alameda County

BAAQMD Facility #2066

Compliance Test Report #24097 Landfill Gas Flare A-16

Located at: **Altamont Landfill** 10840 Altamont Pass Road Livermore, CA 94551

Prepared for: **SCS** Engineers 3117 Fite Circle, Suite 108 Sacramento, CA 95827 Attn: Maria Bowen

mbowen@scsengineers.com

For Submittal to:

Bay Area Air Quality Management District

375 Beale Street, Suite 600 San Francisco, CA 94105

Attn: Gloria Espena and Marco Hernandez gespena@baaqmd.gov/mhernandez@baaqmd.gov sourcetest@baaqmd.gov

> Testing Performed on: March 6, 2024 Retest Performed on: June 10, 2024

Final Report Submitted on: May 2, 2024 Amended Report completed on: July 30, 2024

Performed and Reported by: Blue Sky Environmental, Inc. 2273 Lobert Street Castro Valley, CA 94546

Office (510) 525-1261/Mobile (810) 923-3181 bluesky@blueskyenvironmental.com

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that:

- a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program,
- b) that the sampling and analytical procedures and data presented in the report are authentic and accurate,
- c) that all testing details and conclusions are accurate and valid, and
- d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for compliance purposes, it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (810) 923-3181.

Jeramie Richardson

President

Blue Sky Environmental, Inc.

TABLE OF CONTENTS

SECTION	1. INTRODUCTION	4
1.1.	SUMMARY	4
SECTION	2. SOURCE TEST PROGRAM	6
2.1.	OVERVIEW	6
2.2.	POLLUTANTS TESTED	6
2.3.	TEST DATE	6
2.4.	SAMPLING AND OBSERVING PERSONNEL	6
2.5.	SOURCE/PROCESS DESCRIPTION	7
2.6.	SOURCE OPERATING CONDITIONS	7
SECTION	3. SAMPLING AND ANALYSIS PROCEDURES	8
3.1.	PORT LOCATION	8
3.2.	POINT DESCRIPTION/LABELING – PORTS/STACK	8
3.3.	SAMPLE TRAIN DESCRIPTION	8
3.4.	SAMPLING PROCEDURE DESCRIPTION	8
3.5.	Instrumentation	12
3.6.	SYSTEM PERFORMANCE CRITERIA	12
3.7.	COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS	12
SECTION	14. APPENDICES	14
A.	Tabulated Results	
B.	Calculations	
С.	Laboratory Reports	
D.	Field Data Sheets	
E.	Process Information	
F.	Flare Flow Meter Calibration Records	
G.	QC Calibration Certificates and Quality Assurance Records	
Н.	Sample Train Configuration and Stack Diagrams	
I.	Source Test Plan and Related Correspondence	
J.	Permit	

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, Inc. was contracted by SCS Engineers to perform emissions testing for Waste Management of Alameda County, Inc. at the Altamont Landfill and Resource Recovery Facility (ALRRF) in Livermore, California. Testing was conducted to demonstrate that landfill gas Flare A-16 is operating in compliance with Condition 19235 of Bay Area Air Quality Management District (BAAQMD) Permit to Operate A2066.

The results of the test program are presented in this report. The source test information is summarized in Table 1-1. Test results derived from the source test are summarized in Tables 1-2 and 1-3. Results for individual test runs are provided in Appendix A. The flare met all compliance emission criteria; the total reduced sulfur content of the landfill gas was within permitted limits during source retest on June 10, 2024.

Table 1-1 Source Test Information

Test Location:	Altamont Landfill and Resource Recovery Facility (ALRRF) 10840 Altamont Pass Road, Livermore CA 94551			
Source Contact:	Maria Bowen, SCS Engineers (619) 455-9518			
Source Tested:	Flare A-16 – 132 MMBtu/hr LFG Specialties, Inc. enclosed landfill gas flare			
Source Test Date:	March 6, 2024; TRS as H ₂ S Retest June 10, 2024			
Test Objective:	Determine compliance with Condition 19235 of the Bay Area Air Quality Management District (BAAQMD) permit for Facility #2066; BAAQMD Regulation 8, Rule 34; and the State Landfill Methane Gas Rule under AB32 for flare performance.			
Test Performed by:	Blue Sky Environmental, Inc. 2273 Lobert Street, Castro Valley, CA 94546 March 6, 2024: Jaime Rios (925) 482-4504 bluesky@blueskyenvironmental.com June 10, 2024: Jeramie Richardson (810) 923-3181 bluesky@blueskyenvironmental.com			
Test Parameters:	March 6, 2024: Landfill Gas O ₂ , N ₂ , CO ₂ , BTU, THC, CH ₄ , NMOC, HHV, F-Factor, Sulfur and VOC Species, Volumetric Flow rate Flare Emissions THC, CH ₄ , NMOC, NO _x , CO, O ₂ , SO ₂ , Moisture, Volumetric Flow rate. June 10, 2024: TRS as H ₂ S and SO ₂			

Table 1-2 Compliance Summary
Flare A-16 Condensate Injection - ON

Emission Parameter	Average Results (Condensate - ON)	Permit Limit	Compliance Status
NO _x , ppmvd @ 3% O ₂	38.9	45	In Compliance
NO _x , lb/MMBtu	0.0504	0.06	In Compliance
CO, ppmvd @ 3% O ₂	<21.7	246	In Compliance
CO, lb/MMBtu	< 0.0171	0.20	In Compliance
TRS as H ₂ S in Fuel, ppmvd*	97.7	200	In Compliance
SO ₂ , ppmvd	24.4	300	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<2.9	30	In Compliance
NMOC Destruction Efficiency, %	>99.19%	>98%	In Compliance
CH ₄ Destruction Efficiency, %	>99.97%	>99%	In Compliance

^{*}Results from TRS and H₂S retest conducted on June 10, 2024

Table 1-3 Compliance Summary

Flare A-16 Condensate Injection - OFF

Emission Parameter	Average Results (Condensate - OFF)	Permit Limit	Compliance Status
NO _x , ppmvd @ 3% O ₂	29.8	45	In Compliance
NO _x , lb/MMBtu	0.0387	0.06	In Compliance
CO, ppmvd @ 3% O ₂	46.0	246	In Compliance
CO, lb/MMBtu	0.0364	0.20	In Compliance
TRS as H ₂ S in Fuel, ppmvd*	76.4	200	In Compliance
SO ₂ , ppmvd	21.0	300	In Compliance
NMOC, ppmvd @ 3% O ₂ as CH ₄	<2.3	30	In Compliance
NMOC Destruction Efficiency, %	>99.46%	>98%	In Compliance
CH ₄ Destruction Efficiency, %	>99.97%	>99%	In Compliance

^{*}Results from TRS and H₂S retest conducted on June 10, 2024

SECTION 2. SOURCE TEST PROGRAM

2.1. Overview

This annual source test was performed to demonstrate that landfill gas Flare A-16 is operating in accordance with Condition 19235 of the Bay Area Air Quality Management District (BAAQMD) Permit to Operate for Facility #2066 and BAAQMD Regulation 8, Rule 34. This testing also satisfies compliance requirements outlined in the State Landfill Methane Gas Rule under AB32 for flare performance.

2.2. Pollutants Tested

The following U.S. Environmental Protection Agency (EPA) and ASTM International sampling and analytical methods were used:

EPA Method 1	Sample and Traverse Point Determination
EPA Method 3A	O2 and CO2 Emissions, Stack Gas Molecular Weight
EPA Method 10	CO Emissions
EPA Method 7E	NO _x Emissions and NO ₂ Converter Check
EPA Method 4	Moisture Content in Stack Gas
EPA Method 18	CH ₄ , THC, NMOC
EPA Method 19	Flow Rate Calculation DSCFM
EPA Method 25A	VOC Emissions
EPA Method 25C	TNMHC (NMOC) in Fuel
ASTM D-1945/3588	BTU, F-Factor and Fixed Gases in Fuel

ASTM D-5504 Sulfur Species, Hydrogen Sulfide (H₂S) and TRS EPA Method TO-15 Toxic Organic Compounds

2.3. Test Date

Testing was conducted March 6, 2024. The TRS as H₂S retest was conducted on June 10, 2024.

2.4. Sampling and Observing Personnel

Testing on March 6 was conducted by Jaime Rios and Timothy Eandi, representing Blue Sky Environmental, Inc. Retesting on June 10 was conducted by Jeramie Richardson, representing Blue Sky Environmental, Inc.

Ben Tarver of Waste Management (WM) was present to operate the flare and assist in coordinating testing and the collection of process data during testing.

BAAQMD was notified of the scheduled testing in a source test plan submitted on February 5, 2024. A Source Test Protocol acknowledgement (NST-9045) was received the same day. No agency observers from the District were present during the test program. A copy of the source test protocol and email correspondence are provided in Appendix J.

BAAQMD was notified of the scheduled retest in a source test protocol submitted by SCS Engineers on behalf of Altamont Landfill and Resource Recovery Facility on May 24, 2024. A

Source Test Protocol acknowledgement (NST-9409) was received on May 24, 2024 for the test. No agency observers from the district were present during the test program. A copy of the source test protocol and email correspondence are provided in Appendix D.

The 2024 Annual Source Test at the A-16 Flare was completed on March 6, 2024. Report was submitted on May2, 2024. Preliminary results for total reduced sulfur (TRS) as hydrogen sulfide (H₂S) indicated values above the permit limit of 200 parts per million by volume (ppmv). ALRRF completed source retest at the A-16 Flare to confirm the TRS results on June 10, 2024. The retesting results show that the site is in compliance with the permitted limit of 200 ppmv for TRS.

2.5. Source/Process Description

The Altamont Landfill, located in Livermore, California, is a multi-material landfill with a gas collection system that is abated by two industrial landfill gas flares. Flare A-16 has a 132 MMBtu/hr multiple nozzle burner and a combustion zone temperature set-point of 1,600 °F. The flare shell is 50 feet high and 12.5 feet in diameter. The inside diameter (ID) is approximately 144 inches. Flare A-16 operates on landfill gas (LFG). Collected landfill gas condensate is periodically injected into the flare through one vertical nozzle positioned near the burner.

2.6. Source Operating Conditions

The flare was operated at or near maximum operating rates for each of the following operating conditions:

- 1) while the flare was burning landfill gas without any condensate injection,
- 2) while the flare was burning landfill gas and condensate was being injected into the flare at the maximum injection rate (0.98 gallons per minute).

The average exhaust temperature during the test program conducted on March 6, 2024, was 1,522 °F. The LFG flow rate ranged from 2,059 to 2,101 SCFM. Landfill gas samples collected at the head of the flare showed an average methane content of 49.8% and an oxygen content of 2.14%. The operating exhaust temperature and LFG flow rate records are provided in Appendix F.

The fuel sample collected during Run 3, condensate on, of the test program had a relatively high oxygen content, suggesting that air had infiltrated the sample. These findings were excluded from calculations for heat value, TNMOC, CH₄, TRS, and toxic air pollutants. Results represent the average of Runs 1 and 2.

The average exhaust temperature during the retest program conducted on June 10, 2024, was 1,524 °F. The LFG flow rate ranged from 2,014 to 2,044 SCFM. Landfill gas samples collected at the head of the flare showed an average methane content of 47.5% and an oxygen content of 2.11%. The operating exhaust temperature and LFG flow rate records are provided in Appendix F, however the SO₂ emissions were calculated using data from the March 6 test as the conditions were identical and did not produce any significant changes in the calculations.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port Location

Sampling was conducted at the 144-inch diameter ID stack of the flare through ports that were accessed with a 65-foot boom lift. The four 8-inch flange ports were located 45 feet above grade, approximately four stack diameters downstream from the burners and approximately one stack diameter upstream from the exhaust.

3.2. Point Description/Labeling – Ports/Stack

Blue Sky Environmental, Inc. conducted two perpendicular 8-point traverses to check for the presence of stratification and cyclonic flow. O₂ stratification was greater than 10%; therefore, subsequent CEM sampling was conducted using all traverse points. Sampling was performed for two minutes per point for a total of 16 points over 32-minute test run. The traverse points for the 144-inch diameter stack with offset 8-inch ports were 4.6, 15.1, 27.9, 46.5, 97.5, 116.1, 128.9 and 139.4 inches.

3.3. Sample Train Description

Sampling system diagrams are provided in Appendix I. Additional descriptive information is included in the following section.

3.4. Sampling Procedure Description

Six consecutive 32-minute gaseous emissions tests were performed for oxides of nitrogen (NO_x), nitric oxide (NO), carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂), methane (CH₄) and non-methane organic compounds (NMOC) at the flare exhaust stack. The first three tests were performed while the flare was burning landfill gas with the condensate injection system operating. The last three tests were performed while the flare was burning landfill gas with the condensate injection off. The gas flow was controlled with a critical orifice to collect the 32-minute integrated samples.

The sampling system was checked for leaks before the start of the testing, by plugging the sample probe and observing the sample rotameter flow drop to zero. Instrument linearity and system bias were checked. The system response time for each analyzer was recorded. The temperatures of the heated sample line between the probe and sample conditioner/condenser, and the condenser exhaust temperatures were maintained within limits during each test run.

Analyzer external calibrations were performed before and after each run using EPA protocol certified gas standards. Calibration gases were introduced to the sample manifold at the same flow rate as the sample. Any drift or bias was corrected using equation 100-3 from CARB Method 100. A NO_x analyzer converter efficiency check was performed before the first test run and achieved an efficiency greater than 90%.

Concurrent with the exhaust sampling, Blue Sky Environmental, Inc. collected a total of six integrated fuel samples (one sample per test run) for HHV, F-factor, fixed gases, volatile organic compounds (VOCs), nonmethane organic compounds (NMOCs) and C₁-C₆₊ hydrocarbons by EPA Method 25C and ASTM D-1945, and sulfur compounds by ASTM D-5504. Additionally, the fuel samples were analyzed for toxic organic compounds by EPA Method TO-15. The samples were collected in 6-liter SUMMA canisters and analyzed by Atmospheric Analysis & Consulting, Inc., located in Ventura, CA.

The sampling and analysis procedures are summarized below:

EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure oxygen and carbon dioxide in stationary source emissions using a continuous instrumental analyzer to determine the molecular weight of the stack gas. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. A small portion of the sample is passed through a fuel cell type paramagnetic oxygen analyzer which measures the electrical current generated by the oxidation reaction at the gas/fuel cell interface. Carbon dioxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon dioxide absorbs infrared radiation.

EPA Method 7E - Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

This method is used to measure nitrogen oxides in stationary source emissions using a continuous instrumental analyzer. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Nitric oxide is determined by passing the sample through a chemiluminescent analyzer. The chemiluminescent process is based on the light given off when nitric oxide and ozone react. Nitrogen dioxide (NO_2) concentrations are determined by passing the sample through a catalyst which reduces the NO_2 to NO. The total oxides of nitrogen concentration $(NO_2 + NO)$ is then determined by chemiluminescence.

Section 16.2.2 of the method is used to determine the NO_x analyzer NO₂ to NO conversion efficiency.

EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

This method is used to measure carbon monoxide from integrated or continuous gas samples extracted from a sampling point. A continuous representative gas sample is extracted from the sampling point and conditioned to remove water and particulate material. Carbon monoxide is determined by passing the sample through a non-dispersive infrared analyzer (NDIR) tuned to a frequency at which carbon monoxide absorbs infrared radiation.

EPA Methods 3A, 7E and 10 are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample, and analyzing it by continuous monitoring gas analyzers in a continuing emissions monitoring (CEM) test van. The sampling system consists of a stainless-steel sample probe, Teflon sample line, glass-fiber particulate filter, and glass moisture-knockout condensers in ice, followed by thermoelectric coolers (optional), Teflon sample transfer tubing, a diaphragm pump, and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI is provided to each analyzer to avoid pressure variable response differences. The entire sampling system is leak checked prior to and at the end of the sampling program.

The sampling and analytical system is checked for linearity with zero, mid (40-60%) and high span (80-100%) calibrations and is checked for system bias at the beginning and end of each run. System bias is determined by introducing calibration gas to the probe and pulling it through the entire sampling system. Individual test run calibrations use the calibration gas that most closely matches the stack gas effluent. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test. EPA Methods 3A, 7E and 10 all defer to EPA Method 7E for the calculations of effluent concentration, span, calibration gas, analyzer calibration error (linearity), sampling system bias, zero drift, calibration drift and response time.

EPA Method 4 – Determination of Moisture Content in Stack Gas

This method is used to determine the moisture content of stack gas. The sample is extracted and condensed in Greenburg-Smith impingers immersed in an ice bath and in a final impinger silica gel trap. The moisture is condensed in a solution of de-ionized water, or solutions of another type of sampling train if the moisture is being determined as part of another sampling method, such as EPA Method 5 or EPA 12. The moisture gain in the impinger solutions and silica gel is determined volumetrically and gravimetrically respectively.

QA/QC procedures require that a minimum of 21 cubic feet of sample is pulled using a leak tight pump. The sample volume is measured with a calibrated dry gas meter. The impingers are immersed in an ice bath to maintain a gas outlet temperature of less than 68°F. Pre-test leak checks are performed for each run using a minimum of 15 inches of mercury vacuum. Post-test leak checks are performed at the highest sample vacuum or greater. The leak test is acceptable if the leak rate is less than 0.02 cubic feet per minute or 4% of the average sampling rate, whichever is less. If the final leak check exceeds the criteria, either the volume is corrected based on the leak rate or the run is voided and repeated.

EPA Method 18 - Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

This method is used to determine emissions of volatile organics by gas chromatography (GC). Gases are collected in a pre-evacuated 6-Liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the target volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs.

EPA Method 19 – Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

This method is used to determine stack gas volumetric flow rates using oxygen-based F-factors. F-factors are ratios of combustion gas volumes to heat inputs. The heating value of the fuel in Btu per cubic foot is determined from analysis of fuel gas samples using ASTM D-1946/1945 gas chromatography analytical procedures. The total cubic feet per hour of fuel multiplied times the Btu/cf provides million Btu per hour (MMBtu) heat input. The heat input in MMBtu/hr is multiplied by the F-factor (DSCF/MMBtu) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. The flow rates are used to determine emission rates. 301.

EPA Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

This method is used to measure total hydrocarbons, methane, and non-methane hydrocarbons in stationary source emissions using a gas chromatograph with a flame ionization detector (GC/FID). Heated Teflon sample gas transfer lines are used to provide a continuous sample to the heated GC/FID hydrocarbon analyzer. Heated lines are used to avoid moisture or hydrocarbon condensation.

The sampling and analytical system is checked for linearity with zero, low (25-35%), mid (45-55%), and high (80-90%) span calibrations. All calibrations during testing are performed externally to incorporate any system bias that may exist. Sampling system bias, zero and calibration drift values are determined for each test.

EPA Method 25C – Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gas

This method is used to sample and measure NMOC in landfill gases. Gases are collected in a pre-evacuated 6-Liter SUMMA canister with pre-set flow controller set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consists of capillary orifice tubing designed to sample for a pre-set duration of 0.5 hrs. The sample is injected into a GC column where the methane and CO₂ are flushed through and removed then the NMOC (ROC) fraction is oxidized to form CO₂ then reduced to methane and analyzed.

ASTM D-1945 – Analysis of Natural Gas by Gas Chromatography

This method is used to measure fixed gases (such as oxygen, nitrogen, carbon monoxide, and carbon dioxide) and methane by gas chromatography (GC/TCD). Light hydrocarbons, including C1-C7, are analyzed by GC/FID.

ASTM D-3588 – Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels

This method uses the molar composition of gaseous fuel determined from Method ASTM D-1945 to calculate the heating value and F-factor.

