

San Francisco Bay Area Emissions Inventory

**Summary Report for
Greenhouse Gases**

October 2025

SAN FRANCISCO BAY AREA EMISSIONS INVENTORY

SUMMARY REPORT FOR GREENHOUSE GASES

Lead Author:

Abhinav Guha, Principal Air Quality Engineer

Principal Contributors:

Tan Dinh, Air Quality Engineer
Yuan Du, Principal Air Quality Engineer
David Holstius, Senior Advanced Projects Advisor
Ariana Husain, Principal Air Quality Engineer
Sally Newman, Senior Air Quality Specialist
Michael Nguyen, Senior Air Quality Engineer
Nicholas Tang, Advanced Projects Advisor

Reviewers:

Virginia Lau, Manager of Emissions and Community Exposure Assessment Section
Song Bai, Director of Assessment, Inventory, and Modeling Division
Greg Nudd, Deputy Executive Officer of Science and Policy

Table of Contents

Table of Contents.....	3
List of Tables.....	4
List of Figures.....	5
Glossary.....	6
EXECUTIVE SUMMARY	7
Inventory Overview.....	7
Emissions Summary	8
1. INVENTORY SCOPE AND ORGANIZATION.....	12
1.1. GEOGRAPHY	12
1.2. POLLUTANTS.....	13
1.3. BASE YEAR.....	15
1.4. ORGANIZATIONAL HIERARCHY.....	15
2. INVENTORY METHODOLOGY	19
2.1. SOURCE TYPES.....	19
2.2. EMISSION CALCULATIONS.....	20
2.3. HISTORICAL AND FUTURE PROJECTION.....	23
2.4. QUALITY ASSURANCE PROTOCOL.....	23
3. EMISSIONS SUMMARIES AND TRENDS	25
3.1. EMISSIONS BY PROCESS.....	25
3.2. EMISSIONS BY SUBSECTOR	25
3.3. EMISSIONS BY COUNTY.....	29
3.4. EMISSIONS BY POLLUTANT.....	31
3.5. EMISSIONS TRENDS	32
4. UNCERTAINTIES AND FUTURE IMPROVEMENTS	34
5. REFERENCES.....	36
APPENDIX A – SOURCE COMPOSITION OF SECTORS.....	39
APPENDIX B - INVENTORY SOURCE CATEGORIZATION.....	44
APPENDIX C - REFERENCE DATASETS.....	46

List of Tables

- Table 1.1. Selected demographic and socio-economic indicators by Bay Area County for 2022.
- Table 3.1. Contribution of Level 2 general processes to the greenhouse gas emissions inventory for 2022.
- Table 3.2. Sector and subsector contributions to the Bay Area greenhouse gas emissions inventory for 2022.
- Table 3.3. Sector contributions to the Bay Area greenhouse gas emissions inventory for each county for 2022.

List of Figures

Figure A. 2022 GHG emissions inventory by sector for the San Francisco Bay Area (in million metric tons of CO₂ equivalent, MMTCO₂e).

Figure B. 2022 GHG emissions inventory by county for the San Francisco Bay Area (in million metric tons of CO₂ equivalent, MMTCO₂e).

Figure 1.1. Map of the Air District's jurisdictional boundary that includes seven full and two partial (Solano and Sonoma) counties.

Figure 3.1. Level 1 (sector) and grouped Level 3 (subsector) contributions to the Bay Area greenhouse gas emissions inventory for 2022.

Figure 3.2. Pollutant contributions by sector to the Bay Area greenhouse gas emissions inventory for 2022.

Figure 3.3. Time series of overall change (in percentage, relative to 2000 level) in Bay Area's greenhouse gas emissions by sector.

Glossary

Abbreviation Definition

ABAG	Association of Bay Area Governments
BAAD	Bay Area Air District (also known as the Air District)
BAAQMD	Bay Area Air Quality Management District (also known as the Air District)
CAP	Criteria Air Pollutant
CARB	California Air Resources Board
CADF	California Department of Finance
CEC	California Energy Commission
CEPAM	California Emission Projection Analysis Model
CFCs	Chlorofluorocarbons
CH ₄	Methane
CO ₂	Carbon Dioxide
EIA	Energy Information Administration
EMFAC	EMission FACTors Model
GDP	Gross Domestic Product
GHG	Greenhouse Gas
GWP	Global Warming Potential
HCFCs	Hydrochlorofluorocarbons
HFCs	Hydrofluorocarbons
IPCC	Intergovernmental Panel for Climate Change
MSA	Metropolitan Statistical Area
MMTCO ₂ e	Million Metric Tons of Carbon Dioxide Equivalent
N ₂ O	Nitrous Oxide
PFCs	Perfluorocarbons
PM ₁₀	Particulate Matter (inhalable particles with diameter \leq 10 micrometers)
PM _{2.5}	Particulate Matter (fine inhalable particles with diameter \leq 2.5 micrometers)
PTO	Permits-to-Operate
SFBA	San Francisco Bay Area
SF ₆	Sulfur Hexafluoride
TAC	Toxic Air Contaminant
TOG	Total Organic Gases
USEPA	United States Environmental Protection Agency
USDA	United States Department of Agriculture
VMT	Vehicle Miles Traveled

EXECUTIVE SUMMARY

Inventory Overview

The Bay Area Air District (Air District) is the regional government agency responsible for the regulation of air pollution from stationary sources within the San Francisco Bay Area (SFBA). The Air District's jurisdiction includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, southwestern Solano, and southern Sonoma counties. The agency maintains inventories of emissions for criteria air pollutants (CAPs), greenhouse gases (GHGs), and toxic air contaminants (TACs) to:

- Comply with statutory emissions reporting requirements;
- Provide inputs for regional air quality modeling to estimate pollutant concentrations and exposures;
- Support the development of new regulations and amendments to existing regulations to reduce emissions; and
- Support regional and local air quality and climate action planning and policy initiatives.

The Air District's GHG emissions inventory is an accounting of annual emission estimates of major climate-warming pollutants resulting from human activities (also known as anthropogenic emissions) that are grouped by source category for each county. This report presents an overview of the regional GHG emissions inventory from 2000¹ to 2050 across the nine-county Air District jurisdiction. The pollutants covered in the GHG emissions inventory are carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and several long-lived gases with high Global Warming Potentials (GWPs; *IPCC, 2014*) such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆), as well as chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). Although CFCs and HCFCs have been banned, and their use phased out (*USDS, 2025*), historical emissions and residual emissions from legacy equipment are included in the GHG emissions inventory.

Exposure to ambient levels of these pollutants is not directly harmful to human health. However, these pollutants are primary drivers of climate change, which in turn has negative air quality and

¹ The California Air Resources Board (CARB) maintains the responsibility to prepare, adopt, and update the statewide GHG emissions inventory which starts from year 2000 (https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/ghg_inventory_tsd_00-14.pdf). In 2006, Assembly Bill 32 required that the CARB determine the statewide GHG emissions level in 1990 and approve a statewide GHG emissions limit for year 2020. CARB does not publish a GHG emissions inventory for the years 1990 to 1999. Although, the Air District's GHG emissions inventory extends from year 1990 to 2050, the inventory estimates for years 1990 to 1999 are generally those that have been extrapolated from year 2000 emissions data and have a higher degree of uncertainty. Thus, any discussion on and analysis of inventory trends in this report focuses on emissions data from year 2000 onwards, which also ensures consistency with the statewide GHG emissions inventory. (https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_ghg_inventory_trends.pdf)

health impacts in the SFBA. For example, rising temperatures due to global warming increases heat stress and accelerates ozone and secondary particulate matter formation; and more severe wildfires elevate exposure to harmful pollutants. The GHG emissions from fuel combustion and other sources are often accompanied by emissions of co-emitted CAPs and TACs which have direct local air quality and health impacts. Additional discussions about climate and air quality related health impacts can be found under the Air District's Comprehensive Climate Air Plan developed under the Bay Area Regional Climate Action Planning Initiative (*CCAP, 2025*).

The regional source category-level GHG emissions inventory is estimated in alignment with state and federal methodologies, based on detailed research to gather data for the following key variables:

- Activity data or throughput – a measure of emission-generating processes, operations, and services.
- Emission factors – values that represent the amount of a GHG pollutant emitted per unit quantity of the activity or throughput; and
- Control factors – quantitative measure of the reduction in GHG pollutant emissions achieved through pollution-control devices or regulated changes in facility operations.

Forecasted and certain historical emissions are derived using growth profiles. For future projections, growth profiles are developed based on selected socio-economic indicators that characterize how activity data for source categories are expected to evolve over time. For historical backcasting, when direct activity data are unavailable, growth profiles are developed to estimate historical activity levels and emissions.

Emissions Summary

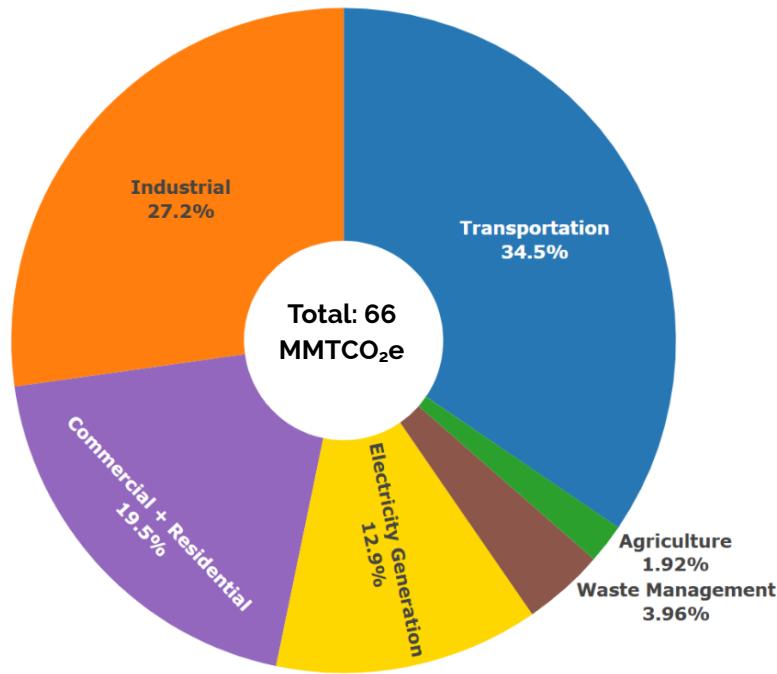
This section presents four key perspectives useful to understanding GHG emissions:

- By sector (i.e., source types)
- By pollutant
- By geographic area (here, by county)
- By year (i.e., trends and forecasts)

Contribution by sector

The Air District's GHG emissions inventory follows an inventory framework consistent with California's GHG inventory categorization scheme. GHG emissions source categories are grouped into six economic sectors, which are aligned with CARB's sector definitions (*CARB, 2024*):

- Transportation
- Commercial + Residential
- Industrial


- Electricity Generation
- Waste Management
- Agriculture

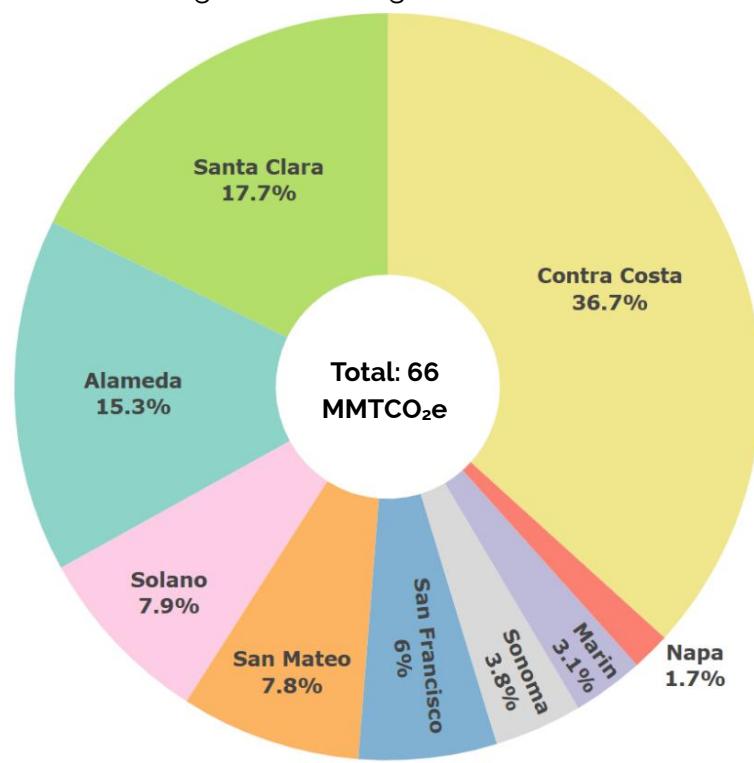
The annual GHG emissions from all six sectors for the SFBA for the base year 2022 is approximately 66 million metric tons of CO₂-equivalent (MMTCO₂e), which represents about 18% of California's 2022 statewide GHG emissions (CARB, 2024).

