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PROBABILITY ANALYSIS FOR BAAQMD MULTI-POLLUTANT 

EVALUATION METHOD 
 
Abstract 
 
The Bay Area Air Quality Management District (District) has prepared the Bay Area 
2009 Clean Air Plan (CAP) to address four types of pollutants: ground-level ozone, 
particulate matter, air toxics, and greenhouse gases (GHGs).  The District developed a 
multi-pollutant evaluation method (MPEM) to analyze and rank potential emission 
control measures on a multi-pollutant basis for the 2009 CAP.  The MPEM has a number 
of steps and assumptions, with some degree of uncertainty related to each. 
 
This document analyzes the uncertainty in the results and develops a probabilistic model 
for each step of the MPEM calculations.  A Monte Carlo simulation based on the 
probablistic models is run to estimate the distribution of uncertainty in the valuation of 
each of the emission control measures.  These distributions are combined to yield the 
distribution of uncertainties for the plan as a whole and to rank the control measures. 
 
Brief Overview of Multi-Pollutant Evaluation Method 
 
The District has prepared the Bay Area 2009 Clean Air Plan (CAP) to update its current 
ozone plan (the 2005 Ozone Strategy), as required by the California Health & Safety 
Code.  The District decided to include the analysis and evaluation of three additional 
pollutants – particulate matter (PM), air toxics and green house gasses (GHGs) – to 
maximize reductions in the four types of pollutants. These pollutants differ in 
fundamental ways in terms of their emission sources, atmospheric formation, chemical 
composition and health effects.   
 
The District developed a multi-pollutant evaluation method (MPEM) to analyze and rank 
potential emission control measures on a multi-pollutant basis for the 2009 CAP.   The 
MPEM is fully described in a June 2009 Multi-Pollutant Evaluation Method Technical 
Document which is available on the District’s website: www.BAAQMD.gov and briefly 
summarized below:  
 
The purpose of the MPEM: 

• Estimate how reductions of each pollutant for a given control measure will affect 
ambient concentrations, population exposures, and health outcomes related to that  
pollutant. 

• Monetize the value of total health benefits and greenhouse gas reductions for all 
pollutants that would be reduced by each potential control measure. 

• Evaluate and rank the estimated benefit of potential control measures based on the 
value of each measure in reducing health costs from air pollutants and 
environmental/social impact related to climate change. 
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The MPEM involves several steps: 
 
Step 1. Emissions:  Estimate how much a given control measure reduces (or increase) 

emissions of each of the pollutants. 
 
Step 2. Concentrations: Estimate how a change in emissions of each pollutant affects its 

ambient concentrations and other pollutants related to it, i.e., the response of 
ambient concentrations to emission reductions.  

Step 3. Population Exposure: Estimate how a change in ambient concentrations affects 
the exposure of Bay Area residents to each pollutant. 

Step 4. Health Impacts:  Estimate how a reduction in population exposure impacts 
various health endpoints, projecting changes in the incidence of endpoints such as 
asthma emergency room visits, lower respiratory symptoms, and deaths.  

Step 5. Health/Social Benefits:  Estimate avoided costs of each emission control measure 
by estimating the cost of the health and climate impacts from each pollutant.  For 
each pollutant except GHGs, the change in the number of incidents of each health 
endpoint the pollutant affects is multiplied by an estimate of the per-incident 
social cost of that endpoint.  For GHGs, the change in tons of GHG emissions is 
multiplied by the estimated social cost per ton of GHGs.   

 
The output of the MPEM (Steps 1-5) is an estimated dollar value of the health and social 
benefits of each potential control measure, based on the amount of reduction (or increase) 
in each pollutant. 
 
Description of Probability Analysis 
 
Some uncertainty is involved with each step above. But the uncertainties can be 
quantified then combined in a Monte Carlo simulation.  In this way we can simulate the 
overall uncertainty of the process and obtain an estimate of the likely range of benefits of 
each control measure. 
 
Section 0 discusses types of uncertainties encountered and statistical assumptions and 
methods used in the uncertainty analysis.  Sections 1-5 present how uncertainties were 
calculated for steps 1-5 of the MPEM.  Section 6 presents examples and the uncertainty 
of the overall plan benefits. 
 
Some of the MPEM incorporates the uncertainty methodology of other researchers and 
some of it is new.  There has been considerable work done to evaluate the uncertainties in 
the last two steps of the MPEM – the health effects and monetary valuations.  (See, e.g., 
BenMAP Appendices F-I, Hall et al. 2006, or Ostro et al. 2006.)  We have followed these 
precedents, where they exist.  For the uncertainties in the first three stages on the MPEM 
– emissions estimates, emissions to concentrations, and population – we developed our 
own probability distributions. 
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0.  Statistical Considerations 
 
There are a number of statistical considerations: What is meant by “uncertainty”?   Which 
components are statistically independent?  How should uncertainty distributions be 
chosen?  How should overall uncertainty be summarized?   
 
0.1  Statistical definitions and setup 
 
We use the Monte Carlo method to gain an understanding of uncertainty in the estimated 
benefits (or disbenefits) of a control measure by randomly simulating each of the steps. 
The MPEM has many parameters – emissions to concentrations conversion factors, 
population for each grid square, air pollutant health impact functions, health effect 
incidence rates, and monetary valuations.  When we apply the MPEM, we use point 
estimates (that is, our best estimates) for each of these parameters.  But, as discussed 
below, these parameters are known to various levels of precision, i.e., certainty.  The 
parameter uncertainties can be captured with probability distributions.  That is, the point 
estimate might be set as the mean of the probability distribution, with the distribution 
representing the range of likely values for this parameter. 
 
For the Monte Carlo analysis, we randomly sample parameter values from each of these 
distributions and use these simulated values in the MPEM rather than the point estimates. 
 