ASTM D-5504 – Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence

This method is used for the determination of speciated volatile sulfur-containing compounds in high methane content gaseous fuels by gas chromatography. Sulfur compounds are processed using a flame ionization detector (GC/FID). The products are then analyzed with a sulfur chemiluminescence detector (GC/SCD). Samples may be collected in Tedlar bags and analyzed within 24 hours or in Silco SUMMA canisters and analyzed within 7 days.

EPA Compendium Method TO-15 – Determination of Toxic Organic Compounds in Ambient Air

This method is used to measure volatile organic compounds that are included in the hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990 by GC/MS (gas chromatography/mass spectroscopy). Samples are collected in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method

list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. The flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 0.75hrs.

3.5. Instrumentation

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO Model 42C	$NO_X/NO/NO_2$	Chemiluminescence
TECO Model 48C	CO	Gas Filter Correlation /Infrared
TECO Model 55C	NMOC/CH ₄	Flame Ionization (GC/FID)
Servomex Model 1440	CO_2	Infrared
Servomex Model 1440	O_2	Paramagnetic

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder, supported by a data acquisition system (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations. All system performance criteria were met.

3.6. System Performance Criteria

The analyzer data recording system consists of a Honeywell DPR300 strip chart recorder, supported by a Data Acquisition System (DAS). The instrument response is recorded on strip charts and DAS. The averages are corrected for drift using BAAQMD and EPA Method 7E equations. All system performance criteria were met.

Instrument Linearity	≤2% Full Scale
Instrument Bias	≤5% Full Scale
System Response Time	≤± 2 minutes
NO _X Converter Efficiency (EPA Method 7E)	≥ 90%
Instrument Zero Drift	≤± 3% Full Scale
Instrument Span Drift	≤± 3% Full Scale

3.7. Comments: Limitations and Data Qualifications

This source test was performed in accordance with the protocol submitted to BAAQMD. The fuel sample collected during Run 3, condensate on, of the test program had a relatively high oxygen content, suggesting that air had infiltrated the sample. These findings were excluded from calculations for heat value, TNMOC, CH₄, TRS, and toxic air pollutants. Results represent the average of Runs 1 and 2. No other deviations from the protocol or anomalies were observed during testing. No deviations from the protocol were observed during testing. The measured emissions from the flare comply with the permit limits; however, the total reduced sulfur as H2S content of the landfill gas exceeded permitted limits.

Blue Sky Environmental, Inc. has reviewed this report for accuracy and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

Review of the general text Review of calculations Review of CEMS data Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. APPENDICES

Α.	Tabulated Results
B.	Calculations
C.	Laboratory Reports
D.	Field Data Sheets
E.	Process Information
F.	Flare Flow Meter Calibration Records
G.	QC Calibration Certificates and Quality Assurance Records
H.	Sample Train Configuration and Stack Diagrams
I.	Source Test Plan and Related Correspondence
ī.	Permit

A Tabulated Results

TABLE 1

Altamont Landfill Flare A-16

1,522 °F - Condensate ON

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	3/6/24	3/6/24	3/6/24		
Test Time	0744-0825	0852-0933	0959-1037		
Standard Temperature, °F	70	70	70		
Process Parameters:					
Flare Temperature, °F	1,522	1,521	1,522	1,522	
Condensate Injection, gpm	1.03	0.90	1.02	0.98	
Fuel:		•	•	•	
Fuel Flow Rate, SCFM	2,066	2,059	2,071	2,065	
Fuel Heat Input, MMBtu/hr	57.8	59.9	59.1	58.9	
Stack Gas:	•				
Exhaust Flow Rate, DSCFM (EPA Method 19)	22,190	23,697	23,850	23,246	
Oxygen (O ₂), % volume dry	12.4	12.7	12.9	12.7	
Carbon Dioxide (CO ₂), % volume dry	7.88	7.24	7.55	7.56	
Water Vapor (H ₂ O), % volume dry (EPA Method 4)	6.89	6.37	5.80	6.35	
NO/NO ₂ /NO _X Emissions:		I	l.		
NOx, ppmvd	18.7	17.7	17.4	17.9	
NOx, ppmvd @ 3% O ₂	39.5	38.6	38.6	38.9	45
NOx, lb/hr	2.96	3.00	2.96	2.97	
NOx, lb/day	71.0	71.9	71.0	71.3	
NOx, lb/MMBtu	0.0512	0.0500	0.0500	0.0504	0.06
CO Emissions:	0.0312	0.0300	0.0300	0.0304	0.00
CO, ppmvd	<10.0	<10.0	<10.0	<10.0	
CO, ppmvd @ 3% O ₂	<21.2	<21.8	<22.2	<21.7	246
CO, lb/hr	<0.964	<1.029	<1.036	<1.010	240
CO, lb/day	<23.1	<24.7	<24.9	<24.2	
	<0.0167	<0.0172	<0.0175	<0.0171	0.20
CO, lb/MMBtu					
TRS as H ₂ S, ppmvd in Fuel***	83.0	110	100	98	200
Sulfur Dioxide (SO ₂) Emissions, ppmvd (calculated)*** THC Emissions (reported as CH ₄):	7.7	9.6	8.6	8.6	300
	<44.0	<11.0	<11.0	<11.2	
THC, ppmv wet (Sum NMOC + CH ₄)	<11.8	<11.0	<11.0	<11.3	
THC, ppmvd dry	<12.7	<11.8	<11.8	<12.1	
THC, lb/hr	< 0.698	< 0.695	< 0.699	< 0.697	
Methane (CH ₄) Emissions:		1	T	1	
CH ₄ , ppmv wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<10.7	<10.7	<10.6	<10.7	
CH ₄ , lb/hr	< 0.592	< 0.628	< 0.629	< 0.616	
NMOC Emissions (reported as CH ₄):	_				
NMOC, ppmv wet (EPA Method 25A)	1.8	<1.0	<1.0	<1.3	
NMOC, ppmvd	1.9	<1.1	<1.1	<1.4	**
NMOC, ppmvd @ 3% O ₂	4.1	<2.3	<2.4	<2.9	30**
NMOC, lb/hr	0.11	< 0.063	< 0.063	< 0.077	
Inlet Hydrocarbons (reported as CH ₄):					
Inlet NMOC, ppmvd (EPA Method 25C)	2,064	1,995	2,030*	2,030	
Inlet NMOC, lb/hr	10.6	10.2	10.4*	10.4	
NMOC Destruction Efficiency, %	>98.99%	>99.38%	>99.19%	>99.19%	>98%
Inlet CH ₄ , ppmvd (ASTM D-1945)	461,000	480,000	470,500*	470,500	
Inlet CH ₄ , lb/hr	2,365	2,453	2,409*	2,409	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet THC (TOC), ppmvd (Sum NMOC + CH4)	463,064	481,995	472,530*	472,530	
Inlet THC (TOC), lb/hr	2,375	2,464	2,420*	2,420	
THC (TOC) Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	

DEFINITIONS:

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rate

Tstd. = standard temperature (°R = °F+460)

MW = molecular weight

DSCFM = dry standard cubic feet per minute

NO_X = oxides of nitrogen, reported as NO₂ (MW = 46)

CO = carbon monoxide (MW = 28)

THC = TOC = total hydrocarbons including CH₄, reported as CH₄ (MW = 16)

 $NMOC = non-methane organic compounds, reported as <math>CH_4$ (MW = 16)

CALCULATIONS:

ppm @ 3% O_2 = ppm · 17.9 / (20.9 - % O_2)

lb/hr = ppm \cdot 8.223 E-05 \cdot DSCFM \cdot MW / Tstd. °R

Destruction Efficiency (DE) = (inlet, lb/hr- outlet, lb/hr) / inlet, lb/hr SO_2 emission ppmvd = H_2S in fuel·fuel flow/stack gas flow

 SO_2 = sulfur dioxide as SO_2 (MW = 64.1)

testing on 3/6/2024

< Value = 2% of Analyzer Range

^{*} Results are the average of Runs 1 and 2

^{**} NMOC permit limits are 30 ppmvd @ 3% O $_2$ or DE >98% *** Results from retest event on 6/10/2024, SO_2 emissions were calculated with process data from

TABLE 2 AP42 2.4-1 - Landfill Gas Samples

Altamont Landfill Flare A-16 1,522 °F - Condensate ON

Compound	Method	Run 1 (ppb)	Run 2 (ppb)	Run 3 (ppb)	Average * Results (ppb)	Permit Limits (ppb)
1,1,1-Trichloroethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,1,2,2-Tetrachloroethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	400
1,1-Dichloroethane (Ethylidene Dichloride)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	1,000
1,1-Dichloroethene (Vinylidene Chloride)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,2-Dichloroethane (Ethylene Dichloride)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	1,500
1,2-Dichloropropane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
2-Propanol (Isopropyl alcohol)	EPA TO-15	10,200	13,000	2,480	11,600	500,000
Acrylonitrile	EPA TO-15	<47.8	<47.7	<51.3	<47.8	300
Bromodichloromethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Carbon Tetrachloride	EPA TO-15	<47.8	<47.7	<51.3	<47.8	100
Chlorobenzene	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Chlorodifluoromethane	EPA TO-15	62.1	60.1	<51.3	61.1	
Chloroethane (Ethyl Chloride)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Chloroform (Trichloromethane)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	100
Chloromethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,2-Dichlorobenzene	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,3-Dichlorobenzene	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
1,4-Dichlorobenzene	EPA TO-15	308	360	72.8	334	7,500
Dichlorodifluoromethane (Freon 12)	EPA TO-15	57.3	54.4	<51.3	55.9	
Dichlorofluoromethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Dichloromethane (Methylene Chloride)	EPA TO-15	<95.6	<95.4	<103	<95.5	1,500
Ethanol	EPA TO-15	41,600	43,300	7,960	42,450	
Ethylbenzene	EPA TO-15	2,680	2,770	634	2,725	23,000
1,2-Dibromoethane (Ethylene dibromide)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Trichlorofluoromethane	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
n-Hexane	EPA TO-15	305	295	153	300	
2-Butanone (Methyl Ethyl Ketone)	EPA TO-15	24,400	23,600	4,160	24,000	350,000
4-Methyl-2-pentanone (MiBK)	EPA TO-15	1,170	1,210	248	1,190	
Perchloroethylene (Tetrachloroethene) PCE	EPA TO-15	54.5	52.5	<51.3	53.5	1,500
trans-1,2-Dichloroethene	EPA TO-15	<47.8	<47.7	<51.3	<47.8	
Trichloroethylene (TCE)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	1,500
Vinyl Chloride (Chloroethene)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	1,000
m/p-Xylenes	EPA TO-15	4,350	4,490	992	4,420	
o-Xylene	EPA TO-15	1,570	1,660	361	1,615	
Total Xylenes	EPA TO-15	5,920	6,150	1,353	6,035	90,000
Benzene	EPA TO-15	1,490	1,490	298	1,490	7,900
Benzyl Chloride (a-Chlorotoluene)	EPA TO-15	<47.8	<47.7	<51.3	<47.8	500
Methanol (Methyl Alcohol)	EPA TO-15	7,010	7,690	1,790	7,350	600,000
Toluene	EPA TO-15	4,790	4,750	1,210	4,770	80,000

TABLE 3

Altamont Landfill Flare A-16

1,522 °F - Condensate OFF

Parameter	Run 1	Run 2	Run 3	Average Results	Permit Limits
Test Date	3/6/24	3/6/24	3/6/24		
Test Time	1102-1144	1204-1244	1302-1344		
Standard Temperature, °F	70	70	70		
Process Parameters:					
Flare Temperature, °F	1,522	1,522	1,522	1,522	
Condensate Injection, gpm	0.00	0.00	0.00	0.00	
Fuel:			!	!	
Fuel Flow Rate, SCFM	2,101	2,090	2,091	2,094	
Fuel Heat Input, MMBtu/hr	65.4	65.9	65.6	65.6	
Stack Gas:		l .	I	l l	
Exhaust Flow Rate, DSCFM (EPA Method 19)	25,613	26,422	25,782	25,939	
Oxygen (O ₂), % volume dry	12.6	12.8	12.6	12.7	
Carbon Dioxide (CO ₂),% volume dry	7.18	6.97	7.26	7.14	
Water Vapor (H ₂ O), % volume dry (EPA Method 4)	7.58	6.34	6.92	6.95	
NO/NO ₂ /NO _X Emissions:	,.50	0.51	J.72	0.70	
NOx, ppmvd	13.8	13.4	14.0	13.7	
NOx, ppmvd @ 3% O ₂	29.8	29.4	30.2	29.8	45
NOx, lb/hr	2.53	2.52	2.57	2.54	٦,
NOx, lb/day	60.7	60.5	61.7	61.0	
•	0.0387	0.0382	0.0392	0.0387	0.06
NOx, lb/MMBtu CO Emissions:	0.0367	0.0362	0.0392	0.0367	0.00
	10.2	15.2	20.2	21.2	
CO, ppmvd	19.3	15.3	29.2	21.2	246
CO, ppmvd @ 3% O ₂	41.5	33.6	63.1	46.0	246
CO, lb/hr	2.14	1.75	3.27	2.39	
CO, lb/day	51.4	42.0	78.6	57.3	0.00
CO, lb/MMBtu	0.0328	0.0266	0.0499	0.0364	0.20
TRS as H ₂ S, ppmvd in Fuel**	88.6	23.5	117	76.4	200
Sulfur Dioxide (SO ₂) Emissions, ppmvd (calculated)**	7.3	1.9	9.5	6.2	300
THC Emissions (reported as CH ₄):	_	T	T	1	
THC, ppmv wet (Sum NMOC + CH_4)	<11.0	<11.0	<11.0	<11.0	
THC, ppmvd dry	<11.9	<11.9	<11.9	<11.9	
THC, lb/hr	< 0.757	< 0.781	< 0.762	< 0.766	
Methane (CH ₄) Emissions:					
CH ₄ , ppmv wet (EPA Method 25A)	<10.0	<10.0	<10.0	<10.0	
CH ₄ , ppmvd	<10.8	<10.7	<10.7	<10.7	
CH ₄ , lb/hr	< 0.688	< 0.700	< 0.688	< 0.692	
NMOC Emissions (reported as CH ₄):					
NMOC, ppmv wet (EPA Method 25A)	<1.0	<1.0	<1.0	<1.0	
NMOC, ppmvd	<1.1	<1.1	<1.1	<1.1	
NMOC, ppmvd @ 3% O ₂	<2.3	<2.3	<2.3	<2.3	30*
NMOC, lb/hr	< 0.069	< 0.070	< 0.069	< 0.069	
Inlet Hydrocarbons (reported as CH ₄):	•	•	•	-	
Inlet NMOC, ppmvd (EPA Method 25C)	2,350	2,358	2,714	2,474	
Inlet NMOC, lb/hr	12.3	12.2	14.1	12.9	
NMOC Destruction Efficiency, %	>99.44%	>99.43%	>99.51%	>99.46%	>98%
Inlet CH ₄ , ppmvd	513,000	520,000	518,000	517,000	
Inlet CH ₄ , lb/hr	2,676	2,698	2,688	2,688	
CH ₄ Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	>99%
Inlet THC (TOC), ppmvd	515,350	522,358	520,714	519,474	- 2270
Inlet THC (TOC), ppinvd Inlet THC (TOC), lb/hr	2,688	2,711	2,702	2,700	
THC (TOC), ID/ Nr THC (TOC) Destruction Efficiency, %	>99.97%	>99.97%	>99.97%	>99.97%	

DEFINITIONS:

ppmvd = parts per million concentration by volume expressed on a dry gas basis

lb/hr = pound per hour emission rate

Tstd. = standard temperature (°R = °F+460)

MW = molecular weight

DSCFM = dry standard cubic feet per minute

NO_X = oxides of nitrogen, reported as NO₂ (MW = 46)

CO = carbon monoxide (MW = 28)

THC = TOC = total hydrocarbons including CH₄, reported as CH₄ (MW = 16)

 $NMOC = non-methane organic compounds, reported as <math>CH_4$ (MW = 16)

CALCULATIONS:

ppm @ 3% $O_2 = ppm \cdot 17.9 / (20.9 - \%O_2)$

lb/hr = ppm \cdot 8.223 E-05 \cdot DSCFM \cdot MW / Tstd. °R

THC, ppm as $CH_4 = NMOC + CH_4$

Destruction Efficiency (DE) = (inlet, lb/hr- outlet, lb/hr) / inlet, lb/hr SO $_2$ emission ppmvd = H_2S in fuel · fuel flow/stack gas flow

 SO_2 = sulfur dioxide as SO_2 (MW = 64.1)

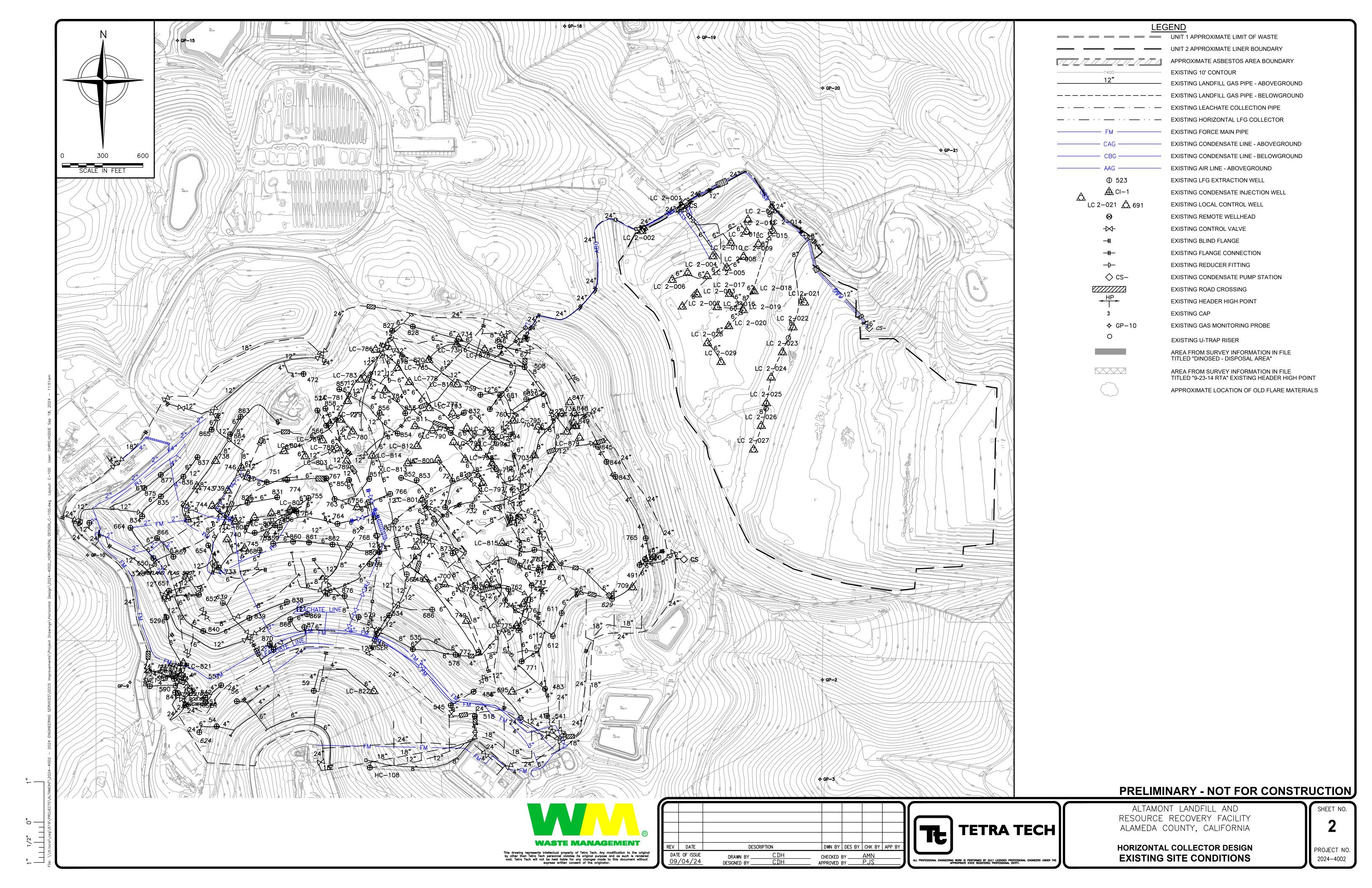

- < Value = 2% of Analyzer Range
- * NMOC permit limits are 30 ppmvd @ 3% O $_2$ or DE >98%
- ** Results from retest event on 6/10/2024, SO_2 emissions were calculated with process data from testing on 3/6/2024

