Review of Current Air Monitoring Capabilities near Refineries in the San Francisco Bay Area

Prepared for: Bay Area Air Quality Management District

By: Eric M. Fujita and David E. Campbell Division of Atmospheric Sciences Desert Research Institute, Nevada System of Higher Education

Objectives

- Identify the primary risk drivers
- Review and evaluate current air monitoring capabilities.
- Develop a matrix of instrumentation, methodologies and/or other exposure assessment tools to:
 - enhance monitoring capabilities
 - provide information about emissions
- Prepare a short report describing the process used and how the matrix was developed.

Identifying primary risk drivers

Risk factors

emissions

Fugitive

Acute

effects

Chronic effects Emissions from normal operations

Potential emissions from upset conditions

Target compounds, RELs, and monitoring methods

					Conti	nuous				Time-ir	ntegrated S	amping	
	Risk Expos (RE	ure Levels EL) ²		Point		Open Path 500m	OpenPath 100m	Area		tegrated Poin (up to 24 hrs)		Monitoring day)
Target Compound	Acute (μg/m3)	Chronic (µg/m3)	Photo- metric	Auto-GC	XRF tape sampler ⁶	UV-DOAS	OP-FTIR ⁷	DIAL	Canister	Chemically active adsorbent	FRM filter sampler	Passive	5 lpm filter sampler
Benzene	1300	60		0.03		3	50	3	0.06			0.3	
1,3 Butadiene		20		0.02		1	10		0.04			0.03	
Formaldehyde	55	9				10	10			$8 \mu g/m^3 h$		0.15	
Acetaldehyde	470	140				20				$6 \mu g/m^3 h$		0.05	
Perchloro- ethylene	20000	35					40					0.02	
Napthalene		9		0.05		2						?	
NO ₂	470	100 ³	0.2			2		25				0.16	
SO ₂	660		0.8			2	10	25				1.5	
H ₂ S	42	10	0.2			0.2						0.15	
Ni	0.2	0.014			0.0002						0.26 μg/m ³ h		0.001
Mn	0.17	0.019			0.0003						0.35 μg/m ³ h		0.001
Cr VI	0.2												
Hg	0.6	0.03			0.0002						0.66 µg/m ³ h		0.0008
As	0.2	0.015			0.0001						0.35 μg/m ³ h		0.001

Current air monitoring capabilities

- Current Air District network consists of 32 locations with 136 instruments
 - 20 staff in Air Monitoring with greater than \$3 million in annual operations and maintenance budget
 - 5 dedicated Quality Assurance staff and 7 laboratory staff support air monitoring activities

Existing air quality monitoring was designed to determine neighborhood or other EPA-defined spatial scale concentration average and range of concentrations for criteria pollutants ($O_{3^{\prime}}$ $SO_{2^{\prime}}$, $NO_{2^{\prime}}$, CO, $PM_{10^{\prime}}$, $PM_{2.5}$) and certain high-priority toxics (benzene, toluene, ethylbenzene, xylenes, 1,3-butadiene, formaldehyde).

"Traditional" methods: Fixed-site Community Monitoring

Other monitoring activities

Refineries are currently required to measure H_2S and/or SO_2 at their fence lines:

- Enforcement action can be taken on measurements
- Sites are audited and data reviewed by the Air District
- Additional pollutants can be monitored simultaneously

US EPA is moving to more source oriented monitoring

- NO₂/CO/PM near roadway monitoring now required
- SO₂ monitoring may be required near sources, depending on emissions and population
- Lead monitoring required at sources emitting more than 0.5 tons per year

Fenceline monitoring

Ambient air quality data provided on the Phillips 66 Rodeo Refinery website is raw data at the time of collection - unchecked data that may contain errors.