Transportation (35%) is the largest contributing sector in the SFBA, followed by the Industrial (27%) sector (Figure A). Commercial + Residential sector contributes about 20% and the Electricity Generation sector contributes about 13% to the annual GHG inventory. The Waste Management and Agriculture sectors contribute less than 6% of the regional total.

It should be noted that about 15% of the regional GHG total (more than half of the Industrial sector's GHG emissions) are attributed to the petroleum refining industry which produces fuels primarily consumed in the Transportation sector. Additionally, cogeneration of electricity at petroleum refineries for self-consumption accounts for >2% of the regional GHG total (or about 17% of Electricity sector's GHG emissions). Cumulatively, the production, processing and consumption of transportation-related fossil fuels account for over 50% of SFBA's total GHG emissions across the Transportation, Industrial and Electricity Generation sectors.

The SFBA is heavily urbanized and thereby the share of Transportation sector in the regional GHG emissions inventory is larger than its corresponding share in the national emissions inventory (35% versus 28%; USEPA, 2025). In the Bay Area, GHG emissions from the Commercial + Residential sector are primarily attributable to space- and water-heating (combined total of 65% of the sector's emissions) and the use of refrigerants and solvents in buildings (22% of sector emissions). Due to relatively high population density in urban areas, the Commercial + Residential sector accounts for a higher share of the region's emissions as compared to the national average (20% versus 13%). The Electricity Generation sector represents a lower share in the regional GHG inventory compared to the national average (13% versus 25%), largely because a greater portion of the region's electricity is produced from renewable sources such as wind, solar, hydrothermal, etc., reducing the region's reliance on natural gas-fired power plants.

Figure A. 2022 GHG emissions inventory by sector for the San Francisco Bay Area (in million metric tons of CO₂ equivalent, MMTCO₂e).


A subsector breakdown of the base year 2022 GHG emissions inventory is provided in *Figure 3.1* and *Table 3.1* in the *Emissions Insights and Trends* chapter, including inventory highlights in the *Emissions by Sector* section. More detailed emissions data for the SFBA's regional GHG inventory are presented in an interactive online dashboard on the Air District's emissions inventory webpage².

Contribution by pollutant

Reviewing the pollutant composition in the SFBA GHG emissions inventory is useful to identify different types of GHGs associated with different sources. Analyzing the pollutant distribution in the SFBA compared to the national profile reveals distinct sources and emissions characteristics unique to the region. At the regional level, the contribution of CH₄ (>6%) and N₂O (~2%), which are primarily emitted from waste management, animal agriculture, soil management, and petroleum production systems, is a smaller share in the SFBA's GHG inventory compared to their contribution at the national level of 11% for CH₄ and 6% for N₂O (USEPA, 2025). In the SFBA, high-GWP gases like HFCs and PFCs, emitted from a variety of sources such as refrigeration, air conditioning, fire suppressants, and insulation, etc., represent a significant proportion of GHG emissions from the Commercial + Residential sector (>20%, *Figure 3.1*; *3.2*). This results in a higher overall regional contribution (>6% of SFBA GHG total) of high-GWP gases than that in the national inventory (~3%). CO₂, largely produced through fuel combustion, remains the most prevalent GHG pollutant in the region (85% of the regional inventory; see *Figure 3.2*).

Contribution by county

Evaluating the geographic distribution of GHG emissions across the SFBA identifies those counties with the largest contributions to GHG emissions and the sectors driving those emissions *Figure B* shows the distribution of annual regional GHG emissions by county across the SFBA. Contra Costa County is attributed to having the highest GHG emissions (~37%) in the region, due mostly to the presence of large sources in the Industrial sector (e.g., refineries) and in the Electricity Generation sector (e.g., power plants) located in this county. The southern Solano County, which

Figure B. 2022 GHG emissions inventory by county for the San Francisco Bay Area (in million metric tonnes of CO₂ equivalent, MMTCO₂e)

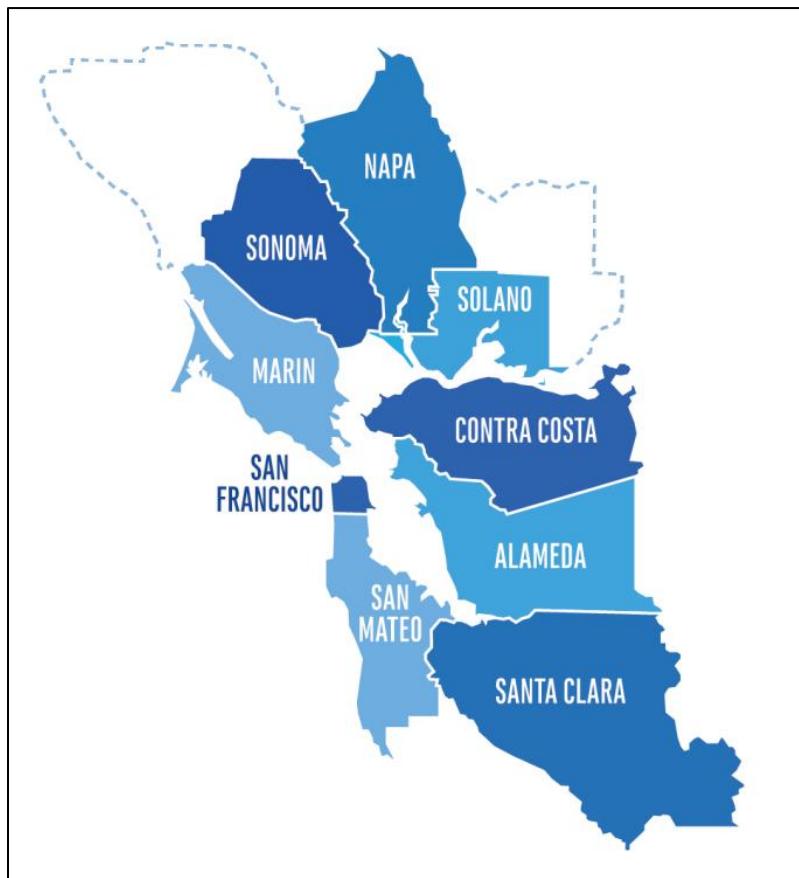
² Available at <https://www.baaqmd.gov/en/about-air-quality/emission-inventory/climate-forcing-pollutants>

accounts for 8% of SFBA's GHG emissions despite only having 4% of the Bay Area's population, is also largely impacted by industrial sources. In the other seven counties that have fewer heavy industries, the Transportation and Commercial + Residential sectors account for the majority of county-level GHG emissions. A detailed breakdown of emissions by county is provided in *Table 3.2* in the *Emissions Insights and Trends* chapter, including a discussion in the *Emissions by County* section.

Trends and forecasts

A time series of historical GHG emissions along with projected future emissions allows the Air District to assess the progress the region has made in achieving its climate objectives and future policy goals. Overall, the SFBA's GHG emissions have dropped from 76.1 MMTCO₂eq in 2000 to 65.8 MMTCO₂eq in 2022 marking a 13.5% reduction, consistent with the declining trend in California's state inventory (19.8% decrease) and the U.S. national inventory (14.5% decrease) over the same period (CARB, 2024; USEPA, 2025). Most of the GHG emissions reductions in SFBA are attributed to the Transportation (-24%), Industrial (-12%), and Electricity Generation (-20%) sectors as shown in *Figure 3.3*, largely due to regulations in goods movements and the use of renewable sources for energy generation. This downward trend is partially offset by an increase in GHG emissions from the Commercial + Residential (+15%) sector, indicating an increasing demand for energy from the Bay Area's growing population and businesses. A significant decline in GHG emissions is predicted in the Commercial + Residential sector, primarily due to the Air District's recent regulations such as Regulation 9 Rule 4 (BAAQMD, 2023a) and Regulation 9 Rule 6 (BAAQMD, 2023b), which require newly installed natural gas furnaces and water heaters to meet a zero nitrogen oxides (NO_x) emissions standard starting with water heaters in 2027.

Contents of Summary Report


The current regional GHG emissions inventory reflects methodological advancements over the previous inventory (BAAQMD, 2017). This report summarizes the key findings resulting from this latest inventory update. *Chapter 1* discusses the general scope of the inventory including geographic coverage, key pollutants, and sector hierarchy schema. *Chapter 2* presents the general methodology used to develop the inventory based on sources that are grouped based on source characteristics and availability of supporting data sources. *Chapter 3* provides a breakdown of the regional GHG emissions by process, sector, and pollutants, and highlights key observations at the regional and sector level. Finally, *Chapter 4* provides an overview of key assumptions and limitations in the emissions estimates and identifies areas of future improvement.

1. INVENTORY SCOPE AND ORGANIZATION

This chapter provides an overview of the regional GHG emissions inventory, which includes geographical coverage across the San Francisco Bay Area (SFBA), identification of the key pollutants, and a description of the source sectors and subsectors using an organizational hierarchy schema.

1.1. GEOGRAPHY

The SFBA regional GHG emissions inventory covers nine counties including Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, southwestern Solano, and southern Sonoma counties (see *Figure 1.1*). Only GHG emissions that are generated or produced in the portions of Solano and Sonoma counties that are part of the Air District's jurisdiction are accounted for in this inventory.

Figure 1.1. Map of the Air District's jurisdictional boundary that includes seven full and two partial (Solano and Sonoma) counties.

Each Bay Area county has unique and diverse characteristics that serve as key predictors of trends likely to influence future activity and, in turn, estimated GHG emissions. The Air District has relied on these predictors which include population distribution, socioeconomic data, goods consumption patterns, etc. to project future growth or change in GHG emissions across sectors and subsectors. As shown in *Table 1.1*, these predictors vary significantly among counties and highlight the complexities in quantifying the base year emissions and predicting future activities summarized in this report.

Table 1.1. Selected demographic and socio-economic indicators by Bay Area County for 2022.

County ^a	Area in acres ^b (%) ^c	Human Population ^d (%) ^c	Total Natural Gas Consumed in Millions of Therms ^e (%) ^c	Automobile Registration Count ^f (%) ^c	Total Electricity Consumed in Giga Watt-Hours ^e (%) ^c
Alameda	473,639 (15)	1,657,334 (22)	377 (15)	1,035,244 (21)	10,395 (20)
Contra Costa	506,953 (16)	1,150,306 (16)	892 (36)	807,986 (16)	8,338 (16)
Marin	331,834 (10)	254,861 (4)	66 (3)	188,149 (4)	1,293 (2)
Napa	502,039 (15)	134,992 (2)	39 (2)	93,614 (2)	1,029 (2)
San Francisco	30,080 (1)	848,036 (11)	214 (8)	386,770 (8)	5,121 (10)
San Mateo	289,647 (9)	749,670 (10)	204 (8)	562,003 (12)	4,177 (8)
Santa Clara	827,194 (25)	1,915,165 (25)	424 (17)	1,322,224 (27)	17,102 (33)
Solano	132,846 (4)	313,188 (4)	248 (7)	208,801 (4)	2,279 (4)
Sonoma	145,060 (5)	413,095 (6)	107 (4)	290,573 (6)	2,477 (5)

a: Only represents the Air District portion of Solano and Sonoma counties.

b: Solano and Sonoma counties portions of the Air District are 48% and 37%, respectively.

c: The numbers in parentheses indicate percentage relative to the whole region.

d: Data is obtained from the California Department of Finance for the year 2022 (benchmark: 01/01/2023),

<https://dof.ca.gov/forecasting/demographics/estimates/e-4-population-estimates-for-cities-counties-and-the-state-2021-2025-with-2020-census-benchmark/>. Solano and Sonoma counties population portions within the Air District are 70% and 86%, respectively.

e: Data is obtained from the California Energy Commission for 2022. Solano's and Sonoma's energy consumption is derived from the proportional distribution of human population of the Air District portions of the two counties (70% for Solano and 86% for Sonoma, respectively).

f: Registration data are obtained from the California Department of Motor Vehicles for 2022. The Solano and Sonoma counts are derived from the proportional distribution of human population of the Air District portions of the two counties (70% for Solano and 86% for Sonoma, respectively).