TABLE 4 AP42 2.4-1 - Landfill Gas Samples

Altamont Landfill Flare A-16 1,522 °F - Condensate OFF

Compound	Method	Run 1 (ppb)	Run 2 (ppb)	Run 3 (ppb)	Average Results (ppb)	Permit Limits (ppb)
1,1,1-Trichloroethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,1,2,2-Tetrachloroethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	400
1,1-Dichloroethane (Ethylidene Dichloride)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	1,000
1,1-Dichloroethene (Vinylidene Chloride)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,2-Dichloroethane (Ethylene Dichloride)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	1,500
1,2-Dichloropropane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
2-Propanol (Isopropyl alcohol)	EPA TO-15	15,700	19,300	20,900	18,633	500,000
Acrylonitrile	EPA TO-15	<47.3	<48.3	<46.4	<47.3	300
Bromodichloromethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
Carbon Tetrachloride	EPA TO-15	<47.3	<48.3	<46.4	<47.3	100
Chlorobenzene	EPA TO-15	105	102	97.4	101	
Chlorodifluoromethane	EPA TO-15	68.2	72.4	64.0	68.2	
Chloroethane (Ethyl Chloride)	EPA TO-15	<47.3	<48.3	<46.4	47.3	
Chloroform (Trichloromethane)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	100
Chloromethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,2-Dichlorobenzene	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,3-Dichlorobenzene	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
1,4-Dichlorobenzene	EPA TO-15	360	391	391	381	7,500
Dichlorodifluoromethane (Freon 12)	EPA TO-15	64.4	59.9	59.4	61.2	
Dichlorofluoromethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
Dichloromethane (Methylene Chloride)	EPA TO-15	<94.7	<96.5	<92.8	<94.7	1,500
Ethanol	EPA TO-15	56,900	62,900	68,700	62,833	
Ethylbenzene	EPA TO-15	2,920	2,920	2,840	2,893	23,000
1,2-Dibromoethane (Ethylene dibromide)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
Trichlorofluoromethane	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
n-Hexane	EPA TO-15	342	345	333	340	
2-Butanone (Methyl Ethyl Ketone)	EPA TO-15	27,900	29,300	31,000	29,400	350,000
4-Methyl-2-pentanone (MiBK)	EPA TO-15	1,340	1,370	1,330	1,347	
Perchloroethylene (Tetrachloroethene) PCE	EPA TO-15	60.6	62.7	59.4	60.9	1,500
trans-1,2-Dichloroethene	EPA TO-15	<47.3	<48.3	<46.4	<47.3	
Trichloroethylene (TCE)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	1,500
Vinyl Chloride (Chloroethene)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	1,000
m/p-Xylenes	EPA TO-15	4,780	4,840	4,650	4,757	
o-Xylene	EPA TO-15	1,740	1,800	1,730	1,757	
Total Xylenes	EPA TO-15	6,520	6,640	6,380	6,513	90,000
Benzene	EPA TO-15	1,660	1,620	1,560	1,613	7,900
Benzyl Chloride (a-Chlorotoluene)	EPA TO-15	<47.3	<48.3	<46.4	<47.3	500
Methanol (Methyl Alcohol)	EPA TO-15	9,110	11,000	10,500	10,203	600,000
Toluene	EPA TO-15	5,170	5,140	4,970	5,093	80,000

APPENDIX Z GCCS MAP

APPENDIX AA QUARTERLY GAS MIGRATION MONITORING DATA

Altamont Landfill & Resource Recovery Facility 10840 Altamont Pass Road Livermore, CA 94551

September 16, 2024

Sonum Kaur EP Specialist Altamont Landfill and Resource Recovery Facility 10840 Altamont Pass Rd. Livermore, California 94551

Re: Third Quarter 2024 Perimeter Gas and Methane in Structure Monitoring Report Altamont Landfill and Resource Recovery Facility

Dear Ms. Kaur,

This report for the Altamont Landfill and Resource Recovery Facility (ALRRF) contains the results of the Third Quarter 2024 Perimeter Gas and Methane in Structure Monitoring conducted at the ALRRF. All monitoring was conducted by ALRRF personnel.

REGULATORY REQUIREMENTS

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A).

During the Third Quarter 2024, Probes GP 8C and GP 20C had higher methane values in July 2024. The methane values at Probes GP 8C and GP 20C have been previously shown to be naturally occurring and not related to landfill operations. No other exceedances of Subtitle D (40 CFR 258.23) and California Code of Regulations (CCR) Title 27, Division 2, Section 20919.5 were detected during the monitoring events.

Results for probes are summarized in Table 1. All other Field data sheets during the Third Quarter of 2024 are presented in Attachment B.

Table 1

Altamont Landfill and Resource Recovery Facility Perimeter Gas Probe Monitoring Results

3rd Quarter 2024

Analyst: Dan San Jose/ Garry Carpenter

Date: 07/09/24, 07/12/24, 07/16/24

Instrument: Gem 5000 Serial #: G503646/G509170_

Atmospheric Temperature (Deg F):87/90/66/

Barometric Pressure: <u>29.16/28.76/29.22/</u> Inch of HG Wind Speed: <u>12/7/11 MPH</u> Wind Direction: <u>E/E /E</u>

Weather Condition: Clear/Cloudy/

Probe ID	Date Time	CH ₄ (%)		Probe Pressure (in-H ₂ O)	(clear	Condition a, capped, cked)	Comments
ALT-GP1A	7/16/2024 8:25	0	0.2	-0.61	Ok	Ok	
ALT-GP1B	7/16/2024 8:27	0	0.1	-0.23	Ok	Ok	
ALT-GP1C	7/16/2024 8:28	0	0.2	-0.18	Ok	Ok	
ALT-GP2A	7/12/2024 10:35	0	0.3	0	Ok	Ok	
ALT-GP2B	7/12/2024 10:37	0	0.2	0.01	Ok	Ok	
ALT-GP3A	7/12/2024 7:28	0	0.1	0.03	Ok	Ok	
ALT-GP3B	7/12/2024 7:30	0	0	0.05	Ok	Ok	
ALT-GP4A	7/12/2024 7:43	0	0.2	-0.03	Ok	Ok	
ALT-GP5A	7/12/2024 8:03	0	0.5	0.02	Ok	Ok	
ALT-GP6A	7/12/2024 10:46	0	0.2	0.05	Ok	Ok	
ALT-GP6B	7/12/2024 10:47	0	0.1	0.09	Ok	Ok	
ALT-GP6C	7/12/2024 10:49	0	0.1	0.02	Ok	Ok	
ALT-GP7A	7/12/2024 10:56	0	0.3	0.09	Ok	Ok	
ALT-GP7B	7/12/2024 10:57	0	0.6	0.04	Ok	Ok	
ALT-GP7C	7/12/2024 10:59	0	0.3	0.06	Ok	Ok	
ALT-GP8A	7/12/2024 7:19	0	0.7	-0.16	Ok	Ok	
ALT-GP8B	7/12/2024 7:21	0.7	0.4	-0.13	Ok	Ok	
ALT-GP8C	7/12/2024 7:23	44.2	1.7	1.48	Ok	Ok	
ALT-GP9A	7/12/2024 7:32	0	0.3	-0.11	Ok	Ok	
ALT-GP9B	7/12/2024 7:34	0	2.6	-0.12	Ok	Ok	
ALT-GP9C	7/12/2024 7:35	0	0.2	-0.11	Ok	Ok	
ALTGP10A	7/12/2024 7:52	0	1	-0.1	Ok	Ok	
ALTGP10B	7/12/2024 7:53	0	1	-0.11	Ok	Ok	
ALTGP11A	7/12/2024 8:02	0	3	-0.09	Ok	Ok	
ALTGP11B	7/12/2024 8:03	0	2.8	-0.12	Ok	Ok	
ALTGP11C	7/12/2024 8:05	0	0.3	0.01	Ok	Ok	
ALTGP12A	7/12/2024 8:43	0	0.4	0.02	Ok	Ok	
ALTGP13A	7/12/2024 8:50	0	0.2	-0.02	Ok	Ok	
ALTGP14A	7/12/2024 8:55	0	0.2	-0.01	Ok	Ok	
ALTGP15A	7/12/2024 8:59	0.7	0.1	-0.02	Ok	Ok	
ALTGP16A	7/12/2024 9:07	0	0.8	-0.04	Ok	Ok	
ALTGP17A	7/12/2024 9:21	0	0.8	0.01	Ok	Ok	
ALTGP18A	7/12/2024 9:55	0	0.2	0.01	Ok	Ok	
ALTGP18B	7/12/2024 9:56	0	0.1	-0.04	Ok	Ok	

Probe ID	Date Time	CH ₄ (%)	CO ₂ (%)	Probe Pressure (in-H ₂ O)	Probe Condition (clean, capped, locked)		Comments
ALTGP19A	7/12/2024 9:47	0	0.3	-0.11	Ok	Ok	
ALTGP19B	7/12/2024 9:48	0	0.1	0.12	Ok	Ok	
ALTGP20A	7/9/2024 9:12	0	0.3	-0.02	Ok	Ok	
ALTGP20B	7/9/2024 9:10	0	0.2	-0.08	Ok	Ok	
ALTGP20C	7/9/2024 9:08	43.6	3	-0.03	Ok	Ok	
ALTGP21A	7/12/2024 8:57	0	0.6	0.05	Ok	Ok	
ALTGP21B	7/12/2024 9:00	0	0.1	0.08	Ok	Ok	
ALTGP21C	7/12/2024 9:01	0	0.3	0.12	Ok	Ok	
ALTGP23A	7/12/2024 6:31	0	0.1	-0.09	Ok	Ok	
ALTGP23B	7/12/2024 6:32	0	8.0	0	Ok	Ok	
ALTGP23C	7/12/2024 6:34	0	0.2	0.15	Ok	Ok	
ALTGP24A	7/12/2024 6:40	0	0.3	-0.02	Ok	Ok	
ALTGP25A	7/12/2024 6:52	0	0.2	0.01	Ok	Ok	
ALTGP25B	7/12/2024 6:54	0	0.2	-0.07	Ok	Ok	
ALTGP26A	7/12/2024 7:10	0	0.7	0.04	Ok	Ok	
ALTGP27A	7/12/2024 6:23	0	0.1	-0.01	Ok	Ok	
ALTGP27B	7/12/2024 6:25	0	0.2	-0.03	Ok	Ok	
ALTGP28A	7/12/2024 8:41	0	0.3	0.12	Ok	Ok	
ALTGP28B	7/12/2024 8:43	0	0.3	0.14	Ok	Ok	

Immediately notify compliance personnel of any readings in excess of 5 percent methane. $\ensuremath{\text{ND}} = \ensuremath{\text{Not}}$ Detected

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

- (1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.
- (2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

Perimeter Gas Monitoring

The facility conducted the required monitoring using a CES - Landtec GEM-2000 gas analyzer (GEM). The monitoring was conducted by Garry Carpenter and Dan San Jose on July 9, 12, and 16, 2024. The static pressure of probe was measured using the GEM's internal pressure transducers.

Facility Structures

Garry Carpenter used a Photovac Micro FID to monitor buildings and structures to check for the presence of methane on August 16, 2024. The instrument was calibrated on August 16, 2024, using 500 ppm methane standard.

Combustible Methane Gas Monitor Calibration

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. The most recent calibration was conducted by Dan San Jose on August 16, 2024.

GENERAL WEATHER CONDITIONS [TITLE 27 §20934(a)(3)]

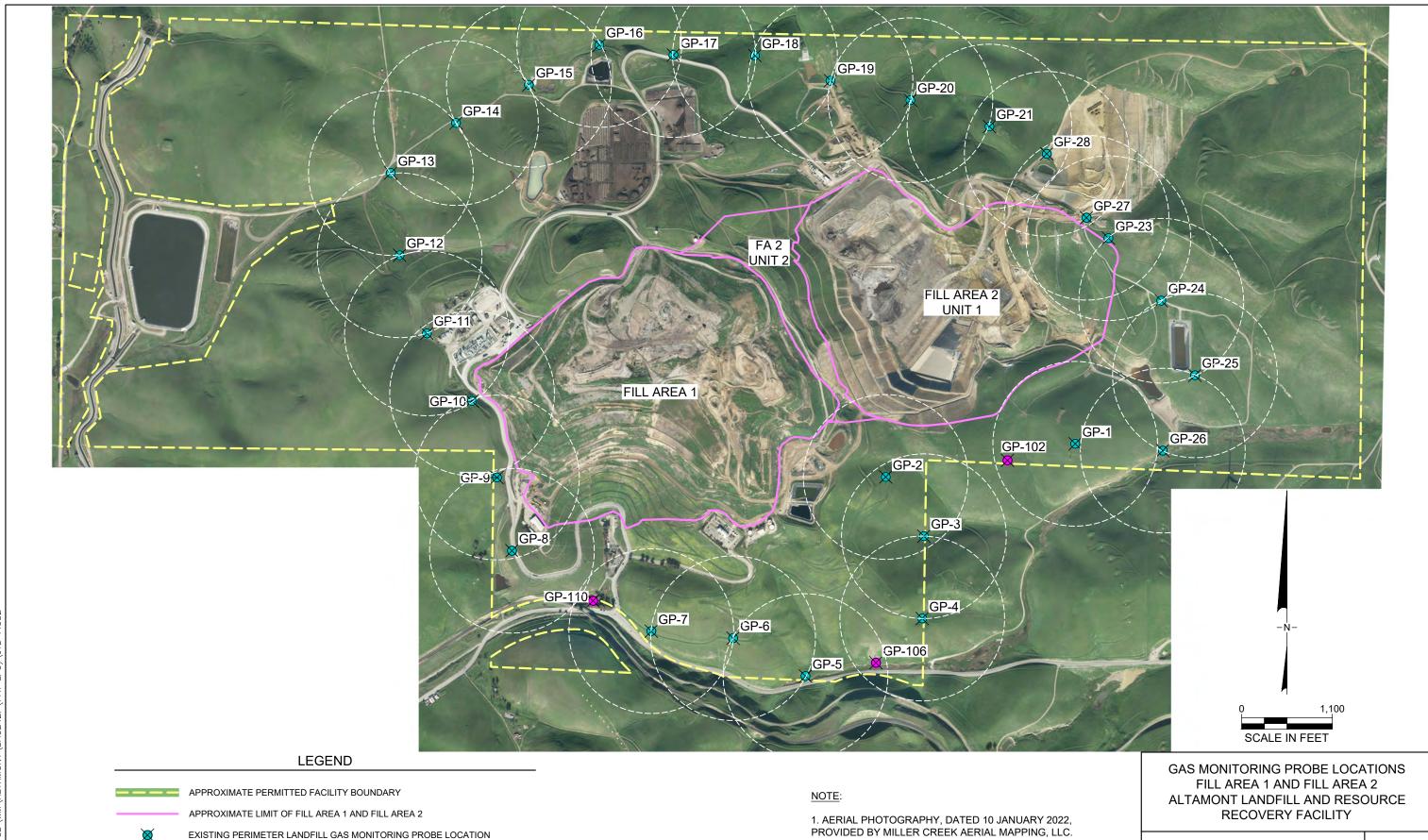
General weather conditions at the time of monitoring are presented in Table 2.

Table 2 General Weather Conditions

Description	General Conditions	Wind Speed mph	Wind Direction	Barometric Pressure, Inches of Hg	Ambient Temperature Min/Max, Deg F
July 9, 2024	Sunny	9.3	WNW	29.84	61/79
July 12, 2024	Sunny	2.5	W	29.81	70/95
July 16, 2024	Overcast	8.0	WNW	30.01	59/73

^{*} Refer to https://www.timeanddate.com/weather/usa/livermore/historic?month=12&year=2021 for details on wind speed and direction

If you have any questions regarding this notification, please do not hesitate to contact me at rphadnis@wm.com.


Thank you,

Waste Management of Alameda County, Inc.

Rajan Phadnis EP Air Specialist

Attachments: Perimeter Gas Probe Location Map ALRRF Third Quarter 2024 Field Data

ATTACHMENT A PROBE LOCATION MAP

Geosyntec[▶]

PROJECT NO: SAC242J

consultants

FEBRUARY 2022

FIGURE

32

P.\CADD\CIVII 3D\WM\AITAMONT\SAC242| (F

PROPOSED LOCATION WHERE PROBE NOT CONSTRUCTED DUE TO

ESTIMATED 1,000-FT RADIUS OF INFLUENCE FROM LFG MONITORING PROBE

SHALLOW WATER OR STEEP TERRAIN

ATTACHMENT B FIELD DATA

Altamont Landfill and Resource Recovery Facility Perimeter Gas Probe Monitoring Results

3 rd Quarter 2024

Analyst: Dan San Jose/ Garry Carpenter

Date: 07/09/24, 07/12/24, 07/16/24

Instrument: <u>Gem 5000 Serial #: G503646/G509170</u>

Atmospheric Temperature (Deg F):87/90/66/

Barometric Pressure: <u>29.16/28.76/29.22/</u> Inch of HG Wind Speed: <u>12/7/11 MPH</u> Wind Direction: <u>E/E/E</u>

Weather Condition: Clear/Cloudy/

Probe ID	Date Time	CH ₄ (%)	CO ₂ (%)	Probe Pressure (in-H ₂ O)	Probe Condition (clean, capped, locked)		Comments
ALT-GP1A	7/16/2024 8:25	0	0.2	-0.61	Ok	Ok	
ALT-GP1B	7/16/2024 8:27	0	0.1	-0.23	Ok	Ok	
ALT-GP1C	7/16/2024 8:28	0	0.2	-0.18	Ok	Ok	
ALT-GP2A	7/12/2024 10:35	0	0.3	0	Ok	Ok	
ALT-GP2B	7/12/2024 10:37	0	0.2	0.01	Ok	Ok	
ALT-GP3A	7/12/2024 7:28	0	0.1	0.03	Ok	Ok	
ALT-GP3B	7/12/2024 7:30	0	0	0.05	Ok	Ok	
ALT-GP4A	7/12/2024 7:43	0	0.2	-0.03	Ok	Ok	
ALT-GP5A	7/12/2024 8:03	0	0.5	0.02	Ok	Ok	
ALT-GP6A	7/12/2024 10:46	0	0.2	0.05	Ok	Ok	
ALT-GP6B	7/12/2024 10:47	0	0.1	0.09	Ok	Ok	
ALT-GP6C	7/12/2024 10:49	0	0.1	0.02	Ok	Ok	
ALT-GP7A	7/12/2024 10:56	0	0.3	0.09	Ok	Ok	
ALT-GP7B	7/12/2024 10:57	0	0.6	0.04	Ok	Ok	
ALT-GP7C	7/12/2024 10:59	0	0.3	0.06	Ok	Ok	
ALT-GP8A	7/12/2024 7:19	0	0.7	-0.16	Ok	Ok	
ALT-GP8B	7/12/2024 7:21	0.7	0.4	-0.13	Ok	Ok	
ALT-GP8C	7/12/2024 7:23	44.2	1.7	1.48	Ok	Ok	
ALT-GP9A	7/12/2024 7:32	0	0.3	-0.11	Ok	Ok	
ALT-GP9B	7/12/2024 7:34	0	2.6	-0.12	Ok	Ok	
ALT-GP9C	7/12/2024 7:35	0	0.2	-0.11	Ok	Ok	
ALTGP10A	7/12/2024 7:52	0	1	-0.1	Ok	Ok	
ALTGP10B	7/12/2024 7:53	0	1	-0.11	Ok	Ok	
ALTGP11A	7/12/2024 8:02	0	3	-0.09	Ok	Ok	
ALTGP11B	7/12/2024 8:03	0	2.8	-0.12	Ok	Ok	
ALTGP11C	7/12/2024 8:05	0	0.3	0.01	Ok	Ok	
ALTGP12A	7/12/2024 8:43	0	0.4	0.02	Ok	Ok	
ALTGP13A	7/12/2024 8:50	0	0.2	-0.02	Ok	Ok	
ALTGP14A	7/12/2024 8:55	0	0.2	-0.01	Ok	Ok	
ALTGP15A	7/12/2024 8:59	0.7	0.1	-0.02	Ok	Ok	
ALTGP16A	7/12/2024 9:07	0	0.8	-0.04	Ok	Ok	
ALTGP17A	7/12/2024 9:21	0	8.0	0.01	Ok	Ok	
ALTGP18A	7/12/2024 9:55	0	0.2	0.01	Ok	Ok	
ALTGP18B	7/12/2024 9:56	0	0.1	-0.04	Ok	Ok	
ALTGP19A	7/12/2024 9:47	0	0.3	-0.11	Ok	Ok	
ALTGP19B	7/12/2024 9:48	0	0.1	0.12	Ok	Ok	