Phillips 66 Rodeo Refinery - Fenceline Data

Document Download Center				
	FTIR Systems			UV Systems
Chemical (values in PPB)	South Fence Line	North Fence Line	Chemical (values in PPB)	South Fence Line
System Status	Online	Online	System Status	On
System Type	IMACC	MIDAC	Signal Strength	2
Data Date	2013-06-17	2013-06-17	Data Date	2013-06
Data Time	15:17:49	15:10:58	Data Time	15:17
1,3 Butadiene	ND	ND	Benzene	
Carbonyl Sulfide	ND	ND	Carbon Disulfide	
Total Hydrocarbons	ND	614.5	Ozone	1
Carbon Monoxide	90	45.6	Sulfur Dioxide	
Ethanol	ND	ND	Toluene	
Ethylene	ND	ND	Xylene	
Nitrous Oxide	326.29	290.67		TDLs
Ammonia (NH3)	ND	ND	System Status	On
Mercaptan	ND	ND	Data Date	2013-06
Methane	1836.22	1260.4	Data Time	15:19
MTBE	ND	ND	Signal Strength	6
		1.	H2S	

Organic Gas Detectors						
Instrument (values in %LEL)	Value					
System Status	Online					
Data Date	2013-06-17					
Data Time	15:19:50					
AT-1	0 🔘					
AT-2	0 🔘					
AT-3	0 🔘					
AT-4	0 🔘					
AT-5	0 🔘					
AT-6	0					

Weather Cond	litions
System Status	Online
Date	2013-06-17
Time	15:16:39
Temperature (°F)	71.9
Humidity (%)	54
Dew Point (°F)	54
Wind Speed (MPH)	13
Wind direction from West	-Northwest - 283"