The simulation of a set of parameters followed by their application in the MPEM is called 
a realization of the Monte Carlo simulation for a given emission control measure.  Each 
realization results in a "bottom line" dollar benefit (or disbenefit) estimate for the 
measure.  Thus, repeated Monte Carlo realizations lead to a probability distribution of a 
measure's overall dollar benefits. 
 
0.2  Uncertainty categories 
 
The various statistical uncertainties in the MPEM can be divided into three categories: 

• uncertainties within our probability model 
• uncertainties in data inputs 
• uncertainties in assumptions 

 
Uncertainties in the model: The first category includes the uncertainties within our choice 
of probability model.  For example, many of the health effects estimates derive from 
epidemiological studies where the estimate is the coefficient from a regression.  
Typically, the estimate and its standard error are published.  We assume, based on 
statistical theory,1 that the coefficient has a normal distribution with the estimate as its 

                                                 
1 In linear regression, the regression coefficient estimates are linear combinations of the observations.  With 
some regularity conditions, the Central Limit Theorem implies that these estimates are approximately 
normally (Gaussian) distributed.  In the general linear models, the Gaussian distribution is a reasonable first 
order approximation to the true distribution.  We might note that the degree to which this is not true is an 
example of the third category of uncertainties. 
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mean and the estimate's standard error as its standard deviation.  We can term this 
distribution within-model uncertainty, that is, the uncertainty given a particular set of 
assumptions about the distribution of the data. 
 
Other examples include many of the incidence rates.  For example, we can use the past 
few years of hospitalization counts to project future counts assuming the year-to-year 
counts are independent, that the system is steady-state (without trend) and the counts are 
normally distributed.  The uncertainty in this projection can be assumed to be captured by 
the year-to-year variability observed in the counts over the past few years.  Another area 
where we have within-model uncertainties are the valuation distributions we've 
incorporated from EPA's BenMAP. 
 
Uncertainties in the data: In the second category are uncertainties in the emissions 
reductions from many of the proposed control measures, uncertainties in the total Bay 
Area emission estimates, uncertainties in the population projections, and uncertainties in 
some of the incidence rates.  In the absence of knowledge of actual uncertainties, we've 
assumed the values have a Gaussian error with mean 0 and standard deviation of 10%.  
We're calling these placeholder uncertainties  in that they serve as an acknowledgement 
that some uncertainty exists but await a better characterization of that uncertainty. 
 
Uncertainties in assumptions: These include some of the key assumptions of the MPEM, 
such as the non-existence of a PM2.5 threshold, the 50 ppb ozone threshold; the 
assumption of 100% certainty that the correlation between PM2.5 and mortality and 
between ozone and mortality are causal; the assumption of 100% certainty that global 
warming won’t have catastrophic consequences; the assumption that people are in their 
backyards 24/7. 
 
We deal with these categories differently.   The first category is clear-cut, with a known 
or reasonably assumed probability model that can be simulated.  For the second category, 
all we know is that we don't know the values for certain, except that we believe that the 
deviations could be substantial.  For MPEM values in this category, we simulate a modest 
Gaussian deviation of 10%.  For the third category we do sensitivity analyses, where we 
alter the assumptions and rerun the Monte Carlo analysis. 
 
0.3  Statistical Independence 
 
It appears reasonable to assume that the uncertainties in the variables being estimated at a 
step of the MPEM are statistically independent of the uncertainties at the other steps: 
whether ABAG over- or under-estimated Bay Area population has nothing to do with 
whether a health effects study over- or under-estimated the individual risk from a given 
health effect; and these have nothing to do with whether an economist over- or under-
estimated the amount that a case of a given health effect is valued.  And so on. 
 
It also seems reasonable to assume independence within some of the stages.  For 
example, most of the health effects estimates were produced in different studies and 
different populations.  When the estimates do come from the same study, such as the 

BAAQMD MPEM Probability Analysis  Page 4  



estimated rates of cardiovascular-related hospitalizations among 65+ and 18-64 year-olds, 
it seems likely that they would be positively associated, suggesting that assuming 
independence would lead to a less variable result.  We have, in fact, ignored this source 
of dependence, thereby underestimating the uncertainty to some extent. 
 
Valuations also appear independent, although the methodology might result in systematic 
over- or under-estimation which would fall in the third category of uncertainty.  There 
may be some weak dependence between incidence of various effects in the Bay Area, but 
we will assume independence. 
 
It is likely, however, that spatial parameter estimates will be statistically dependent.  For 
example, if the estimated concentration in a particular grid cell is higher than the actual 
concentration, then it's likely that the estimated concentrations in neighboring cells will 
also be higher than the actual.  The same argument applies for the relation between 
estimated and actual population exposures. 
 
We deal with spatial correlation in a couple of simple ways.  For the population 
projections, it seemed reasonable that certain errors, such as underestimating or 
overestimating economic growth, would lead to systematic under- or over-estimates of 
the population.   For this case, we applied the same simulated error to each population 
value.  See Section 3 for details. 
 
Another instance of spatial correlation was localized errors in the model, e.g., over- or 
under-estimating wind speed in an area leading to under- or over-estimated PM2.5 
concentrations.  For this we simulated clumps of grid cells – rectangles where we applied 
the same random simulated percentage error.  See Section 2. 
 
0.4  MPEM goal: Estimate projected benefits or disbenefits 
 
The emission control measures proposed in the CAP will not take effect immediately; 
they must be adopted, implemented, and enforced via a variety of mechanisms. Thus, we 
are considering future effects, that is, the MPEM estimates are predictions or projections 
to future years.  Thus, each aspect of the calculation is a projection: what the control 
measure emissions changes will be, what the total District-wide emissions will be, what 
the population will be, what the incidence rates will be, what the value of the dollar will 
be. 
 