1.2. POLLUTANTS

The greenhouse gases covered in the SFBA regional emissions inventory align with those included in United States Environmental Protection Agency's National Emissions Inventory (*USEPA, 2025*) and California Air Resources Board's statewide GHG emissions inventory (*CARB, 2024*). The SFBA GHG inventory includes emissions of the following GHG pollutants:

- **Carbon Dioxide (CO₂)**: CO₂ is a major emission by-product of all fossil fuel (e.g., natural gas, gasoline, diesel, wood, etc.) combustion processes, and to a minor extent the biological

decomposition of all organic material (e.g., animal waste, compost, agricultural residues, etc.), noted as CO₂_bio in the emissions inventory.

- **Methane (CH₄):** CH₄ is a major constituent of natural gas. In the SFBA, CH₄ is primarily emitted from leakage of natural gas across the oil and gas and energy infrastructure, anaerobic decomposition of solid and liquid organic waste (at municipal landfills and wastewater treatment plants), direct emissions from livestock and other agricultural operations, and to a lesser extent, incomplete combustion of fossil fuels.
- **Nitrous Oxide (N₂O):** N₂O is primarily emitted from nitrification and denitrification processes in soils (arising from fertilizer use for both agricultural and commercial/residential purposes). Other emission sources include tailpipe emissions from automobiles, incomplete combustion of fossil fuels, and organic waste decomposition at municipal landfills and wastewater treatment plants.
- **Fluorinated Gases:** These long lasting GHGs are synthetically generated (human-produced) and emitted as fugitive losses across a variety of households, commercial and industrial applications and processes. Fluorinated gases included in this inventory are:
 - Hydrofluorocarbons (HFCs),
 - Perfluorocarbons (PFCs),
 - Sulfur Hexafluoride (SF₆),
 - Chlorofluorocarbons (CFCs), and
 - Hydrochlorofluorocarbons (HCFCs).

These gases are typically inert, and they stay in the atmosphere for hundreds of years once emitted; therefore, local and federal regulations are focused on phasing out their use. CFCs and HCFCs were widely used as refrigerants and solvents until ozone depleting substances were banned as part of a 1989 global agreement under the Montreal Protocol (*UNEP, 2025*). Minor contributions of CFCs and HCFCs are included in the GHG inventory due to recycling and salvage of pre-ban and legacy equipment. HFCs and PFCs are substitutes for ozone depleting substances and are widely used as refrigeration and air conditioning agents, solvents, and aerosols. They are also byproducts of semiconductor manufacturing process. Emissions of these pollutants occur across all major sectors and are collectively represented as one group, known as high-global warming potential (GWP) gases. SF₆ is the most potent man-made GHG per Intergovernmental Panel on Climate Change (IPCC) and is used as an insulating gas in electrical transmission equipment (e.g., circuit breakers). Most of the fluorinated gases are emitted in exponentially smaller quantities as compared to CO₂, CH₄, and N₂O; however, due to their extremely high GWPs (*described below*), the combined emissions of these fluorinated high-GWP gases are a significant portion of the overall GHG inventory.

The current version of the GHG emissions inventory incorporates the GWP reported in the IPCC Fifth Assessment report, released in 2014 (*IPCC, 2014*), which includes impacts of climate feedback in GWP calculations. The GWP value of each GHG reflects the climate forcing caused by a kilogram of emissions relative to the same mass of carbon dioxide (CO₂). Thus, GWP of CO₂ is set equal to one while all other GHG pollutants have GWP relative to CO₂. The GWP of a GHG is determined by the intensity of infrared absorption and how long emissions remain in the atmosphere. GWPs are calculated using a set time horizon. The GWPs used for the SFBA regional GHG inventory are considered over a 100-yr timeframe, consistent with the approach adopted by the USEPA and CARB for their GHG inventories. Since the effective radiative impact of short-lived GHGs (e.g., CH₄ has a lifetime of 10-12 years) is more profound over a shorter time-horizon, the Air District may use short-term GWPs (such as 20 years) for estimating emissions inventories for rulemaking and climate action purposes.

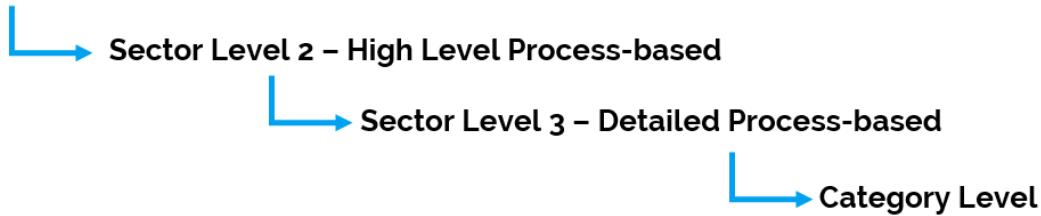
1.3. BASE YEAR

The SFBA regional GHG emissions inventory covers annual emission estimates from permitted and non-permitted stationary sources, as well as on-road and off-road mobile sources, from 2000 to 2050. The year 2022 serves as the base year for this emissions inventory as it is the latest year with comprehensive assessment conducted to estimate total emissions across all source categories and sectors. The inventory for this base year is used as a reference point or benchmark to:

- Track trends in emissions over time to evaluate progress towards achieving targets;
- Develop current and future GHG-related analysis scenarios; and
- Support development of local Climate Action Plans and mitigation strategies.

The year 2022 emissions include effects of adopted regulations but exclude the influence of non-enforceable climate protection guidelines and recommended policies. Socioeconomically, year 2022 is also considered a representative "business as usual" year, reflecting a return to typical activity levels following the COVID-19 pandemic. In some cases, emissions may be estimated using the pre-pandemic base year 2019 when data for 2022 is unavailable. The GHG emissions for 2023 and beyond are typically projected based on the base year emissions under a business-as-usual scenario.

1.4. ORGANIZATIONAL HIERARCHY


The SFBA regional GHG emissions inventory follows an inventory framework that aligns with CARB's GHG inventory categorization scheme to:

- Use emission factors and methodology by source category consistent with CARB's statewide GHG emissions inventory (*CARB, 2024*);

- Extract source category-specific emissions inventory for criteria air pollutants (CAPs) at a county-scale from CARB's California Emissions Projection Analysis Model (*CEPAM, 2024*), and to use CAPs as surrogates to derive and proportion GHG emissions; and,
- Leverage growth projections from CARB's Scoping Plan (*CARB, 2022*) to forecast future GHG emissions for equivalent source categories, wherever applicable.

The regional GHG inventory is classified into four levels with the first level based on the economic sector (consistent with CARB), followed by two lower levels describing the general and specific processes generating the emissions, respectively. These three sector levels are ultimately linked to the source-category level, the most granular grouping in which emissions are reported in this GHG inventory, as shown below:

Sector Level 1 – Economic-based

In Level 1 classification, GHG emission sources are classified across six economic sectors, which align with USEPA's classification and are also used by CARB to develop and implement GHG emission reduction strategies:

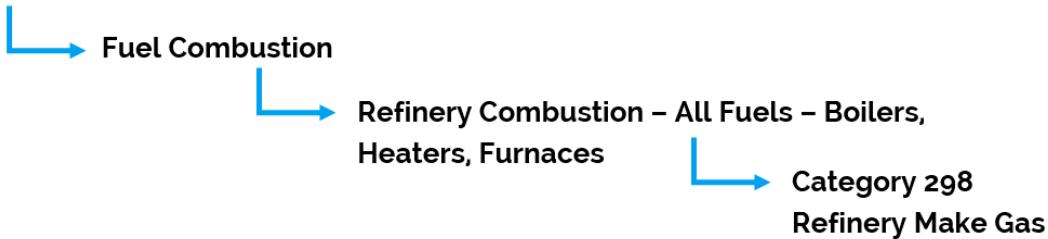
- **Transportation** – The transportation sector encompasses emissions from all mobile sources including on-road vehicles (passenger cars, light and heavy-duty trucks, and buses etc.) and all non-road transportation modes (aircraft, locomotives, ships, etc.). It is the largest contributor of the six assumed sectors to California's GHG emissions, primarily due to combustion of fossil fuels. The contribution of this sector to GHG emissions would grow larger if upstream emissions associated with production and processing of transportation-related fuels were included in this group instead.
- **Commercial + Residential** – This sector includes direct emissions from energy consumption in buildings, such as heating, cooling, cooking, lighting, and appliance use, as well as some off-road machinery (e.g., lawn and garden equipment, airport ground support equipment, etc.). The primary emissions sources are combustion of natural gas and other fuels for space and water heating, and fugitive emissions of high-GWP gases from refrigeration and air conditioning systems.
- **Industrial** – The industrial sector includes emissions from manufacturing, construction, petroleum refining, and oil and gas extraction activities, as well as some off-road machinery

(e.g., construction and mining equipment, etc.). It encompasses emissions from the combustion of fossil fuels for energy, chemical reactions during industrial processes, and fugitive emissions from equipment leaks and other sources. Key currently operating and/or now shutdown industrial sources in this sector include refineries, cement plants, food processing facilities, and chemical manufacturing that are permitted by the Air District.

- **Electricity Generation** – This sector covers emissions from the production of electricity at power plants and cogeneration facilities located within the SFBA. GHG emissions arise from the combustion of fossil fuels (such as natural gas) to produce electrical energy and fugitive leaks of methane from natural gas infrastructure at power plants. GHG emissions from imported electricity generated outside SFBA are not included in the regional emissions total. A review of annual power content labels of SFBA's electricity retailers (CEC, 2023a) indicates that, increasingly, most of the electricity consumed in the SFBA is generated from less carbon-intensive or carbon-free renewable energy sources (e.g., wind, solar, hydroelectricity, etc.). This trend lowers the demand for fossil fuel-based electricity from local generation sources.
- **Waste Management** – This sector includes emissions from the treatment and disposal of solid waste and wastewater at facilities located within the SFBA. It is conceivable that a minor fraction of this waste disposal and treatment activity may occur at facilities located outside the Air District's geographical jurisdiction. Major sources include methane emissions from landfills, emissions from composting and anaerobic digestion, and nitrous oxide emissions from wastewater treatment processes. Efforts to reduce emissions in this sector focus on waste diversion, recycling, waste-to-energy conversion, and improving waste treatment technologies.
- **Agriculture** – The agriculture sector encompasses emissions from agricultural activities, including crop cultivation and livestock production. Key sources of emissions are enteric fermentation in ruminant animals (producing methane), manure management, fertilizer application (leading to nitrous oxide emissions), and fuel combustion for agricultural equipment. Agricultural practices also influence carbon sequestration in soils and vegetation.

The definition and source composition of the economic sectors, along with exceptions to account for organizational differences at the regional level, are presented in more detail in *Appendix A*.

Each economic sector is then split into four groups under Level 2, aggregated by the general processes generating GHG emissions:


- **Fuel Combustion** – This group includes emissions from combustion of all gaseous, liquid and solid fuels in internal or external combustion engines to produce energy and/or heat and steam to perform work.

- **Process** – This group includes GHG emissions resulting from chemical, physical and biological processes within various source categories such as petroleum refining, manufacturing processes, waste management, enteric fermentation in livestock, etc.
- **Fugitive and Evaporative** – This group includes GHG emissions from intentional and unintentional leaks such as natural gas leakage across the oil and gas infrastructure, fugitive losses of SF₆ at circuit breakers, refrigerant leaks, etc.
- **Other Combustion** – This group includes GHG emissions from combustion of non-energy sources like controlled agricultural burns and waste incineration, or fires of accidental nature (e.g., structural, automobile, wildland fires, etc.).