Onl 2171

2013-06-17

15:17:49

ND

ND

ND

ND

ND

ND

Onlin 2013-06-17

15:19:26

6779

ND

Message Archive North

Fence Line

1877

ND

ND

ND

ND

ND

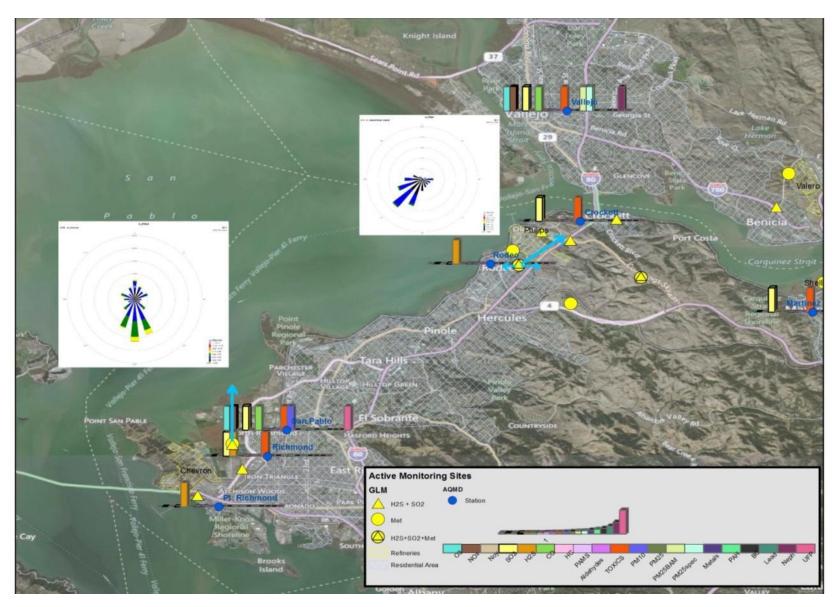
2013-06-17

15:16:08

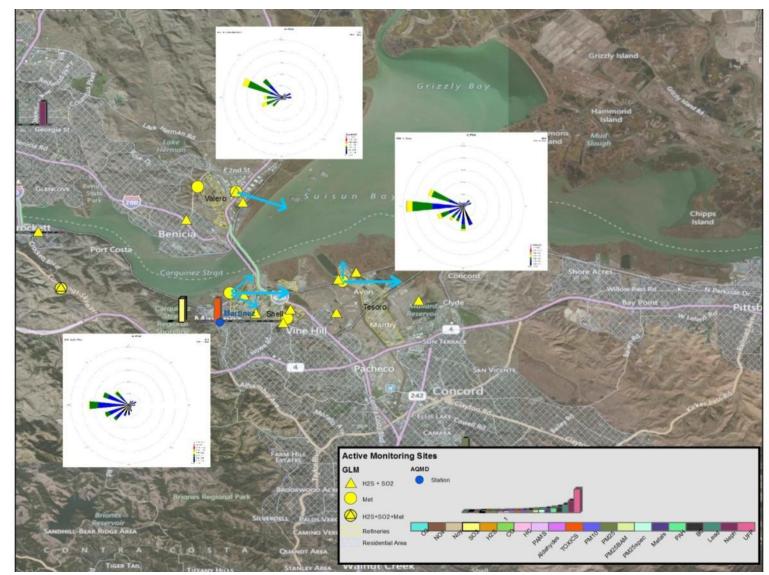
4890

ND

27.645

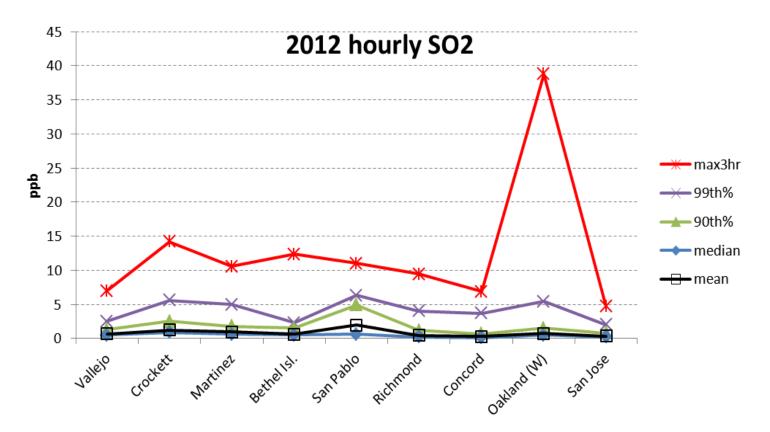

2013-06-17

15:18:31

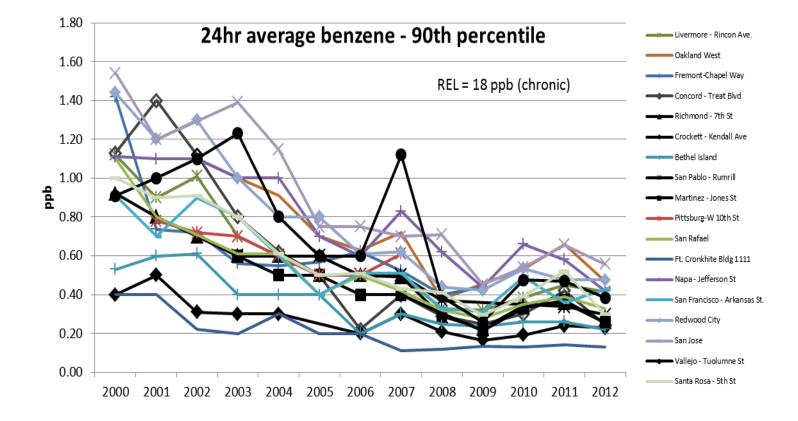


Public access to fenceline monitoring

Richmond Community Air Monitoring Program										
Home Learning Center Resources & Contacts Real-Time Data Report Archive										
Syste m Status										
06/03/2013 16:17 - The scheduled power outage ended earlier than expected. The North Richm ond UV instrument is back in operation.										
Docur	<u>mentDownload Center</u>				Message Arcl					
	Refinery Fence Line Location Chemical	Community Location	entration (PPB)	W eather (Conditions					
	Benzene	Not	hing detected		N					
	<u>Carbon Disulfide</u>	Not	hing detected							
	<u>Hydrogen Sulfide</u>	Not	hing detected							
	<u>Ozone</u>		31	MostlySunny	S					
	<u>Sulfur Dio xide</u>	Not	hing detected	Temperature (° F): 69	Wind Speed (MPH): 9					
	<u>Toluene</u>	Not	hing detected	Humidity (%): 47	Wind Origin: ₩					
	Xylene	Not		Dew Point (°F): 48	Wind Direction (*): 269					



