

One key research premise: the need for regulatory science to consider **cumulative impact**

- Multiple hazards where communities live, work, and play
- Vulnerability due to social stressors
 - poverty, malnutrition, chronic health problems

Science of Cumulative Impacts

 Disparities in exposures to environmental hazards between racial and socioeconomic groups are significant and are linked to adverse health risks

Tools for Decision-making: Environmental Justice Screening Methodology (EJSM)

- justice, and healthAre transparent and relevant to policy-makers
- Are transparent and relevant to policy-makers and communities
- Key Caveats:
 - Focus is mostly (currently) on air quality but now on climate vulnerability and other metrics as well
 - Reliance on available secondary databases (to facilitate replication)
 - This is screening

References for EJSM work

Sadd JL, Pastor M, Morello-Frosch R, Scoggins J, Jesdale B (2011): "Playing It Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California. *International Journal of Environmental Research and Public Health.* 8: 1441-1459.

Morello-Frosch R, Zuk M, Jerrett M, Shamasunder B, Kyle AD. (2011) "Synthesizing the Science on Cumulative Impacts and Environmental Health Inequalities: Implications for Research and Policy-making. *Health Affairs*, 30(5):879-887.

Four Categories of Cumulative Impact

Proximity to hazards & sensitive land uses

- Air Resources Board land use guidelines (sensitive receptors)
- State data on environmental hazards

Health risk & exposure

- Available state and national data
- Modeling from emissions inventories
- Health risk estimates (cancer/respiratory)

Social & health vulnerability

- Based on epidemiological literature on social determinants of health
- ACS 2005-2009 and state-level data

Climate change vulnerability

Based on climate change and health literature
Heat islands, temperature, social isolation

Southern California Assoc. of Governments (SCAG) 2005 Land Use Polygons

Result: Cumulative Impact (CI) Polygons, each associated with a specific block and land use

Hazardous Land Uses

- Area facilities (CARB)
- Chrome Platers (CARB)
- Hazardous Waste TSDs (DTSC)
 - Federal Response (includes Superfund)
 - State response
 Voluptary cleanur
 - Voluntary cleanupMilitary evaluation
 - School investigations and cleanup
- Rail
- Traffic Volume
- Ports
- Airports
- Refinery
- Intermodal distribution facilities

• Number of sites within buffers of polygon edge is derived for each CI polygon

distance weighted approach

Hazard Proximity & Sensitive Land Use <u>Counts</u> at the Tract Level

To get hazard proximity and sensitive land use counts at the census tract level:

- Estimate population in each CI polygon, based on its share of the total residential and sensitive land use area in the census block
- Take the population weighted average of the hazard and sensitive land use counts across the CI Polygons within each census tract
- Rank each census tract in regions into quintiles (1-5) across all proximity dimensions

Category 2:

Health Risk and Exposure

Health Risk & Exposure Indicators - Tracts

- RSEI (Risk Screening Environmental Indicators)
 - (2007) toxic conc. hazard scores from TRI facilities
- NATA 2005 (National Air Toxics Assessment)
 - Respiratory hazard from mobile & stationary sources
 - Calculated from modeled air toxics concentrations

NATA 2005

 Estimated Inhalation Cancer Risk from mobile and stationary sources

- CARB estimated PM_{2.5} concentration (2004-06)
- CARB estimated Ozone concentration (2004-06)

Health Risk & Exposure Scores -Tracts

• Each health risk indicator is ranked into quintiles (1-5) across all tracts in the region

 Quintile rank values are added up across indicators for each tract and the sum is ranked once again into quintiles (1-5) across all tracts in the region

• The resulting quintile rank for each tract is it's final health risk score

Category 3:

Social and Health Vulnerability

Cumulative Impact Scores at the Tract Level

Combine four categories of tract level impact and vulnerability to get Cumulative Impact Score

Cumulative Impact Score =

Hazard Proximity and Sensitive Land Use Score (1-5) +

Health Risk and Exposure Score (1-5) +

Social and Health Vulnerability Score (1-5)

> Final Cumulative Impact Score Ranges from 3-15

Potential Applications

- National:
 - USEPA Plan EJ 2014

State:

≻ AB 32 and SB 535≻ OEHHA and CARB

Local:

"Ground Truthing" efforts in Los Angeles and Oakland

Potential Contributions

 Screening provides a way of drilling down regionally and highlighting communities of potential regulatory concern

- Transparent approach and metrics that use publicly available data and is not too difficult to implement & update
 - Open to modification by sophisticated users (change scoring weights, indicators, scoring approaches)

Looking at CARE and EJSM Results Together

What is Ground Truthing?

Community Based Participatory Research in six Los Angeles area communities:

- Verify location and accuracy of information on <u>air quality hazards</u> and <u>sensitive receptor land</u> uses as reported in state regulatory agency databases
- Locate and map additional air quality hazards and sensitive receptors missing from state regulatory agency databases.
- Conduct community-based air monitoring.

Hegenberger Micro-Study

Objectives:

- Work with CBE to train community members on concepts and science of cumulative impact
- Train community to collect information on hazards of concern and susceptible receptors
 - Focus is on identifying pollution sources not captured on current data systems
 - Use GPS devices to improve data collection methods
 - Conduct air sampling in areas of concern

Implications for Science & Policy

 Need to move away from chemical-by-chemical, facility-by-facility analysis toward a cumulative impact approach with neighborhoods and regions as the unit of analysis

- Engaging community can improve information base and build confidence in more technical screening tools – balancing agency and community credibility is key
- Such an approach can be scaled up to other regions and states

Thank you

Collaborators on EJSM and Ground-Truthing:

Bill Jesdale, UC Berkeley
Justin Scoggins, USC
Paul English, California Public Health
Los Angeles EJ Collaborative
Liberty Hill Foundation

Funders:

California Air Resources Board
California Energy Commission
Cal-EPA
The California Endowment
US EPA, Region 9