The third level is a categorization of more detailed and similar processes grouped together called 'subsectors' (e.g., type of emissions equipment, type of fuel burned, size of source device, type of chemical or biological process). There are over 50 subsectors in the regional GHG inventory (see Appendix B for a detailed list) and some examples include aircraft, domestic wastewater treatment, commercial cooking, residential natural gas combustion, etc.

At the category level, the Air District starts by estimating emissions for over 560 unique source categories that are grouped into one of 55 Level 3 subsectors, which are then aggregated by general processes at Level 2 and finally catalogued by economic sector in Level 1. An example depicting this organization hierarchy is provided below. *Appendix B* summarizes the sector-process-subsector hierarchy that each of the 560+ GHG source categories fall under.

Industrial Sector

2. INVENTORY METHODOLOGY

The Air District uses a production-based approach to develop the regional GHG emissions inventory, focusing mainly on emissions released directly into the atmosphere from sources located within the region. This differs from a consumption-based approach, which attributes emissions to regional consumers by accounting for the full life-cycle emissions of goods and services consumed locally, regardless of where those emissions occur globally.

2.1. SOURCE TYPES

Emissions are estimated for each of the 560+ unique sources in the inventory based on the fundamental characteristics of the source. Emission sources generally fall into three main types depending on the emissions estimation methodology that is applicable:

- **Permitted Stationary Sources:** These sources (and related processes) are subject to the Air District's permitting requirements and the facilities with these sources have been issued permits to operate (PTO). Most of these sources are often referred to as 'point' sources due to their emissions characteristics. Some key characteristics of these sources include:
 - Most permitted source emissions are released at a fixed, defined location, such as a stack, but there are exceptions. The Air District also permits diffuse area sources including fugitive emissions from stockpiles and leaks from multiple pressure relief valves.
 - Emissions are required to be reported or calculated for each source at regular intervals, typically annually.
 - A bottom-up approach is typically used for emissions estimation (further explanation below).
 - These sources often involve combustion equipment.
 - Examples: fuel combustion emissions from reciprocating engines, prime and backup diesel generators, and industrial boilers.
- **Non-permitted Stationary Sources:** These sources are not subject to the Air District's permitting requirements and do not need a PTO, although they could be located at facilities that have obtained a PTO for other emissions sources. These sources are often referred to as 'area' sources due to their emissions characteristics. Some key characteristics of these sources include:
 - Emissions originate from numerous diffuse points that may be difficult to locate or track individually.
 - Emissions are not required to be systematically reported or calculated.
 - Emissions estimation method may involve either a bottom-up or a top-down scaling approach.

- These sources often involve fugitive emissions or diffuse processes.
- Examples: biologically produced methane emissions at closed landfills, anaerobic decomposition at wastewater treatment plants, and livestock manure management emissions.
- **Mobile Sources:** These sources (and related processes) are subject to federal and state-level regulations but are not within the Air District's regulatory authority. These sources are usually grouped into on-road and off-road source categories. Some key characteristics of these sources include:
 - Emissions originate from sources that typically move from place to place as they operate.
 - Source activities are not tracked individually (e.g., vehicle miles traveled per vehicle) but are typically estimated as an aggregate for the whole source group (e.g., total vehicle miles for light-duty vehicles).
 - Emission rates can vary by emission process (e.g., running exhaust, start exhaust, idling exhaust, tire or brake wear, etc.) hence emissions factors are process dependent.
 - To account for vehicle/equipment fleet complexities, the Air District uses modeling tools (e.g., EMFAC2021 for on-road sources and OFFROAD2021 for off-road sources) that apply a bottom-up, top-down, or a hybrid calculation approach for emissions estimation.
 - Examples: exhaust, tire wear, and brake wear emissions from passenger cars, heavy-duty trucks, and buses; exhaust emissions from bulldozers, forklifts, and tractors; exhaust emissions from ships and aircraft.

2.2. EMISSION CALCULATIONS

As previously mentioned, the Air District staff typically uses two types of estimation approaches—a bottom-up or a hybrid method—to estimate GHG emissions, depending on source types and available calculation support data.

Bottom-up Permitted Source Approach

Permitted sources are stationary operations that emit air pollution into the atmosphere at fixed location(s) within a facility, and for which the Air District has issued a PTO (e.g., steam reforming at refinery hydrogen plants).

During the permitting process, the Air District collects site-specific information from the operating facility and/or determines from published literature, e.g., U.S. Environmental Protection Agency's (USEPA) AP-42 (*USEPA, 2024*), source characteristics including maximum throughput, emission factors by pollutant, and temporal profile. The Air District may require an abatement device to be

installed, in which case control factors will be incorporated to account for the reduced emissions. Facilities that hold an Air District PTO are required to renew their permit periodically (this period varies based on facility and source types). Upon renewal, the facilities are requested to provide updates on the source characteristics and throughput since the past permit issuance (typically, twelve months). The throughput, emission factors, and control factors stored in the Air District's permitting database, are used to estimate annual emissions at the source level for each county using the following equation:

$$\begin{aligned} \text{Base Year(s) Emissions}_{\text{source } i, \text{ pollutant}} &= \text{Activity Data}_{\text{source } i} \times \text{Emission Factor}_{\text{pollutant}} \\ &\quad \times \text{Control Factor}_{\text{pollutant}} \times \text{GWP}_{\text{pollutant}} \end{aligned}$$

$$\text{Base Year(s) Emissions}_{\text{county, pollutant}} = \sum_{i=1}^N \text{Emissions}_{\text{source } i, \text{ pollutant}}$$

Where:

- **Base Year(s)** are any years for which source category-specific activity data are available and hence emissions can be directly derived.
- **Activity Data** are the throughput or activity (e.g., amount of fuel consumed, number of goods produced, counts of sources operated, etc.) at the source/equipment level. This data is typically provided by the facility during permit renewal.
- **Emission Factor** is a rate that expresses the mass of a specific pollutant emitted per unit of activity. For example, emission factors can be stated as tons of CO₂ per gallon of gasoline burned or pounds of N₂O per million standard cubic feet of natural gas combusted. GHG emissions are calculated by applying emission factors to activity data reported by facilities, which are verified or validated through source tests. When source-specific emission factors are unavailable (which is common), the Air District uses default factors derived from published literature such as USEPA's AP-42 or CARB's Mandatory Reporting Requirement (CARB, 2019) for Greenhouse Gases.
- **Control Factor** is a fractional ratio (between 0 and 1) to account for estimated reduction in emissions as a result of Air District's regulations or installation of a control device.
- **GWP** is the Global Warming Potential that measures the warming potential of different greenhouse gases by quantifying their radiative forcing, or the ability to trap heat, relative to CO₂. The current version of the GHG emissions inventory incorporates the GWPs reported in the Fifth Assessment report of the Intergovernmental Panel for Climate Change (IPCC, 2014), when calculated on a 100-year basis with climate-carbon feedback included.
- **N** is the number of permitted or non-permitted sources in a county.

Bottom-up Non-Permitted Source Approach

Non-permitted sources are diffused, areawide sources (e.g., agricultural soil management) or small-scale stationary and exempt sources (e.g., cargo handling equipment) that typically fall outside of

the Air District's direct permitting authority. As a result, GHG emissions from these sources are not systematically reported to the Air District but are estimated based on publicly available throughput or activity data for the Bay Area. The base year emissions estimates, using a bottom-up approach, are commonly derived by applying the following equation. Most of the terms in the equation below are defined above.

Base Year(s) Emissions_{county, pollutant}

$$= \text{Activity Data}_{\text{Air District}} \times \text{Emission Factor}_{\text{pollutant}} \times \text{Fraction}_{\text{county}} \\ \times \text{Fraction}_{\text{in Air District}} \times \text{Control Factor}_{\text{pollutant}} \times \text{GWP}_{\text{pollutant}}$$

Where:

- **Fraction_{county}** is the fraction of total regional emissions (between 0 and 1) estimated to be allocated to a particular county.
- **Fraction_{in Air District}** is an additional allocation (between 0 and 1) to account for the fraction of Solano and Sonoma County emissions that are within the Air District's jurisdiction.

Non-Permitted and Mobile Source Hybrid Approach

For some non-permitted source categories (e.g., vegetation and structural fires, high-GWP gases, etc.) and for most mobile sources (on-road and off-road categories except for the aviation subsector), source-by-source or equipment-level activity data or emission factors at county-scale are often incomplete or unavailable. In such cases, a hybrid (or custom) calculation approach is adopted to utilize a combination of bottom-up estimation and top-down scaling that starts off with a pre-existing bottom-up emissions inventory, developed for a region, state, or the nation. Scaling factors, based on key determinants such as population, housing units, and motor vehicle fuel sales, etc. are derived. These scaling factors are then applied to 1) proportion emissions from the larger inventory to each county in the region (top-down), or 2) adjust estimated emissions to reflect real-world scenarios. The scaling approach is explained with the formula below. A few of the terms in the equation below have been defined previously.

Base Year(s) Emissions_{county, pollutant}

$$= \text{Emissions}_{\text{pre-existing, pollutant}} \times \text{Scaling Factor}_{\text{Air District}} \\ \times \text{Control Factor}_{\text{pollutant}} \times \text{GWP}_{\text{pollutant}}$$

Where:

- **Emissions_{pre-existing pollutant}** is the pre-existing source category emissions inventory developed for the region, state, or nation by USEPA or CARB.
- **Scaling Factor_{Air District}** is a representative fraction of the original inventory emissions (between 0 and 1) developed for the SFBA using activity proxies, surrogate socioeconomic indicators, pollutant ratios etc. (for example, population, motor vehicle fuel sales, electricity consumed, employment, etc.) to apportion the emissions to the Bay Area county level, or adjust the modeled county-level emissions to reflect a real-world scenario.

2.3. HISTORICAL AND FUTURE PROJECTION

Once base year emissions are determined, historical backcasting and forecasting of emissions relative to the base year are conducted at a source category level, using growth profiles as follows:

$$\text{Historical Emissions}_{year, county} = \text{Base Year(s) Emissions}_{county} \times \text{Growth Factor}_{year, backcasting}$$

$$\begin{aligned} \text{Future Emissions}_{year, county} \\ = \text{Base Year Emissions}_{county} \times \text{Control Factor}_{pollutant} \times \text{Growth Factor}_{year, forecasting} \end{aligned}$$

Where:

- **Base Year(s)** are the years for which activity data are available and emissions are directly derived.
- **Historical** refers to all years prior to the base year(s) where activity data are unavailable and emissions are extrapolated from the base year(s) emissions.
- **Future** refers to all years following the base year(s) for which the Air District forecasts emissions by applying growth factors.
- **Control Factor** is a ratio (between 0 and 1) to account for estimated additional future control and reduction in base year emissions, beyond effective control in the base year.
- **Growth Factor** is a fractional ratio (between 0 and 1) representing the normalized growth of emissions relative to the base year value. The growth profile is source specific and can be based on projected activity or other socio-economic indicators such as population.

It is important to note that when forecasting emissions, the additional control factor described above is applied to future years only in that scenario where an existing Air District regulation has not reached its full implementation or enforcement by the base year based on the schedule set in the rule.

2.4. QUALITY ASSURANCE PROTOCOL

The development of the SFBA regional GHG inventory aligns with the Air District's work on the Bay Area Regional Climate Action Plan (*BARCAP, 2024*), which required the submission of a regional Priority Climate Action Plan (PCAP)³ in 2024 and the ongoing development of Comprehensive Climate Action Plan (CCAP; *CCAP 2025*). These efforts support the requirements of the USEPA's Climate Pollution Reduction Grants (CPRG) under Assistance Agreement 5D-98T73201-0 (*BARCAP, 2024*).

The PCAP, submitted to USEPA in 2024, was the first deliverable under the CPRG planning grant awarded to the Air District. In accordance with the CPRG guidelines, both the PCAP and CCAP

³ https://www.baaqmd.gov/~/media/files/planning-and-research/climate-protection-program/barcap-page/pcap-documents/final-sf_oakland_berkeley-msa-pcap_ada-compliant-pdf.pdf?rev=f8ace781afa74100a4509d1e7a325e29

require the implementation of a robust Quality Assurance Project Plan (QAPP) to ensure the credibility of all technical work products, including the regional GHG inventory. This plan serves to set a foundation for the integrity of resulting policy initiatives and regulatory programs actions based on the inventory data.