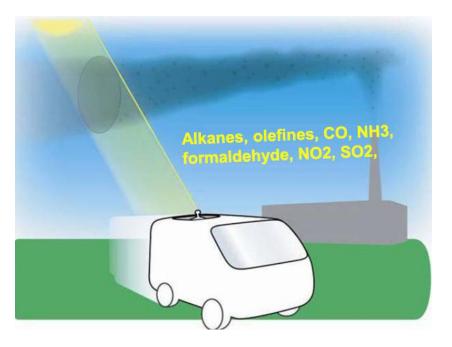
Existing air monitoring with prevailing wind directions (West side)


Existing air monitoring with prevailing wind directions (East side)

SO₂ monitoring shows concentrations well below standards at area community monitors

Primary NAAQS = 75 ppb (99th percentile) Secondary NAAQS = 500 ppb (maximum 3hr average)

Current air toxics monitoring does not show elevated concentrations near refineries, but may not capture incidental peaks.


Instrumentation, methodologies and/or other exposure assessment tools

- Monitoring Approaches
 - Emission Flux Measurements
 - Quantitative estimates of routine refinery emissions
 - Emission Plume Characterization
 - Identify location of plumes and leaks
 - Community Air Monitoring
 - Continuous Monitors
 - Fixed-site Gas Analyzers (high sensitivity, good speciation)
 - Open-Path Gas Monitors (lower sensitivity and specificity)
 - PM Mass Monitors
 - Time-Integrated Speciation Sampling and Analysis
 - Active (PM or gas) or passive (gas)
 - short (≤ 24 hours)or long (up to 14 days) term

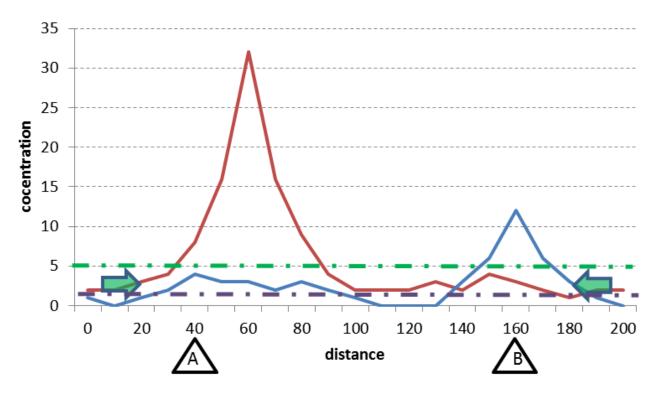
Emission Flux Measurements and Plume Characterization

Solar Occultation or Differential LIDAR

EPA Handbook: Optical Remote Sensing for Measurement and Monitoring of Emissions Flux