0.5  Simulation dynamics and comparison between control measures 
 
For both computational reasons and to facilitate comparisons between control measures, 
the simulation was performed as follows:  For each parameter, a set of 1,000 values was 
simulated according to the appropriate distribution, resulting in 1,000 vectors of 
simulated parameter values. 
 
For each control measure, the same sets of random values were used (with the exception 
of the uncertainties related to an individual control measure's emissions).  Thus, for every 
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control measure, the ith simulation would use the same random population figures, the 
same simulated betas, the same simulated valuations and so on.  Effectively, with this 
approach, each simulated set of values is the same for every control measure being 
evaluated.  In the extreme case where one control measure is a scalar multiple of another 
– e.g., 2 NOx-only control measures – then one set of simulated values will be nearly a 
scalar multiple of the other set; e.g., if one control measure reduced NOx by an estimated 
50 tons/year and the other reduced NOx by 75 tons/year, then the latter's simulated values 
would be 1.5 x the former's simulated values, except for the relatively small errors 
associated in the estimates of the control measures' NOx reductions. 
 
In essence, for each simulation, we are creating a new set of MPEM parameters then 
applying that new set of parameters to all the control measures.  This means that, in 
practice, if any given pair of control measures is compared, their simulated values will be 
(possibly highly) positively correlated.  Thus, even if there is considerable uncertainty in 
the "bottom line" for each of the control measures, it may be possible to determine that 
one's "bottom line" is significantly greater than the other's.  Section 6 shows that this 
results in being able to distinguish among the overall valuations of the control measures 
in most cases. 
 
1.  Simulating Emissions 
 
Emissions estimates for a given pollutant are used in the MPEM as a ratio of a control 
measure's estimated change in the emissions of that pollutant to the District total 
emissions for that pollutant.  We assume a Gaussian error of 10%, e.g., suppose that a 
control measure reduces ROG by r tons per day.  Then its uncertainty would be simulated 
by  
 
r * ( 1 + 0.l Z), 
 
where Z is a standard normal pseudo-random variable. 
 
We don't have estimates for the overall uncertainty in District emissions totals, so we've 
assumed a 10% Gaussian error for these also.  Thus, to continue the example, suppose a 
total of R tons/day of ROG is emitted in the District.  Then the fraction of ROG reduced 
by the control measure would be simulated by: 
 

)1.01(
)1.01(

YR
Zr

+
+  

 
where Y is a standard normal pseudo-random variable. 
 
2.  Simulating Concentrations 
 
The MPEM includes a grid of factors for estimating pollutant concentrations from the 
emissions of each precursor pollutant.  These factors are derived from runs of grid-based 
pollution models.  The evidence available for evaluating the precision of these factors is a 

BAAQMD MPEM Probability Analysis  Page 6  



set of observations collected at a limited number of points sometimes on a limited 
number of days. 
 
We can look at the differences between these observations and the modeled values for the 
grid cells where the observations were collected, but in using this to evaluate model 
uncertainty we need to keep two points in mind: 
 
i. Not only are the observations measured with error but, probably more 
significantly, an observation represents an individual point whereas a grid represents an 
area of 1 to several square kilometers.  The true variation in precursor concentrations 
across the grid may be large, so that some of the discrepancy between observation and 
model may be because the pollutant concentrations at the observed point may be 
unrepresentative of the whole grid. 
 
ii. The error in the model may result from errors in the underlying emissions 
inventory estimates.  But this error is already accounted for in 1. 
 
Nevertheless, the model is subject to other errors, including errors in the wind field being 
used, and errors in the chemistry.  There is also a substantial uncertainty in extrapolating 
from the modeled period to the entire year.  In what follows, we attempt to evaluate the 
magnitude of the errors in i. and use this to better model the remaining model 
concentration error. 
 
2.1  Evaluating concentration uncertainties for the PM2.5 model 
 
To evaluate model error, we considered the potential error in the observed values.   An 
analysis of the difference in the means of measured PM2.5 during the modeled period 
suggests that, if the monitoring site is considered as representing the mean PM2.5 
concentration, then it's deviation from the mean of the surrounding grid is approximately 
normal with standard deviation 1.7 μg/m3 (See Appendix A). 
 
Figure 2.1 shows the modeled vs. measured mean PM2.5 from Bay Area and Sacramento 
area PM2.5 monitors.  The 95% confidence intervals show that, in the majority of cases,  
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Figure 2.1.  Mean measured PM2.5 for December, 2006-January, 2007 compared with the 4x4 grid cell 
containing it.  Also shown are 95% confidence intervals for the measured values. 
 
the modeled values are within or close to the range of the ambient data that one would 
expect just by chance, i.e., there is little or no evidence of model error.  For San 
Francisco, our analysis suggests that the emissions inventory may have overestimated 
off-road emissions, assigning construction emissions not to the construction site but to 
the office of the construction company.  Seeing as this is an emissions error, we may 
discount it.   
 
For the other sites with large discrepancies – Napa, Vallejo, Sacramento-Del Paso, & 
Modesto – the problem again may be emissions. Comparing hourly modeled PM vs. 
ambient, we noted patterns at several sites suggestive of woodburning, with large ambient 
peaks in the evening and night not matched in the model, but reasonable model-ambient 
agreement during the daylight hours.  Thus, these sites also may be impacted by 
emissions. 
 