A detailed quality assessment protocol is applied to each of the six major emission sectors during the GHG inventory development. This protocol includes:

- Evaluating the quality of existing Air District inventory data
- Conducting a thorough research review of available published data
- Characterizing data sources and methodologies
- Assessing accuracy and relevance of data
- Estimating emissions
- Verifying data quality and methods
- Quantifying potential emissions reduction measures

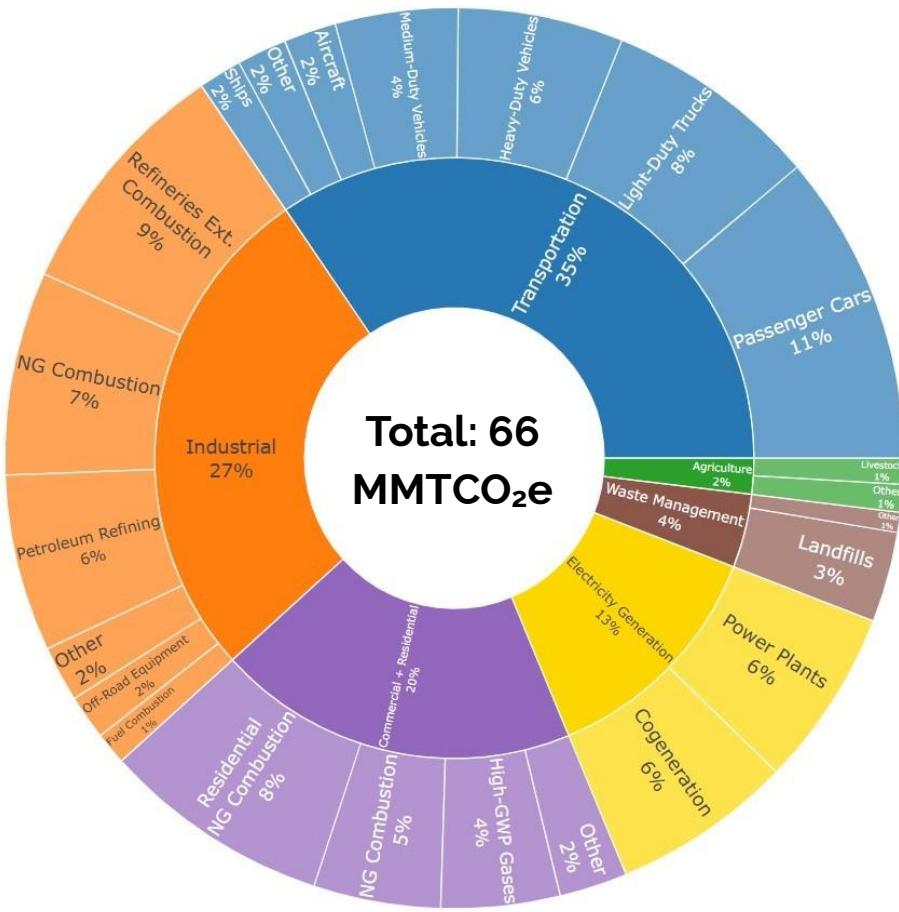
3. EMISSIONS SUMMARIES AND TRENDS

Chapter 3 provides a closer look into the GHG emission inventory, including process and subsector level apportionment, county breakdown by sector, and long-term emissions trends up to 2050.

3.1. EMISSIONS BY PROCESS

The majority of GHG emissions in the SFBA are attributed to fuel combustion (~80%), as summarized in *Table 3.1*. Although chemical and biological process emissions account for only 12% of the region's total GHG emissions, their contributions to Industrial (25%), Waste Management (>99%), and Agriculture (~89%) sectors are much higher. Fugitive leaks and evaporative losses make up the remaining emissions (8%), primarily consisting of CH₄ and high-GWP gases.

Table 3.1. Contribution of Level 2 general processes to the greenhouse gas emissions inventory for 2022.


Region	Emissions (as %)			
	Fuel Combustion	General Process	Evaporative & Fugitive	Other Combustion
SFBA	79.6%	12.4%	8%	<0.1%

3.2. EMISSIONS BY SUBSECTOR

Figure 3.1 presents a sunburst chart that visually represents the major Level 3 subsectors within each of the Level 1 economic sectors contributing to the SFBA GHG emissions inventory. The chart conveys the relative contribution of each subsector as a percentage of total regional GHG emissions. The inner ring displays the proportional emissions share of the six economic sectors, while the outer ring breaks down each economic sector's share into its major contributing subsectors (see *Table 3.2* for the GHG emissions by subsector used to derive *Figure 3.1*).

The following bullets highlight trends and changes in the current 2022 base year GHG emissions compared to the previous 2015 base year inventory (*BAAQMD, 2017*):

- As indicated in *Figure 3.1* and *Table 3.2*, in year 2022, passenger vehicles (~11% of total regional GHG emissions) and light-duty trucks (~8%) contribute the largest share of GHG emissions to the Transportation sector (>32% and >22%, respectively), which is consistent with results from the 2015 GHG inventory.
- In the Industrial sector, combustion of all fuels in boilers, heaters and flares at refineries (9%), non-refinery natural gas combustion (>7%), and petroleum refining process emissions (>6%) are major regional GHG sources. Refinery-related operations account for over 55% of the current Industrial sector GHG emissions. In past inventories, oil refineries accounted for over 70% of GHG emissions in this sector. The transition of two refineries to process renewable

Figure 3.1. Level 1 (sector) and grouped Level 3 (subsector) contributions to the Bay Area greenhouse gas emissions inventory for 2022.

feedstocks and a noted reduction in their throughput are expected to result in overall reduction of Industrial sector GHG emissions in the future. The sector may see further reductions in GHG emissions from the petroleum refining subsector as gasoline consumption in the Transportation sector continues to decline.

- Combustion of natural gas in the residential subsector (8%) and commercial subsector (5%) are the major sources of GHGs in the Commercial + Residential sector. Emissions in this sector are predicted to decline as regional regulations requiring the use of zero-NO_x appliances come into effect (see *Emissions Trends*).
- Power plants and Cogeneration combined (13%) are major Electricity Generation emissions sources in the region. Electrification of buildings and transportation are expected to increase electricity demand, potentially leading to higher GHG emissions from electricity generation. However, this projected increase is mitigated by SFBA's growing reliance on electricity generated from renewable sources.

- About 2% of regional GHG total (or one-third of the Cogeneration subsector emissions) are attributed to self-generated electricity production at petroleum refineries. As regional demand for fossil-based transportation fuels declines, crude oil throughput processed at SFBA refineries is expected to decrease as well, which would lead to a corresponding reduction in GHG emissions from this subsector within the Electricity Generation sector.
- Fugitive emissions from fluorinated high-GWP gases across all sectors account for 6-7% of the regional GHG inventory.
- Landfills constitute the largest share of GHG emissions within the Waste Management sector and are also the largest source of CH_4 emissions, although they only account for a little more than 3% of the total regional GHG inventory.

Presently, the Transportation sector only accounts for GHG emissions from the combustion (end-use) of fossil fuels (e.g., tailpipe emissions from on-road motor vehicles, fuel combustion exhaust from ships and airplanes, etc.). However, every lifecycle stage of fossil fuel extraction, processing, and end-use generates GHG emissions. While the SFBA has negligible fossil fuel extraction sources, processing of fossil fuels at the region's refineries contributes significantly to the Industrial sector emissions, accounting for over 55% (~10 MMTCO₂e) of the sector's total GHG emissions. In addition, on-site cogeneration of electricity at these refineries for internal use, categorized under the Electricity Generation sector, adds another 1.4 MMTCO₂e or 15% of that sector's total. When combined, the GHG emissions associated with both production (extraction and processing) and consumption (combustion) of fossil fuels for transportation account for over half (52%) of the total regional GHG emissions.

Table 3.2. Sector and subsector contributions to the Bay Area greenhouse gas emissions inventory for 2022.

Sector	Sub-sector	Emissions (MMTCO ₂ e)	Emissions (% in sector)	Sector	Sub-sector	Emissions (MMTCO ₂ e)	Emissions (% in sector)
Transportation	Passenger Cars	7.36	32.4%	Industrial	Refinery Combustion – All Fuels - Boilers, Heaters and Flares	5.78	32.2%
	Light-Duty Trucks	5.08	22.4%		Non-Refinery Combustion - Natural Gas - Boilers, Heaters and Furnaces	4.80	26.8%
	Heavy-Duty Vehicles	3.91	17.2%		Petroleum Refining	4.18	23.3%
	Medium-Duty Vehicles	2.90	12.8%		Off-Road Equipment	1.06	5.9%
	Aircraft	1.24	5.5%		High-GWP Gases	0.63	3.5%
	Ships	0.99	4.4%		Other (Non-Refinery Combustion - Natural Gas - Boilers, Heaters and Furnaces, Refinery and Non-Refinery Combustion – All Fuels - Turbines & Engines etc.)	1.48	8.3%
	Other (High-GWP Gases, Buses, etc.)	1.22	5.4%		Total	17.93	
	Total	22.70					
Electricity Generation	Cogeneration	4.26	50.4%	Commercial + Residential	Residential Combustion - Natural Gas	5.40	42.1%
	Power Plants	4.18	49.5%		Commercial Combustion – Natural Gas	3.00	23.4%
	Transmission/Distribution	0.01	0.1%		High-GWP Gases	2.81	21.9%
	Total	8.45			Other (Fuel Distribution, Natural Gas Leakage etc.)	1.61	12.6%
					Total	12.82	
Waste Management	Landfills	2.13	81.6%	Agriculture	Livestock	0.61	48.4%
	Domestic Wastewater Treatment	0.32	12.3%		Agricultural Soil Management	0.52	41.3%
	Other (Composting, Industrial Wastewater Treatment, etc.)	0.16	6.1%		Other (Agricultural Equipment, etc.)	0.13	10.3%
	Total	2.61			Total	1.26	

3.3. EMISSIONS BY COUNTY

Table 3.3 provides a detailed breakdown of the distribution of GHG emissions by county across the SFBA region.