IR video cameras can locate plume source and leaks

www.flir.com


Continuous PM monitors

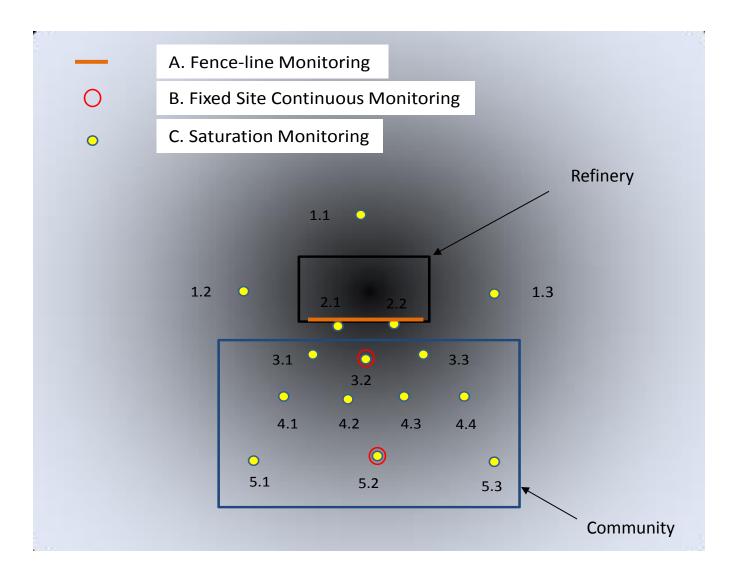
Continuous	Torgoto		Min Averaging	Linit Cost	Faultonmont	factures (limitations
Monitors	Targets	MDL (1 hr)	Time	Unit Cost	Environment	features/limitations
						Federal Equivalent Method for PM10 and
Beta-						PM2.5. Options for low-density Teflon tape and
attenuation						integral nephelometer for higher time-
tape sampler	PM2.5	2 - 10 ug/m3	1 hr	\$15 -20k	Indoor	resolution.
						Federal Equivalent Method for PM10 and
ТЕОМ	PM2.5	<e m2<="" td="" ug=""><td>10 min</td><td>\$ 30,000</td><td></td><td></td></e>	10 min	\$ 30,000		
	PIVI2.5	<5 ug/m3	10 11111	\$ 50,000		PM2.5 / possible interference from ΔRH
auto-XRF tape					Climate-	unique capability / high cost and unknown
sampler	Elements K - Pb	<0.5 ng/m3	15 min	\$ 250,000		reliability
	20	0.1	F			high sensitivity but non-linear response at high
Aethalometer	BC	0.1 ug/m3	5 min	\$ 20,000	Controlled	CONC.
Photo-Acoustic						
Soot					Climate-	
Spectrometer	BC, PM2.5	<0.5 ug/m3	2 sec	\$ 30,000	Controlled	absorption and light scattering
						high sensitivity and time resolution, but no
						clear relationship between UFP and other
СРС	UFP	N/A	10 sec	Ş 10,000	Controlled	pollutants or health effects

Continuous methods for monitoring gaseous pollutants

Continuous			Min Averaging			
Monitors	Targets	MDL (1 hr)	Time	Unit Cost	Environment	features/limitations
NO/NOx					Climate-	Federal reference method / NOx produced
analyzer	NO, NO2, NOx	<0.4 ppb	10 sec	\$ 12,000	Controlled	by all types of fuel combustion
					Climate-	Federal reference method / CO primarily
CO analyzer	CO	40 ppb	10 sec	\$ 11,000	Controlled	from motor vehicles
	SO2 or H2S or				Climate-	Federal reference method, most relevant
SO2 analyzer	total S	<0.5 ppb	10 sec	\$ 11,000	Controlled	criteria pollutant to refinery emissions
	Speciated VOC	<0.5 ppb			Climate-	VOC speciation with high sensitivity and
Auto-GC	<c13< td=""><td>(BTEX)</td><td>3 to 60 min</td><td>\$30 - 60k</td><td>Controlled</td><td>specificity / complex data interpretation</td></c13<>	(BTEX)	3 to 60 min	\$30 - 60k	Controlled	specificity / complex data interpretation
	NO2, SO2, H2S,			\$60,000 -		good for detection of releases / does not
UV-DOAS	select VOC	<1 - 10 ppb	<10 sec	200,000	Outdoor	easily translate to community exposure
	SO2, CO, select			\$80,000 -		good for detection of releases / does not
OP-FTIR	VOC	5 - 100 ppb	<10 sec	125,000	Outdoor	easily translate to community exposure

Hypothetical comparison of reported concentrations from Fixed-site and Open-path continuous monitors

