Identifying and Protecting Communities Impacted by Urban Air Pollutants

Rajiv Bhatia, MD, MPH

Presentation for the BAAQMD CARE Task Force Meeting Tuesday, June 5, 2012

Air Pollution Challenges for Infill Development

- Benefits of reducing regional VMT
 - Energy efficiency
 - lowered regional pollution emissions
 - Increased active transportation
- Costs of increasing proximity to traffic density
 - Increased exposure to urban air pollution sources
 - Increased exposure to noise sources
 - Greater hazards for pedestrians

Sensitive Use Protections for Traffic Pollution Hot Spots San Francisco Health Code, Article 38, 2008

- Aimed to prevent new traffic-related impacts
- Requires projects in areas with traffic conflicts to assess and mitigate exposures
- Proponent conducts air quality modeling for site
- Law establishes an PM 2.5 based action level for mitigation
- Mitigation via building design or engineered ventilation to remove 80% of outdoor PM 2.5

San Francisco Pollution Risk Reduction Planning Overarching Policy Goals

- Reduce the extent and severity of pollution hotspots
 - Air Pollution Cancer Risk
 - Fine Particulates (PM 2.5)
 - Nitrogen Dioxides
- Mitigate exposures in air pollution hotspots
- Reduce disparities in exposure

Modeled Cumulative Cancer Risk from Air Toxics in San Francisco

PM 2.5 >10 ug/m³ Modeled Concentrations in San Francisco

PM 2.5 >9 ug/m³ Modeled Concentrations in San Francisco

SF Local Pollution Risk Reduction Strategies

Emissions Reductions

 Limit growth of traffic density through land use, demand management, pricing, impact fees, improved transit and other strategies

Exposure Management

- Extend article 38 protections to all areas with high fine particulate levels or high cancer risks
- Develop programs for retrofitting existing sensitive uses in hot spots

Ways to improve BAAQMD methodology

- Consider air pollution impacts in areas without vulnerable populations
 - Could increase political support for interventions
 - Attends to potential future demographic shifts
 - Treat population characteristics as risk modifiers
- Include impacts due to NAAQS criteria air pollutants
 - Significant, proven health effects from fine particulate matter and nitrogen dioxide
 - Effects observed at observed concentration
 - PM 2.5 effect on mortality greater than effect on cancer

Thoughts for Cumulative Impacts Analysis

- ☐ Clearly distinguish emissions, exposures, and effects
- ☐ Combine cumulative impacts at any single level but not across multiple levels
- ☐ Treat population characteristics as factors that modify the relationships among types of impacts and ways to identify who is impacted

Implications of Impact Analysis for Regional Policy

- Neighborhood-scale modeling and monitoring of local pollutants particularly PM 2.5 and Nitrogen Dioxides
 - Allows application of existing state and federal standards
- Limits on highway capacity expansion
- Regulation of traffic corridors as emissions sources
- Innovative solutions such as urban freeway speed control
- Greater attention to local sources