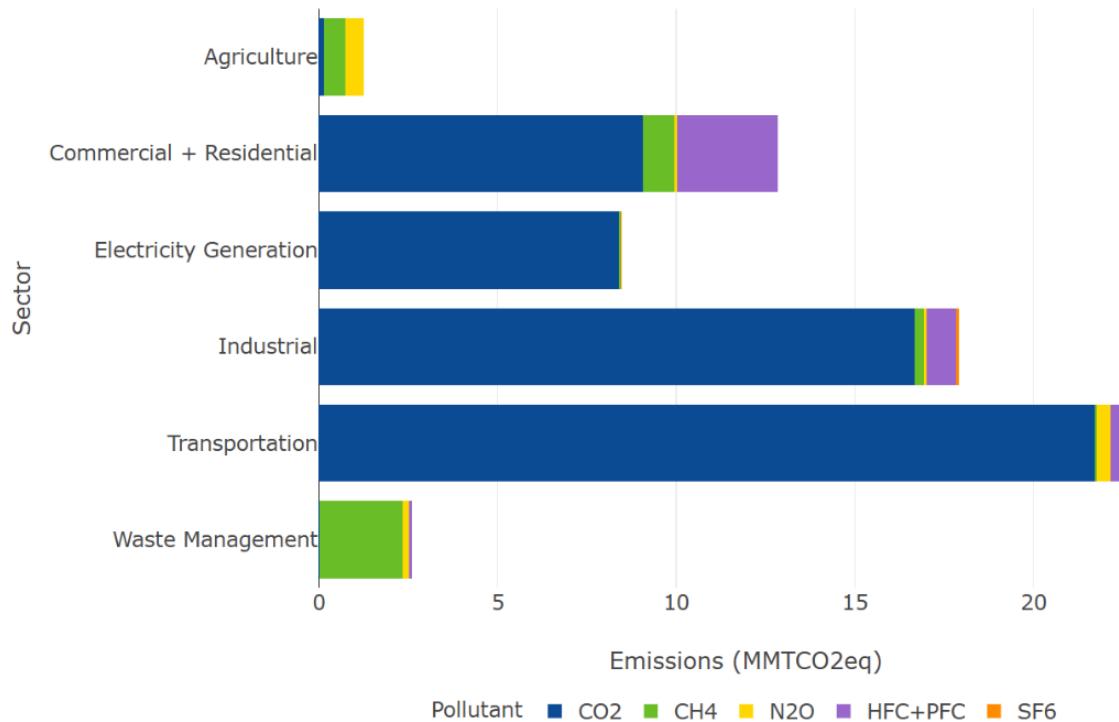

- Most of SFBA's refineries (Industrial sector) and power plants (Electricity Generation sector) are located in Contra Costa county. The demand for natural gas in this county is therefore relatively high (*Table 1.1* in *Chapter 1*) and the county's GHG emissions consequently account for 37% of the Bay Area's regional total GHG emissions. The concentration of heavy industry and dependence on natural gas also make Contra Costa County one of the few counties in the SFBA where the Transportation sector is not the primary source of GHG emissions at the county level.
- Similarly, Solano County's largest source of GHG emissions is the Industrial sector due in part to the presence of refinery operations. Emissions from the Transportation sector are less than half those from the Industrial sector.
- Alameda, Marin, Napa, Santa Clara, San Mateo and Sonoma counties, which have fewer heavy industry, follow a traditional trend with most of the GHG emissions coming from the Transportation (vehicle fuel-use) and Commercial + Residential (space- and water-heating) sectors. The GHG emissions of these two sectors in these counties are proportionally aligned with vehicle registration counts and the county population (shown in *Table 1.1*), respectively.
- Commercial + Residential sector emissions are the largest GHG source in San Francisco county exceeding the Transportation sector. This is primarily due to the prevalence of commercial real estate and office spaces in the county, which drives up natural gas combustion-related GHG emissions from space- and water- heating, while the high urban density and a robust public transportation network drives down the demand of and need for private vehicles in the county.

Table 3.3. Sector contributions to the Bay Area greenhouse gas emissions inventory for each county for 2022.

County	Sector	Emissions (MMTCO ₂ e)	Emissions (% in county)	County	Sector	Emissions (MMTCO ₂ e)	Emissions (% in county)
Alameda	Agriculture	0.12	1.2%	San Mateo	Agriculture	0.05	0.9%
	Commercial + Residential	2.47	24.5%		Commercial + Residential	1.58	30.8%
	Electricity Generation	0.55	5.5%		Electricity Generation	0.03	0.6%
	Industrial	0.87	8.6%		Industrial	0.25	4.8%
	Transportation	5.53	54.9%		Transportation	2.74	53.2%
	Waste Management	0.54	5.3%		Waste Management	0.49	9.6%
	Total	10.09			Total	5.15	
Contra Costa	Agriculture	0.22	0.9%	Santa Clara	Agriculture	0.12	1.0%
	Commercial + Residential	1.86	7.7%		Commercial + Residential	2.99	25.6%
	Electricity Generation	6.15	25.5%		Electricity Generation	1.36	11.6%
	Industrial	12.15	50.5%		Industrial	1.22	10.4%
	Transportation	3.34	13.9%		Transportation	5.39	46.1%
	Waste Management	0.36	1.5%		Waste Management	0.61	5.2%
	Total	24.08			Total	11.69	
Marin	Agriculture	0.17	8.4%	Solano (Bay Area Air District portion only)	Agriculture	0.15	3.0%
	Commercial + Residential	0.60	29.2%		Commercial + Residential	0.43	8.3%
	Electricity Generation	0.01	0.4%		Electricity Generation	0.27	5.2%
	Industrial	0.04	1.9%		Industrial	2.89	55.7%
	Transportation	1.08	53.0%		Transportation	1.27	24.5%
	Waste Management	0.14	7.1%		Waste Management	0.18	3.4%
	Total	2.05			Total	5.19	
Napa	Agriculture	0.14	13.3%	Sonoma (Bay Area Air District portion only)	Agriculture	0.27	11.0%
	Commercial + Residential	0.26	24.2%		Commercial + Residential	0.64	25.7%
	Electricity Generation	0.01	1.3%		Electricity Generation	0.00	0.2%
	Industrial	0.11	9.7%		Industrial	0.17	7.1%
	Transportation	0.50	45.7%		Transportation	1.21	48.8%
	Waste Management	0.06	5.9%		Waste Management	0.18	7.4%
	Total	1.09			Total	2.48	
San Francisco	Agriculture	0.01	0.2%	San Francisco	Industrial	0.21	5.3%
	Commercial + Residential	2.00	50.3%		Transportation	1.64	41.3%
	Electricity Generation	0.08	2.0%		Waste Management	0.04	0.9%
	Total	3.97					

3.4. EMISSIONS BY POLLUTANT

Figure 3.2 provides a breakdown of the GHG emissions by pollutant in million metric tons of CO₂ equivalents for the six economic sectors.

Figure 3.2. Pollutant contributions by sector to the Bay Area greenhouse gas emissions inventory for 2022.

- CO₂ is the predominant GHG pollutant representing 85% of the GHG emissions in the SFBA, mostly from combustion of fuels from goods movement and passenger cars in the Transportation sector, space heating in the Commercial + Residential sector, power production in the Electricity Generation sector, and petroleum refining in the Industrial sector.
- About half of SFBA CH₄ emissions (>6% of the regional GHG inventory) are emitted from the landfill subsector in the Waste Management sector; however, recent measurement studies have indicated that the real-world emissions may be higher than what is estimated using a bottom-up inventory approach (see *Chapter 4 – Uncertainties and Future Improvements*).
- About 43% of all N₂O emissions in the SFBA can be attributed to the Agriculture sector, mostly due to fertilizer use.

- Nearly 7% of regional GHG emissions are attributed to leakages and fugitive losses of fluorinated high-GWP gases (including HFCs, PFCs, CFCs, HCFCs, and SF₆), a majority of which occur in the Commercial + Residential sector. With the adoption of SB1206 in 2022, HFCs will be phased-out in California by 2033, to be replaced with lower-GWP and/or non-GHG options (SB1206, 2022). The regulation will not impact existing appliances that use high-GWP gases as refrigerants, solvents, or aerosols until they are replaced or re-filled (SB1206 prohibits the sale of bulk virgin HFCs while allowing the sale of reclaimed HFCs).

3.5. EMISSIONS TRENDS

Figure 3.3 presents a time-series plot of historical, base year, and forecasted GHG emissions by sector from 2000 to 2050.

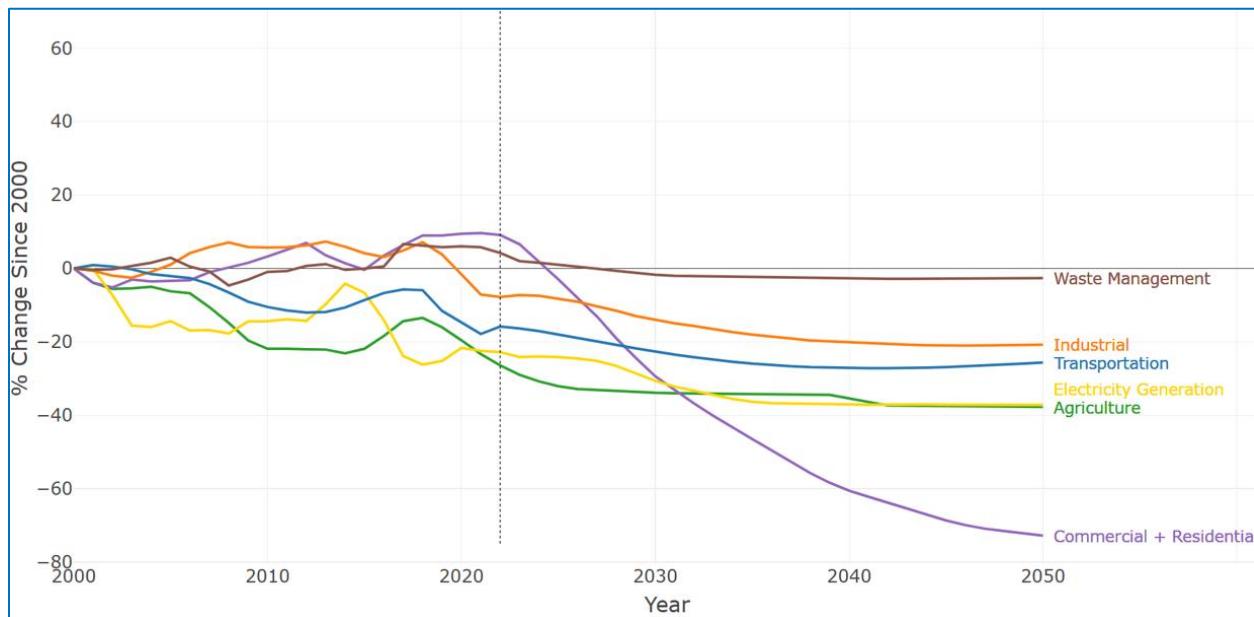


Figure 3.3. Time series of overall change (in percentage, relative to 2000 level) in Bay Area's greenhouse gas emissions by sector.

Historical Trends

- SFBA's total GHG emissions have dropped from 76.1 MMTCO₂eq in 2000 to 65.8 MMTCO₂eq in 2022, representing a 13.5% change, primarily resulting from reduction in emissions in the Transportation (-24%), Industrial (-12%), and Electricity Generation (-20%) sectors.
- The decline in GHG emissions from the Electricity Generation sector is largely driven by the growing proliferation of renewable energy, which has reduced SFBA's reliance on natural gas for power production. This trend is further strengthened by an increase in residents

opting to purchase cleaner and renewable energy through public Community Choice Aggregators (CCA, 2025).

- Over the past two decades, declining natural gas use in electricity generation has been offset by the increased demand for natural gas use for space- and water- heating in the Commercial and Residential sector, driven by the SFBA's tech-driven economic growth and rising population.

Forecasts

- Projected business-as-usual annual GHG emissions by 2050 are expected to decline in the SFBA across major sectors including Transportation (-12%), Industrial (-15%), and Electricity Generation (-18%), relative to year 2022. This anticipated trend reflects the impact from California's aggressive reduction of fossil fuel reliance and promotion of zero-emission transportation (CARB, 2022), the state's cap and trade system that disincentivizes and puts a cap on 'allowed' Industrial sector GHG emissions (CARB, 2018), and the continuing decarbonization of SFBA's electric power generation mix as evident from California Energy Commission's retail electricity annual power content label data (CEC, 2023a).
- In comparison, annual GHG emissions of the Commercial + Residential sector is currently expected to decline up to 75% by 2050. This is primarily due to the Air District's Regulation 9 Rule 4 (BAAQMD, 2023a) and Regulation 9 Rule 6 (BAAQMD, 2023b), which require new water heaters and furnaces to meet a zero-NO_x emissions standard starting with water heaters in 2027. Currently, only water and space heaters operating on electricity can meet this standard, and thus there are substantial projected GHG co-benefits. Those co-benefits may not be fully realized if alternative natural gas-fired appliances which can meet the zero-NO_x emissions standard are used instead.
- It is expected that high-GWP emissions will decline significantly as state regulations like SB1206 expedite the phase out of HFCs in California by 2033, and result in eventual replacement with lower-GWP and/or non-GHG options (SB1206, 2022).