On the other hand, the pattern of errors may also indicate that the meteorology has not 
been well-captured.  Specifically, the lower modeled values in the Sacramento/Modesto 
area may derive from overestimated wind speeds.  The meteorological modeling for the 
Napa/Vallejo area may also not adequately reflect the micro-climate of the area. 
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2.1.1  Modeling concentration errors 
 
The limited analysis above suggests that overall, the modeled PM2.5 concentrations are 
not substantially biased and that where substantial errors exist, they are clumped into 
localized areas.  To simulate this, we decided on a combination of a set of individual, 
independent 10% errors applied to each grid cell, and clumped errors of a random size 
occurring with low probability in randomly selected locations.  The concentration, c, for a 
given grid cell, was simulated as: 
 
c = c0 *(1 + .1Z + .2X)        (1) 
 
where c0 is the original modeled concentration for the cell, Z is a standard normal random 
variable, and X is the summation of clumped values landing on the grid square, if any.  
The clumped values were simulated as follows.  For every grid cell, a clump was started 
with probability 0.02.  The clump was grown (N, S, E, W) with probability 0.4 in each 
direction.  In other words, in each direction, a sequence of coin flips was performed with 
probability 0.4 of heads, until tails occurred.  The clump was extended in that direction 
by that number of heads.  The clump was defined as the rectangle of cells extending to 
the number of heads in each direction.  With this choice of probabilities, about 10% of 
the cells are covered by clumps.  The average clump area is 5.4 cells.  (See Appendix B.)   
 
As with individual cells, the clump is multiplied by an independent standard normal 
random variable.  As shown in formula (1), these values are multiplied by 0.2, so that we 
assume the clumps have a standard deviation of 20%. 
 
Lacking a similar analysis for other pollutants, we've adopted the identical error structure 
for them.  We have modeled the errors as independent sets between different pollutants 
although it's likely that there is perhaps substantial correlation in some cases.  For 
example, benzene and 1,3-butadiene are both largely emitted from motor vehicles.  Thus, 
if meteorological modeling causes an error in one, then it's likely to have a similar effect 
on the other. 
 
2.1.2  NOx and ammonium nitrate 
 
The MPEM treats the impact of NOx on ammonium nitrate differently, assuming the 
same scalar conversion factor applies everywhere.  There is considerable uncertainty both 
in the factor itself and also the degree that the true factor varies spatially.  Thus, there are 
likely both District-wide errors and local errors.  To account for these possibilities, we've 
modeled this uncertainty as: 
 
c = c0 *(1 + .2Z + .2D)        (2) 
 
where Z is a standard normal random variable picked independently for each grid cell, as 
in equation (1), and D is a standard normal random variable that is the same for all grid 
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cells.  In other words, we assume a 20% uncertainty for each grid cell, but an additional 
20% District-wide uncertainty. 
 
3.  Simulating population uncertainty 
 
Population data are projections made by the Association of Bay Area Governments.  
Information about the uncertainties in these projections is not available, so we fall back 
on using placeholder uncertainties.   As in equation (2) we use a combination of 
individual uncertainties and a global uncertainty with the idea that an error in the 
projection assumptions could be Bay Area-wide (e.g. a regional economic forecast).  So 
we use the following formula to simulate the population, p, in a census tract: 
 
p = p0*(1 + .1Z + .1D)        (3) 
 
where p0 is the population ABAG projects for that census tract.  For a given MPEM 
simulation run, these same simulated population values are used everywhere.  In other 
words, we don't use one simulated population for estimating PM2.5 exposures and another 
for ozone exposures. 
 
4.  Simulating health effects and incidence 
 
The evaluation of each health effect uses an impact function with a parameter, beta, that 
has an estimated value, b, that converts a change in pollutant concentrations to a 
fractional change in health effect.   
 
4.1  PM2.5 health effects 
 
In most cases, the published confidence intervals suggest that the underlying calculation 
was b ± ksb, with k ≅ 2.  From statistical theory, b is approximately normal, so it is not 
unreasonable to simulate betas as normal random variables with mean b and standard 
deviation sb.   
 
4.1.1  Beta for PM2.5 mortality 
 
The beta for PM2.5 mortality is an exception.  Because this is such a key element of the 
total health impact, the USEPA performed an evaluation based on the opinions of 12 
experts in the field (EPA 2006).  Each expert provided not just a point estimate of the 
effect, but a probability distribution representing the range where they expected the true 
effect would be.  The benefit of such an expert elicitation is that the experts will attempt 
to correct for biases in the studies that served as the basis for their judgements. 
 
The median of their estimates was 1.0 (% increase per 1 μg/m3 increase in PM2.5), with a 
90% confidence interval of 0.3 to 2.0 (medians of their 5th and 95th percentiles, 
respectively).  There are an infinite number of distributions with median 1.0, 5th 
percentile 0.3 and 95th percentile 2.0.  Somewhat arbitrarily, but with the advantage of 
being a short-tailed distribution like the normal, we simulated b so that y = (ba + c)1/a is 
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normal, where a and c and the mean and standard deviation of y are chosen so that b will 
have the above percentiles.  Then b = (ya – c)1/a.  We set b = 0 if ya ≤ c. 
 
Actually, a and c are not unique, although in the present case, values of a≥0.6 have no 
solution.  One combination that works is a = .5 and c = 3.95.  Then the mean of y is μ = 
(1a + c)1/a = 4.952 = 24.5, and the standard deviation is σ = [(2a + c)1/a – (.3a + 
c)1/a]/(2x1.645) = 2.597.  The probability density function for b is f(x) = (1/ σ)φ[((xa+c)1/a 
- μ)/ σ] xa-1(xa+c)1/a-1, for x>0, where φ(z) is the standard normal pdf.  For a = .5, this 

simplifies somewhat to )1)(2(1)(
2

x
ccxcxxf +

−++
=

σ
μφ

σ
, x>0.  This density 

integrates to less than 1, specifically, it integrates to P(Y > c1/a).  For the remainder, we 
set B = 0.  In the case at hand, P(B=0) = P(Y<c1/a) = P(Y<3.952) = Φ[(15.6 – 24.5)/2.597] 
= 0.0003, where Φ(z) is the standard normal cdf.  Figure 4.1 shows the density for beta. 
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Figure 4.1.  Assumed distribution of PM2.5 mortality coefficients. 
 
