# Identifying and Quantifying Air Emissions from Organics Recovery Operations in the Bay Area

### **EMISSIONS DETECTION AND ATTRIBUTION**

### 1) Mobile Measurement Approach

- Direct measurement technique – collects and analyzes samples
- Continuous, real-time measurement at emission hotspots
- Measures CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O concentration enhancements
- Spatial scale source or facility-wide



• Perform source attribution with chemical tracers including CO, ethane and <sup>13</sup>C/<sup>12</sup>C (isotopic ratio of carbon in CH<sub>4</sub>)

### 2) Portable Analyzer Surveys

- Battery-operated analyzers for in-situ detection of CH<sub>4</sub> and CO<sub>2</sub> (or NH<sub>3</sub> and H<sub>2</sub>S)
- Direct measurement technique – collects sample and analysis
- Continuous, real-time measurement
- Measures over a wider emission range and hence more suitable for characterizing leaks / vents
- Spatial scale source or facility-wide



### 3) Airborne Remote Sensing

- Aerial measurement of ground methane using spectrometer combined with optical camera imagery
- Detects CH<sub>4</sub> plume and likely source location
- Spatial scale facility-wide or regional
- ٠ Snapshots can be verified with follow-up ground inspection

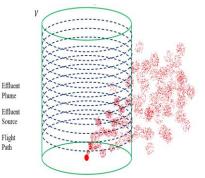


Methane plume over a landfill

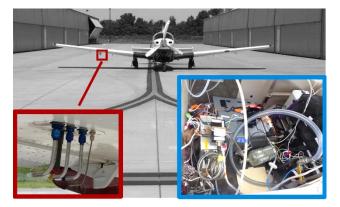




### MASS EMISSIONS FLUX QUANTIFICATION


### 1) Airborne Mass Balance Approach

- Direct measurement technique - collects and analyzes samples
- Continuous, real-time measurement of a snapshot in time
- Spatial scale facility-wide
- Measures CH<sub>4</sub> and CO<sub>2</sub>, and wind speed, direction
- Mass balance algorithm quantifies emission rates

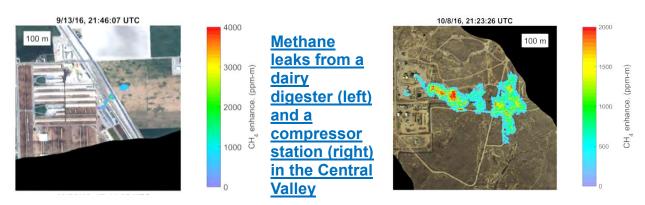

Curtain flights over a Bay Area composting facility

**Courtesy – Scientific Aviation, LLC** 





Sketch of flight path pattern for source leak rate estimation




Plume

Source

Flight Path

### 2) Airborne Remote Sensing with LIDAR Wind Field Observations

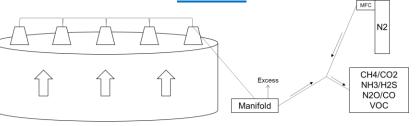


#### Courtesy – NASA JPL AVIRIS-NG; https://ww2.arb.ca.gov/our-work/programs/methane/ab1496-research

- Airborne remote sensing methods to detect and characterize CH<sub>4</sub> emissions at 1-3 m spatial resolution (equipment-scale)
- Initial analysis products include size (expressed as average atmospheric enhancement over path length, ppm-m)
- Integrating over the physical area of the plume yields total observed mass of methane above the ambient background (Integrated Methane Enhancement in kg)
- In-depth analysis yields quantitative point source emissions fluxes and uncertainties

## 3) Process-specific methods like Dynamic Plume (using FTIR Absorption Spectroscopy) combined with VOC characterization using Gas Chromatography / Mass Spectrometry / High-performance UV and Liquid Chromatography

- AgBag enclosed aerated windrows
- Control pressure, ventilation rate
- Sample at single effluent point
- Aggregate effluents from several points across surface
- Combine with volumetric flow


Courtesy – Kirchstetter et al., LBNL





**Biofilters** 

**Compost Windrows** 



### 4) Flux Chamber Sampling Methods

- Traditional and extensively adopted approach
- Species measured include organic air toxics, POC, NH<sub>3</sub>, CH<sub>4</sub>, N<sub>2</sub>O, reduced sulfur compounds etc.



Flux chamber measurements being conducted at various organics recovery facilities in the Bay Area





Courtesy – Schmidt et al.