Open Path: 6.2 ppm Open Path: below LOD Fixed site A: 8 ppm Fixed site A: 4 ppm Fixed site B: 3 ppm Fixed site B: 12 ppm


Problem:

- Open-path 'fenceline' monitors can detect peaks in emissions, but do not provide quantitative exposure concentrations
- Fixed site continuous monitors can accurately measure ambient concentrations, but these may not reflect higher levels at other locations

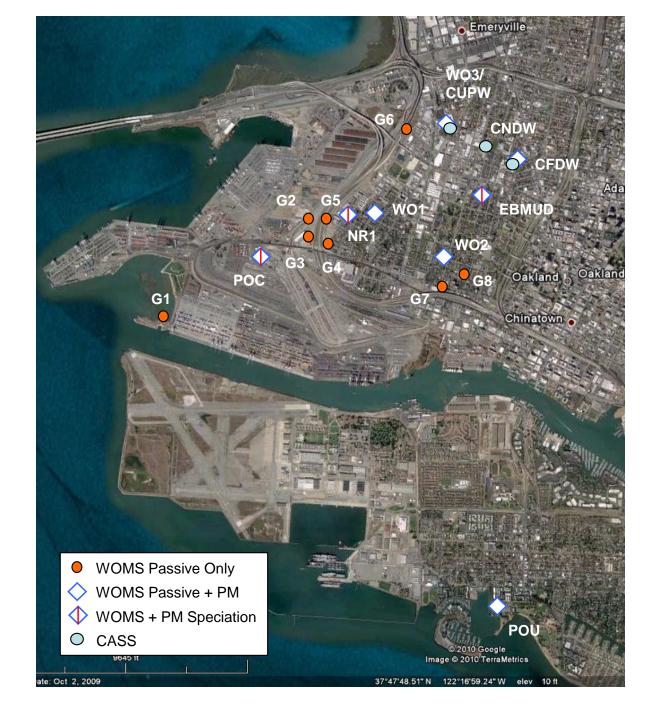
Solution:

 A dense array of low cost, portable samplers can be used to determine how well fixed-site continuous monitoring represents ambient concentrations in other locations throughout a community.

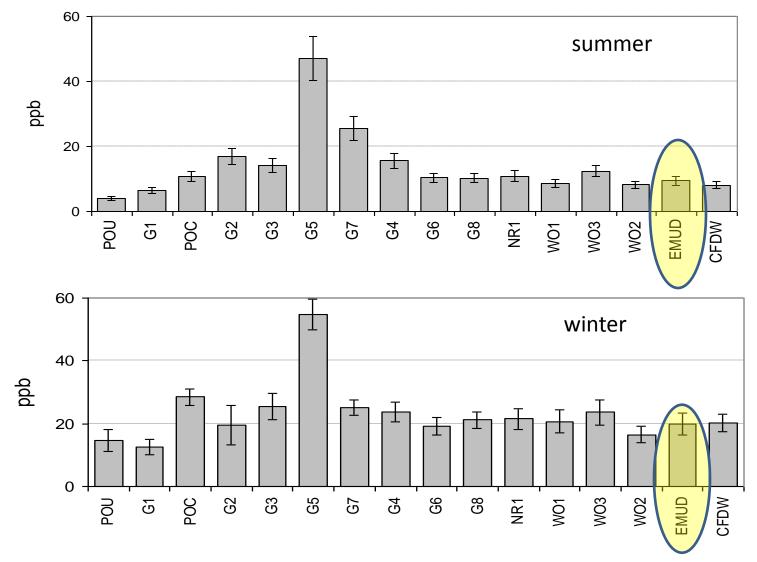
Conceptual Illustration of Community Saturation Monitoring Program Near a Refinery

Samplers for Saturation Monitoring

AirMetrics Minivol Aerosol Sampler (10" diameter x 24" tall) 12V battery or 110VAC



Ogawa passive samplers for NO_2/NOx and SO_2 (thumb size in cup shield)