4. UNCERTAINTIES AND FUTURE IMPROVEMENTS

The current GHG inventory update reflects methodological advancements over the previous base year 2015 inventory (*BAAQMD, 2017*). Nonetheless, limitations remain in the latest emissions estimation—ranging from incomplete datasets and uncertain assumptions to high variability in some source categories. Understanding these limitations is essential for accurate interpretation and proper application of emissions data. Below are several illustrative, though not exhaustive, examples of limitations and considerations:

- **Uncertainty in Estimations:** All emissions inventories involve qualitative and quantitative uncertainties. Source categories estimated using top-down scaling methods from statewide or national inventories often have higher uncertainties due to coarse spatial and temporal resolution.
- **Variability in Emission Factors:** Emission factors, particularly for fugitive and leak-related sources, can vary widely due to differences in operational practices and equipment performance. These emission factors are often derived from limited or outdated reference data and research, which may not reflect current field conditions. As a result, emission estimates based on these factors may differ significantly from source test results and may also diverge from estimates generated through other measurement-based methods.
- **Data Lag Between Base Year and Release Year:** The estimation of emissions inventory is always evolving, because there is an inherent lag between the base year chosen for inventory development and its release year, following complete quality assurance and review process. The base year is usually selected to be the year for which the most recent and complete datasets are readily available during inventory development. However, compiling the inventory involves time-consuming processes, including updating methodologies, aggregating and validating data, conducting quality assurance, and preparing supporting documentation. For example, the current inventory estimates for the Transportation sector are based on CARB's EMFAC2021 model. CARB has released the updated EMFAC2025 model (May 2025), which incorporates revised vehicle activity data, updated emission factors, and the effects of newly adopted on-road mobile source regulations for the 2021–2024 period. These updates are not reflected in the current inventory yet but will be incorporated in future inventory updates.
- **Forecasting assumptions:** Emission forecasts assume business-as-usual trends that consider routine operations only and regulations currently adopted and in-force. These projections do not account for unexpected emission incidents, socioeconomic disruptions (e.g., pandemics, economic recessions), or future policy statutory or regulatory changes. This is also a notable difference from the approach taken in the previous GHG emissions inventories (*BAAQMD, 2017*), which anchored on a scenario that included some "likely" policies.

- **Uncertainties in CH₄ emissions inventories:** Measurement studies performed within the Bay Area and in California (*Jeong et al., 2016; Duren et al., 2019; Guha et al., 2020*) indicate that methane emissions from waste management processes (including landfills, wastewater treatment and composting) and from refineries are likely being significantly underestimated in the bottom-up inventories. Methodological improvements are needed to more accurately quantify emissions from these subsectors in future inventories.
- **Classification of Biogenic CO₂:** In line with CARB protocols (*CARB, 2016*), CO₂ emissions from biogenic sources such as ethanol combustion, landfill biogas, or organic decay from composting and landfills are excluded from total anthropogenic GHG emissions. These emissions are estimated and reported as biogenic CO₂; they are considered part of the natural carbon cycle and therefore excluded from the inventory totals. However, CH₄ emissions from these sources are considered anthropogenic and are included in the inventory, as these emissions are assumed to not have occurred if the carbon from the feedstock (or source) had decomposed naturally. Similarly, wildfire CO₂ emissions are also excluded, even if their higher frequency and intensity in the state is indirectly linked to anthropogenic climate change.
- **Scope of Electricity Generation emissions:** The regional inventory includes direct emissions from electricity generation facilities located within the SFBA, regardless of where the electricity is consumed. These emissions fall under the regulatory jurisdiction of the Air District. In contrast, indirect emissions from electricity imported into the region (generated outside the SFBA and whether fossil- or non-fossil-based) are excluded from this inventory to maintain a production-based accounting framework aligned with the Air District's regulatory jurisdiction.
- **Scope of Landfill subsector emissions:** Similar to the issue of import and export of electricity, it is currently assumed that all waste produced in the SFBA is processed and buried at landfills that are located within the Air District's jurisdiction. If a significant amount of SFBA's waste is transported to landfills outside of Bay Area's boundaries, the landfill GHG emissions total could be quite different from that calculated on a per-capita consumption basis.
- **Aircraft subsector emissions methodology:** The current inventory for the aviation subsector has a base year of 2023 (due to greater representativeness of data following the COVID pandemic) and uses Air District methodologies. However, future inventory updates will align with a standardized statewide model (*CAI, 2024*) that is under development, improving consistency with statewide planning efforts and potential aviation-related regulatory initiatives.

5. REFERENCES

ABAG. 2021. Plan Bay Area 2050, Association of Bay Area Governments.
<https://planbayarea.org/finalplan2050>

BAAQMD. 2017. Greenhouse Gas Emission Estimates and Draft Forecasts, Bay Area Air Quality Management District. Available: https://www.baaqmd.gov/~/media/files/planning-and-research/plans/2017-clean-air-plan/ghg_emissions_and_forecasts_draft.pdf

BAAQMD. 2023a. Regulation 9 Rule 4: Nitrogen Oxides from Natural Gas-Fired Furnaces, Bay Area Air Quality Management District. <https://www.baaqmd.gov/rules-and-compliance/rules/reg-9-rule-4-nitrogen-oxides-from-fan-type-residential-central-furnaces>

BAAQMD. 2023b. Regulation 9 Rule 6: Nitrogen Oxides Emissions from Natural Gas-Fired Water Heaters, Bay Area Air Quality Management District. <https://www.baaqmd.gov/rules-and-compliance/rules/reg-9-rule-6-nitrogen-oxides-emissions-from-natural-gas-fired-water-heaters>

BARCAP, 2024. Bay Area Regional Climate Action Planning Initiative, Bay Area Air Quality Management District. <https://www.baaqmd.gov/plans-and-climate/climate-planning/bay-area-regional-climate-action-planning-initiative>

CADF. 2024. E-5 Population and Housing Estimates, 2024, California Department of Finance.
<https://dof.ca.gov/forecasting/demographics/estimates/e-5-population-and-housing-estimates-for-cities-counties-and-the-state-2020-2024/>

CAI. 2024. California Aircraft Emissions Inventory Draft Technical Documentation for Public Comment, California Air Resources Board. https://ww2.arb.ca.gov/sites/default/files/2024-10/CAL2024%20-%20Main%20Document_Final1021_ada.pdf

CALSWIS. 2024. Facility Database, California Solid Waste Information System.
<https://www2.calrecycle.ca.gov/SolidWaste/Site/DataExport>

CARB. 2016. California's 2000-2014 GHG Inventory - Technical Support Document, California Air Resources Board.
https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/ghg_inventory_tsd_00-14.pdf

CARB. 2018. Cap and Trade Program, California Air Resources Board. <https://ww2.arb.ca.gov/our-work/programs/cap-and-trade-program/about>

CARB. 2019. Regulation for the Mandatory Reporting of Greenhouse Gas Emissions, California Air Resources Board. <https://ww2.arb.ca.gov/sites/default/files/classic/cc/reporting/ghg-rep/regulation/mrr-2018-unofficial-2019-4-3.pdf>

CARB. 2022. 2022 Scoping Plan. 2022 Scoping Plan for Achieving Carbon Neutrality, California Air Resources Board. <https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-scoping-plan-documents>

CARB. 2024. California's 2000-2022 GHG Inventory Data, 2024 Edition, California Air Resources Board. <https://ww2.arb.ca.gov/applications/california-ghg-inventory-documentation>

CCA. 2025. Community Choice Aggregation in California. <https://cal-cca.org/powered/>

CCAP. 2025. Comprehensive Climate Action Plan, Bay Area Regional Climate Action Planning Initiative, Bay Area Air Quality Management District. <https://www.baaqmd.gov/en/plans-and-climate/climate-planning/bay-area-regional-climate-action-planning-initiative/comprehensive-climate-action-plan>

CEC. 2023a. Annual Power Content Labels, California Energy Commission. <https://www.energy.ca.gov/programs-and-topics/programs/power-source-disclosure-program/power-content-label>

CEC. 2023b. Natural Gas Usage in MMTherms by County and by Residential and Non-Residential sectors, 1990 – 2022, California Energy Commission. Downloaded September 23, 2023. <http://www.ecdms.energy.ca.gov/gasbycounty.aspx>

CEPAM. 2024. California Emissions Projection Analysis Model 2024, CEPAM2019v1.04, California Air Resources Board. <https://ww2.arb.ca.gov/applications/cepam2019v1-04-standard-emission-tool. Accessed 2024.>

Duren et al. 2019. California's methane super-emitters. *Nature*. <https://www.nature.com/articles/s41586-019-1720-3>

EMFAC. 2021. California Emissions Factor Model, (v1.0.2) Model Technical Documentation, California Air Resources Board. https://ww2.arb.ca.gov/sites/default/files/2021-08/emfac2021_technical_documentation_april2021.pdf.

Guha et al. 2020. Assessment of Regional Methane Emission Inventories through Airborne Quantification in the San Francisco Bay Area. *Environmental Science & Technology*. <https://pubs.acs.org/doi/abs/10.1021/acs.est.0c01212>

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyers (eds.)]. Intergovernmental Panel for Climate Change, Geneva, Switzerland, 151 pp. Available here: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf

Jeong et al., 2016. Estimating methane emissions in California's urban and rural regions using multitower observations. *Journal of Geophysical Research Atmospheres*. <https://doi.org/10.1002/2016JD025404>

Nesser et al. 2024. High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills. *Atmospheric Chemistry & Physics*. <https://acp.copernicus.org/articles/24/5069/2024/>

OFFROAD. 2021. Off-Road Web Platform, (V1.1.0), California Air Resources Board.

<https://arb.ca.gov/emfac/offroad/emissions-inventory/17d3a7653154d39781872196b095d594fe3496bc>

QAPP, 2024. Quality Assurance Project Plan for The Bay Area Climate Action Planning Initiative, Bay Area Air Quality Management District. Grant Number: 98T73201; submitted on: 12-27-2023; approved on: 01-04-2024; available on request.

SB1206. 2022. Senate Bill No. 1206, Skinner. Hydrofluorocarbon gases: sale or distribution.
<https://ww2.arb.ca.gov/our-work/programs/sb-1206/about>

UNEP. 2025. About Montreal Protocol, United Nations Environment Program.
<https://www.unep.org/ozonaction/who-we-are/about-montreal-protocol>

USDA. 2024. National Agricultural Statistics Service - Quick Stats, United States Department of Agriculture. <https://quickstats.nass.usda.gov/>

USDS. 2025. The Montreal Protocol on Substances that deplete the Ozone layer, Office of Environmental Quality, United States Department of State. <https://www.state.gov/the-montreal-protocol-on-substances-that-deplete-the-ozone-layer>

USEPA. 2024. AP-42: Compilation of Air Emissions Factors from Stationary Sources, United States Environment Protection Agency. <https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors-stationary-sources>.

USEPA. 2025. Inventory of U.S. Greenhouse Gas Emissions and Sinks, United States Environmental Protection Agency. <https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks>

APPENDIX A – SOURCE COMPOSITION OF SECTORS

For the San Francisco Bay Area GHG emissions inventory, six major sectors have been identified based on an economic classification. These sectors include:

- Transportation,
- Industrial,
- Commercial + Residential,
- Electricity Generation,
- Waste Management, and
- Agriculture.

The sectors are further divided into sub-sectors (see *Appendix B*). The definition and source composition of the economic sectors generally align with the USEPA's classification of GHG emissions sources⁴ with some exceptions and deviations to account for differences at the regional level. Definitions for each sector are provided below.

Transportation

The emissions in this sector are comprised of direct and indirect combustion, non-combustion, and process emissions, occurring from complex machines including cars, trucks, aircraft, railroads, ships, off-road equipment etc., whose primary objective is to transport people and goods from one place to another. The emission sources in this sector include, but are not limited to, the following:

- Emission from passenger cars, light duty vehicles, medium duty vehicles, and heavy-duty vehicles,
- Emissions from aircraft, marine vessels, and locomotives,
- On-road and off-road emissions sources which act as a residence / home are also included in the transportation sector (e.g., motorhomes, houseboats, RVs),
- Emissions from the use of lubricants to perform maintenance on on-road and off-road mobile equipment, and
- Emissions of high-GWP gases resulting from the use of air conditioners in vehicles and refrigerated transport.

Emission sources not included in this sector are:

⁴ Sources of Greenhouse Gas Emissions, <https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions>

- On-road and off-road emissions sources with wheels and/or ability to move if the primary objective is to provide a service, e.g., lawn mowing and garden equipment (included in Commercial + Residential sector) or tractors (included in Agriculture sector),
- Emissions from transportation of natural gas via pipelines and water through water distribution network (this is considered a service to the general population for commercial, residential, and industrial purposes, and both combustion and non-combustion emissions are excluded from this sector),
- Emissions from off-road equipment that pertains to agricultural activities, and from construction, mining, and industrial activities (included in Agriculture and Industrial sectors, respectively), and
- Fugitive emissions from all kinds of fueling activities of primary sources included in the Transportation sector as well as combustion emissions from support equipment for the fueling (and other support) infrastructure. These emissions are accounted for under Commercial + Residential sectors (e.g., gasoline dispensing facilities, aircraft ground support equipment, etc.).