Probe ID	Date Time	CH ₄ (%)	CO ₂ (%)	Probe Pressure (in-H ₂ O)	Probe Condition (clean, capped, locked)		Comments
ALTGP20A	7/9/2024 9:12	0	0.3	-0.02	Ok	Ok	
ALTGP20B	7/9/2024 9:10	0	0.2	-0.08	Ok	Ok	
ALTGP20C	7/9/2024 9:08	43.6	3	-0.03	Ok	Ok	
ALTGP21A	7/12/2024 8:57	0	0.6	0.05	Ok	Ok	
ALTGP21B	7/12/2024 9:00	0	0.1	0.08	Ok	Ok	
ALTGP21C	7/12/2024 9:01	0	0.3	0.12	Ok	Ok	
ALTGP23A	7/12/2024 6:31	0	0.1	-0.09	Ok	Ok	
ALTGP23B	7/12/2024 6:32	0	8.0	0	Ok	Ok	
ALTGP23C	7/12/2024 6:34	0	0.2	0.15	Ok	Ok	
ALTGP24A	7/12/2024 6:40	0	0.3	-0.02	Ok	Ok	
ALTGP25A	7/12/2024 6:52	0	0.2	0.01	Ok	Ok	
ALTGP25B	7/12/2024 6:54	0	0.2	-0.07	Ok	Ok	
ALTGP26A	7/12/2024 7:10	0	0.7	0.04	Ok	Ok	
ALTGP27A	7/12/2024 6:23	0	0.1	-0.01	Ok	Ok	_
ALTGP27B	7/12/2024 6:25	0	0.2	-0.03	Ok	Ok	
ALTGP28A	7/12/2024 8:41	0	0.3	0.12	Ok	Ok	
ALTGP28B	7/12/2024 8:43	0	0.3	0.14	Ok	Ok	

Immediately notify compliance personnel of any readings in excess of 5 percent methane.

ND = Not Detected

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

- (1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.
- (2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Methane-In-Structure Monitoring Data

Analyst: Garry Carpert Date: 8-16-24 Instrument: Fisto Vac Serial #: CZPA312

Monitored Location	Date an	d Time	Methane (ppm)	Methane (%)	Comments
Guardhouse	8-1624	8: 20cm			
Leachate Pump Station	8-16-24		101		
Administration Building	8-1624		1.6		
Sales Building	8-1624	Bellan	1.7		
Engineering Trailer	8-1624	8:07 gr	1.9		
Garage Office	8-16-24	9:310	4.0		
Shop Break room	8-16-24	9:33m	3.0		
Maintenance Building Supervisor's Office	8-16-24	9:34	3.7		
Office Trailer Fill Area 2 (1)	8-16-24	9:00m	4,6		
Employee break trailer fill area 2 (2)	8-16-24		5.4		
Office Trailer Fill area 2 (3)	8-16-24	8:56 m	5.1		
Scale House South	8-16-24	9:26 an	5,0		
Scale House North	8-16-24	9:27an	3.8		
Employee Break Trailer	8-16-24	_	-		Abandonial
Gas Team Office Trailer	8-16-24	9:13.cm	3.4		
LNG Building 1	8-16-24	_	-		Abandoned
LNG Building 2 (Trailer)	8-16-21	-	-		Abandoned
Tire Office Trailer	7-1K-24	9:23am	4.6	1	
Davis Street Trailer	8-16-24	9:19am	3.0		
Waste Water Plant	8-1624	8:31 cm	5.4		
Gas Plant	8-16-24	8:25m	8.4		
CASP trailer	8-16-24	8:48m	4.0		
Litter Pickers' Trailer (Mobile)	8-16-201		4.5		

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

3RO RTR.

Permanent Structure Monitor Calibration Calibrated to 5,000 ppm CH4

Date: 08-16-24

Analyst: D. San Jose
Instrument: Model 26 Calibration system

Serial Number: 0824904075MTS

Monitored I nesting	Date	Time	Monitor	r Condition	Commonto
Monitored Location			Arrival	Departure	Comments
Guardhouse	08-16-24	8:21 Am	ak	OK	
Administrative Building	08-16-24	8:07 AM	OK	OK	
Sales Building	08/6-24	8:05 m	OK	OK.	
Engineering Trailer	08-16-24	8:DDAM	OK	OK	
Garage Office	08.16.24	9:30 AM	Ok	OK	
Shop Break room	08-16-24	9:32 pm	ek	Ok	
Maintenance Building – Supervisor's Office	08-16-24	9:35 Am	OK	DK	
Office Trailer Fill Area 2 (1)	08-16-24	9:02 km	CK	DK	
Employee break trailer Fill area 2 (2)	08-16-24	9:05 Am	OK	OK	
Office trailer in Fill Area 2 (3)	08-16-24	9:07 AM	DK	OK	
Scale House –(South)	08-16-24	9:24 Am	DK	OK	
Scale House –(North)	08.16.24	9:27 ASM	Ok	OK	
Employee Break Trailer		w	-		Apricaling Apricaling
Litter picker Trailer	08-16-24	9:10 km	DK	ok	
Davis Street Trailer	08.16.24	9:18 1999	OK	DK	
Gas Team's Trailer	De 16-24	9:16 km	OK	Oic	
WWTP (Manager's Office)	08-16-24	8:31 mm	OK	8k	
CASP trailer	08.16.24	8:49 km	DK	OK	
WWTP (Lab)	08-16-24	8:35 AM	OK	OK	
Gas Plant	08.16.24	8:27 Am	OK	DK	

CALIBRATION PRECISION TEST RECORD

Date: 8-16-24		
Expiration Date (3 months): (1-55-24		
Time: (0:50 AM PM		
Instrument Make: Photo Vac Model: Miro FID) S/N: CZ	00312
Measurement #1:		
Meter Reading for Zero Air:	0	ppm (a)
Meter Reading for Calibration Gas:	500	ppm (b)
Measurement #2:		
Meter Reading for Zero Air:		ppm (c)
Meter Reading for Calibration Gas:	500	ppm (d)
Measurement #3:		
Meter Reading for Zero Air:		ppm (e)
Meter Reading for Calibration Gas:	500	ppm (f)
Calculate Precision:		
$\frac{\{ (500) - (b) + (500) - (d) + (500) - (f) \}}{3} \times \frac{1}{500}$	x 100	
% (must be < than 10)%)	
Performed By: Gary Carpater		

RESPONSE TIME TEST RECORD

Measurement #3:

Stabilized Reading Using Calibration Gas:

90% of the Stabilized Reading:

Time to Reach 90% of Stabilized Reading after
switching from Zero Air to Calibration Gas:

2. > seconds (c)

Calculate Response Time:

 $\underline{(a) + (b) + (c)} = \underline{2}$ seconds (must be less than 30 seconds)

Performed By: Bary Carpeter

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

Landfill Name: Altamont Landfill Date: 8-14	0-24	
Time: §:68 AM PM		
Instrument Make: ProtoVa Model: Micro FID S/N	CZPD3	112
Calibration Procedure		
1. Allow instrument to internally zero itself while intr	oducing zero	o air.
2. Introduce the calibration gas into the probe.		
Stable Reading = 501 ppm		
3. Adjust meter to read 500 ppm.		
Background Determination Procedure		
1. Upwind Reading (highest in 30 seconds):	2.0	ppm (a)
2. Downwind Reading (highest in 30 seconds):	1	ppm (b)
Calculate Background Value:		
$\frac{(a) + (b)}{2} \qquad \text{Background} = 1.5 \qquad \text{ppm}$		
Performed By: Garage Carporter		

Altamont Landfill & Resource Recovery Facility 10840 Altamont Pass Road Livermore, CA 94551

December 6, 2024

Sonam Kaur EP Specialist Altamont Landfill and Resource Recovery Facility 10840 Altamont Pass Rd. Livermore, California 94551

Re: Fourth Quarter 2024 Perimeter Gas and Methane in Structure Monitoring Report Altamont Landfill and Resource Recovery Facility

Dear Ms. Kaur,

This report for the Altamont Landfill and Resource Recovery Facility (ALRRF) contains the results of the Fourth Quarter 2024 Perimeter Gas and Methane in Structure Monitoring conducted at the ALRRF. All monitoring was conducted by ALRRF personnel.

REGULATORY REQUIREMENTS

Requirements for monitoring are outlined in 40 CFR 258.23, Title 27 California Code of Regulations (CCR), Article 6, Gas Monitoring at Active and Closed Disposal Sites. These regulations require periodic monitoring to ensure that methane concentrations are less than 5 percent at the property boundary and less than 1.25 percent in on-site buildings and structures. Reporting requirements are presented in Title 27 §20934.

MONITORING RESULTS AND MAP [TITLE 27 §20934(a)(1), (2), (3) AND (5)]

Monitoring was conducted in accordance with 40 CFR 258.23 and Title 27, Article 6 at the locations shown in the attached map (Attachment A).

During the Fourth Quarter 2024, Probes GP 15A had higher methane values in October 2024. ALRRF submitted the initial exceedance notification and the 60-day report to the LEA. No other exceedances of Subtitle D (40 CFR 258.23) and California Code of Regulations (CCR) Title 27, Division 2, Section 20919.5 were detected during the monitoring events.

Results for probes are summarized in Table 1. All other Field data sheets during the Fourth Quarter of 2024 are presented in Attachment B.

Table 1

Altamont Landfill and Resource Recovery Facility Perimeter Gas Probe Monitoring Results

4th Quarter 2024

Analyst: Dan San Jose/ Garry Carpenter

Date: 10.01.24/ 10.02.24/

Instrument: <u>Gem 5000 Serial #: G509158/G509170</u>

Atmospheric Temperature (Deg F):96/98/
Barometric Pressure: 29.92/29.32/ Inch of HG
Wind Speed: 4/6/MPH Wind Direction: S/S

Weather Condition: Clear/Clear/

Probe ID	Date Time	CH ₄ (%)	CO ₂ (%)	Probe Pressure (in-H ₂ O)	(clean	Condition , capped, cked)	Comments
ALT-GP1A	10/2/2024 9:39	0	0.2	-0.03	Ok	Ok	
ALT-GP1B	10/2/2024 9:41	0	0.2	0	Ok	Ok	
ALT-GP1C	10/2/2024 9:43	0	0.2	-0.02	Ok	Ok	
ALT-GP2A	10/2/2024 10:06	0	0.2	-0.04	Ok	Ok	
ALT-GP2B	10/2/2024 10:07	0	0.2	0.11	Ok	Ok	
ALT-GP3A	10/1/2024 9:43	0	0.2	0.22	Ok	Ok	
ALT-GP3B	10/1/2024 9:44	0	0.1	0.17	Ok	Ok	
ALT-GP4A	10/1/2024 10:08	0	0.1	0.28	Ok	Ok	
ALT-GP5A	10/2/2024 10:59	0	0.4	0.13	Ok	Ok	
ALT-GP6A	10/2/2024 10:15	0	0.2	0.17	Ok	Ok	
ALT-GP6B	10/2/2024 10:17	0	0.1	0.08	Ok	Ok	
ALT-GP6C	10/2/2024 10:18	0	0.1	0.18	Ok	Ok	
ALT-GP7A	10/2/2024 10:27	0	0.2	0.11	Ok	Ok	
ALT-GP7B	10/2/2024 10:28	0	0.5	-0.02	Ok	Ok	
ALT-GP7C	10/2/2024 10:29	0	0.4	0.2	Ok	Ok	
ALT-GP8A	10/1/2024 9:25	0	0.5	-0.03	Ok	Ok	
ALT-GP8B	10/1/2024 9:27	0.3	0.4	-0.04	Ok	Ok	
ALT-GP8C	10/1/2024 9:29	9	0.3	0.06	Ok	Ok	
ALT-GP9A	10/1/2024 9:38	0	0.2	-0.01	Ok	Ok	
ALT-GP9B	10/1/2024 9:39	0	1.1	-0.08	Ok	Ok	
ALT-GP9C	10/1/2024 9:40	0	0.3	-0.06	Ok	Ok	
ALTGP10A	10/1/2024 9:52	0	0.8	0.03	Ok	Ok	
ALTGP10B	10/1/2024 9:53	0	0.8	-0.07	Ok	Ok	
ALTGP11A	10/1/2024 10:00	0	2.4	0.09	Ok	Ok	
ALTGP11B	10/1/2024 10:02	0	3	-0.01	Ok	Ok	
ALTGP11C	10/1/2024 10:03	0	0.5	0.09	Ok	Ok	
ALTGP12A	10/1/2024 10:15	0.1	0.3	0.11	Ok	Ok	
ALTGP13A	10/1/2024 10:24	0	0.1	0.01	Ok	Ok	
ALTGP14A	10/1/2024 10:28	0	0.1	0.11	Ok	Ok	
ALTGP15A	10/1/2024 10:32	8.4	3.2	-0.01	Ok	Ok	
ALTGP16A	10/1/2024 10:39	0	0.4	0.17	Ok	Ok	
ALTGP17A	10/1/2024 11:06	0	0.6	0.16	Ok	Ok	
ALTGP18A	10/1/2024 13:52	0	0.3	0.08	Ok	Ok	
ALTGP18B	10/1/2024 13:54	0	0.5	0.02	Ok	Ok	

Probe ID	Date Time	CH ₄ (%)	CO ₂ (%)	Probe Pressure (in-H ₂ O)	(clean	Condition , capped, cked)	Comments
ALTGP19A	10/1/2024 13:46	0	0.2	0.07	Ok	Ok	
ALTGP19B	10/1/2024 13:47	0	0.2	0.08	Ok	Ok	
ALTGP20A	10/2/2024 8:12	0	0.2	0.19	Ok	Ok	
ALTGP20B	10/2/2024 8:14	0	0.2	0.11	Ok	Ok	
ALTGP20C	10/2/2024 8:15	0	0.2	0.06	Ok	Ok	
ALTGP21A	10/2/2024 7:35	0	0.6	0.15	Ok	Ok	
ALTGP21B	10/2/2024 7:37	0	0.3	0.13	Ok	Ok	
ALTGP21C	10/2/2024 7:38	0	0.3	0.19	Ok	Ok	
ALTGP23A	10/1/2024 10:46	0	0.1	0.31	Ok	Ok	
ALTGP23B	10/1/2024 10:47	0	0.4	0.28	Ok	Ok	
ALTGP23C	10/1/2024 10:49	0	0.2	0.27	Ok	Ok	
ALTGP24A	10/1/2024 10:40	0	0.2	0.23	Ok	Ok	
ALTGP25A	10/1/2024 9:19	0	0.2	0.16	Ok	Ok	
ALTGP25B	10/1/2024 9:22	0	0.2	0.07	Ok	Ok	
ALTGP26A	10/1/2024 10:25	0	0.3	0.2	Ok	Ok	
ALTGP27A	10/1/2024 10:54	0	0.1	0.19	Ok	Ok	
ALTGP27B	10/1/2024 10:56	0	0.1	0.22	Ok	Ok	
ALTGP28A	10/2/2024 7:46	0	0.3	0.15	Ok	Ok	
ALTGP28B	10/2/2024 7:48	0	0.3	0.02	Ok	Ok	

Immediately notify compliance personnel of any readings in excess of 5 percent methane. $\ensuremath{\text{ND}} = \ensuremath{\text{Not}}$ Detected

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

- (1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.
- (2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

MONITORING EQUIPMENT AND METHODOLOGY [TITLE 27 §20934(a)(4)]

Perimeter Gas Monitoring

The facility conducted the required monitoring using a CES - Landtec GEM-2000 gas analyzer (GEM). The monitoring was conducted by Garry Carpenter and Dan San Jose on October 1 and 2, 2024. The static pressure of probe was measured using the GEM's internal pressure transducers.

Facility Structures

Garry Carpenter used a Photovac Micro FID to monitor buildings and structures to check for the presence of methane on November 25, 2024. The instrument was calibrated on November 25, 2024, using 500 ppm methane standard.

Combustible Methane Gas Monitor Calibration

Some facility structures are monitored continuously using Sierra Monitors. The monitor is calibrated at a frequency determined by the manufacturer. The most recent calibration was conducted by Dan San Jose on November 25, 2024.

GENERAL WEATHER CONDITIONS [TITLE 27 §20934(a)(3)]

General weather conditions at the time of monitoring are presented in Table 2.