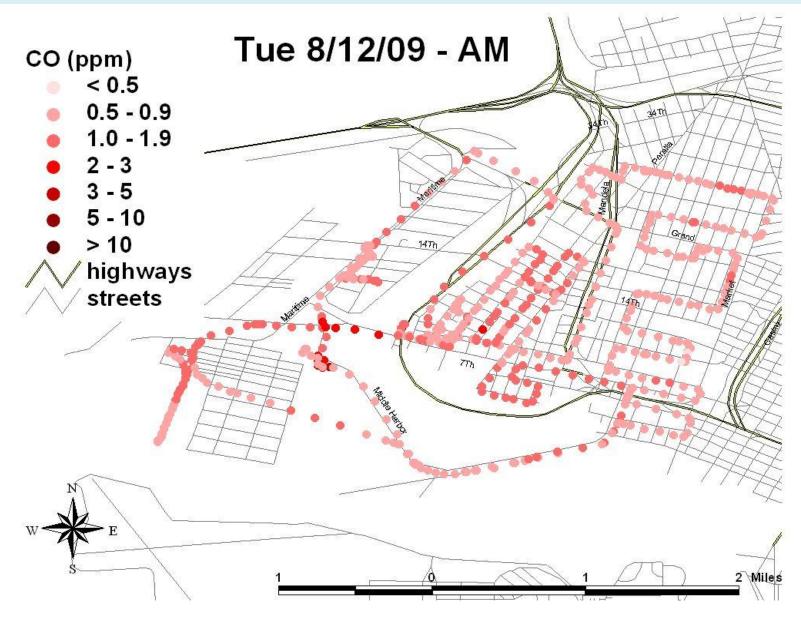
Radiello passive samplers for VOC, aldehydes and H_2S (size of a roll of pennies)

West Oakland Monitoring Study (WOMS)

Seasonal Average NO Concentrations

West Oakland Monitoring Study

Incident Monitoring


- Dispersion modeling
 - Predict areas that will experience maximum concentrations for different types of release and weather conditions
- Mobile Sampling
 - BAAQMD and/or EPA Mobile Monitoring Vans can be used to determine areas most impacted and monitor levels
- Emerging Technology and Cooperative Approaches
 - highly portable, low cost monitors have potential to make large scale saturation monitoring affordable
 - involve community volunteers for increased spatial coverage during incidents

BAAQMD Mobile Monitoring Platform

Community Survey using Mobile Monitoring

Summary of Recommendations

- Verify type, location, and quantity of emissions using remote sensing flux methods
 - Work with refinery operators to gather this information
- Track variations in emissions via fenceline monitoring
 - Program already active
- Determine spatial variations in concentrations within communities using mobile and saturation monitoring projects
 - Use results to validate or enhance existing monitoring
- Prepare for unplanned high-level releases with dispersion modeling and fast-response enhanced monitoring protocols
 - Explore cooperative approaches involving community, district, and industry

Recommended methods to achieve monitoring objectives

		sions	Community Exposure			
Objective of measurement program	Characterization	Surveillance	Acute Effects Routine Monitoring	Acute Effects Catastrophic Event	Chronic Effects Routine Monitoring	
Duration	days to weeks	continuous	continuous	days	Minimum of 4 weeks in 2 season	
Time-resolution	minutes	hourly	hourly	varies	7 to 14 days	
Location	refinery boundary	fenceline	representative community sites	Grab sampling, mobile sampling	representative community sites	
Number of sites	multiple	downwind edge	1 to 3 sites	multiple	Multiple ("saturation")	
Parameters	alkanes, olefins, CO, NH ₃ , HCHO, SO ₂ , NO ₂ ,	benzene, butadiene, HCHO, NO ₂ , H ₂ S	all	determined by event	benze, butadiene, HCHO, NO ₂ , H ₂ S, metals	
Recommended Methods	SOF, DIAL flux measurements	Open-Path	photometric, auto-GC or OP, tape samplers, met	monitoring van + canisters, med-vol PM, OP	passive, low- volume PM	