4.1.2  Betas for other PM effects 
 
For the other PM effects, the uncertainties were expressed simply with a standard error.  
Knowing nothing more about the error distributions, we will assume that the distributions 
are Gaussian, except that any simulated value less than zero will be set to zero, under the 
assumption that air pollutants can't be beneficial. 
 
4.2  Ozone health effects 
 
We take our estimates of uncertainty from Ostro et al. (2006).   

BAAQMD MPEM Probability Analysis  Page 11  



 
4.2.1  Ozone Mortality 
 
Ostro considered a number of meta-analyses in developing their estimates.  Their central 
estimate was 0.4% change in mortality per change in 10 ppb in 1-hour max. ozone, but 
they also included a lower estimate of 0.2% based on the NMAPS study and a European 
study, and an upper estimate of 0.6% based on studies by Thurston and Ito and a 
European study limited to summer months.  They used a weight of 0.5 for the central 
estimate and 0.25 for the upper and lower estimates.   
 
We take these weights as a Bayesian prior and use standard deviations of 0.05% for the 
central estimate, 0.15% for the lower and upper estimates, with the deviations simulated 
with Gaussian random variables.  If the simulated coefficient is negative, it is set to zero. 
 
4.2.2  Other ozone health effects 
 
Ostro et al. (2006) used a similar approach for other health effects, using weights of 0.25, 
0.50 and 0.25 for lower, midpoint and upper values.  Their rationale was to give greater 
weight to the extremes to represent the additional uncertainties not accounted for within 
the studies cited.  We follow their approach, simulating low, mid-point and high 
coefficients with probabilities 0.25, 0.50 and 0.25. 
 
4.2.3  Uncertainty in threshold adjustment 
 
Our method does not use the 1-hour maximum per se, but rather the excess of the 1-hour 
maximum above a presumed threshold of 50 ppb.  To adjust for bias caused by this 
assumption, we multiply the betas by 2.  This adjustment factor is approximate.  
Although the degree of uncertainty is itself uncertain, we believe it is easily 10%.  Thus, 
we simulate the adjustment factor using a standard deviation of 0.2. 
 
4.3  Incidence 
 
For several health effects, the actual recent-year incidence rates are known.  We use the 
mean and standard deviation of the incidence in recent years.  Thus, for the health effects 
where Bay Area county incidence rates are known – mortality, hospital admissions, and 
asthma emergency room visits – we use the standard error of the 2005-07 mean, namely 
s/√3.  Specifically, we simulate these incidence rates as normal random variables with μ= 
05-07 mean and σ = s/√3. 
 
For the other health effects, we have incidence rates from studies of other areas.  In these 
cases, we have used placeholder uncertainties, namely 10% Gaussian errors. 
 
5.  Simulating Valuation 
 
5.1  Mortality 
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Mortality valuations use an EPA analysis where the values from 26 "value of a statistical 
life" studies were modeled with a Weibull distribution (EPA 2008).  Adjusting to 2009 
dollars, the cumulative distribution function is F(x) = 1 – exp(-axb), where a = .0473, b = 
1.5, and x is the VSL  in millions of dollars.  The mean of this distribution is $6.9 
million.  The figure shows the distribution.  90% of the simulated values fall between the 
two yellow areas, ranging from $1 million to about $16 million, with 5% falling below $1 
million and 5% falling above $16 million. 
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Figure 5.1.  Assumed distribution of mortality valuation. 
 
5.2  GHG Valuation 
 
We assume a 95% confidence interval from $15 million to $85 million, with a median 
value of $28 million.  Using the transform  y = ln(beta + k), we look for the value of k so 
that 
 
ln(85 + k) – ln(28 + k) = ln(28 + k) – ln(15 + k) 
 
That is, a transform that makes the confidence interval symmetric around the median.  
Solving for k yields k = - 491/44 = 1.159.  If we model y as a normal random variable, 
then its mean is ln(28 – 491/44) = 2.8238, and its standard deviation is approximately 
(ln(85-491/44)-ln(28-491/44))/2 = .73905.  This implies the assumption that beta has a 
shifted lognormal distribution.  See Figure 5.2. 
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Figure 5.2.  Distribution of GHG valuation per ton CO2e. 
 
5.3  Chronic Bronchitis 
 
We use the approach in BenMAP (2008), based on a study of severe bronchitis by 
Viscusi (1991), which established WTP values from a survey.  The BenMAP approach 
models WTP using the Viscusi figures reduced to account for a lower valuation of less 
severe bronchitis.  The Viscusi figures are modeled as WTP13, with equal weights on the 
9 deciles in his Table V.  See table.  The willingness to pay estimates are simulated as: 
 

)13(
13

xeWTPWTP −−= β  
 
where β is simulated as a normal random variable N(.18, .0669), and x has a triangular 
distribution with endpoints 1 and 12. 
 