Table 2 General Weather Conditions

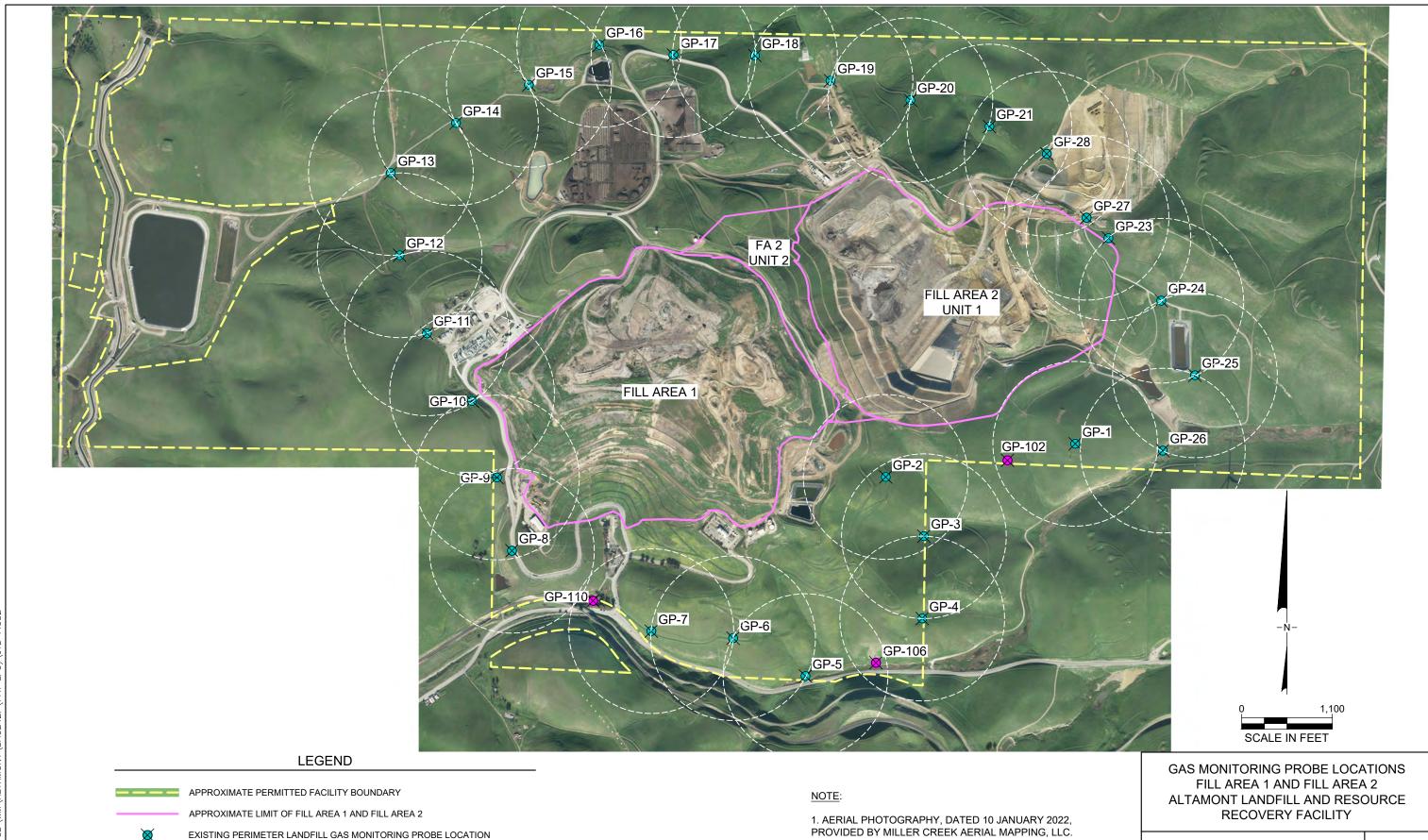
Description	General Conditions	Wind Speed mph	Wind Direction	Barometric Pressure, Inches of Hg	Ambient Temperature Min/Max, Deg F
October 1, 2024	Sunny	2.5	WSW	29.97	61/93
October 2, 2024	Sunny	1.9	W	29.89	64/93

^{*} Refer to https://www.timeanddate.com/weather/usa/livermore/historic?month=12&year=2021for details on wind speed and direction

If you have any questions regarding this notification, please do not hesitate to contact me at rphadnis@wm.com.

Thank you,

Waste Management of Alameda County, Inc.


Rajan Phadnis EP Air Specialist

FM

Attachments: Perimeter Gas Probe Location Map

ALRRF Fourth Quarter 2024 Field Data

ATTACHMENT A PROBE LOCATION MAP

Geosyntec[▶]

PROJECT NO: SAC242J

consultants

FEBRUARY 2022

FIGURE

32

P.\CADD\CIVII 3D\WM\AITAMONT\SAC242| (F

PROPOSED LOCATION WHERE PROBE NOT CONSTRUCTED DUE TO

ESTIMATED 1,000-FT RADIUS OF INFLUENCE FROM LFG MONITORING PROBE

SHALLOW WATER OR STEEP TERRAIN

ATTACHMENT B FIELD DATA

Altamont Landfill and Resource Recovery Facility Perimeter Gas Probe Monitoring Results

4 th Quarter 2024

Analyst: Dan San Jose/ Garry Carpenter

Date: 10.01.24/ 10.02.24/

Instrument: <u>Gem 5000 Serial #: G509158/G509170</u>

Atmospheric Temperature (Deg F):96/98/
Barometric Pressure: 29.92/29.32/ Inch of HG
Wind Speed: 4/6/MPH Wind Direction: S/S

Weather Condition: Clear/Clear/

Probe ID	Date Time	CH ₄ (%)	CO ₂ (%)	Probe Pressure (in-H ₂ O)		Condition pped, locked)	Comments
ALT-GP1A	10/2/2024 9:39	0	0.2	-0.03	Ok	Ok	
ALT-GP1B	10/2/2024 9:41	0	0.2	0	Ok	Ok	
ALT-GP1C	10/2/2024 9:43	0	0.2	-0.02	Ok	Ok	
ALT-GP2A	10/2/2024 10:06	0	0.2	-0.04	Ok	Ok	
ALT-GP2B	10/2/2024 10:07	0	0.2	0.11	Ok	Ok	
ALT-GP3A	10/1/2024 9:43	0	0.2	0.22	Ok	Ok	
ALT-GP3B	10/1/2024 9:44	0	0.1	0.17	Ok	Ok	
ALT-GP4A	10/1/2024 10:08	0	0.1	0.28	Ok	Ok	
ALT-GP5A	10/2/2024 10:59	0	0.4	0.13	Ok	Ok	
ALT-GP6A	10/2/2024 10:15	0	0.2	0.17	Ok	Ok	
ALT-GP6B	10/2/2024 10:17	0	0.1	0.08	Ok	Ok	
ALT-GP6C	10/2/2024 10:18	0	0.1	0.18	Ok	Ok	
ALT-GP7A	10/2/2024 10:27	0	0.2	0.11	Ok	Ok	
ALT-GP7B	10/2/2024 10:28	0	0.5	-0.02	Ok	Ok	
ALT-GP7C	10/2/2024 10:29	0	0.4	0.2	Ok	Ok	
ALT-GP8A	10/1/2024 9:25	0	0.5	-0.03	Ok	Ok	
ALT-GP8B	10/1/2024 9:27	0.3	0.4	-0.04	Ok	Ok	
ALT-GP8C	10/1/2024 9:29	9	0.3	0.06	Ok	Ok	
ALT-GP9A	10/1/2024 9:38	0	0.2	-0.01	Ok	Ok	
ALT-GP9B	10/1/2024 9:39	0	1.1	-0.08	Ok	Ok	
ALT-GP9C	10/1/2024 9:40	0	0.3	-0.06	Ok	Ok	
ALTGP10A	10/1/2024 9:52	0	0.8	0.03	Ok	Ok	
ALTGP10B	10/1/2024 9:53	0	8.0	-0.07	Ok	Ok	
ALTGP11A	10/1/2024 10:00	0	2.4	0.09	Ok	Ok	
ALTGP11B	10/1/2024 10:02	0	3	-0.01	Ok	Ok	
ALTGP11C	10/1/2024 10:03	0	0.5	0.09	Ok	Ok	
ALTGP12A	10/1/2024 10:15	0.1	0.3	0.11	Ok	Ok	
ALTGP13A	10/1/2024 10:24	0	0.1	0.01	Ok	Ok	
ALTGP14A	10/1/2024 10:28	0	0.1	0.11	Ok	Ok	
ALTGP15A	10/1/2024 10:32	8.4	3.2	-0.01	Ok	Ok	
ALTGP16A	10/1/2024 10:39	0	0.4	0.17	Ok	Ok	
ALTGP17A	10/1/2024 11:06	0	0.6	0.16	Ok	Ok	
ALTGP18A	10/1/2024 13:52	0	0.3	0.08	Ok	Ok	
ALTGP18B	10/1/2024 13:54	0	0.5	0.02	Ok	Ok	
ALTGP19A	10/1/2024 13:46	0	0.2	0.07	Ok	Ok	

Probe ID	Date Time	CH ₄ (%)	CO ₂ (%)	Probe Pressure (in-H ₂ O)		Condition pped, locked)	Comments
ALTGP19B	10/1/2024 13:47	0	0.2	0.08	Ok	Ok	
ALTGP20A	10/2/2024 8:12	0	0.2	0.19	Ok	Ok	
ALTGP20B	10/2/2024 8:14	0	0.2	0.11	Ok	Ok	
ALTGP20C	10/2/2024 8:15	0	0.2	0.06	Ok	Ok	
ALTGP21A	10/2/2024 7:35	0	0.6	0.15	Ok	Ok	
ALTGP21B	10/2/2024 7:37	0	0.3	0.13	Ok	Ok	
ALTGP21C	10/2/2024 7:38	0	0.3	0.19	Ok	Ok	
ALTGP23A	10/1/2024 10:46	0	0.1	0.31	Ok	Ok	
ALTGP23B	10/1/2024 10:47	0	0.4	0.28	Ok	Ok	
ALTGP23C	10/1/2024 10:49	0	0.2	0.27	Ok	Ok	
ALTGP24A	10/1/2024 10:40	0	0.2	0.23	Ok	Ok	
ALTGP25A	10/1/2024 9:19	0	0.2	0.16	Ok	Ok	
ALTGP25B	10/1/2024 9:22	0	0.2	0.07	Ok	Ok	
ALTGP26A	10/1/2024 10:25	0	0.3	0.2	Ok	Ok	
ALTGP27A	10/1/2024 10:54	0	0.1	0.19	Ok	Ok	
ALTGP27B	10/1/2024 10:56	0	0.1	0.22	Ok	Ok	
ALTGP28A	10/2/2024 7:46	0	0.3	0.15	Ok	Ok	
ALTGP28B	10/2/2024 7:48	0	0.3	0.02	Ok	Ok	

Immediately notify compliance personnel of any readings in excess of 5 percent methane. $ND = Not \ Detected$

California Code of Regulations Title 27, Division 2, Chapter 3, Article 6, §20921 require that:

- (1) The concentration of methane gas must not exceed 1.25 percent by volume in air within any portion of any on-site structures.
- (2) The concentration of methane gas migrating from the disposal site must not exceed 5 percent by volume in air at the disposal site permitted facility boundary or an alternative boundary approved in accordance with §20925.

Methane-In-Structure Monitoring Data

Analyst: Garry Carpenter Date: 11-25-24 Instrument: Maio Fil Serial #: CZPO 312

Monitored Location	Date and Time		Methane Methan (ppm) (%)		Comments
Guardhouse	11-25-24	10:05 cm			
Leachate Pump Station	11-25-24	10:08 on	115		
Administration Building	11.25-24	10:01 am	5.3		
Sales Building	11-25-24	9:59 an	4.4		
Engineering Trailer	11-25-24	9:51an	6.4		
Garage Office	11-25-24	10:10 an	3.2		
Shop Break room	11-25-24	10:11 am	1.7		
Maintenance Building			0.1.1		
Supervisor's Office	11-25-24	10:13 am	24.4		
Office Trailer Fill Area 2 (1)	11-25-24	10:30am	4.1		
Employee break trailer fill area 2 (2)	11-25-24	10:97 an	4:2		
Office Trailer Fill area 2 (3)	11-25-24	10:35 am	13		
Scale House South	11-25-24	15: 16 am	12.1		
Scale House North	11-25-24	10:17 cm	113		
Employee Break Trailer	_	_	_	-	Abardoned
Gas Team Office Trailer	_	_	-	-	Not in use Tobe abundanced Safty concerns
LNG Building 1		-	_	-	Abandored
LNG Building 2 (Trailer)	_		_	_	Albandoned
Tire Office Trailer	11-25-24	10:47an	3.4		
Davis Street Trailer	11-25-24	10:43 am	4.6		
Waste Water Plant	11-25-94	12:20 pm	13.0		
Gas Plant	11-25-24	12:16 pm	2.8		
CASP trailer	11-25-24	10:25on	2.5		
Litter Pickers' Trailer (Mobile)	11-25-24	10:37am	3.6		

Immediately notify compliance personnel of any readings in excess of 1.25 percent methane.

Permanent Structure Monitor Calibration

Calibrated to 5,000 ppm CH₄

Analyst: Dan San Jose

Date: 11.25.24

Instrument: Model 26 Calibration system

Serial Number: 0824904075MTS

Manitored Leastion	Date	Time	Monitor	r Condition	Comments
Monitored Location			Arrival	Departure	Comments
Guardhouse	11.25.24	10:05 Am	δK	DK	
Administrative Building	11.25.24	10:00 mm	OK	DK	
Sales Building	11.25.24	9:58 pm	DK	DK	
Engineering Trailer	11.25.24	9:50 Am	OK	OK	
Garage Office	11.25.24	W: 9 m	Ok	ÐΚ	
Shop Break room	11.25.24	10:11 mm	DK	OK	
Maintenance Building – Supervisor's Office	11-25.24	10:12 Am	OK	DK	
Office Trailer Fill Area 2 (1)	11.25.24	1D:29 Am	OK	OK	
Employee break trailer Fill area 2 (2)	11:25.24	10:32 Am	OK	OK	
Office trailer in Fill Area 2 (3)	11.25.24	10:35 Am	OK	DIK	
Scale House –(South)	11.25.24	10:14 mm	OK	OK	
Scale House –(North)	11.25.24	10:16 mg	O K	OK	
Employee Break Trailer		- NA -			ABANDONED
Litter picker Trailer	11.25.24	10:37 Am	OK	OK	
Davis Street Trailer	11.25.24	10:40 am	OK	DK	
Gas Team's Trailer		-NA			TO BE ABANDONED
WWTP (Manager's Office)	11.25.24	12:22 AM	ok	91	
CASP trailer	11.25.24	10:25 Am	Dk	Ok	
WWTP (Lab)	11.25.24	12:20 pm	OK	Ok	
Gas Plant	11.25.24	12:15 PM	OK	OK	

CALIBRATION PROCEDURE AND BACKGROUND DETERMINATION REPORT

. /		
Landfill Name: Altamont Landfill Date: 4.2	5.24	
Time: 9!15 AM PM		
Instrument Make: Phyl Vin Model: Min Fil S/N:	CZAD	312
Calibration Procedure		
1. Allow instrument to internally zero itself while introd	ducing zer	o air.
2. Introduce the calibration gas into the probe.		
Stable Reading = <u>601</u> ppm		
3. Adjust meter to read 500 ppm.		
Background Determination Procedure		
1. Upwind Reading (highest in 30 seconds):	2	ppm (a)
2. Downwind Reading (highest in 30 seconds):		ppm (b)
Calculate Background Value:		
$\frac{(a) + (b)}{2} \text{Background} = \frac{1.5}{2} \text{ppm}$		
Performed By: Garry Carporter		

RESPONSE TIME TEST RECORD

Date: 11.04.24

Expiration Date (3 months): 02.1024

Time: 8:34 AM ____ PM

Instrument Make: Scientific Model: WAIDDO S/N: 0936338909

Measurement #1:

Stabilized Reading Using Calibration Gas: ppm 90% of the Stabilized Reading: ppm

Time to Reach 90% of Stabilized Reading after seconds (a) switching from Zero Air to Calibration Gas:

Measurement #2:

506 Stabilized Reading Using Calibration Gas: ppm 90% of the Stabilized Reading: ppm Time to Reach 90% of Stabilized Reading after

switching from Zero Air to Calibration Gas:

seconds (b)

Measurement #3:

200 Stabilized Reading Using Calibration Gas: ppm 450 90% of the Stabilized Reading: ppm Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas: seconds (c)

Calculate Response Time: seconds (must be less than 30 seconds)

e insulation that tuest

Performed By: D. Sm 558

CALIBRATION PRECISION TEST RECORD

Date: 11.04.24

Expiration Date (3 months): 02.2024

Time: 8:37 AM ____ PM

Instrument Make: Scientific Model: TVA 1000 S/N: 0936338909

Measurement #1:

Meter Reading for Zero Air: _____ppm (a)

Meter Reading for Calibration Gas: ______ppm (b)

Measurement #2:

Meter Reading for Zero Air: ____ ppm (c)

Meter Reading for Calibration Gas: _____ppm (d)

Measurement #3:

Meter Reading for Zero Air: _____ppm (e)

Meter Reading for Calibration Gas: _____ppm (f)

Calculate Precision:

 $\frac{\{|(500) - (b)| + |(500) - (d)| + |(500) - (f)|\}}{3} \times \frac{1}{500} \times 100$

_____ % (must be < than 10%)

Performed By: D. Sm bs

ATTACHMENT C CORRESPONDENCE

SENT VIA EMAIL

October 8, 2024

Ryan Hammon Alameda County Dept. of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

SUBJECT: Probe GP15A Exceedance

Altamont Landfill and Resource Recovery Facility

SWIS: 01-AA-0009

Dear Mr. Hammon:

Altamont Landfill Resource Recovery Facility (ALRRF) is submitting this letter as required under Title 27, Division 2, Chapter 3, Subchapter 4, §20937. On October 1st, 2024, a methane concentration of 8.4 percent (%) was measured at Gas Monitoring Probe ALTGP 15A (GP-15A). The site has taken immediate steps to characterize and mitigate the exceedance.

IMMEDIATE RESPONSE ACTIONS

ALRRF took immediate response actions regarding the elevated methane levels detected at GP-15A. Site personnel used the Gazoscan methane detector to verify that there were no surface emissions in the area surrounding the probe. The site is continuing to investigate the source of the exceedance and is in the process of ordering sampling kits to conduct TO-14A laboratory analysis and carbon dating tests.

VERIFICATION READING

In accordance with 27 CCR §20937, ALRRF is currently verifying the validity of results. On October 8th, 2024, a verification reading was taken at GP-15A. The reading confirmed that GP-15A has a concentration of methane in excess of 5 percent by volume air.

If you have any questions, please contact the undersigned at (562) 505-5779.

Sincerely,

Altamont/Landfill and Resource Recovery Facility

Blaine Harrison District Manager

SENT VIA EMAIL

December 2, 2024

Ryan Hammon Alameda County Dept. of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

SUBJECT: 60-Day Report - Probe GP15A Exceedance

Altamont Landfill and Resource Recovery Facility

SWIS: 01-AA-0009

Dear Mr. Hammon:

Waste Management of Alameda County, Inc. DBA Altamont Landfill Resource and Recovery Facility (ALRRF) is submitting this letter as required under Title 27, Division 2, Chapter 3, Subchapter 4, §20937. On October 1st, 2024, a methane concentration of 8.4% was measured at Gas Monitoring Probe 15A (GP15A). Initial notification to the LEA submitted via email on October 8, 2024.

ALRRF undertook response actions to the elevated methane monitored at GP-15A, utilizing the Gazoscan methane detector. The facility verified that no surface emissions were detected in the vicinity of the probe. GP-15A is not located near any structures.

ALRRF collected samples to conduct TO-14A laboratory analysis. The results seem to indicate that the methane is not from landfill gas. The data indicates negligible amounts of ethanol and carbon disulfide, with no chlorinated hydrocarbons or freons detected. The data suggests the methane concentrations observed in these probes are from a natural source.

The results of the samples are included under Attachment A for review.

MONITORING DATA

Monitoring data obtained at Probe 15A since the exceedance is presented in the following table:

Device Nam 🕶	Date Time	¥	CH4 (Methane)(%)
ALTGP15A	10/1/2024 10:32		8.4
ALTGP15A	10/8/2024 9:39		9.7
ALTGP15A	10/25/2024 9:49		9.8
ALTGP15A	10/25/2024 11:30		9.3

Waste Management of Alameda County, Inc. DBA Altamont Landfill & Resource Recovery Facility 10840 Altamont Pass Road Livermore, CA 94551

ALRRF considers this submittal as fulfilling the regulatory requirement and deadline for the submittal and implementation of actions related to Probe 15A.

If you have any questions, please contact the undersigned at (562)505-5779.