Industrial

This sector consists of emissions related to the production of goods and raw materials. This sector includes:

- Direct GHG process emissions that originate at the facility, primarily from combustion processes,
- Emissions resulting from chemical reactions in metal, cement, and mineral production, and
- Leaks from industrial processes, equipment, natural gas, and petroleum systems, including that of high-GWP gases.

Exceptions not included in this sector are:

- Indirect emissions that occur off-site but are associated with the facility's use of electricity (these are included in the Electricity Generation sector), and
- Emissions from food processing of agricultural products, for example, ethanol emissions from wineries and emissions from food processing industries, etc. (included in the Agriculture sector).

Commercial + Residential

This sector includes the following direct emissions from homes, commercial businesses, office spaces, places of business, worship, and congregation, entertainment venues, etc. (excluding those classified as agricultural and industrial activities):

- Direct emissions resulting from fossil fuel combustion for heating, cooling, and cooking needs, for transport and management of waste and wastewater, and leaks of refrigerants from equipment.
- Direct emissions from all maintenance and service equipment, e.g., lawn mowing equipment, leaf blowers, floor cleaning and polishing, etc.
- Direct emissions from use of personal products and consumer goods within commercial and residential facilities.

Emissions sources that are not reported in this sector include:

- Indirect emissions produced by burning fossil fuel at a power plant to generate electricity (that occurs offsite) which is meant for consumption in residential and commercial facilities, such as lighting and for appliances (these emissions are included in Electricity Generation),
- Landfill waste emissions (like CH₄) that are generated from organic waste that originated at commercial and residential facilities (these emissions are included in Waste Management),
- On-site wastewater treatment plant emissions of CH₄ and N₂O, or emissions from sewer network (these emissions are included in Waste Management),
- Energy required to produce and transport clean water consumed at commercial and residential facilities (these emissions are included in Electricity Generation),
- Anaerobic digestion and composting emissions of CH₄ at biogas facilities that supply energy/product to commercial and residential buildings and venues (these emissions are included in Waste Management),
- Emissions/sinks from production of construction materials, for example, upstream emissions from production of cement, emissions and sinks from land use changes, etc. (these emissions are included in Industrial), and
- Direct emissions from onsite energy combustion and electricity production for energy-intensive warehouses and factories are typically included in the Industrial sector.

Electricity Generation

This sector includes emissions from activities and processes involved in the generation, transmission, and distribution of electricity within the San Francisco Bay Area. These emissions are direct and involve combustion of fossil fuels, such as coal, oil, and natural gas, etc., in a centralized power generation plant to produce electricity, or fugitive/leak-related emissions. This definition is independent of whether the produced electricity is consumed within the Bay Area or imported.

Other sources include:

- Emissions from cogeneration facilities producing both heat and power are included in this sector, even if this heat and power is being consumed within the Industrial sector.

- Emissions of sulfur hexafluoride (SF₆), which is an insulating chemical used in electricity transmission and distribution equipment, and
- Onsite emissions from non-fossil fuel source generation facilities, including nuclear, and renewable energy sources like hydroelectricity, biomass, and wind.

A source that is not included in this sector is:

- Indirect emissions from the production of electricity imported from outside of the Bay Area and used in the region. These emissions are not accounted for in the SFBA's GHG emissions inventory.

Waste Management

This sector includes direct and fugitive emissions from centralized waste management activities that focus on solid waste, wastewater, industrial, and non-hazardous waste. These activities usually occur at municipal solid waste (MSW) landfills, industrial waste landfills, industrial wastewater treatment, publicly owned wastewater treatment plants (POTWs), composting operations, anaerobic digesters, biogas facilities, and can also include processes like manure spreading / application, waste incineration, etc. Other direct emissions included are as follows:

- Direct emissions from combustion activities occurring at waste management facilities to provide heat and power,
- Fugitive emissions from the urban collection network of sewers, waste pipes, manholes, etc., and,
- Emissions from standalone septic systems.

Sources not included in this sector are:

- Waste management emissions occurring outside of the Bay Area from management of waste originating within the region;
- Direct emissions from on-site waste treatment at commercial and residential facilities (included in the Commercial and Residential sector);
- Direct emissions from manure management at animal and dairy farms (included in the Agriculture sector); and
- CO₂ emissions from the combustion of biomass, which is considered biogenic.

Agriculture

This sector includes direct emissions from all agricultural and farming activities related to crop and livestock production including land and soil management activities, such as application of synthetic and organic fertilizers, the growth of nitrogen-fixing crops, the drainage of organic soils, livestock

enteric fermentation, manure management and storage, soil liming, burning of crop residues, and rice cultivation. All on-site combustion-related activities supplying energy to agricultural equipment (like diesel generators and pumps) and for farm-related activities are included. All emissions sources with wheels and/or ability to move are included if the primary objective is to provide a service to the agricultural industry (e.g., airplane fertilizer application, mechanical cotton picker, etc.). Also included in this sector are wildfires over natural lands and forests.

Organization of sources of high GWP fluorinated gases

The group of emission sources termed fluorinated gases or high-GWP compounds are emitted almost entirely from human-related activities. Their primary sources include:

1. Use of substitutes for ozone-depleting substances (referred to as ODSS compounds) - Hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) are ODSS that are considered replacements for chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) because they do not deplete the stratospheric ozone layer. ODSS are high-GWP gases and contribute to the greenhouse gas effect (CFCs and HCFCs are also high-GWP gases). Example applications include refrigerants, aerosol propellants, foam blowing agents, solvents, and fire retardants.
2. Industrial processes such as aluminum and semiconductor manufacturing - PFCs are produced as a byproduct of aluminum production and are used in the manufacturing of semiconductors. Sulfur hexafluoride (SF_6) is used in magnesium processing and semiconductor manufacturing. Nitrogen trifluoride (NF_3) is used in semiconductor manufacturing. HFC-23 is produced as a byproduct of HCFC-22 production and is used in semiconductor manufacturing.
3. Transmission and distribution of electricity - SF_6 is used as an insulating gas in electrical transmission equipment, including circuit breakers.

The GHG emissions from this group of sources and source categories are not considered as a separate sector, as has been done in the past in the Bay Area region's inventory and in the current statewide California GHG inventory. This is because the prevailing logic for sector-level classification of GHG emissions sources is an economic activity driven classification, rather than a chemical family / pollutant-type based classification. Thus, all source categories associated with this group of emissions are assigned to different sectors based on the following logic:

- ODSS are assigned (under high-GWP gas subsectors) to Commercial + Residential, Transportation, and Industrial sectors based on category hierarchy and end-use information.
- Emissions of PFCs, NF_3 , SF_6 and any other F-gas that is used for product manufacturing or metal production are assigned to the Industrial sector.
- Emissions from SF_6 from electrical transmission equipment are assigned to the Electricity Generation sector.

APPENDIX B - INVENTORY SOURCE CATEGORIZATION

Level 1 – Sector	Level 2 – General Process	Level 3 – Subsector
Transportation	Fuel Combustion	Aircraft
Transportation	Fuel Combustion	Buses
Transportation	Fuel Combustion	Heavy-Duty Vehicles
Transportation	Fuel Combustion	Light-Duty Trucks
Transportation	Fuel Combustion	Locomotives
Transportation	Fuel Combustion	Medium-Duty Vehicles
Transportation	Fuel Combustion	Motorhomes
Transportation	Fuel Combustion	Motorcycles
Transportation	Fuel Combustion	Passenger Cars
Transportation	Fuel Combustion	Ships
Transportation	Fuel Combustion	Transportation Refrigeration Units
Transportation	Fugitive & Evaporative	Refrigeration, Air Conditioning, Aerosols
Transportation	Other Combustion	Vehicle Fires
Commercial + Residential	Fuel Combustion	Airport Ground Support Equipment
Commercial + Residential	Fuel Combustion	Commercial Combustion – Natural Gas
Commercial + Residential	Fuel Combustion	Lawn and Garden Equipment
Commercial + Residential	Fuel Combustion	Light Commercial Equipment
Commercial + Residential	Fuel Combustion	Off-Road Recreational Vehicles
Commercial + Residential	Fuel Combustion	Residential Combustion – Liquid Fuel
Commercial + Residential	Fuel Combustion	Residential Combustion – Natural Gas
Commercial + Residential	Fuel Combustion	Residential Combustion – Wood Burning
Commercial + Residential	Fugitive & Evaporative	Fuels Distribution
Commercial + Residential	Fugitive & Evaporative	Natural Gas Leakage
Commercial + Residential	Fugitive & Evaporative	Refrigeration, Air Conditioning, Aerosols, Foam, Fire Protection
Commercial + Residential	Process	Commercial Cooking
Industrial	Fuel Combustion	Non-Refinery Combustion – Natural Gas – Boilers, Heaters & Furnaces

Industrial	Fuel Combustion	Non-Refinery Combustion – Non-Natural Gas – Boilers, Heaters & Furnaces
Industrial	Fuel Combustion	Off-Road Equipment
Industrial	Fuel Combustion	Refinery & Non-Refinery Combustion – All Fuels – Turbines & Engines
Industrial	Fuel Combustion	Refinery Combustion – All Fuels – Boilers, Heaters & Flares
Industrial	Fugitive & Evaporative	Metal Recycling & Shredding Operation
Industrial	Fugitive & Evaporative	Natural Gas Leakage
Industrial	Fugitive & Evaporative	Refrigeration, Air Conditioning, Aerosols, Foam, Fire Protection
Industrial	Fugitive & Evaporative	Semiconductor Manufacture
Industrial	Other Combustion	Structural Fires
Industrial	Process	Manufacturing
Industrial	Process	Petroleum Refining
Electricity Generation	Fuel Combustion	Cogeneration
Electricity Generation	Fuel Combustion	Power Plants
Electricity Generation	Fugitive & Evaporative	Transmission & Distribution
Waste Management	Fuel Combustion	Landfills
Waste Management	Other Combustion	Incineration
Waste Management	Process	Ancillary Processes
Waste Management	Process	Biosolids Land Application
Waste Management	Process	Composting
Waste Management	Process	Domestic Wastewater Treatment
Waste Management	Process	Industrial Wastewater Treatment
Waste Management	Process	Landfills
Agriculture	Fuel Combustion	Agricultural Equipment
Agriculture	Other Combustion	Agricultural Burns
Agriculture	Other Combustion	Wildfires
Agriculture	Process	Food Processing
Agriculture	Process	Liming
Agriculture	Process	Livestock
Agriculture	Process	Managed Soils

APPENDIX C - REFERENCE DATASETS

Listed below is a list of some major data models, repositories, forecasts, and inventories that have been used to derive and generate emissions estimates for the SFBA regional GHG inventory. This list is not exhaustive and represents the most commonly referenced and utilized datasets.

- Association of Bay Area Governments – Plan Bay Area (*ABAG, 2021*; for regional population, employment and other socio-economic data)
- California Air Resources Board (CARB) GHG Emissions Inventory (*CARB, 2024*; for statewide GHG emissions data from equivalent emission source categories)
- CARB California Emissions Projection Analysis Model database (*CEPAM, 2024*; for emissions data on criteria air pollutants from Air District emission source categories)
- CARB 2022 Scoping Plan (*CARB, 2022*; for forecast and growth profiles)
- CARB EMFAC Web Platform (*EMFAC, 2021*; for data on On-Road Mobile Sources)
- CARB OFFROAD Database (*OFFROAD, 2021*; for data on Off-Road Mobile Sources including Rail Transport and Marine Vessels)
- California Department of Finance (*CADF, 2024*; for data on population and employment statistics)
- California Energy Commission (*CEC, 2023b*; for residential and non-residential fuel and energy consumption data)
- California Solid Waste Information System (*CALSWIS, 2024*; for activity data on Waste Management sector)
- Intergovernmental Panel for Climate Change (*IPCC, 2014*; for Global Warming Potentials)
- United States Department of Agriculture National Agricultural Statistics Service (*USDA, 2024*; for activity data on Agriculture sector)
- United States Environment Protection Agency- AP-42: Compilation of Air Emissions Factors (*USEPA, 2024*)