Table 2. WTP13: Dollar Value ($100,000) 
Decile .1 .2 .3 .4 .5 .6 .7 .8 .9
1990 $ 1.5 3.0 3.5 4.0 4.57 5.33 6.4 8.0 20.0
2009 $ 2.55 5.09 5.94 6.79 7.76 9.04 10.86 13.58 33.94
 
5.4  Other health valuations 
 
Table 3 shows the assumed distributions of health effects valuations, taken from 
BenMAP.  In the cases labeled "No distribution available", we've used the placeholder 
assumptions of 10% Gaussian errors. 
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Table 3. Distributions of health effect valuations 
Health Effect  Unit Value  Type of 

Measure  
Distribution  

Mortality  
(all ages) 

$6,900,000 WTP 
Weibull:  

5.10473.1)( xexF −−=
Chronic 
Bronchitis 
Onset 

$409,189 WTP 
 

x ~ Triang(1,12), β ~ N(.18, .0669) 
For WTP13, see text 

Respiratory 
Hospital 
Admissions 

 
Age 65 < : $35,228 
Age 65 > : $33,375 

WTP + 
Third Part 
COI 

No distribution available 

Cardiovascular 
Hospital 
Admissions 

 
Age 65 < : $43,889 
Age 65 > : $38,759 

WTP + 
Third Part 
COI 

No distribution available 

Non-Fatal 
Heart Attacks 
 

 
$84,076 

 
COI 

No distribution available 

Asthma 
Emergency 
Room Visits 

$468  COI Triangular Distribution where the minimum 
value is $348 and maximum value is $647 
(asymmetric) 

Acute 
Bronchitis 
Episodes 

$534, for a 6 day 
illness period 

WTP Uniform Distribution where the minimum value 
is $157 and maximum value is $909.  

Upper 
Respiratory 
Symptom Days 

$35 WTP Uniform Distribution where the minimum value 
is $13 and maximum value is $58. 

Lower 
Respiratory 
Symptom Days 

$22 WTP Uniform Distribution where the minimum value 
is $13 and maximum value is $32. 

Work Loss 
Days 

Daily Median Wage 
by County; 
Alameda & Contra 
Costs: $202 
 
Marin, San 
Francisco, & San 
Mateo: $228 
 
Santa Clara: $243 
 
Napa: $174 
 
Solano: $168 
 
Sonoma: $179 
 

COI No distribution available 

School Absence 
Days 

$91  COI No distribution available 

Minor 
Restricted 
Activity Days 

$61 WTP Triangular Distribution where the minimum 
value is $33 and maximum value is $202 

Cancer  $1.75 WTP+COI Uniform Distribution where the minimum value 
is $.7 million and maximum value is $2.8. 
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6.  Examples 
 
To illustrate the analysis, we take TCM C-5 Public Outreach and Education for Smart 
Driving/Speed Moderation.   The estimated emissions reductions were: 336.6 lb/day 
NOx, 153.8 lb/day ROG, 18 lb/day PM2.5, 1.6 lb/day acetaldehyde, 3 lb/day benzene, 
0.62 lb/day 1,3-butadiene, 2.2 lb/day formaldehyde, and 59,602 lb/day CO2.  Applying 
the MPEM yielded an estimated benefit of $3,752,900 per year.   
 
A Monte Carlo analysis was done.  The screen shot, Figure 6.1, shows a typical 
simulation.  Column B has the original estimated emissions reductions.  Column C has 
the simulated reductions, e.g., PM2.5 reduced by 17.72 lb/day rather than 18, NOx 
reduced by 340.72 lb/day rather than 336.6, and so on.  Column D has the simulated 
District total emissions, e.g., 44.38 tons/day direct non-diesel, carbonaceous PM2.5 rather 
than 49 tons/day, 487.926 tons/day NOx rather than 521 tons/day, and so on.  In column 
G are the estimated Bay Area population exposures, where random factors have been 
used for the conversion of emissions to concentrations, and also to the population 
projections.   For example, the estimated change in direct carbon PM2.5 exposure is 
0.4905 ng/m3 compared with .5109 ng/m3 in the original (unrandomized) MPEM 
analysis.  Column J shows the estimated number of cases, applying random factors for 
the health effects.  For example, the simulated number of deaths from PM2.5 is 0.4487 
compared with 0.2899 in the original analysis.  Column K shows the simulated $/Case, 
e.g., mortality is valued at $12,057,198/case rather than $6,900,000.  The bottom line for 
this simulation was $8,906,973 considerably more than the original MPEM. 
 
Figure 6.2 shows a histogram of the simulated valuations.  A few of the simulated values 
are much larger than the original $3.75 million per year; the smallest simulated value was 
over $1,000,000 per year. 
 
Figure 6.3 shows a smoothed version of the cumulative distribution of the simulated 
valuations (mathematically, the integral of the histogram).   The 10th and 90th percentiles 
represent a range of probable valuations, $1.9 million to $7.1 million per year.  Thus, 
although there is considerable uncertainty at every step, the true "bottom line" is probably 
within a factor of 2 of the original $3.75 million per year estimate. 
 
The median simulated value is somewhat below the original value.  This is the general 
pattern.  There is no reason the median value should equal the original, as shown in a 
simple example in Appendix C. 
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Figure 6.1  Example screen shot (TCM C-5) from the uncertainty analysis template 
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Figure 6.2.  Histogram of simulated total valuation in dollars for TCM C-5. 
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Figure 6.3.  Cumulative distribution of simulated valuations for TCM C-5. 
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6.1  Comparison of two control measures 
 
We can use the uncertainty analysis to compare the valuations of pairs of control 
measures.  As an example, consider another measure, TCM E-3 Implement Transit 
Pricing Reform.  Its estimated benefit is $5,561,00 per year, but the uncertainty analysis 
yields a 10% to 90% range of $2.5 million to $10.8 million per year, that is, the range 
overlaps with the range for TCM C-5.  But if we look at the valuations run by run (Figure 
6.4), we see that in every run the valuation of TCM E-3 is greater than that of TCM C-5, 
so that it's virtually certain that the dollar benefit of TCM E-3 is greater than that of TCM 
C-5. 
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Figure 6.4. Pairwise comparison of TCM E-3 and TCM C-5 based on 1,000 simulations. 
 
In other cases, there is overlap.  For example, TCM C-5 has a larger point estimate 
valuation than ECM 3 Urban Heat Island Mitigation, $3.9 million vs. $3.1 million, but 
Figure 6.5 shows that there were a substantial fraction of runs (16%), where the simulated 
valuation of ECM 3 was greater than that of TCM C-5. 
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Figure 6.5. Pair-wise comparison of ECM 3 and TCM C-5 based on 1,000 simulations. 
 