Sincerely,

Altamont Landfill and Resource Recovery Facility

Blaine Harrison

Blains F Harrison

District Manager

Attachment A – Gas Composition and TO-14 Analytical

Attachment A Gas Composition and TO-14 Analytical

11/1/2024 Mr. Rajan Phadnis Waste Management Inc 172 98th Ave

Oakland CA 94603

Project Name: Project #:

Workorder #: 2410604C

Dear Mr. Rajan Phadnis

The following report includes the data for the above referenced project for sample(s) received on 10/25/2024 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Joel Tillman at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Joel Tillman

Project Manager

WORK ORDER #: 2410604C

Work Order Summary

CLIENT: Mr. Rajan Phadnis BILL TO: Accounts Payable

Waste Management Inc Waste Management Inc

172 98th Ave PO Box 6700

Oakland, CA 94603 Portland, OR 97228

PHONE: 510-613-0254 **P.O.** # 14233774

FAX: 510-613-2839 **PROJECT** #

DATE RECEIVED: 10/25/2024 **CONTACT:** Joel Tillman

DATE COMPLETED: 11/01/2024

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	GP 15A(1)	Modified ASTM D-1946	7.3 "Hg	10 psi
02A	GP 15A(2)	Modified ASTM D-1946	7.1 "Hg	9.9 psi
03A	A16 INLET	Modified ASTM D-1946	9.6 "Hg	10 psi
04A	Lab Blank	Modified ASTM D-1946	NA	NA
05A	CCV	Modified ASTM D-1946	NA	NA
06A	LCS	Modified ASTM D-1946	NA	NA
06AA	LCSD	Modified ASTM D-1946	NA	NA

	the	ide /	Payer		
CERTIFIED BY:	0		0	DATE:	11/01/24

Technical Director

Cert. No.: AZ Licensure-AZ0775, FL NELAP-E87680, LA NELAP-02089, MN NELAP-2703122, NH NELAP-209223-B, NJ NELAP-CA016, NY NELAP-11291, TX NELAP-T104704434, UT NELAP-CA009332023-16, VA NELAP-12695, WA NELAP-C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) CA300005-20 Eurofins Environment Testing Northern California, LLC certifies that the test results contained in this report meet all requirements of the 2016 TNI Standard.

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

LABORATORY NARRATIVE Modified ASTM D-1946 Waste Management Inc Workorder# 2410604C

Three 1 Liter Summa Canister samples were received on October 25, 2024. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the EATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A minimum of 5-point calibration curve is performed. Quantitation is based on average Response Factor.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.		Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: GP 15A(1)

Lab ID#: 2410604C-01A

Rpt. Limit	Amount
(%)	(%)
0.22	1.7
0.22	82
0.00022	9.3
0.022	6.8
	0.22 0.22 0.00022

Client Sample ID: GP 15A(2)

Lab ID#: 2410604C-02A

	Amount
(%)	(%)
0.22	1.7
0.22	82
0.00022	9.3
0.022	7.0
	0.22 0.22 0.00022

Client Sample ID: A16 INLET

Lab ID#: 2410604C-03A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.25	2.2
Nitrogen	0.25	18
Methane	0.00025	45
Carbon Dioxide	0.025	35

Client Sample ID: GP 15A(1) Lab ID#: 2410604C-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	11103018	Date of Collection: 10/25/24 11:36:00 A
Dil. Factor:	2.22	Date of Analysis: 10/30/24 05:38 PM

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	1.7
Nitrogen	0.22	82
Carbon Monoxide	0.022	Not Detected
Methane	0.00022	9.3
Carbon Dioxide	0.022	6.8
Ethane	0.0022	Not Detected
Ethene	0.0022	Not Detected

Container Type: 1 Liter Summa Canister

Client Sample ID: GP 15A(2) Lab ID#: 2410604C-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	11103019	Date of Collection: 10/25/24 11:43:00 A
Dil. Factor:	2.20	Date of Analysis: 10/30/24 06:02 PM

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	1.7
Nitrogen	0.22	82
Carbon Monoxide	0.022	Not Detected
Methane	0.00022	9.3
Carbon Dioxide	0.022	7.0
Ethane	0.0022	Not Detected
Ethene	0.0022	Not Detected

Container Type: 1 Liter Summa Canister

Client Sample ID: A16 INLET Lab ID#: 2410604C-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

		Dat Limit	Amount
Dil. Factor:	2.47	Date of Analysis: 1	0/30/24 06:26 PM
File Name:	11103020	Date of Collection:	10/25/24 11:58:00 A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.25	2.2
Nitrogen	0.25	18
Carbon Monoxide	0.025	Not Detected
Methane	0.00025	45
Carbon Dioxide	0.025	35
Ethane	0.0025	Not Detected
Ethene	0.0025	Not Detected

Container Type: 1 Liter Summa Canister

Client Sample ID: Lab Blank Lab ID#: 2410604C-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	11103005	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/30/24 11:31 AM

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.10	Not Detected
Nitrogen	0.10	Not Detected
Carbon Monoxide	0.010	Not Detected
Methane	0.00010	Not Detected
Carbon Dioxide	0.010	Not Detected
Ethane	0.0010	Not Detected
Ethene	0.0010	Not Detected

Client Sample ID: CCV Lab ID#: 2410604C-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	11103001	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/30/24 09:52 AM

Compound	%Recovery	
Oxygen	100	
Nitrogen	94	
Carbon Monoxide	98	
Methane	98	
Carbon Dioxide	104	
Ethane	101	
Ethene	102	

Client Sample ID: LCS Lab ID#: 2410604C-06A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	11103002	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/30/24 10:17 AM

Compound	%Recovery	Method Limits
Oxygen	101	85-115
Nitrogen	93	85-115
Carbon Monoxide	96	85-115
Methane	98	85-115
Carbon Dioxide	107	85-115
Ethane	104	85-115
Ethene	102	85-115

Client Sample ID: LCSD Lab ID#: 2410604C-06AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	11103026	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/30/24 09:17 PM

Compound	%Recovery	Method Limits
Oxygen	102	85-115
Nitrogen	93	85-115
Carbon Monoxide	95	85-115
Methane	98	85-115
Carbon Dioxide	106	85-115
Ethane	104	85-115
Ethene	103	85-115

Method: Modified ASTM D-1946

CAS Number	Compound	Rpt. Limit (%)	
7782-44-7	Oxygen	0.10	
7727-37-9	Nitrogen	0.10	
630-08-0	Carbon Monoxide	0.010	
74-82-8	Methane	0.00010	
124-38-9	Carbon Dioxide	0.010	
74-84-0	Ethane	0.0010	
74-85-1	Ethene	0.0010	

11/1/2024 Mr. Rajan Phadnis Waste Management Inc 172 98th Ave

Oakland CA 94603

Project Name: Project #:

Workorder #: 2410604B

Dear Mr. Rajan Phadnis

The following report includes the data for the above referenced project for sample(s) received on 10/25/2024 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by Modified TO-14A are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Joel Tillman at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Joel Tillman

Project Manager

WORK ORDER #: 2410604B

Work Order Summary

CLIENT: Mr. Rajan Phadnis BILL TO: Accounts Payable

Waste Management Inc Waste Management Inc

172 98th Ave PO Box 6700

Oakland, CA 94603 Portland, OR 97228

PHONE: 510-613-0254 **P.O.** # 14233774

FAX: 510-613-2839 **PROJECT** #

DATE RECEIVED: 10/25/2024 **CONTACT:** Joel Tillman

DATE COMPLETED: 11/01/2024

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	GP 15A(1)	Modified TO-14A	7.3 "Hg	10 psi
02A	GP 15A(2)	Modified TO-14A	7.1 "Hg	9.9 psi
03A	A16 INLET	Modified TO-14A	9.6 "Hg	10 psi
04A	Lab Blank	Modified TO-14A	NA	NA
04B	Lab Blank	Modified TO-14A	NA	NA
05A	CCV	Modified TO-14A	NA	NA
05B	CCV	Modified TO-14A	NA	NA
06A	LCS	Modified TO-14A	NA	NA
06AA	LCSD	Modified TO-14A	NA	NA
06B	LCS	Modified TO-14A	NA	NA
06BB	LCSD	Modified TO-14A	NA	NA

	the	idi /	Payer		
CERTIFIED BY:			0	DATE:	11/01/24

Technical Director

Cert. No.: AZ Licensure-AZ0775, FL NELAP-E87680, LA NELAP-02089, MN NELAP-2703122, NH NELAP-209223-B, NJ NELAP-CA016, NY NELAP-11291, TX NELAP-T104704434, UT NELAP-CA009332023-16, VA NELAP-12695, WA NELAP-C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) CA300005-20 Eurofins Environment Testing Northern California, LLC certifies that the test results contained in this report meet all requirements of the 2016 TNI Standard.

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

LABORATORY NARRATIVE Modified TO-14A Waste Management Inc Workorder# 2410604B

Three 1 Liter Summa Canister samples were received on October 25, 2024. The laboratory performed analysis via modified EPA Method TO-14A using GC/MS in the full scan mode.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the EATL modifications. Please note that TO-14A was validated for specially treated canisters, and the use of Tedlar bags for sample collection is outside the scope of the method.

Requirement	TO-14A	ATL Modifications
Initial Calibration criteria	RSD =30%</td <td>Follow TO-15 requirements of RSD<!--=30% with two compounds allowed out to </=40% RSD.</td--></td>	Follow TO-15 requirements of RSD =30% with two compounds allowed out to </=40% RSD.</td
BFB absolute abundance criteria	Within 10% of that from previous day	CCV internal standard area counts are compared to ICAL, corrective action when recovery is less than 60%.
Blank acceptance criteria	<0.20 ppbv	<reporting limit<="" td=""></reporting>
Sample Drying System	Nafion Dryer	Multibed hydrophobic sorbent
BFB ion abundance criteria	Ion abundance listed in Table 4 of TO-14A	Follow ion abundance criteria listed in Method TO-15

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on sample A16 INLET due to the presence of high level target species.

The Relative Percent Difference (RPD) of the LCS/LCSD exceeded acceptance limits for 1,2,4-Trichlorobenzene (analytical batch from instrument MSD-14).

Definition of Data Qualifying Flags

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - O Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - C Estimated calculation due to estimated sampling rate.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

Client Sample ID: GP 15A(1)

Lab ID#: 2410604B-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	4.4	40	8.4	76
Carbon Disulfide	4.4	6.2	14	19

Client Sample ID: GP 15A(2)

Lab ID#: 2410604B-02A

Compound	Rpt. Limit (ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Ethanol	4.4	38	8.2	71
Acetone	11	11	26	27

Client Sample ID: A16 INLET

Lab ID#: 2410604B-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chloromethane	820	860	1700	1800
Ethanol	1000	45000	1900	84000
Acetone	820	17000	2000	40000
2-Propanol	1000	11000	2500	28000
Hexane	210	390	730	1400
2-Butanone (Methyl Ethyl Ketone)	820	20000	2400	58000
Tetrahydrofuran	210	2400	610	7200
Benzene	210	2400	660	7700
Heptane	210	510	840	2100
Toluene	210	3800	780	14000
Ethyl Benzene	210	1800	890	7800
m,p-Xylene	210	1600	890	6900
o-Xylene	210	480	890	2100
Styrene	210	300	880	1300
Cumene	210	450	1000	2200

Client Sample ID: GP 15A(1) Lab ID#: 2410604B-01A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102808a Date of Collection: 10/25/24 11:36:00 A
Dil. Factor: 2.22 Date of Analysis: 10/28/24 03:50 PM

Dil. Factor:	2.22	Date	of Analysis: 10/28	3/24 03:50 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.1	Not Detected	5.5	Not Detected
Freon 114	1.1	Not Detected	7.8	Not Detected
Chloromethane	11	Not Detected	23	Not Detected
Vinyl Chloride	1.1	Not Detected	2.8	Not Detected
1,3-Butadiene	1.1	Not Detected	2.4	Not Detected
Bromomethane	11	Not Detected	43	Not Detected
Chloroethane	4.4	Not Detected	12	Not Detected
Freon 11	1.1	Not Detected	6.2	Not Detected
Ethanol	4.4	40	8.4	76
Freon 113	1.1	Not Detected	8.5	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Acetone	11	Not Detected	26	Not Detected
2-Propanol	4.4	Not Detected	11	Not Detected
Carbon Disulfide	4.4	6.2	14	19
3-Chloropropene	4.4	Not Detected	14	Not Detected
Methylene Chloride	11	Not Detected	38	Not Detected
Methyl tert-butyl ether	4.4	Not Detected	16	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Hexane	1.1	Not Detected	3.9	Not Detected
1,1-Dichloroethane	1.1	Not Detected	4.5	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.4	Not Detected	13	Not Detected
cis-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.3	Not Detected
Chloroform	1.1	Not Detected	5.4	Not Detected
1,1,1-Trichloroethane	1.1	Not Detected	6.0	Not Detected
Cyclohexane	1.1	Not Detected	3.8	Not Detected
Carbon Tetrachloride	1.1	Not Detected	7.0	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.2	Not Detected
Benzene	1.1	Not Detected	3.5	Not Detected
1,2-Dichloroethane	1.1	Not Detected	4.5	Not Detected
Heptane	1.1	Not Detected	4.5	Not Detected
Trichloroethene	1.1	Not Detected	6.0	Not Detected
1,2-Dichloropropane	1.1	Not Detected	5.1	Not Detected
1,4-Dioxane	4.4	Not Detected	16	Not Detected
Bromodichloromethane	1.1	Not Detected	7.4	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.0	Not Detected
4-Methyl-2-pentanone	1.1	Not Detected	4.5	Not Detected
Toluene	2.2	Not Detected	8.4	Not Detected
trans-1,3-Dichloropropene	1.1	Not Detected	5.0	Not Detected
1,1,2-Trichloroethane	1.1	Not Detected	6.0	Not Detected
Tetrachloroethene	1.1	Not Detected	7.5	Not Detected
2-Hexanone	4.4	Not Detected	18	Not Detected

Client Sample ID: GP 15A(1) Lab ID#: 2410604B-01A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102808a Date of Collection: 10/25/24 11:36:00 A
Dil. Factor: 2.22 Date of Analysis: 10/28/24 03:50 PM

Z 40.0	L.LL	Date of Analysis: 10/20/24 00:00 1 in		724 00.00 I W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.4	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.5	Not Detected
Chlorobenzene	1.1	Not Detected	5.1	Not Detected
Ethyl Benzene	1.1	Not Detected	4.8	Not Detected
m,p-Xylene	2.2	Not Detected	9.6	Not Detected
o-Xylene	1.1	Not Detected	4.8	Not Detected
Styrene	1.1	Not Detected	4.7	Not Detected
Bromoform	1.1	Not Detected	11	Not Detected
Cumene	1.1	Not Detected	5.4	Not Detected
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.6	Not Detected
Propylbenzene	1.1	Not Detected	5.4	Not Detected
4-Ethyltoluene	1.1	Not Detected	5.4	Not Detected
1,3,5-Trimethylbenzene	1.1	Not Detected	5.4	Not Detected
1,2,4-Trimethylbenzene	1.1	Not Detected	5.4	Not Detected
1,3-Dichlorobenzene	1.1	Not Detected	6.7	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.7	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.7	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.7	Not Detected
1,2,4-Trichlorobenzene	4.4	Not Detected	33	Not Detected
Hexachlorobutadiene	4.4	Not Detected	47	Not Detected

Container Type: 1 Liter Summa Canister

•		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: GP 15A(2) Lab ID#: 2410604B-02A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102807a Date of Collection: 10/25/24 11:43:00 A
Dil. Factor: 2.19 Date of Analysis: 10/28/24 03:13 PM

Dil. Factor:	2.19	Date	of Analysis: 10/28	3/24 03:13 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.1	Not Detected	5.4	Not Detected
Freon 114	1.1	Not Detected	7.6	Not Detected
Chloromethane	11	Not Detected	23	Not Detected
Vinyl Chloride	1.1	Not Detected	2.8	Not Detected
1,3-Butadiene	1.1	Not Detected	2.4	Not Detected
Bromomethane	11	Not Detected	42	Not Detected
Chloroethane	4.4	Not Detected	12	Not Detected
Freon 11	1.1	Not Detected	6.2	Not Detected
Ethanol	4.4	38	8.2	71
Freon 113	1.1	Not Detected	8.4	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.3	Not Detected
Acetone	11	11	26	27
2-Propanol	4.4	Not Detected	11	Not Detected
Carbon Disulfide	4.4	Not Detected	14	Not Detected
3-Chloropropene	4.4	Not Detected	14	Not Detected
Methylene Chloride	11	Not Detected	38	Not Detected
Methyl tert-butyl ether	4.4	Not Detected	16	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.3	Not Detected
Hexane	1.1	Not Detected	3.8	Not Detected
1,1-Dichloroethane	1.1	Not Detected	4.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.4	Not Detected	13	Not Detected
cis-1,2-Dichloroethene	1.1	Not Detected	4.3	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.2	Not Detected
Chloroform	1.1	Not Detected	5.3	Not Detected
1,1,1-Trichloroethane	1.1	Not Detected	6.0	Not Detected
Cyclohexane	1.1	Not Detected	3.8	Not Detected
Carbon Tetrachloride	1.1	Not Detected	6.9	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.1	Not Detected
Benzene	1.1	Not Detected	3.5	Not Detected
1,2-Dichloroethane	1.1	Not Detected	4.4	Not Detected
Heptane	1.1	Not Detected	4.5	Not Detected
Trichloroethene	1.1	Not Detected	5.9	Not Detected
1,2-Dichloropropane	1.1	Not Detected	5.1	Not Detected
1,4-Dioxane	4.4	Not Detected	16	Not Detected
Bromodichloromethane	1.1	Not Detected	7.3	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.0	Not Detected
4-Methyl-2-pentanone	1.1	Not Detected	4.5	Not Detected
Toluene	2.2	Not Detected	8.2	Not Detected
trans-1,3-Dichloropropene	1.1	Not Detected	5.0	Not Detected
1,1,2-Trichloroethane	1.1	Not Detected	6.0	Not Detected
Tetrachloroethene	1.1	Not Detected	7.4	Not Detected
2-Hexanone	4.4	Not Detected	18	Not Detected

Client Sample ID: GP 15A(2) Lab ID#: 2410604B-02A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102807a Date of Collection: 10/25/24 11:43:00 A
Dil. Factor: 2.19 Date of Analysis: 10/28/24 03:13 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.3	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.4	Not Detected
Chlorobenzene	1.1	Not Detected	5.0	Not Detected
Ethyl Benzene	1.1	Not Detected	4.8	Not Detected
m,p-Xylene	2.2	Not Detected	9.5	Not Detected
o-Xylene	1.1	Not Detected	4.8	Not Detected
Styrene	1.1	Not Detected	4.7	Not Detected
Bromoform	1.1	Not Detected	11	Not Detected
Cumene	1.1	Not Detected	5.4	Not Detected
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.5	Not Detected
Propylbenzene	1.1	Not Detected	5.4	Not Detected
4-Ethyltoluene	1.1	Not Detected	5.4	Not Detected
1,3,5-Trimethylbenzene	1.1	Not Detected	5.4	Not Detected
1,2,4-Trimethylbenzene	1.1	Not Detected	5.4	Not Detected
1,3-Dichlorobenzene	1.1	Not Detected	6.6	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.6	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.7	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.6	Not Detected
1,2,4-Trichlorobenzene	4.4	Not Detected	32	Not Detected
Hexachlorobutadiene	4.4	Not Detected	47	Not Detected

Container Type: 1 Liter Summa Canister

•		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: A16 INLET Lab ID#: 2410604B-03A

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102867a Date of Collection: 10/25/24 11:58:00 A
Dil. Factor: 41.2 Date of Analysis: 10/29/24 05:04 PM

Dil. Factor:	41.2	Date of Analysis: 10/29/24 05:04 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	210	Not Detected	1000	Not Detected
Freon 114	210	Not Detected	1400	Not Detected
Chloromethane	820	860	1700	1800
Vinyl Chloride	210	Not Detected	530	Not Detected
1,3-Butadiene	210	Not Detected	460	Not Detected
Bromomethane	820	Not Detected	3200	Not Detected
Chloroethane	820	Not Detected	2200	Not Detected
Freon 11	210	Not Detected	1200	Not Detected
Ethanol	1000	45000	1900	84000
Freon 113	210	Not Detected	1600	Not Detected
1,1-Dichloroethene	210	Not Detected	820	Not Detected
Acetone	820	17000	2000	40000
2-Propanol	1000	11000	2500	28000
Carbon Disulfide	820	Not Detected	2600	Not Detected
3-Chloropropene	820	Not Detected	2600	Not Detected
Methylene Chloride	820	Not Detected	2900	Not Detected
Methyl tert-butyl ether	210	Not Detected	740	Not Detected
trans-1,2-Dichloroethene	210	Not Detected	820	Not Detected
Hexane	210	390	730	1400
1,1-Dichloroethane	210	Not Detected	830	Not Detected
2-Butanone (Methyl Ethyl Ketone)	820	20000	2400	58000
cis-1,2-Dichloroethene	210	Not Detected	820	Not Detected
Tetrahydrofuran	210	2400	610	7200
Chloroform	210	Not Detected	1000	Not Detected
1,1,1-Trichloroethane	210	Not Detected	1100	Not Detected
Cyclohexane	210	Not Detected	710	Not Detected
Carbon Tetrachloride	210	Not Detected	1300	Not Detected
2,2,4-Trimethylpentane	210	Not Detected	960	Not Detected
Benzene	210	2400	660	7700
1,2-Dichloroethane	210	Not Detected	830	Not Detected
Heptane	210	510	840	2100
Trichloroethene	210	Not Detected	1100	Not Detected
1,2-Dichloropropane	210	Not Detected	950	Not Detected
1,4-Dioxane	820	Not Detected	3000	Not Detected
Bromodichloromethane	210	Not Detected	1400	Not Detected
cis-1,3-Dichloropropene	210	Not Detected	930	Not Detected
4-Methyl-2-pentanone	820	Not Detected	3400	Not Detected
Toluene	210	3800	780	14000
trans-1,3-Dichloropropene	210	Not Detected	930	Not Detected
1,1,2-Trichloroethane	210	Not Detected	1100	Not Detected
Tetrachloroethene	210	Not Detected	1400	Not Detected
2-Hexanone	820	Not Detected	3400	Not Detected
		Not Detected		

Client Sample ID: A16 INLET Lab ID#: 2410604B-03A

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102867a Date of Collection: 10/25/24 11:58:00 A
Dil. Factor: 41.2 Date of Analysis: 10/29/24 05:04 PM

Z 4.010	71.2	Date of Analysis: 10/20/24 00:04 1		727 00.07 I W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	210	Not Detected	1800	Not Detected
1,2-Dibromoethane (EDB)	210	Not Detected	1600	Not Detected
Chlorobenzene	210	Not Detected	950	Not Detected
Ethyl Benzene	210	1800	890	7800
m,p-Xylene	210	1600	890	6900
o-Xylene	210	480	890	2100
Styrene	210	300	880	1300
Bromoform	210	Not Detected	2100	Not Detected
Cumene	210	450	1000	2200
1,1,2,2-Tetrachloroethane	210	Not Detected	1400	Not Detected
Propylbenzene	210	Not Detected	1000	Not Detected
4-Ethyltoluene	210	Not Detected	1000	Not Detected
1,3,5-Trimethylbenzene	210	Not Detected	1000	Not Detected
1,2,4-Trimethylbenzene	210	Not Detected	1000	Not Detected
1,3-Dichlorobenzene	210	Not Detected	1200	Not Detected
1,4-Dichlorobenzene	210	Not Detected	1200	Not Detected
alpha-Chlorotoluene	210	Not Detected	1100	Not Detected
1,2-Dichlorobenzene	210	Not Detected	1200	Not Detected
1,2,4-Trichlorobenzene	820	Not Detected	6100	Not Detected
Hexachlorobutadiene	820	Not Detected	8800	Not Detected

Container Type: 1 Liter Summa Canister

•		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: Lab Blank Lab ID#: 2410604B-04A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102806 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 12:58 PM

		Date	of Analysis. Torze	3/2 + 12.00 1 III
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	2.0	Not Detected	7.2	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	1.0	Not Detected	3.8	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
	2.0	Not Detected Not Detected	3.4 8.2	Not Detected
2-Hexanone	2.0	Not Detected	0.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 2410604B-04A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102806 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 12:58 PM

	1100	2 ato 017 (1 at yold 1 1 of 2 of 2 1 1 2 loo		5/2 : :2:00 : iii
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	1.0	Not Detected	4.3	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: Lab Blank Lab ID#: 2410604B-04B

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102835 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 11:10 PM

Dil. Factor:	1.00	Date	of Analysis: 10/28	3/24 11:10 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	5.0	Not Detected	25	Not Detected
Freon 114	5.0	Not Detected	35	Not Detected
Chloromethane	20	Not Detected	41	Not Detected
Vinyl Chloride	5.0	Not Detected	13	Not Detected
1,3-Butadiene	5.0	Not Detected	11	Not Detected
Bromomethane	20	Not Detected	78	Not Detected
Chloroethane	20	Not Detected	53	Not Detected
Freon 11	5.0	Not Detected	28	Not Detected
Ethanol	25	Not Detected	47	Not Detected
Freon 113	5.0	Not Detected	38	Not Detected
1,1-Dichloroethene	5.0	Not Detected	20	Not Detected
Acetone	20	Not Detected	48	Not Detected
2-Propanol	25	Not Detected	61	Not Detected
Carbon Disulfide	20	Not Detected	62	Not Detected
3-Chloropropene	20	Not Detected	63	Not Detected
Methylene Chloride	20	Not Detected	69	Not Detected
Methyl tert-butyl ether	5.0	Not Detected	18	Not Detected
trans-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
Hexane	5.0	Not Detected	18	Not Detected
1,1-Dichloroethane	5.0	Not Detected	20	Not Detected
2-Butanone (Methyl Ethyl Ketone)	20	Not Detected	59	Not Detected
cis-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
Tetrahydrofuran	5.0	Not Detected	15	Not Detected
Chloroform	5.0	Not Detected	24	Not Detected
1,1,1-Trichloroethane	5.0	Not Detected	27	Not Detected
Cyclohexane	5.0	Not Detected	17	Not Detected
Carbon Tetrachloride	5.0	Not Detected	31	Not Detected
2,2,4-Trimethylpentane	5.0	Not Detected	23	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
1,2-Dichloroethane	5.0	Not Detected	20	Not Detected
Heptane	5.0	Not Detected	20	Not Detected
Trichloroethene	5.0	Not Detected	27	Not Detected
1,2-Dichloropropane	5.0	Not Detected	23	Not Detected
1,4-Dioxane	20	Not Detected	72	Not Detected
Bromodichloromethane	5.0	Not Detected	34	Not Detected
cis-1,3-Dichloropropene	5.0	Not Detected	23	Not Detected
4-Methyl-2-pentanone	20	Not Detected	82	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
trans-1,3-Dichloropropene	5.0	Not Detected	23	Not Detected
1,1,2-Trichloroethane	5.0	Not Detected	27	Not Detected
Tetrachloroethene	5.0	Not Detected	34	Not Detected
2-Hexanone	20	Not Detected	82	Not Detected

Client Sample ID: Lab Blank Lab ID#: 2410604B-04B

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102835 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 11:10 PM

Z 4.010	1.00	Date of Analysis: 10/20/24 11:10 1 W		727 11.10 1 W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	5.0	Not Detected	42	Not Detected
1,2-Dibromoethane (EDB)	5.0	Not Detected	38	Not Detected
Chlorobenzene	5.0	Not Detected	23	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
Styrene	5.0	Not Detected	21	Not Detected
Bromoform	5.0	Not Detected	52	Not Detected
Cumene	5.0	Not Detected	24	Not Detected
1,1,2,2-Tetrachloroethane	5.0	Not Detected	34	Not Detected
Propylbenzene	5.0	Not Detected	24	Not Detected
4-Ethyltoluene	5.0	Not Detected	24	Not Detected
1,3,5-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,2,4-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,3-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,4-Dichlorobenzene	5.0	Not Detected	30	Not Detected
alpha-Chlorotoluene	5.0	Not Detected	26	Not Detected
1,2-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,2,4-Trichlorobenzene	20	Not Detected	150	Not Detected
Hexachlorobutadiene	20	Not Detected	210	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: CCV Lab ID#: 2410604B-05A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102803 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 11:12 AM

Freon 12 95 Freon 114 97 Chloromethane 124 Vinyl Chloride 123 1,3-Butadiene 122 Bromomethane 114 Chloroethane 112 Freon 11 93 Ethanol 96 Freon 113 98	Compound	%Recovery
Chloromethane 124 Vinyl Chloride 123 1,3-Butadiene 122 Bromomethane 114 Chloroethane 112 Freon 11 93 Ethanol 96 Freon 113 98 1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methylene Chloride 103 Methylene Chloride 103 Methyletr-butyl ether 95 trans-1,2-Dichloroethene 101 1,1-Dichloroethane 101 1,2-Dichloroethene 102 1,1-Dichloroethane 102 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 <td>Freon 12</td> <td>95</td>	Freon 12	95
Vinyl Chloride 123 1,3-Butadiene 122 Bromomethane 114 Chloroethane 112 Freon 11 93 Ethanol 96 Freon 113 98 1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 2s-1,2-Dichloroethene 102 2s-1,2-Dichloroethene 102 2s-1,1-Tichloroethane 99 Chloroform 94 1,1-1,1-Tichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2-4-Timethylpentane 105 Benzene 104 1,2-Dichloroethane 105 Heptane 106 <t< td=""><td>Freon 114</td><td>97</td></t<>	Freon 114	97
1,3-Butadiene 122 Bromomethane 114 Chloroethane 112 Freon 11 93 Ethanol 96 Freron 113 98 1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methyler Chloride 103 Methyler Chloride 103 Methyler Chloride 103 Methyler Chloride 103 Methyler Lye ther 95 trans-1,2-Dichloroethene 101 1-2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 cis-1,2-Dichloroethene 102 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethene 105 Heptane 106 Trichloroethene 105 1,4-Dioxane	Chloromethane	124
Bromomethane 114 Chloroethane 112 Freon 11 93 Ethanol 96 Freon 113 98 1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methylene Chloride 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2-4-Timethylpentane 105 Benzene 104 1,2-Dichloroethane 105 Benzene 104 1,4-Dioxane 98 Bromodichloromethane 99	Vinyl Chloride	123
Chloroethane 112 Freon 11 93 Ethanol 96 Freon 113 98 1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methylene Chloride 103 Methylene Chloride 104 Hexane 104 1,1-Dichloroethene 101 1-texane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydroftran 99 Chloroform 94 1,1-Trichloroethene 90 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 109 1,2-Dichloropropane 105 1,2	1,3-Butadiene	122
Freon 11 93 Ethanol 96 Freon 113 98 1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methylene Chloride 103 Methylene Chloride 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1-Trichloroethane 92 Cyclohexane 100 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 105 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 <t< td=""><td>Bromomethane</td><td>114</td></t<>	Bromomethane	114
Ethanol 96 Freon 113 98 1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethane 95 Heptane 106 1,2-Dichloropropane 105 1,2-Dichloropropane 105 1,2-Dichloropropane 105 1,2-Dichloropropane 105 1,2-Dichloropropane 105 1,2-Dichloropropopane 105	Chloroethane	112
Freon 113 98 1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methylene Chloride 103 Methyle ter-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 90 cs-1,3-Dichloropropene 104 4-Methyl-2-pentanone	Freon 11	93
1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methylene Chloride 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 105 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 5s-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene	Ethanol	96
1,1-Dichloroethene 100 Acetone 102 2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methylene Chloride 103 Methylene Chloride 103 Methyle tra-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 104	Freon 113	98
2-Propanol 97 Carbon Disulfide 104 3-Chloropropene 103 Methylene Chloride 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 trans-trahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104		100
Carbon Disulfide 104 3-Chloropropene 103 Methylene Chloride 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 102 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 108 Trichloroethene 108 Trichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104	Acetone	102
3-Chloropropene 103 Methylene Chloride 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 105 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,2-Trichloroethane 102 1,1,2-Trichloroethane 104	2-Propanol	97
Methylene Chloride 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,2-Trichloroethane 104 Tetrachloroethene 104	Carbon Disulfide	104
Methyl tert-butyl ether 103 Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,2-Trichloroethane 104 -Tetrachloroethene 104	3-Chloropropene	103
Methyl tert-butyl ether 95 trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 Toluene 102 1,1,2-Trichloroethane 104 7-Etrachloroethene 104	Methylene Chloride	103
trans-1,2-Dichloroethene 101 Hexane 102 1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 104		95
1,1-Dichloroethane 101 2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98		101
2-Butanone (Methyl Ethyl Ketone) 102 cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	Hexane	102
cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	1,1-Dichloroethane	101
cis-1,2-Dichloroethene 102 Tetrahydrofuran 99 Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	2-Butanone (Methyl Ethyl Ketone)	102
Chloroform 94 1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98		102
1,1,1-Trichloroethane 92 Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	Tetrahydrofuran	99
Cyclohexane 100 Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	Chloroform	94
Carbon Tetrachloride 90 2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	1,1,1-Trichloroethane	92
2,2,4-Trimethylpentane 105 Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	Cyclohexane	100
Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	Carbon Tetrachloride	90
Benzene 104 1,2-Dichloroethane 95 Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	2,2,4-Trimethylpentane	105
Heptane 108 Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98		104
Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	1,2-Dichloroethane	95
Trichloroethene 100 1,2-Dichloropropane 105 1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	Heptane	108
1,4-Dioxane 98 Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98		100
Bromodichloromethane 99 cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	1,2-Dichloropropane	105
cis-1,3-Dichloropropene 104 4-Methyl-2-pentanone 101 Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98	1,4-Dioxane	98
4-Methyl-2-pentanone101Toluene101trans-1,3-Dichloropropene1021,1,2-Trichloroethane104Tetrachloroethene98	Bromodichloromethane	99
4-Methyl-2-pentanone101Toluene101trans-1,3-Dichloropropene1021,1,2-Trichloroethane104Tetrachloroethene98	cis-1,3-Dichloropropene	104
Toluene 101 trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98		
trans-1,3-Dichloropropene 102 1,1,2-Trichloroethane 104 Tetrachloroethene 98		
1,1,2-Trichloroethane104Tetrachloroethene98		
Tetrachloroethene 98	· · ·	
		98

Client Sample ID: CCV Lab ID#: 2410604B-05A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102803 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 11:12 AM

Compound	%Recovery	
Dibromochloromethane	100	
1,2-Dibromoethane (EDB)	103	
Chlorobenzene	101	
Ethyl Benzene	103	
m,p-Xylene	105	
o-Xylene	107	
Styrene	105	
Bromoform	99	
Cumene	103	
1,1,2,2-Tetrachloroethane	105	
Propylbenzene	105	
4-Ethyltoluene	103	
1,3,5-Trimethylbenzene	103	
1,2,4-Trimethylbenzene	106	
1,3-Dichlorobenzene	102	
1,4-Dichlorobenzene	102	
alpha-Chlorotoluene	104	
1,2-Dichlorobenzene	101	
1,2,4-Trichlorobenzene	102	
Hexachlorobutadiene	99	

Surregates	9/Pagayan/	Method Limits
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: CCV Lab ID#: 2410604B-05B

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102832 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 09:57 PM

Compound	%Recovery
Freon 12	101
Freon 114	98
Chloromethane	105
Vinyl Chloride	96
1,3-Butadiene	96
Bromomethane	104
Chloroethane	108
Freon 11	103
Ethanol	83
Freon 113	102
1,1-Dichloroethene	104
Acetone	102
2-Propanol	83
Carbon Disulfide	97
3-Chloropropene	101
Methylene Chloride	109
Methyl tert-butyl ether	97
trans-1,2-Dichloroethene	94
Hexane	94
1,1-Dichloroethane	101
2-Butanone (Methyl Ethyl Ketone)	95
cis-1,2-Dichloroethene	94
Tetrahydrofuran	92
Chloroform	104
1,1,1-Trichloroethane	95
Cyclohexane	 96
Carbon Tetrachloride	100
2,2,4-Trimethylpentane	98
Benzene	101
1.2-Dichloroethane	106
Heptane	87
Trichloroethene	103
1,2-Dichloropropane	102
1,4-Dioxane	101
Bromodichloromethane	99
cis-1,3-Dichloropropene	94
4-Methyl-2-pentanone	85
Toluene	97
trans-1,3-Dichloropropene	94
1,1,2-Trichloroethane	94
Tetrachloroethene	102
2-Hexanone	95
- Hondrions	

Client Sample ID: CCV Lab ID#: 2410604B-05B

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102832 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 09:57 PM

Compound	%Recovery	
Dibromochloromethane	101	
1,2-Dibromoethane (EDB)	99	
Chlorobenzene	101	
Ethyl Benzene	96	
m,p-Xylene	97	
o-Xylene	98	
Styrene	100	
Bromoform	100	
Cumene	98	
1,1,2,2-Tetrachloroethane	100	
Propylbenzene	96	
4-Ethyltoluene	103	
1,3,5-Trimethylbenzene	98	
1,2,4-Trimethylbenzene	98	
1,3-Dichlorobenzene	103	
1,4-Dichlorobenzene	103	
alpha-Chlorotoluene	80	
1,2-Dichlorobenzene	101	
1,2,4-Trichlorobenzene	79	
Hexachlorobutadiene	71	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: LCS Lab ID#: 2410604B-06A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102804 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 11:46 AM

Compound	%Recovery	Method Limits
Freon 12	94	70-130
Freon 114	95	70-130
Chloromethane	98	70-130
Vinyl Chloride	90	70-130
1,3-Butadiene	87	70-130
Bromomethane	86	70-130
Chloroethane	83	70-130
Freon 11	94	70-130
Ethanol	93	70-130
Freon 113	97	70-130
1,1-Dichloroethene	99	70-130
Acetone	100	70-130
2-Propanol	104	70-130
Carbon Disulfide	104	70-130
3-Chloropropene	103	70-130
Methylene Chloride	102	70-130
Methyl tert-butyl ether	96	70-130
trans-1,2-Dichloroethene	100	70-130
Hexane	97	70-130
1,1-Dichloroethane	99	70-130
2-Butanone (Methyl Ethyl Ketone)	104	70-130
cis-1,2-Dichloroethene	104	70-130
Tetrahydrofuran	100	70-130
Chloroform	93	70-130
1,1,1-Trichloroethane	94	70-130
	102	70-130
Carbon Tetrachloride	90	70-130
2,2,4-Trimethylpentane	94	70-130
Benzene	106	70-130
1,2-Dichloroethane	97	70-130
Heptane	104	70-130
Trichloroethene	101	70-130
1,2-Dichloropropane	104	70-130
1,4-Dioxane	92	70-130
Bromodichloromethane	97	70-130
cis-1,3-Dichloropropene	105	70-130
4-Methyl-2-pentanone	106	70-130
Toluene	100	70-130
trans-1,3-Dichloropropene	102	70-130
1,1,2-Trichloroethane	104	70-130
Tetrachloroethene	97	70-130
2-Hexanone	108	70-130

Client Sample ID: LCS Lab ID#: 2410604B-06A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102804 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 11:46 AM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	100	70-130
1,2-Dibromoethane (EDB)	102	70-130
Chlorobenzene	102	70-130
Ethyl Benzene	107	70-130
m,p-Xylene	106	70-130
	107	70-130
Styrene	108	70-130
Bromoform	100	70-130
Cumene	103	70-130
1,1,2,2-Tetrachloroethane	106	70-130
Propylbenzene	105	70-130
4-Ethyltoluene	102	70-130
1,3,5-Trimethylbenzene	106	70-130
1,2,4-Trimethylbenzene	108	70-130
1,3-Dichlorobenzene	103	70-130
1,4-Dichlorobenzene	102	70-130
alpha-Chlorotoluene	98	70-130
1,2-Dichlorobenzene	102	70-130
1,2,4-Trichlorobenzene	119	70-130
Hexachlorobutadiene	116	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: LCSD Lab ID#: 2410604B-06AA