Figure 6.6 shows pair-wise comparisons for all the measures.  The measures in the rows 
and columns are sorted in order of decreasing point estimate valuation.  The colors 
indicate whether or not there is strong evidence that the valuation of the column measure 
is greater than that of the corresponding row measure.  Red indicates strong evidence – at 
most 10 runs (i.e., 1%) where the valuation of the row measure was greater.  Orange 
indicates that it's likely that the column measure is greater – between 10 and 50 runs 
where the row measure had a greater valuation.  Blue indicates that the valuations of 
measures can't be well distinguished, pairs where there were > 50 runs with r > c. 
 
More than eighty percent of the pairs can be distinguished; most measures are 
indistinguishable only from a few others.  LUM2, for example, can be distinguished from 
all measures with smaller point valuations except for SSM6 and TCM D-3, and from all 
measures with larger point valuations except for LUM1 and TCM B-1. 
 
A set of measures does stand out for having greater uncertainties – SSM 9 through SSM 
14 and MSM B-2.  These are all NOx-only measures.  That these can't be distinguished 
from many measures with much smaller valuations indicates the large uncertainty about 
the impact of NOx reductions for the Bay Area. 
 



 

 
Figure 6.6.  Pairwise comparison of the valuations of the plan measures.  The colors indicate whether the pairs are distinguishable, based on the Monte Carlo analysis. 
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6.2  Uncertainty of the Sum Total of Valuations 
 
The sum of the point estimate valuations from all the plan control measures is $769 
million per year.  An uncertainty range for this estimate is obtained by summing the 
simulated valuations for each of the 1,000 runs.  Figure 6.7 shows the cumulative 
distribution of these sums.  The estimated overall benefits of the plan range from $270 
million to $1,550 million per year.  Thus, even incorporating the uncertainties from every 
step of the MPEM, the overall uncertainty is still between a third and twice the estimated 
value.  In other words, the overall benefits of the plan aren't exactly $739 million per 
year, but they are certainly in the hundreds of millions, possibly over a billion dollars, 
and certainly less than two billion dollars per year. 
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Figure 6.7.  Cumulative distribution of total plan benefits ($). 
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Appendix A – Differences in PM2.5 Means Between Pairs of Sites as a Function of 
Distance 
 
Using ambient data to evaluate the performance of grid models is made more complex 
because the ambient data are collected at points whereas the grid models estimate a 
volume average.  This appendix  analyses how to account for this difference. 
 
The model simulated hourly concentrations in a 4x4 km grid for a 2-month period, 
December 2006 through January 2007 for this study. 
 
The key issue is the use of modeled values in the multi-pollutant method.  For this 
method, only the average value for each grid square is used.  The question is the extent 
that this model average, M, deviates from the true average, T. 
 
The evidence available are daily measurements from 14 Bay Area PM2.5 monitoring sites 
for some or all of the days.  Let the average value at a given site be denoted, S.  One 
approach would be to look at M – S, and assume that any difference is due to modeling 
error.  But generally speaking, S ≠ T, so it seems reasonable to discount discrepancies 
between M and S to account for this. 
 
The difference between S and T will derive almost exclusively from actual spatial 
variation in the ambient concentrations as opposed to day-to-day variation:  Correlations 
of daily PM2.5 concentrations at nearby sites are near 1, making it likely that daily values 
measured at a site would correlate highly with the average in a 4x4 km grid containing 
the site.  But we would expect considerable variation in mean concentrations spatially, 
with measurements near sources like roadways and near woodburners being higher than 
in the middle of a park. 
 
We can get a sense of how much variation there could be by looking at the differences in 
the means between pairs of sites and seeing how this depends on distance.  Figure A1 
shows pairwise differences among 14 sites plotted versus the distance between the sites.  
There is considerable scatter but, generally, the differences increase with distance.  A 
linear regression has an intercept of 2.0 μg/m3 and a slope of 0.07 μg/m3 / km. 
 
If one or both the measurements were made with a BAM unit, there is the potential for 
bias.  In fact, it's likely that a good part of the 4 μg/m3 difference between the Oakland 
and San Francisco means (furthest left point on the graph) is measurement bias.  
However, the 6 μg/m3 difference between San Jose and Fremont is likely real since both 
sets of measurements are made with the same scale at the District office. 
 
What do these differences tell us about the relation of S and T?  We can think of the 
regression predictions for distances < 4km as representing the expected differences 
between sites located in different randomly selected locations within a grid square, that is 
S1 – S2, where each Si has the same distribution as S.   
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Figure A1. Absolute values of difference in means between pairs of 11 Bay Area sites + 2 Sacramento sites 
+ Modesto plotted vs. distance between sites.  Regression lines and non-parametric smooth also shown.  
Data from the PM2.5 modeling period: December 2006 through January 2007.  Note that for each 
difference, the mean difference was calculated for days when both sites had data. 
 
Although the Si are sample means, suggesting a normal distribution, they also have a 
random mean, depending on where they fall within the grid.  The variation of 
concentrations within the grid is not necessarily normal.  To look further, I took the 
values in Figure 1 and divided by the regression prediction.  See Figure A2. 
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Figure A2. 
 
Visually, this transformation seems to stabilize the variability, so that the distribution of 
the ratio is approximately independent of distance between sites.  If the differences do 
behave like normally distributed random variables, then the ratios should follow a folded 
normal distribution – the distribution of the absolute value of a normal random variable. 
 
Figure A3 shows a comparison of the sorted ratios versus the quantiles from a folded 
normal.  The plot is quite straight, indicating a good fit.  Thus, the assumption that S1 – S2 
is normally distributed seems reasonable. 
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Figure A3. 
 