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102805 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 12:21 PM

Compound	%Recovery	Method Limits
	· · · · · · · · · · · · · · · · · · ·	
Freon 12	92	70-130
Freon 114	92	70-130
Chloromethane	94	70-130
Vinyl Chloride	88	70-130
1,3-Butadiene	85	70-130
Bromomethane	82	70-130
Chloroethane	81	70-130
Freon 11	91	70-130
Ethanol	91	70-130
Freon 113	94	70-130
1,1-Dichloroethene	94	70-130
Acetone	97	70-130
2-Propanol	102	70-130
Carbon Disulfide	102	70-130
3-Chloropropene	102	70-130
Methylene Chloride	100	70-130
Methyl tert-butyl ether	94	70-130
trans-1,2-Dichloroethene	98	70-130
Hexane	95	70-130
1,1-Dichloroethane	97	70-130
2-Butanone (Methyl Ethyl Ketone)		70-130
cis-1,2-Dichloroethene	102	70-130
Tetrahydrofuran	97	70-130
Chloroform	91	70-130
1,1,1-Trichloroethane	91	70-130
Cyclohexane	 99	70-130
Carbon Tetrachloride	88	70-130
2,2,4-Trimethylpentane	91	70-130
Benzene	105	70-130
1,2-Dichloroethane	94	70-130
Heptane		70-130
Trichloroethene	99	70-130
	102	70-130 70-130
1,2-Dichloropropane	95	70-130 70-130
1,4-Dioxane Bromodichloromethane	97	70-130 70-130
cis-1,3-Dichloropropene	105	70-130
4-Methyl-2-pentanone	104	70-130
Toluene	100	70-130
trans-1,3-Dichloropropene	100	70-130
1,1,2-Trichloroethane	102	70-130
Tetrachloroethene	95	70-130
2-Hexanone	104	70-130

Client Sample ID: LCSD Lab ID#: 2410604B-06AA

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: a102805 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 12:21 PM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	98	70-130
1,2-Dibromoethane (EDB)	100	70-130
Chlorobenzene	100	70-130
Ethyl Benzene	104	70-130
m,p-Xylene	104	70-130
o-Xylene	106	70-130
Styrene	105	70-130
Bromoform	98	70-130
Cumene	100	70-130
1,1,2,2-Tetrachloroethane	105	70-130
Propylbenzene	103	70-130
4-Ethyltoluene	102	70-130
1,3,5-Trimethylbenzene	101	70-130
1,2,4-Trimethylbenzene	106	70-130
1,3-Dichlorobenzene	100	70-130
1,4-Dichlorobenzene	100	70-130
alpha-Chlorotoluene	96	70-130
1,2-Dichlorobenzene	100	70-130
1,2,4-Trichlorobenzene	120	70-130
Hexachlorobutadiene	113	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: LCS Lab ID#: 2410604B-06B

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102833 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 10:21 PM

Compound %Recovery Limits Freon 12 96 70-130 Freon 114 95 70-130 Chloromethane 92 70-130 Vinyl Chloride 92 70-130 1,3-Butadiene 92 70-130 Bromomethane 98 70-130 Chloroethane 89 70-130 Freon 11 103 70-130 Freon 113 97 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 2-Propanol Sulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methylene Chloride 102 70-130 Hexane 89 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93
Freon 114 95 70-130 Chloromethane 92 70-130 Vinyl Chloride 92 70-130 1,3-Butadiene 92 70-130 Bromomethane 98 70-130 Chloroethane 89 70-130 Freon 11 103 70-130 Ethanol 85 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Chloroform
Freon 114 95 70-130 Chloromethane 92 70-130 Vinyl Chloride 92 70-130 1,3-Butadiene 92 70-130 Bromomethane 98 70-130 Chloroethane 89 70-130 Freon 11 103 70-130 Ethanol 85 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Chloroform
Vinyl Chloride 92 70-130 1,3-Butadiene 92 70-130 Bromomethane 98 70-130 Chloroethane 89 70-130 Freon 11 103 70-130 Ethanol 85 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 2-Propanol Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 2-Butanone (Methyl Ethyl Ketone) 88 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
1,3-Butadiene 92 70-130 Bromomethane 98 70-130 Chloroethane 89 70-130 Freon 11 103 70-130 Ethanol 85 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
1,3-Butadiene 92 70-130 Bromomethane 98 70-130 Chloroethane 89 70-130 Freon 11 103 70-130 Ethanol 85 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Bromomethane 98 70-130 Chloroethane 89 70-130 Freon 11 103 70-130 Ethanol 85 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Chloroethane 89 70-130 Freon 11 103 70-130 Ethanol 85 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Freon 11 103 70-130 Ethanol 85 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Ethanol 85 70-130 Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Freon 113 97 70-130 1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
1,1-Dichloroethene 97 70-130 Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Acetone 100 70-130 2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
2-Propanol 93 70-130 Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Carbon Disulfide 90 70-130 3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
3-Chloropropene 86 70-130 Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Methylene Chloride 102 70-130 Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Methyl tert-butyl ether 89 70-130 trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
trans-1,2-Dichloroethene 87 70-130 Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Hexane 89 70-130 1,1-Dichloroethane 95 70-130 2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
2-Butanone (Methyl Ethyl Ketone) 93 70-130 cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
cis-1,2-Dichloroethene 89 70-130 Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Tetrahydrofuran 88 70-130 Chloroform 95 70-130
Chloroform 95 70-130
1,1,1-Trichloroethane 90 70-130
Cyclohexane 90 70-130
Carbon Tetrachloride 94 70-130
2,2,4-Trimethylpentane 94 70-130
Benzene 96 70-130
1,2-Dichloroethane 100 70-130
Heptane 88 70-130
Trichloroethene 97 70-130
1,2-Dichloropropane 95 70-130
1,4-Dioxane 93 70-130
Bromodichloromethane 94 70-130
cis-1,3-Dichloropropene 90 70-130
4-Methyl-2-pentanone 81 70-130
Toluene 93 70-130
trans-1,3-Dichloropropene 90 70-130
1,1,2-Trichloroethane 89 70-130
Tetrachloroethene 98 70-130
2-Hexanone 89 70-130

Client Sample ID: LCS Lab ID#: 2410604B-06B

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102833 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 10:21 PM

Compound	%Recovery	Method Limits
Dibromochloromethane	94	70-130
1,2-Dibromoethane (EDB)	94	70-130
Chlorobenzene	96	70-130
Ethyl Benzene	93	70-130
m,p-Xylene	93	70-130
o-Xylene	91	70-130
Styrene	93	70-130
Bromoform	96	70-130
Cumene	92	70-130
1,1,2,2-Tetrachloroethane	96	70-130
Propylbenzene	93	70-130
4-Ethyltoluene	94	70-130
1,3,5-Trimethylbenzene	93	70-130
1,2,4-Trimethylbenzene	93	70-130
1,3-Dichlorobenzene	97	70-130
1,4-Dichlorobenzene	97	70-130
alpha-Chlorotoluene	76	70-130
1,2-Dichlorobenzene	96	70-130
1,2,4-Trichlorobenzene	94	70-130
Hexachlorobutadiene	94	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCSD Lab ID#: 2410604B-06BB

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102834 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 10:46 PM

		Method
Compound	%Recovery	Limits
Freon 12	94	70-130
Freon 114	91	70-130
Chloromethane	90	70-130
Vinyl Chloride	92	70-130
1,3-Butadiene	90	70-130
Bromomethane	92	70-130
Chloroethane	94	70-130
Freon 11	102	70-130
Ethanol	82	70-130
Freon 113	94	70-130
1,1-Dichloroethene	94	70-130
Acetone	92	70-130
2-Propanol	91	70-130
Carbon Disulfide	90	70-130
3-Chloropropene	89	70-130
Methylene Chloride	102	70-130
Methyl tert-butyl ether	90	70-130
trans-1,2-Dichloroethene	88	70-130
Hexane	87	70-130
1,1-Dichloroethane	92	70-130
2-Butanone (Methyl Ethyl Ketone)	94	70-130
cis-1,2-Dichloroethene	88	70-130
Tetrahydrofuran	87	70-130
Chloroform	93	70-130
1,1,1-Trichloroethane	89	70-130
Cyclohexane	90	70-130
Carbon Tetrachloride	92	70-130
2,2,4-Trimethylpentane	92	70-130
Benzene	97	70-130
1,2-Dichloroethane	97	70-130
Heptane	83	70-130
Trichloroethene	97	70-130
1,2-Dichloropropane	94	70-130
1,4-Dioxane	92	70-130
Bromodichloromethane	90	70-130
cis-1,3-Dichloropropene	90	70-130
4-Methyl-2-pentanone	78	70-130
Toluene	92	70-130
trans-1,3-Dichloropropene	91	70-130
1,1,2-Trichloroethane	90	70-130
Tetrachloroethene	97	70-130
2-Hexanone	90	70-130

Client Sample ID: LCSD Lab ID#: 2410604B-06BB

MODIFIED EPA METHOD TO-14A GC/MS

File Name: 14102834 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/28/24 10:46 PM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	92	70-130
1,2-Dibromoethane (EDB)	94	70-130
Chlorobenzene	95	70-130
Ethyl Benzene	94	70-130
m,p-Xylene	90	70-130
o-Xylene	92	70-130
Styrene	94	70-130
Bromoform	94	70-130
Cumene	91	70-130
1,1,2,2-Tetrachloroethane	97	70-130
Propylbenzene	92	70-130
4-Ethyltoluene	97	70-130
1,3,5-Trimethylbenzene	95	70-130
1,2,4-Trimethylbenzene	94	70-130
1,3-Dichlorobenzene	99	70-130
1,4-Dichlorobenzene	101	70-130
alpha-Chlorotoluene	82	70-130
1,2-Dichlorobenzene	103	70-130
1,2,4-Trichlorobenzene	122	70-130
Hexachlorobutadiene	117	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	103	70-130	

Method: Modified TO-14A

CAS Number	Compound	Rpt. Limit (ppbv)		
75-71-8	Freon 12	0.50		
76-14-2	Freon 114	0.50		
74-87-3	Chloromethane	5.0		
75-01-4	Vinyl Chloride	0.50		
106-99-0	1,3-Butadiene	0.50		
74-83-9	Bromomethane	5.0		
75-00-3	Chloroethane	2.0		
75-69-4	Freon 11	0.50		
64-17-5	Ethanol	2.0		
76-13-1	Freon 113	0.50		
75-35-4	1,1-Dichloroethene	0.50		
67-64-1	Acetone	5.0		
67-63-0	2-Propanol	2.0		
75-15-0	Carbon Disulfide	2.0		
107-05-1	3-Chloropropene	2.0		
75-09-2	Methylene Chloride	5.0		
1634-04-4	Methyl tert-butyl ether	2.0		
156-60-5	trans-1,2-Dichloroethene	0.50		
110-54-3	Hexane	0.50		
75-34-3	1,1-Dichloroethane	0.50		
78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0		
156-59-2	cis-1,2-Dichloroethene	0.50		
109-99-9	Tetrahydrofuran	0.50		
67-66-3	Chloroform	0.50		
71-55-6	1,1,1-Trichloroethane	0.50		
110-82-7	Cyclohexane	0.50		
56-23-5	Carbon Tetrachloride	0.50		
540-84-1	2,2,4-Trimethylpentane	0.50		
71-43-2	Benzene	0.50		
107-06-2	1,2-Dichloroethane	0.50		
142-82-5	Heptane	0.50		
79-01-6	Trichloroethene	0.50		
78-87-5	1,2-Dichloropropane	0.50		
123-91-1	1,4-Dioxane	2.0		
75-27-4	Bromodichloromethane	0.50		
10061-01-5	cis-1,3-Dichloropropene	0.50		
108-10-1	4-Methyl-2-pentanone	0.50		
108-88-3	Toluene	1.0		
10061-02-6	trans-1,3-Dichloropropene	0.50		
79-00-5	1,1,2-Trichloroethane	0.50		
127-18-4	Tetrachloroethene	0.50		
591-78-6	2-Hexanone	2.0		
124-48-1	Dibromochloromethane	0.50		
106-93-4	1,2-Dibromoethane (EDB)	0.50		

Method: Modified TO-14A

CAS Number	Compound	Rpt. Limit (ppbv)
108-90-7	Chlorobenzene	0.50
100-41-4	Ethyl Benzene	0.50
108-38-3	m,p-Xylene	1.0
95-47-6	o-Xylene	0.50
100-42-5	Styrene	0.50
75-25-2	Bromoform	0.50
98-82-8	Cumene	0.50
79-34-5	1,1,2,2-Tetrachloroethane	0.50
103-65-1	Propylbenzene	0.50
622-96-8	4-Ethyltoluene	0.50
108-67-8	1,3,5-Trimethylbenzene	0.50
95-63-6	1,2,4-Trimethylbenzene	0.50
541-73-1	1,3-Dichlorobenzene	0.50
106-46-7	1,4-Dichlorobenzene	0.50
100-44-7	alpha-Chlorotoluene	0.50
95-50-1	1,2-Dichlorobenzene	0.50
120-82-1	1,2,4-Trichlorobenzene	2.0
87-68-3	Hexachlorobutadiene	2.0

	Surrogate	Method Limits	
17060-07-0	1,2-Dichloroethane-d4	70-130	
2037-26-5	Toluene-d8	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

APPENDIX AB GREEN WASTE ACCEPTANCE RECORD AND S-31 FUEL USAGE AND HOURS OF OPERATION

S-29 - Green Waste Stockpiles

Log of Throughput, Fuel Usage, and Hours of Operation per Title V (BAAQMD) - Permit Condition

Limit: 68,040 tons of green waste received from off-site locations for grinding per 12-month period

Limit: 76,205 gallons of fuel for grinder during any 12-month period

Water Applications: Refer to Dust Suppression Logs

	Green Waste Received	Grino	ler	12 Month Rolling Totals		
Month	(tons)	Diesel Usage (gallons)	Hours of Operation	Received (tons)	Fuel (gallons)	
Jun-24	0.0	0.0	0.0	0	0.0	
Jul-24	0.0	0.0	0.0	0	0.0	
Aug-24	0.0	0.0	0.0	0	0.0	
Sep-24	0.0	0.0	0.0	0	0.0	
Oct-24	0.0	0.0	0.0	0	0.0	
Nov-24	0.0	0.0	0.0	0	0.0	

This data includes both greenwaste and C&D material that third accept and grind.

ALRRF only accepts green waste for transferring offsite for processing.

APPENDIX AC NON-METHANE ORGANIC COMPOUNDS PERMIT RECORD

Pursuant to PTO Condition Number 19235 Part 17(a), upon commencement of waste disposal in Fill Area 2, the rolling 3-year average NMOC concentration in LFG will be limited to 600 ppmv NMOC, expressed as C6 and corrected to 50 percent CH₄. Filling commenced in Fill Area 2 in March 2019. Addendum to Application for a Change of Condition to Increase POC Limit was submitted on September 29, 2020. Application for Change of Condition for Fill Area 2 was submitted on June 18, 2017. Application Number AN 28727 was assigned. Addendum to Application for a Change of Condition to Increase POC Limit was submitted on September 29, 2020. ALRRF submitted a follow-up letter to the previous submittals on September 23, 2021, September 21, 2022, September 27, 2023 and September 20, 2024. BAAQMD issued a new AN Number 32247.

APPENDIX AD PARAMETRIC MONITOR INOPERATION SUMMARY

WASTE MANAGEMENT of ALAMEDA COUNTY ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY BAAQMD PLANT NO. 2066

Parametric Monitor Inoperation Summary June 1, 2024 through November 30, 2024

Source	Data Monitoring Month	Start Date Time	End Date Time	Total Missing Data (Hours)	Comments
A-15 Flare	June 1, 2024 through November 30, 2024	No data gaps greater than 15 minutes in duration during operation of the device.			
A-16 Flare	June 1, 2024 through November 30, 2024	9/26/24 14:34	9/26/24 14:38	0.07	Data gap during work on upgrades to data logger. Substitute data for flow and temperature was used.
A-16 Flare	June 1, 2024 through November 30, 2024	9/27/24 7:44	9/27/24 9:22	1.63	Data gap during work on upgrades to data logger. Data logger was inadvertantly turned off and data recording had to be restarted. Substitute data for flow and temperature was used.
A-16 Flare	June 1, 2024 through November 30, 2024	9/30/24 13:36	10/1/24 8:38	19.03	Condensate injection channel on data logger was stopped indavertently on 9/30/24 during upgrades and was restarted on 10/1/24. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	6/3/24 12:04	6/3/24 12:08	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	6/11/24 19:12	6/11/24 19:14	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	6/18/24 10:04	6/18/24 10:06	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	6/20/24 13:22	6/20/24 13:32	0.17	Data gap due to server communication error. Server was rest and issue was resolved. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	6/20/24 13:34	6/20/24 13:36	0.03	Data gap due to server communication error. Server was rest and issue was resolved. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	6/20/24 13:48	6/20/24 13:50	0.03	Data gap due to server communication error. Server was rest and issue was resolved. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	6/20/24 14:08	6/20/24 14:10	0.03	Data gap due to server communication error. Server was rest and issue was resolved. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	6/28/24 10:44	6/28/24 10:48	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	7/15/24 2:12	7/15/24 2:16	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	7/23/24 10:14	7/23/24 10:16	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	7/31/24 19:22	7/31/24 19:24	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	9/4/24 1:32	9/4/24 1:34	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	9/16/24 7:02	9/16/24 7:04	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	10/2/24 15:04	10/2/24 15:06	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	10/18/24 19:50	10/18/24 19:54	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	10/23/24 7:24	10/23/24 7:26	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	10/31/24 10:06	10/31/24 10:10	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	11/8/24 11:48	11/8/24 11:50	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-6 Gas Turbine	June 1, 2024 through November 30, 2024	11/16/24 13:48	11/16/24 13:50	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.

Source	Data Monitoring Month	Start Date Time	End Date Time	Total Missing Data (Hours)	Comments
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	6/3/24 12:04	6/3/24 12:08	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	6/11/24 19:12	6/11/24 19:14	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	6/18/24 10:04	6/18/24 10:06	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	6/20/24 13:22	6/20/24 13:32	0.17	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	6/20/24 13:34	6/20/24 13:36	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	6/20/24 13:48	6/20/24 13:50	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	6/20/24 14:08	6/20/24 14:10	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	6/28/24 10:44	6/28/24 10:48	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	7/15/24 2:12	7/15/24 2:16	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	7/23/24 10:14	7/23/24 10:16	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	7/31/24 19:22	7/31/24 19:24	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	9/4/24 1:32	9/4/24 1:34	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	9/16/24 7:02	9/16/24 7:04	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	10/2/24 15:04	10/2/24 15:06	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	10/18/24 19:50	10/18/24 19:54	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	10/23/24 7:24	10/23/24 7:26	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	10/31/24 10:06	10/31/24 10:10	0.07	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	11/8/24 11:48	11/8/24 11:50	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-7 Gas Turbine	June 1, 2024 through November 30, 2024	11/16/24 13:48	11/16/24 13:50	0.03	Flow data channel recorded out of range readings due to loss of signal. Substitute data was used.
S-210 LNG Plant	June 1, 2024 through November 30, 2024	LNG Plant was shut down on June 30, 2023.			

Notes:

¹⁾ The Data Gap Summary is maintained pursuant to BAAQMD Regulation 1-523.

²⁾ Periods of parametric monitor inoperation did not exceed 24 hours or 15 consecutive days for each source. Also, periods of parametric monitor inoperation did not exceed 30 days over a consecutive 12-month period for each source.