The expectation of the absolute value of a normal random variable with mean 0 and 

variance σ2 is σ
π
2 .  As shown in the equation in Figure 1, the mean regression 

prediction for nearby sites is about 2 μg/m3.   Thus, 22
≅σ

π
, or πσ 2≅ .  The 

variance of S1 – S2 is twice the variance of S, so the standard deviation of S is π≅  
μg/m3 or about 1.7 μg/m3.  
 
Figure A4 shows a comparison of the mean measured PM2.5 concentrations at various 
sites compared with the modeled concentrations in the grid square containing the sites. 
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Figure A4.  Comparison of measured and modeled PM2.5 concentrations.  Also shown are error bars 
representing the uncertainty between the measured point estimated concentration and the true average 
concentration over the grid. 
 
For many of the sites, the model values are within the error bars of the measured values 
so, although not identical, the differences may well be due to the site not being 
representative of the grid as a whole. 
 
Appendix B – Calculations of clump size and frequency 
 
The simulation of grid cell uncertainty includes a term for errors in random clumps of 
cells.  This appendix analyzes the distribution of the number of clumps and their size. 
 
The setup is that a given grid cell is the clump seed with a small probability, p.  In the 
simulation, p = 0.02.  Once a clump is started, it is expanded in 4 directions with 
probability, r, say.  In the simulation, r = 0.4. 
 
Let's first consider the expected number of clumps covering a given grid cell.  Figure B1 
shows the number of steps to a given cell from the cells surrounding it.  There are 4 cells 
1 step away, 8 cells 2 steps away, 12 cells 3 steps away, and so on. 
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4 3 2 3 4 

3 2 1 2 3 
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Figure B1.  Centered on a given grid cell showing the number of steps from other cells to that cell. 
 
The probability a given cell is the seed of a clump is 0.02.  The probability it's covered by 
a clump from the cell just to the left, above, right, or below is 0.02 x 0.4.  The probability 
it's covered by a clump from a cell that's 2 away is 0.02 x 0.4 x 0.4, and so on.  Thus, the 
expected number of clumps covering a cell (that's far from the edge of the grid) is: 
 
p + 4pr + 8pr2 + 12pr3 + … ∑
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+=
1

]41[
j

jjrp  

∑
=

+=
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]4.041[02.0
j

jj   

= 0.02[1 + 4(0.4)/0.62] 
≅ 0.109 

 
Thus, we expect about 10% of the cells to be covered by a clump.  We can also look at 
the expected area of a clump.  For a given clump, its area is: 
 
(1 + N + S)(1 + E + W), 
 
where N, S, E, and W are the numbers of cells the clump extends in those directions.  
Each has a geometric distribution with probability r.  The mean of this distribution is 
r/(1–r).  Because the numbers in each direction are independent, the expected value of the 
product is the product of the expected values, so that 
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For r = 0.4, E(Area) ≅ 5.4. 
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Appendix C – An example where the median simulated value is less than the 
original 
 
The valuations from the Monte Carlo simulation can be thought of as a function of a set 
of random terms, Y = f(X1, X2, X3,…), where the Xi are initial emissions estimates, total 
emissions estimates, emissions-concentrations factors, population estimates, and so on.  
The original estimate is the function evaluated at the means of the Xi: f( μ1, μ2, μ3,…), 
where  μi = the expected value of Xi. 
 
In general, there's no reason that the median of Y should be equal to this original 
estimate.  The function, f, contains many terms – additive, multiplicative and exponential.  
A simple example illustrates that multiplicative functions of random variables with 
symmetric distributions don't have this property. 
 
Consider a very simple case where Y = X1X2, and X1 and X2 each take the values 0.6 and 
1.4 with equal probability.  Then  X1 and X2 each have expected value 1.  Here f(x1,x2) = 
x1*x2, so that f( μ1, μ2) = f(1,1) = 1*1 = 1.  But if we look at the joint distribution, there is 
a ½ * ½ = ¼ chance each equals 0.6, with a product of 0.36, a ½ chance that one equals 
0.6 and the other equals 1.4, with a product of 0.6 x 1.4 = 0.84, and a ¼ chance that both 
equal 1.4, with a product of 1.96.  The expected value of Y is E(X1X2) = 0.25*0.36 + 
0.50*0.84 + 0.25*1.96 = 1, but there is a 75% chance that the product is ≤ 0.84.  So the 
original value and the expected value of the Monte Carlo valuations are both 1.00, but the 
median is 0.84. 
 
For a slightly more realistic example, suppose that X1 and X2 are uniformly distributed 
between 0.6 and 1.4 (e.g. modeling errors with a range of  ± 40%).  If we consider values 
of X1X2 where the product is > 0.6 x 1.4, then the probability the product is greater than a 
given value, r, is 
 
P(X1X2 > r) = [ 1.42 – r*ln(1.4) – r + r *ln(r/1.4)]/0.64 
 
With some trial and error, the median, that is the value of r such that P(X1X2 > r) = 0.5, is 
r = 0.952. 
 
In general, if the errors are symmetrically distributed around a central value, then the 
fractional error that falls below the central value will average somewhat greater than the 
fractional error that falls above: Let the central value = c, and the error = kc.  Then the 
fraction error below the central value is (c – kc)/c = 1 – k and the fractional error above is 
(c + ck)/c = 1 + k.  If the errors are additive, then the errors tend to cancel (1 – k) + ( 1 + 
k) = 0.  But if the errors are multiplicative, then: 
(1 – k)*(1 + k) = 1 – k2 < 1.  To see it another way, suppose k = 0.1.  Then the positive 
error is 1.1 times c, but the negative error is c divided not by 1.1, but by 1/.9 = 1.11̄   
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